[2] | 1 | /****************************************************************************
|
---|
| 2 | **
|
---|
[846] | 3 | ** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
|
---|
[561] | 4 | ** All rights reserved.
|
---|
| 5 | ** Contact: Nokia Corporation (qt-info@nokia.com)
|
---|
[2] | 6 | **
|
---|
| 7 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
| 8 | **
|
---|
| 9 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
| 10 | ** Commercial Usage
|
---|
| 11 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
| 12 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
| 13 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
| 14 | ** a written agreement between you and Nokia.
|
---|
| 15 | **
|
---|
| 16 | ** GNU Lesser General Public License Usage
|
---|
| 17 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
| 18 | ** General Public License version 2.1 as published by the Free Software
|
---|
| 19 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
| 20 | ** packaging of this file. Please review the following information to
|
---|
| 21 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
| 22 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
| 23 | **
|
---|
[561] | 24 | ** In addition, as a special exception, Nokia gives you certain additional
|
---|
| 25 | ** rights. These rights are described in the Nokia Qt LGPL Exception
|
---|
| 26 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
---|
[2] | 27 | **
|
---|
| 28 | ** GNU General Public License Usage
|
---|
| 29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
| 30 | ** General Public License version 3.0 as published by the Free Software
|
---|
| 31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
| 32 | ** packaging of this file. Please review the following information to
|
---|
| 33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
| 34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
| 35 | **
|
---|
[561] | 36 | ** If you have questions regarding the use of this file, please contact
|
---|
| 37 | ** Nokia at qt-info@nokia.com.
|
---|
[2] | 38 | ** $QT_END_LICENSE$
|
---|
| 39 | **
|
---|
| 40 | ****************************************************************************/
|
---|
| 41 |
|
---|
| 42 | #include "private/qstroker_p.h"
|
---|
| 43 | #include "private/qbezier_p.h"
|
---|
| 44 | #include "private/qmath_p.h"
|
---|
| 45 | #include "qline.h"
|
---|
| 46 | #include "qtransform.h"
|
---|
| 47 | #include <qmath.h>
|
---|
| 48 |
|
---|
| 49 | QT_BEGIN_NAMESPACE
|
---|
| 50 |
|
---|
| 51 | // #define QPP_STROKE_DEBUG
|
---|
| 52 |
|
---|
| 53 | class QSubpathForwardIterator
|
---|
| 54 | {
|
---|
| 55 | public:
|
---|
| 56 | QSubpathForwardIterator(const QDataBuffer<QStrokerOps::Element> *path)
|
---|
| 57 | : m_path(path), m_pos(0) { }
|
---|
| 58 | inline int position() const { return m_pos; }
|
---|
| 59 | inline bool hasNext() const { return m_pos < m_path->size(); }
|
---|
| 60 | inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); return m_path->at(m_pos++); }
|
---|
| 61 |
|
---|
| 62 | private:
|
---|
| 63 | const QDataBuffer<QStrokerOps::Element> *m_path;
|
---|
| 64 | int m_pos;
|
---|
| 65 | };
|
---|
| 66 |
|
---|
| 67 | class QSubpathBackwardIterator
|
---|
| 68 | {
|
---|
| 69 | public:
|
---|
| 70 | QSubpathBackwardIterator(const QDataBuffer<QStrokerOps::Element> *path)
|
---|
| 71 | : m_path(path), m_pos(path->size() - 1) { }
|
---|
| 72 |
|
---|
| 73 | inline int position() const { return m_pos; }
|
---|
| 74 |
|
---|
| 75 | inline bool hasNext() const { return m_pos >= 0; }
|
---|
| 76 |
|
---|
| 77 | inline QStrokerOps::Element next()
|
---|
| 78 | {
|
---|
| 79 | Q_ASSERT(hasNext());
|
---|
| 80 |
|
---|
| 81 | QStrokerOps::Element ce = m_path->at(m_pos); // current element
|
---|
| 82 |
|
---|
| 83 | if (m_pos == m_path->size() - 1) {
|
---|
| 84 | --m_pos;
|
---|
| 85 | ce.type = QPainterPath::MoveToElement;
|
---|
| 86 | return ce;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | const QStrokerOps::Element &pe = m_path->at(m_pos + 1); // previous element
|
---|
| 90 |
|
---|
| 91 | switch (pe.type) {
|
---|
| 92 | case QPainterPath::LineToElement:
|
---|
| 93 | ce.type = QPainterPath::LineToElement;
|
---|
| 94 | break;
|
---|
| 95 | case QPainterPath::CurveToDataElement:
|
---|
| 96 | // First control point?
|
---|
| 97 | if (ce.type == QPainterPath::CurveToElement) {
|
---|
| 98 | ce.type = QPainterPath::CurveToDataElement;
|
---|
| 99 | } else { // Second control point then
|
---|
| 100 | ce.type = QPainterPath::CurveToElement;
|
---|
| 101 | }
|
---|
| 102 | break;
|
---|
| 103 | case QPainterPath::CurveToElement:
|
---|
| 104 | ce.type = QPainterPath::CurveToDataElement;
|
---|
| 105 | break;
|
---|
| 106 | default:
|
---|
| 107 | qWarning("QSubpathReverseIterator::next: Case %d unhandled", ce.type);
|
---|
| 108 | break;
|
---|
| 109 | }
|
---|
| 110 | --m_pos;
|
---|
| 111 |
|
---|
| 112 | return ce;
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | private:
|
---|
| 116 | const QDataBuffer<QStrokerOps::Element> *m_path;
|
---|
| 117 | int m_pos;
|
---|
| 118 | };
|
---|
| 119 |
|
---|
| 120 | class QSubpathFlatIterator
|
---|
| 121 | {
|
---|
| 122 | public:
|
---|
[846] | 123 | QSubpathFlatIterator(const QDataBuffer<QStrokerOps::Element> *path, qreal threshold)
|
---|
| 124 | : m_path(path), m_pos(0), m_curve_index(-1), m_curve_threshold(threshold) { }
|
---|
[2] | 125 |
|
---|
| 126 | inline bool hasNext() const { return m_curve_index >= 0 || m_pos < m_path->size(); }
|
---|
| 127 |
|
---|
| 128 | QStrokerOps::Element next()
|
---|
| 129 | {
|
---|
| 130 | Q_ASSERT(hasNext());
|
---|
| 131 |
|
---|
| 132 | if (m_curve_index >= 0) {
|
---|
| 133 | QStrokerOps::Element e = { QPainterPath::LineToElement,
|
---|
| 134 | qt_real_to_fixed(m_curve.at(m_curve_index).x()),
|
---|
| 135 | qt_real_to_fixed(m_curve.at(m_curve_index).y())
|
---|
| 136 | };
|
---|
| 137 | ++m_curve_index;
|
---|
| 138 | if (m_curve_index >= m_curve.size())
|
---|
| 139 | m_curve_index = -1;
|
---|
| 140 | return e;
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | QStrokerOps::Element e = m_path->at(m_pos);
|
---|
| 144 | if (e.isCurveTo()) {
|
---|
| 145 | Q_ASSERT(m_pos > 0);
|
---|
| 146 | Q_ASSERT(m_pos < m_path->size());
|
---|
| 147 |
|
---|
| 148 | m_curve = QBezier::fromPoints(QPointF(qt_fixed_to_real(m_path->at(m_pos-1).x),
|
---|
| 149 | qt_fixed_to_real(m_path->at(m_pos-1).y)),
|
---|
| 150 | QPointF(qt_fixed_to_real(e.x),
|
---|
| 151 | qt_fixed_to_real(e.y)),
|
---|
| 152 | QPointF(qt_fixed_to_real(m_path->at(m_pos+1).x),
|
---|
| 153 | qt_fixed_to_real(m_path->at(m_pos+1).y)),
|
---|
| 154 | QPointF(qt_fixed_to_real(m_path->at(m_pos+2).x),
|
---|
[846] | 155 | qt_fixed_to_real(m_path->at(m_pos+2).y))).toPolygon(m_curve_threshold);
|
---|
[2] | 156 | m_curve_index = 1;
|
---|
| 157 | e.type = QPainterPath::LineToElement;
|
---|
| 158 | e.x = m_curve.at(0).x();
|
---|
| 159 | e.y = m_curve.at(0).y();
|
---|
| 160 | m_pos += 2;
|
---|
| 161 | }
|
---|
| 162 | Q_ASSERT(e.isLineTo() || e.isMoveTo());
|
---|
| 163 | ++m_pos;
|
---|
| 164 | return e;
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | private:
|
---|
| 168 | const QDataBuffer<QStrokerOps::Element> *m_path;
|
---|
| 169 | int m_pos;
|
---|
| 170 | QPolygonF m_curve;
|
---|
| 171 | int m_curve_index;
|
---|
[846] | 172 | qreal m_curve_threshold;
|
---|
[2] | 173 | };
|
---|
| 174 |
|
---|
| 175 | template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker,
|
---|
| 176 | bool capFirst, QLineF *startTangent);
|
---|
| 177 |
|
---|
| 178 | /*******************************************************************************
|
---|
| 179 | * QLineF::angle gives us the smalles angle between two lines. Here we
|
---|
| 180 | * want to identify the line's angle direction on the unit circle.
|
---|
| 181 | */
|
---|
| 182 | static inline qreal adapted_angle_on_x(const QLineF &line)
|
---|
| 183 | {
|
---|
| 184 | qreal angle = line.angle(QLineF(0, 0, 1, 0));
|
---|
| 185 | if (line.dy() > 0)
|
---|
| 186 | angle = 360 - angle;
|
---|
| 187 | return angle;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | QStrokerOps::QStrokerOps()
|
---|
[846] | 191 | : m_elements(0)
|
---|
| 192 | , m_curveThreshold(qt_real_to_fixed(0.25))
|
---|
| 193 | , m_dashThreshold(qt_real_to_fixed(0.25))
|
---|
| 194 | , m_customData(0)
|
---|
| 195 | , m_moveTo(0)
|
---|
| 196 | , m_lineTo(0)
|
---|
| 197 | , m_cubicTo(0)
|
---|
[2] | 198 | {
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | QStrokerOps::~QStrokerOps()
|
---|
| 202 | {
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | /*!
|
---|
| 206 | Prepares the stroker. Call this function once before starting a
|
---|
| 207 | stroke by calling moveTo, lineTo or cubicTo.
|
---|
| 208 |
|
---|
| 209 | The \a customData is passed back through that callback functions
|
---|
| 210 | and can be used by the user to for instance maintain state
|
---|
| 211 | information.
|
---|
| 212 | */
|
---|
| 213 | void QStrokerOps::begin(void *customData)
|
---|
| 214 | {
|
---|
| 215 | m_customData = customData;
|
---|
| 216 | m_elements.reset();
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 |
|
---|
| 220 | /*!
|
---|
| 221 | Finishes the stroke. Call this function once when an entire
|
---|
| 222 | primitive has been stroked.
|
---|
| 223 | */
|
---|
| 224 | void QStrokerOps::end()
|
---|
| 225 | {
|
---|
| 226 | if (m_elements.size() > 1)
|
---|
| 227 | processCurrentSubpath();
|
---|
| 228 | m_customData = 0;
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | /*!
|
---|
| 232 | Convenience function that decomposes \a path into begin(),
|
---|
| 233 | moveTo(), lineTo(), curevTo() and end() calls.
|
---|
| 234 |
|
---|
| 235 | The \a customData parameter is used in the callback functions
|
---|
| 236 |
|
---|
| 237 | The \a matrix is used to transform the points before input to the
|
---|
| 238 | stroker.
|
---|
| 239 |
|
---|
| 240 | \sa begin()
|
---|
| 241 | */
|
---|
| 242 | void QStrokerOps::strokePath(const QPainterPath &path, void *customData, const QTransform &matrix)
|
---|
| 243 | {
|
---|
| 244 | if (path.isEmpty())
|
---|
| 245 | return;
|
---|
| 246 |
|
---|
[846] | 247 | setCurveThresholdFromTransform(QTransform());
|
---|
[2] | 248 | begin(customData);
|
---|
| 249 | int count = path.elementCount();
|
---|
| 250 | if (matrix.isIdentity()) {
|
---|
| 251 | for (int i=0; i<count; ++i) {
|
---|
| 252 | const QPainterPath::Element &e = path.elementAt(i);
|
---|
| 253 | switch (e.type) {
|
---|
| 254 | case QPainterPath::MoveToElement:
|
---|
| 255 | moveTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y));
|
---|
| 256 | break;
|
---|
| 257 | case QPainterPath::LineToElement:
|
---|
| 258 | lineTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y));
|
---|
| 259 | break;
|
---|
| 260 | case QPainterPath::CurveToElement:
|
---|
| 261 | {
|
---|
| 262 | const QPainterPath::Element &cp2 = path.elementAt(++i);
|
---|
| 263 | const QPainterPath::Element &ep = path.elementAt(++i);
|
---|
| 264 | cubicTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y),
|
---|
| 265 | qt_real_to_fixed(cp2.x), qt_real_to_fixed(cp2.y),
|
---|
| 266 | qt_real_to_fixed(ep.x), qt_real_to_fixed(ep.y));
|
---|
| 267 | }
|
---|
| 268 | break;
|
---|
| 269 | default:
|
---|
| 270 | break;
|
---|
| 271 | }
|
---|
| 272 | }
|
---|
| 273 | } else {
|
---|
| 274 | for (int i=0; i<count; ++i) {
|
---|
| 275 | const QPainterPath::Element &e = path.elementAt(i);
|
---|
| 276 | QPointF pt = QPointF(e.x, e.y) * matrix;
|
---|
| 277 | switch (e.type) {
|
---|
| 278 | case QPainterPath::MoveToElement:
|
---|
| 279 | moveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()));
|
---|
| 280 | break;
|
---|
| 281 | case QPainterPath::LineToElement:
|
---|
| 282 | lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()));
|
---|
| 283 | break;
|
---|
| 284 | case QPainterPath::CurveToElement:
|
---|
| 285 | {
|
---|
| 286 | QPointF cp2 = ((QPointF) path.elementAt(++i)) * matrix;
|
---|
| 287 | QPointF ep = ((QPointF) path.elementAt(++i)) * matrix;
|
---|
| 288 | cubicTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()),
|
---|
| 289 | qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()),
|
---|
| 290 | qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y()));
|
---|
| 291 | }
|
---|
| 292 | break;
|
---|
| 293 | default:
|
---|
| 294 | break;
|
---|
| 295 | }
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | end();
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 | /*!
|
---|
| 302 | Convenience function for stroking a polygon of the \a pointCount
|
---|
| 303 | first points in \a points. If \a implicit_close is set to true a
|
---|
| 304 | line is implictly drawn between the first and last point in the
|
---|
| 305 | polygon. Typically true for polygons and false for polylines.
|
---|
| 306 |
|
---|
| 307 | The \a matrix is used to transform the points before they enter the
|
---|
| 308 | stroker.
|
---|
| 309 |
|
---|
| 310 | \sa begin()
|
---|
| 311 | */
|
---|
| 312 |
|
---|
| 313 | void QStrokerOps::strokePolygon(const QPointF *points, int pointCount, bool implicit_close,
|
---|
| 314 | void *data, const QTransform &matrix)
|
---|
| 315 | {
|
---|
| 316 | if (!pointCount)
|
---|
| 317 | return;
|
---|
[846] | 318 |
|
---|
| 319 | setCurveThresholdFromTransform(QTransform());
|
---|
[2] | 320 | begin(data);
|
---|
| 321 | if (matrix.isIdentity()) {
|
---|
| 322 | moveTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y()));
|
---|
| 323 | for (int i=1; i<pointCount; ++i)
|
---|
| 324 | lineTo(qt_real_to_fixed(points[i].x()),
|
---|
| 325 | qt_real_to_fixed(points[i].y()));
|
---|
| 326 | if (implicit_close)
|
---|
| 327 | lineTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y()));
|
---|
| 328 | } else {
|
---|
| 329 | QPointF start = points[0] * matrix;
|
---|
| 330 | moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y()));
|
---|
| 331 | for (int i=1; i<pointCount; ++i) {
|
---|
| 332 | QPointF pt = points[i] * matrix;
|
---|
| 333 | lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()));
|
---|
| 334 | }
|
---|
| 335 | if (implicit_close)
|
---|
| 336 | lineTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y()));
|
---|
| 337 | }
|
---|
| 338 | end();
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | /*!
|
---|
| 342 | Convenience function for stroking an ellipse with bounding rect \a
|
---|
| 343 | rect. The \a matrix is used to transform the coordinates before
|
---|
| 344 | they enter the stroker.
|
---|
| 345 | */
|
---|
| 346 | void QStrokerOps::strokeEllipse(const QRectF &rect, void *data, const QTransform &matrix)
|
---|
| 347 | {
|
---|
| 348 | int count = 0;
|
---|
| 349 | QPointF pts[12];
|
---|
| 350 | QPointF start = qt_curves_for_arc(rect, 0, -360, pts, &count);
|
---|
| 351 | Q_ASSERT(count == 12); // a perfect circle..
|
---|
| 352 |
|
---|
| 353 | if (!matrix.isIdentity()) {
|
---|
| 354 | start = start * matrix;
|
---|
| 355 | for (int i=0; i<12; ++i) {
|
---|
| 356 | pts[i] = pts[i] * matrix;
|
---|
| 357 | }
|
---|
| 358 | }
|
---|
| 359 |
|
---|
[846] | 360 | setCurveThresholdFromTransform(QTransform());
|
---|
[2] | 361 | begin(data);
|
---|
| 362 | moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y()));
|
---|
| 363 | for (int i=0; i<12; i+=3) {
|
---|
| 364 | cubicTo(qt_real_to_fixed(pts[i].x()), qt_real_to_fixed(pts[i].y()),
|
---|
| 365 | qt_real_to_fixed(pts[i+1].x()), qt_real_to_fixed(pts[i+1].y()),
|
---|
| 366 | qt_real_to_fixed(pts[i+2].x()), qt_real_to_fixed(pts[i+2].y()));
|
---|
| 367 | }
|
---|
| 368 | end();
|
---|
| 369 | }
|
---|
| 370 |
|
---|
| 371 |
|
---|
| 372 | QStroker::QStroker()
|
---|
| 373 | : m_capStyle(SquareJoin), m_joinStyle(FlatJoin),
|
---|
| 374 | m_back1X(0), m_back1Y(0),
|
---|
| 375 | m_back2X(0), m_back2Y(0)
|
---|
| 376 | {
|
---|
| 377 | m_strokeWidth = qt_real_to_fixed(1);
|
---|
| 378 | m_miterLimit = qt_real_to_fixed(2);
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 | QStroker::~QStroker()
|
---|
| 382 | {
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | Qt::PenCapStyle QStroker::capForJoinMode(LineJoinMode mode)
|
---|
| 386 | {
|
---|
| 387 | if (mode == FlatJoin) return Qt::FlatCap;
|
---|
| 388 | else if (mode == SquareJoin) return Qt::SquareCap;
|
---|
| 389 | else return Qt::RoundCap;
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 | QStroker::LineJoinMode QStroker::joinModeForCap(Qt::PenCapStyle style)
|
---|
| 393 | {
|
---|
| 394 | if (style == Qt::FlatCap) return FlatJoin;
|
---|
| 395 | else if (style == Qt::SquareCap) return SquareJoin;
|
---|
| 396 | else return RoundCap;
|
---|
| 397 | }
|
---|
| 398 |
|
---|
| 399 | Qt::PenJoinStyle QStroker::joinForJoinMode(LineJoinMode mode)
|
---|
| 400 | {
|
---|
| 401 | if (mode == FlatJoin) return Qt::BevelJoin;
|
---|
| 402 | else if (mode == MiterJoin) return Qt::MiterJoin;
|
---|
| 403 | else if (mode == SvgMiterJoin) return Qt::SvgMiterJoin;
|
---|
| 404 | else return Qt::RoundJoin;
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 | QStroker::LineJoinMode QStroker::joinModeForJoin(Qt::PenJoinStyle joinStyle)
|
---|
| 408 | {
|
---|
| 409 | if (joinStyle == Qt::BevelJoin) return FlatJoin;
|
---|
| 410 | else if (joinStyle == Qt::MiterJoin) return MiterJoin;
|
---|
| 411 | else if (joinStyle == Qt::SvgMiterJoin) return SvgMiterJoin;
|
---|
| 412 | else return RoundJoin;
|
---|
| 413 | }
|
---|
| 414 |
|
---|
| 415 |
|
---|
| 416 | /*!
|
---|
| 417 | This function is called to stroke the currently built up
|
---|
| 418 | subpath. The subpath is cleared when the function completes.
|
---|
| 419 | */
|
---|
| 420 | void QStroker::processCurrentSubpath()
|
---|
| 421 | {
|
---|
| 422 | Q_ASSERT(!m_elements.isEmpty());
|
---|
| 423 | Q_ASSERT(m_elements.first().type == QPainterPath::MoveToElement);
|
---|
| 424 | Q_ASSERT(m_elements.size() > 1);
|
---|
| 425 |
|
---|
| 426 | QSubpathForwardIterator fwit(&m_elements);
|
---|
| 427 | QSubpathBackwardIterator bwit(&m_elements);
|
---|
| 428 |
|
---|
| 429 | QLineF fwStartTangent, bwStartTangent;
|
---|
| 430 |
|
---|
| 431 | bool fwclosed = qt_stroke_side(&fwit, this, false, &fwStartTangent);
|
---|
| 432 | bool bwclosed = qt_stroke_side(&bwit, this, !fwclosed, &bwStartTangent);
|
---|
| 433 |
|
---|
| 434 | if (!bwclosed)
|
---|
| 435 | joinPoints(m_elements.at(0).x, m_elements.at(0).y, fwStartTangent, m_capStyle);
|
---|
| 436 | }
|
---|
| 437 |
|
---|
| 438 |
|
---|
| 439 | /*!
|
---|
| 440 | \internal
|
---|
| 441 | */
|
---|
| 442 | void QStroker::joinPoints(qfixed focal_x, qfixed focal_y, const QLineF &nextLine, LineJoinMode join)
|
---|
| 443 | {
|
---|
| 444 | #ifdef QPP_STROKE_DEBUG
|
---|
| 445 | printf(" -----> joinPoints: around=(%.0f, %.0f), next_p1=(%.0f, %.f) next_p2=(%.0f, %.f)\n",
|
---|
| 446 | qt_fixed_to_real(focal_x),
|
---|
| 447 | qt_fixed_to_real(focal_y),
|
---|
| 448 | nextLine.x1(), nextLine.y1(), nextLine.x2(), nextLine.y2());
|
---|
| 449 | #endif
|
---|
| 450 | // points connected already, don't join
|
---|
| 451 |
|
---|
| 452 | #if !defined (QFIXED_26_6) && !defined (Q_FIXED_32_32)
|
---|
| 453 | if (qFuzzyCompare(m_back1X, nextLine.x1()) && qFuzzyCompare(m_back1Y, nextLine.y1()))
|
---|
| 454 | return;
|
---|
| 455 | #else
|
---|
| 456 | if (m_back1X == qt_real_to_fixed(nextLine.x1())
|
---|
| 457 | && m_back1Y == qt_real_to_fixed(nextLine.y1())) {
|
---|
| 458 | return;
|
---|
| 459 | }
|
---|
| 460 | #endif
|
---|
| 461 |
|
---|
| 462 | if (join == FlatJoin) {
|
---|
[561] | 463 | QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y),
|
---|
| 464 | qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y));
|
---|
| 465 | QPointF isect;
|
---|
| 466 | QLineF::IntersectType type = prevLine.intersect(nextLine, &isect);
|
---|
| 467 | QLineF shortCut(prevLine.p2(), nextLine.p1());
|
---|
| 468 | qreal angle = shortCut.angleTo(prevLine);
|
---|
| 469 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) {
|
---|
| 470 | emitLineTo(focal_x, focal_y);
|
---|
| 471 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 472 | return;
|
---|
| 473 | }
|
---|
[2] | 474 | emitLineTo(qt_real_to_fixed(nextLine.x1()),
|
---|
| 475 | qt_real_to_fixed(nextLine.y1()));
|
---|
| 476 |
|
---|
| 477 | } else {
|
---|
| 478 | QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y),
|
---|
| 479 | qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y));
|
---|
| 480 |
|
---|
| 481 | QPointF isect;
|
---|
| 482 | QLineF::IntersectType type = prevLine.intersect(nextLine, &isect);
|
---|
| 483 |
|
---|
| 484 | if (join == MiterJoin) {
|
---|
| 485 | qreal appliedMiterLimit = qt_fixed_to_real(m_strokeWidth * m_miterLimit);
|
---|
| 486 |
|
---|
| 487 | // If we are on the inside, do the short cut...
|
---|
| 488 | QLineF shortCut(prevLine.p2(), nextLine.p1());
|
---|
| 489 | qreal angle = shortCut.angleTo(prevLine);
|
---|
| 490 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) {
|
---|
[561] | 491 | emitLineTo(focal_x, focal_y);
|
---|
[2] | 492 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 493 | return;
|
---|
| 494 | }
|
---|
| 495 | QLineF miterLine(QPointF(qt_fixed_to_real(m_back1X),
|
---|
| 496 | qt_fixed_to_real(m_back1Y)), isect);
|
---|
| 497 | if (type == QLineF::NoIntersection || miterLine.length() > appliedMiterLimit) {
|
---|
| 498 | QLineF l1(prevLine);
|
---|
| 499 | l1.setLength(appliedMiterLimit);
|
---|
| 500 | l1.translate(prevLine.dx(), prevLine.dy());
|
---|
| 501 |
|
---|
| 502 | QLineF l2(nextLine);
|
---|
| 503 | l2.setLength(appliedMiterLimit);
|
---|
| 504 | l2.translate(-l2.dx(), -l2.dy());
|
---|
| 505 |
|
---|
| 506 | emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2()));
|
---|
| 507 | emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1()));
|
---|
| 508 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 509 | } else {
|
---|
| 510 | emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y()));
|
---|
| 511 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | } else if (join == SquareJoin) {
|
---|
| 515 | qfixed offset = m_strokeWidth / 2;
|
---|
| 516 |
|
---|
| 517 | QLineF l1(prevLine);
|
---|
| 518 | l1.translate(l1.dx(), l1.dy());
|
---|
| 519 | l1.setLength(qt_fixed_to_real(offset));
|
---|
| 520 | QLineF l2(nextLine.p2(), nextLine.p1());
|
---|
| 521 | l2.translate(l2.dx(), l2.dy());
|
---|
| 522 | l2.setLength(qt_fixed_to_real(offset));
|
---|
| 523 | emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2()));
|
---|
| 524 | emitLineTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2()));
|
---|
| 525 | emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1()));
|
---|
| 526 |
|
---|
| 527 | } else if (join == RoundJoin) {
|
---|
| 528 | qfixed offset = m_strokeWidth / 2;
|
---|
| 529 |
|
---|
| 530 | QLineF shortCut(prevLine.p2(), nextLine.p1());
|
---|
[561] | 531 | qreal angle = shortCut.angleTo(prevLine);
|
---|
[2] | 532 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) {
|
---|
[561] | 533 | emitLineTo(focal_x, focal_y);
|
---|
[2] | 534 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 535 | return;
|
---|
| 536 | }
|
---|
| 537 | qreal l1_on_x = adapted_angle_on_x(prevLine);
|
---|
| 538 | qreal l2_on_x = adapted_angle_on_x(nextLine);
|
---|
| 539 |
|
---|
| 540 | qreal sweepLength = qAbs(l2_on_x - l1_on_x);
|
---|
| 541 |
|
---|
| 542 | int point_count;
|
---|
| 543 | QPointF curves[15];
|
---|
| 544 |
|
---|
| 545 | QPointF curve_start =
|
---|
| 546 | qt_curves_for_arc(QRectF(qt_fixed_to_real(focal_x - offset),
|
---|
| 547 | qt_fixed_to_real(focal_y - offset),
|
---|
| 548 | qt_fixed_to_real(offset * 2),
|
---|
| 549 | qt_fixed_to_real(offset * 2)),
|
---|
| 550 | l1_on_x + 90, -sweepLength,
|
---|
| 551 | curves, &point_count);
|
---|
| 552 |
|
---|
| 553 | // // line to the beginning of the arc segment, (should not be needed).
|
---|
| 554 | // emitLineTo(qt_real_to_fixed(curve_start.x()), qt_real_to_fixed(curve_start.y()));
|
---|
| 555 |
|
---|
| 556 | for (int i=0; i<point_count; i+=3) {
|
---|
| 557 | emitCubicTo(qt_real_to_fixed(curves[i].x()),
|
---|
| 558 | qt_real_to_fixed(curves[i].y()),
|
---|
| 559 | qt_real_to_fixed(curves[i+1].x()),
|
---|
| 560 | qt_real_to_fixed(curves[i+1].y()),
|
---|
| 561 | qt_real_to_fixed(curves[i+2].x()),
|
---|
| 562 | qt_real_to_fixed(curves[i+2].y()));
|
---|
| 563 | }
|
---|
| 564 |
|
---|
| 565 | // line to the end of the arc segment, (should also not be needed).
|
---|
| 566 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 567 |
|
---|
| 568 | // Same as round join except we know its 180 degrees. Can also optimize this
|
---|
| 569 | // later based on the addEllipse logic
|
---|
| 570 | } else if (join == RoundCap) {
|
---|
| 571 | qfixed offset = m_strokeWidth / 2;
|
---|
| 572 |
|
---|
| 573 | // first control line
|
---|
| 574 | QLineF l1 = prevLine;
|
---|
| 575 | l1.translate(l1.dx(), l1.dy());
|
---|
| 576 | l1.setLength(QT_PATH_KAPPA * offset);
|
---|
| 577 |
|
---|
| 578 | // second control line, find through normal between prevLine and focal.
|
---|
| 579 | QLineF l2(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y),
|
---|
| 580 | prevLine.x2(), prevLine.y2());
|
---|
| 581 | l2.translate(-l2.dy(), l2.dx());
|
---|
| 582 | l2.setLength(QT_PATH_KAPPA * offset);
|
---|
| 583 |
|
---|
| 584 | emitCubicTo(qt_real_to_fixed(l1.x2()),
|
---|
| 585 | qt_real_to_fixed(l1.y2()),
|
---|
| 586 | qt_real_to_fixed(l2.x2()),
|
---|
| 587 | qt_real_to_fixed(l2.y2()),
|
---|
| 588 | qt_real_to_fixed(l2.x1()),
|
---|
| 589 | qt_real_to_fixed(l2.y1()));
|
---|
| 590 |
|
---|
| 591 | // move so that it matches
|
---|
| 592 | l2 = QLineF(l2.x1(), l2.y1(), l2.x1()-l2.dx(), l2.y1()-l2.dy());
|
---|
| 593 |
|
---|
| 594 | // last line is parallel to l1 so just shift it down.
|
---|
| 595 | l1.translate(nextLine.x1() - l1.x1(), nextLine.y1() - l1.y1());
|
---|
| 596 |
|
---|
| 597 | emitCubicTo(qt_real_to_fixed(l2.x2()),
|
---|
| 598 | qt_real_to_fixed(l2.y2()),
|
---|
| 599 | qt_real_to_fixed(l1.x2()),
|
---|
| 600 | qt_real_to_fixed(l1.y2()),
|
---|
| 601 | qt_real_to_fixed(l1.x1()),
|
---|
| 602 | qt_real_to_fixed(l1.y1()));
|
---|
| 603 | } else if (join == SvgMiterJoin) {
|
---|
[561] | 604 | QLineF shortCut(prevLine.p2(), nextLine.p1());
|
---|
| 605 | qreal angle = shortCut.angleTo(prevLine);
|
---|
| 606 | if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) {
|
---|
| 607 | emitLineTo(focal_x, focal_y);
|
---|
| 608 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 609 | return;
|
---|
| 610 | }
|
---|
[2] | 611 | QLineF miterLine(QPointF(qt_fixed_to_real(focal_x),
|
---|
| 612 | qt_fixed_to_real(focal_y)), isect);
|
---|
[846] | 613 | if (type == QLineF::NoIntersection || miterLine.length() > qt_fixed_to_real(m_strokeWidth * m_miterLimit) / 2) {
|
---|
[2] | 614 | emitLineTo(qt_real_to_fixed(nextLine.x1()),
|
---|
| 615 | qt_real_to_fixed(nextLine.y1()));
|
---|
| 616 | } else {
|
---|
| 617 | emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y()));
|
---|
| 618 | emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
---|
| 619 | }
|
---|
| 620 | } else {
|
---|
| 621 | Q_ASSERT(!"QStroker::joinPoints(), bad join style...");
|
---|
| 622 | }
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 |
|
---|
| 627 | /*
|
---|
| 628 | Strokes a subpath side using the \a it as source. Results are put into
|
---|
| 629 | \a stroke. The function returns true if the subpath side was closed.
|
---|
| 630 | If \a capFirst is true, we will use capPoints instead of joinPoints to
|
---|
| 631 | connect the first segment, other segments will be joined using joinPoints.
|
---|
| 632 | This is to put capping in order...
|
---|
| 633 | */
|
---|
| 634 | template <class Iterator> bool qt_stroke_side(Iterator *it,
|
---|
| 635 | QStroker *stroker,
|
---|
| 636 | bool capFirst,
|
---|
| 637 | QLineF *startTangent)
|
---|
| 638 | {
|
---|
| 639 | // Used in CurveToElement section below.
|
---|
| 640 | const int MAX_OFFSET = 16;
|
---|
| 641 | QBezier offsetCurves[MAX_OFFSET];
|
---|
| 642 |
|
---|
| 643 | Q_ASSERT(it->hasNext()); // The initaial move to
|
---|
| 644 | QStrokerOps::Element first_element = it->next();
|
---|
| 645 | Q_ASSERT(first_element.isMoveTo());
|
---|
| 646 |
|
---|
| 647 | qfixed2d start = first_element;
|
---|
| 648 |
|
---|
| 649 | #ifdef QPP_STROKE_DEBUG
|
---|
| 650 | qDebug(" -> (side) [%.2f, %.2f], startPos=%d",
|
---|
| 651 | qt_fixed_to_real(start.x),
|
---|
| 652 | qt_fixed_to_real(start.y));
|
---|
| 653 | #endif
|
---|
| 654 |
|
---|
| 655 | qfixed2d prev = start;
|
---|
| 656 |
|
---|
| 657 | bool first = true;
|
---|
| 658 |
|
---|
| 659 | qfixed offset = stroker->strokeWidth() / 2;
|
---|
| 660 |
|
---|
| 661 | while (it->hasNext()) {
|
---|
| 662 | QStrokerOps::Element e = it->next();
|
---|
| 663 |
|
---|
| 664 | // LineToElement
|
---|
| 665 | if (e.isLineTo()) {
|
---|
| 666 | #ifdef QPP_STROKE_DEBUG
|
---|
| 667 | qDebug("\n ---> (side) lineto [%.2f, %.2f]", e.x, e.y);
|
---|
| 668 | #endif
|
---|
| 669 | QLineF line(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y),
|
---|
| 670 | qt_fixed_to_real(e.x), qt_fixed_to_real(e.y));
|
---|
| 671 | QLineF normal = line.normalVector();
|
---|
| 672 | normal.setLength(offset);
|
---|
| 673 | line.translate(normal.dx(), normal.dy());
|
---|
| 674 |
|
---|
| 675 | // If we are starting a new subpath, move to correct starting point.
|
---|
| 676 | if (first) {
|
---|
| 677 | if (capFirst)
|
---|
| 678 | stroker->joinPoints(prev.x, prev.y, line, stroker->capStyleMode());
|
---|
| 679 | else
|
---|
| 680 | stroker->emitMoveTo(qt_real_to_fixed(line.x1()), qt_real_to_fixed(line.y1()));
|
---|
| 681 | *startTangent = line;
|
---|
| 682 | first = false;
|
---|
| 683 | } else {
|
---|
| 684 | stroker->joinPoints(prev.x, prev.y, line, stroker->joinStyleMode());
|
---|
| 685 | }
|
---|
| 686 |
|
---|
| 687 | // Add the stroke for this line.
|
---|
| 688 | stroker->emitLineTo(qt_real_to_fixed(line.x2()),
|
---|
| 689 | qt_real_to_fixed(line.y2()));
|
---|
| 690 | prev = e;
|
---|
| 691 |
|
---|
| 692 | // CurveToElement
|
---|
| 693 | } else if (e.isCurveTo()) {
|
---|
| 694 | QStrokerOps::Element cp2 = it->next(); // control point 2
|
---|
| 695 | QStrokerOps::Element ep = it->next(); // end point
|
---|
| 696 |
|
---|
| 697 | #ifdef QPP_STROKE_DEBUG
|
---|
| 698 | qDebug("\n ---> (side) cubicTo [%.2f, %.2f]",
|
---|
| 699 | qt_fixed_to_real(ep.x),
|
---|
| 700 | qt_fixed_to_real(ep.y));
|
---|
| 701 | #endif
|
---|
| 702 |
|
---|
| 703 | QBezier bezier =
|
---|
| 704 | QBezier::fromPoints(QPointF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y)),
|
---|
| 705 | QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)),
|
---|
| 706 | QPointF(qt_fixed_to_real(cp2.x), qt_fixed_to_real(cp2.y)),
|
---|
| 707 | QPointF(qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y)));
|
---|
| 708 |
|
---|
| 709 | int count = bezier.shifted(offsetCurves,
|
---|
| 710 | MAX_OFFSET,
|
---|
| 711 | offset,
|
---|
| 712 | stroker->curveThreshold());
|
---|
| 713 |
|
---|
| 714 | if (count) {
|
---|
| 715 | // If we are starting a new subpath, move to correct starting point
|
---|
| 716 | QLineF tangent = bezier.startTangent();
|
---|
| 717 | tangent.translate(offsetCurves[0].pt1() - bezier.pt1());
|
---|
| 718 | if (first) {
|
---|
| 719 | QPointF pt = offsetCurves[0].pt1();
|
---|
| 720 | if (capFirst) {
|
---|
| 721 | stroker->joinPoints(prev.x, prev.y,
|
---|
| 722 | tangent,
|
---|
| 723 | stroker->capStyleMode());
|
---|
| 724 | } else {
|
---|
| 725 | stroker->emitMoveTo(qt_real_to_fixed(pt.x()),
|
---|
| 726 | qt_real_to_fixed(pt.y()));
|
---|
| 727 | }
|
---|
| 728 | *startTangent = tangent;
|
---|
| 729 | first = false;
|
---|
| 730 | } else {
|
---|
| 731 | stroker->joinPoints(prev.x, prev.y,
|
---|
| 732 | tangent,
|
---|
| 733 | stroker->joinStyleMode());
|
---|
| 734 | }
|
---|
| 735 |
|
---|
| 736 | // Add these beziers
|
---|
| 737 | for (int i=0; i<count; ++i) {
|
---|
| 738 | QPointF cp1 = offsetCurves[i].pt2();
|
---|
| 739 | QPointF cp2 = offsetCurves[i].pt3();
|
---|
| 740 | QPointF ep = offsetCurves[i].pt4();
|
---|
| 741 | stroker->emitCubicTo(qt_real_to_fixed(cp1.x()), qt_real_to_fixed(cp1.y()),
|
---|
| 742 | qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()),
|
---|
| 743 | qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y()));
|
---|
| 744 | }
|
---|
| 745 | }
|
---|
| 746 |
|
---|
| 747 | prev = ep;
|
---|
| 748 | }
|
---|
| 749 | }
|
---|
| 750 |
|
---|
| 751 | if (start == prev) {
|
---|
| 752 | // closed subpath, join first and last point
|
---|
| 753 | #ifdef QPP_STROKE_DEBUG
|
---|
| 754 | qDebug("\n ---> (side) closed subpath");
|
---|
| 755 | #endif
|
---|
| 756 | stroker->joinPoints(prev.x, prev.y, *startTangent, stroker->joinStyleMode());
|
---|
| 757 | return true;
|
---|
| 758 | } else {
|
---|
| 759 | #ifdef QPP_STROKE_DEBUG
|
---|
| 760 | qDebug("\n ---> (side) open subpath");
|
---|
| 761 | #endif
|
---|
| 762 | return false;
|
---|
| 763 | }
|
---|
| 764 | }
|
---|
| 765 |
|
---|
| 766 | /*!
|
---|
| 767 | \internal
|
---|
| 768 |
|
---|
| 769 | For a given angle in the range [0 .. 90], finds the corresponding parameter t
|
---|
| 770 | of the prototype cubic bezier arc segment
|
---|
| 771 | b = fromPoints(QPointF(1, 0), QPointF(1, KAPPA), QPointF(KAPPA, 1), QPointF(0, 1));
|
---|
| 772 |
|
---|
| 773 | From the bezier equation:
|
---|
| 774 | b.pointAt(t).x() = (1-t)^3 + t*(1-t)^2 + t^2*(1-t)*KAPPA
|
---|
| 775 | b.pointAt(t).y() = t*(1-t)^2 * KAPPA + t^2*(1-t) + t^3
|
---|
| 776 |
|
---|
| 777 | Third degree coefficients:
|
---|
| 778 | b.pointAt(t).x() = at^3 + bt^2 + ct + d
|
---|
| 779 | where a = 2-3*KAPPA, b = 3*(KAPPA-1), c = 0, d = 1
|
---|
| 780 |
|
---|
| 781 | b.pointAt(t).y() = at^3 + bt^2 + ct + d
|
---|
| 782 | where a = 3*KAPPA-2, b = 6*KAPPA+3, c = 3*KAPPA, d = 0
|
---|
| 783 |
|
---|
| 784 | Newton's method to find the zero of a function:
|
---|
| 785 | given a function f(x) and initial guess x_0
|
---|
| 786 | x_1 = f(x_0) / f'(x_0)
|
---|
| 787 | x_2 = f(x_1) / f'(x_1)
|
---|
| 788 | etc...
|
---|
| 789 | */
|
---|
| 790 |
|
---|
| 791 | qreal qt_t_for_arc_angle(qreal angle)
|
---|
| 792 | {
|
---|
[561] | 793 | if (qFuzzyIsNull(angle))
|
---|
[2] | 794 | return 0;
|
---|
| 795 |
|
---|
| 796 | if (qFuzzyCompare(angle, qreal(90)))
|
---|
| 797 | return 1;
|
---|
| 798 |
|
---|
| 799 | qreal radians = Q_PI * angle / 180;
|
---|
| 800 | qreal cosAngle = qCos(radians);
|
---|
| 801 | qreal sinAngle = qSin(radians);
|
---|
| 802 |
|
---|
| 803 | // initial guess
|
---|
| 804 | qreal tc = angle / 90;
|
---|
| 805 | // do some iterations of newton's method to approximate cosAngle
|
---|
| 806 | // finds the zero of the function b.pointAt(tc).x() - cosAngle
|
---|
| 807 | tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value
|
---|
| 808 | / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative
|
---|
| 809 | tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value
|
---|
| 810 | / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative
|
---|
| 811 |
|
---|
| 812 | // initial guess
|
---|
| 813 | qreal ts = tc;
|
---|
| 814 | // do some iterations of newton's method to approximate sinAngle
|
---|
| 815 | // finds the zero of the function b.pointAt(tc).y() - sinAngle
|
---|
| 816 | ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle)
|
---|
| 817 | / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA);
|
---|
| 818 | ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle)
|
---|
| 819 | / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA);
|
---|
| 820 |
|
---|
| 821 | // use the average of the t that best approximates cosAngle
|
---|
| 822 | // and the t that best approximates sinAngle
|
---|
| 823 | qreal t = 0.5 * (tc + ts);
|
---|
| 824 |
|
---|
| 825 | #if 0
|
---|
| 826 | printf("angle: %f, t: %f\n", angle, t);
|
---|
| 827 | qreal a, b, c, d;
|
---|
| 828 | bezierCoefficients(t, a, b, c, d);
|
---|
| 829 | printf("cosAngle: %.10f, value: %.10f\n", cosAngle, a + b + c * QT_PATH_KAPPA);
|
---|
| 830 | printf("sinAngle: %.10f, value: %.10f\n", sinAngle, b * QT_PATH_KAPPA + c + d);
|
---|
| 831 | #endif
|
---|
| 832 |
|
---|
| 833 | return t;
|
---|
| 834 | }
|
---|
| 835 |
|
---|
[769] | 836 | Q_GUI_EXPORT void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length,
|
---|
[2] | 837 | QPointF* startPoint, QPointF *endPoint);
|
---|
| 838 |
|
---|
| 839 | /*!
|
---|
| 840 | \internal
|
---|
| 841 |
|
---|
| 842 | Creates a number of curves for a given arc definition. The arc is
|
---|
| 843 | defined an arc along the ellipses that fits into \a rect starting
|
---|
| 844 | at \a startAngle and an arc length of \a sweepLength.
|
---|
| 845 |
|
---|
| 846 | The function has three out parameters. The return value is the
|
---|
| 847 | starting point of the arc. The \a curves array represents the list
|
---|
| 848 | of cubicTo elements up to a maximum of \a point_count. There are of course
|
---|
| 849 | 3 points pr curve.
|
---|
| 850 | */
|
---|
| 851 | QPointF qt_curves_for_arc(const QRectF &rect, qreal startAngle, qreal sweepLength,
|
---|
| 852 | QPointF *curves, int *point_count)
|
---|
| 853 | {
|
---|
| 854 | Q_ASSERT(point_count);
|
---|
| 855 | Q_ASSERT(curves);
|
---|
| 856 |
|
---|
| 857 | *point_count = 0;
|
---|
| 858 | if (qt_is_nan(rect.x()) || qt_is_nan(rect.y()) || qt_is_nan(rect.width()) || qt_is_nan(rect.height())
|
---|
| 859 | || qt_is_nan(startAngle) || qt_is_nan(sweepLength)) {
|
---|
| 860 | qWarning("QPainterPath::arcTo: Adding arc where a parameter is NaN, results are undefined");
|
---|
| 861 | return QPointF();
|
---|
| 862 | }
|
---|
| 863 |
|
---|
| 864 | if (rect.isNull()) {
|
---|
| 865 | return QPointF();
|
---|
| 866 | }
|
---|
| 867 |
|
---|
| 868 | qreal x = rect.x();
|
---|
| 869 | qreal y = rect.y();
|
---|
| 870 |
|
---|
| 871 | qreal w = rect.width();
|
---|
| 872 | qreal w2 = rect.width() / 2;
|
---|
| 873 | qreal w2k = w2 * QT_PATH_KAPPA;
|
---|
| 874 |
|
---|
| 875 | qreal h = rect.height();
|
---|
| 876 | qreal h2 = rect.height() / 2;
|
---|
| 877 | qreal h2k = h2 * QT_PATH_KAPPA;
|
---|
| 878 |
|
---|
| 879 | QPointF points[16] =
|
---|
| 880 | {
|
---|
| 881 | // start point
|
---|
| 882 | QPointF(x + w, y + h2),
|
---|
| 883 |
|
---|
| 884 | // 0 -> 270 degrees
|
---|
| 885 | QPointF(x + w, y + h2 + h2k),
|
---|
| 886 | QPointF(x + w2 + w2k, y + h),
|
---|
| 887 | QPointF(x + w2, y + h),
|
---|
| 888 |
|
---|
| 889 | // 270 -> 180 degrees
|
---|
| 890 | QPointF(x + w2 - w2k, y + h),
|
---|
| 891 | QPointF(x, y + h2 + h2k),
|
---|
| 892 | QPointF(x, y + h2),
|
---|
| 893 |
|
---|
| 894 | // 180 -> 90 degrees
|
---|
| 895 | QPointF(x, y + h2 - h2k),
|
---|
| 896 | QPointF(x + w2 - w2k, y),
|
---|
| 897 | QPointF(x + w2, y),
|
---|
| 898 |
|
---|
| 899 | // 90 -> 0 degrees
|
---|
| 900 | QPointF(x + w2 + w2k, y),
|
---|
| 901 | QPointF(x + w, y + h2 - h2k),
|
---|
| 902 | QPointF(x + w, y + h2)
|
---|
| 903 | };
|
---|
| 904 |
|
---|
| 905 | if (sweepLength > 360) sweepLength = 360;
|
---|
| 906 | else if (sweepLength < -360) sweepLength = -360;
|
---|
| 907 |
|
---|
| 908 | // Special case fast paths
|
---|
| 909 | if (startAngle == 0.0) {
|
---|
| 910 | if (sweepLength == 360.0) {
|
---|
| 911 | for (int i = 11; i >= 0; --i)
|
---|
| 912 | curves[(*point_count)++] = points[i];
|
---|
| 913 | return points[12];
|
---|
| 914 | } else if (sweepLength == -360.0) {
|
---|
| 915 | for (int i = 1; i <= 12; ++i)
|
---|
| 916 | curves[(*point_count)++] = points[i];
|
---|
| 917 | return points[0];
|
---|
| 918 | }
|
---|
| 919 | }
|
---|
| 920 |
|
---|
[561] | 921 | int startSegment = int(qFloor(startAngle / 90));
|
---|
| 922 | int endSegment = int(qFloor((startAngle + sweepLength) / 90));
|
---|
[2] | 923 |
|
---|
| 924 | qreal startT = (startAngle - startSegment * 90) / 90;
|
---|
| 925 | qreal endT = (startAngle + sweepLength - endSegment * 90) / 90;
|
---|
| 926 |
|
---|
| 927 | int delta = sweepLength > 0 ? 1 : -1;
|
---|
| 928 | if (delta < 0) {
|
---|
| 929 | startT = 1 - startT;
|
---|
| 930 | endT = 1 - endT;
|
---|
| 931 | }
|
---|
| 932 |
|
---|
| 933 | // avoid empty start segment
|
---|
[561] | 934 | if (qFuzzyIsNull(startT - qreal(1))) {
|
---|
[2] | 935 | startT = 0;
|
---|
| 936 | startSegment += delta;
|
---|
| 937 | }
|
---|
| 938 |
|
---|
| 939 | // avoid empty end segment
|
---|
[561] | 940 | if (qFuzzyIsNull(endT)) {
|
---|
[2] | 941 | endT = 1;
|
---|
| 942 | endSegment -= delta;
|
---|
| 943 | }
|
---|
| 944 |
|
---|
| 945 | startT = qt_t_for_arc_angle(startT * 90);
|
---|
| 946 | endT = qt_t_for_arc_angle(endT * 90);
|
---|
| 947 |
|
---|
[561] | 948 | const bool splitAtStart = !qFuzzyIsNull(startT);
|
---|
| 949 | const bool splitAtEnd = !qFuzzyIsNull(endT - qreal(1));
|
---|
[2] | 950 |
|
---|
| 951 | const int end = endSegment + delta;
|
---|
| 952 |
|
---|
| 953 | // empty arc?
|
---|
| 954 | if (startSegment == end) {
|
---|
| 955 | const int quadrant = 3 - ((startSegment % 4) + 4) % 4;
|
---|
| 956 | const int j = 3 * quadrant;
|
---|
| 957 | return delta > 0 ? points[j + 3] : points[j];
|
---|
| 958 | }
|
---|
| 959 |
|
---|
| 960 | QPointF startPoint, endPoint;
|
---|
| 961 | qt_find_ellipse_coords(rect, startAngle, sweepLength, &startPoint, &endPoint);
|
---|
| 962 |
|
---|
| 963 | for (int i = startSegment; i != end; i += delta) {
|
---|
| 964 | const int quadrant = 3 - ((i % 4) + 4) % 4;
|
---|
| 965 | const int j = 3 * quadrant;
|
---|
| 966 |
|
---|
| 967 | QBezier b;
|
---|
| 968 | if (delta > 0)
|
---|
| 969 | b = QBezier::fromPoints(points[j + 3], points[j + 2], points[j + 1], points[j]);
|
---|
| 970 | else
|
---|
| 971 | b = QBezier::fromPoints(points[j], points[j + 1], points[j + 2], points[j + 3]);
|
---|
| 972 |
|
---|
| 973 | // empty arc?
|
---|
| 974 | if (startSegment == endSegment && qFuzzyCompare(startT, endT))
|
---|
| 975 | return startPoint;
|
---|
| 976 |
|
---|
| 977 | if (i == startSegment) {
|
---|
| 978 | if (i == endSegment && splitAtEnd)
|
---|
| 979 | b = b.bezierOnInterval(startT, endT);
|
---|
| 980 | else if (splitAtStart)
|
---|
| 981 | b = b.bezierOnInterval(startT, 1);
|
---|
| 982 | } else if (i == endSegment && splitAtEnd) {
|
---|
| 983 | b = b.bezierOnInterval(0, endT);
|
---|
| 984 | }
|
---|
| 985 |
|
---|
| 986 | // push control points
|
---|
| 987 | curves[(*point_count)++] = b.pt2();
|
---|
| 988 | curves[(*point_count)++] = b.pt3();
|
---|
| 989 | curves[(*point_count)++] = b.pt4();
|
---|
| 990 | }
|
---|
| 991 |
|
---|
| 992 | Q_ASSERT(*point_count > 0);
|
---|
| 993 | curves[*(point_count)-1] = endPoint;
|
---|
| 994 |
|
---|
| 995 | return startPoint;
|
---|
| 996 | }
|
---|
| 997 |
|
---|
| 998 |
|
---|
[561] | 999 | static inline void qdashstroker_moveTo(qfixed x, qfixed y, void *data) {
|
---|
| 1000 | ((QStroker *) data)->moveTo(x, y);
|
---|
| 1001 | }
|
---|
| 1002 |
|
---|
| 1003 | static inline void qdashstroker_lineTo(qfixed x, qfixed y, void *data) {
|
---|
| 1004 | ((QStroker *) data)->lineTo(x, y);
|
---|
| 1005 | }
|
---|
| 1006 |
|
---|
| 1007 | static inline void qdashstroker_cubicTo(qfixed, qfixed, qfixed, qfixed, qfixed, qfixed, void *) {
|
---|
| 1008 | Q_ASSERT(0);
|
---|
| 1009 | // ((QStroker *) data)->cubicTo(c1x, c1y, c2x, c2y, ex, ey);
|
---|
| 1010 | }
|
---|
| 1011 |
|
---|
| 1012 |
|
---|
[2] | 1013 | /*******************************************************************************
|
---|
| 1014 | * QDashStroker members
|
---|
| 1015 | */
|
---|
| 1016 | QDashStroker::QDashStroker(QStroker *stroker)
|
---|
[561] | 1017 | : m_stroker(stroker), m_dashOffset(0), m_stroke_width(1), m_miter_limit(1)
|
---|
[2] | 1018 | {
|
---|
[561] | 1019 | if (m_stroker) {
|
---|
| 1020 | setMoveToHook(qdashstroker_moveTo);
|
---|
| 1021 | setLineToHook(qdashstroker_lineTo);
|
---|
| 1022 | setCubicToHook(qdashstroker_cubicTo);
|
---|
| 1023 | }
|
---|
[2] | 1024 | }
|
---|
| 1025 |
|
---|
| 1026 | QVector<qfixed> QDashStroker::patternForStyle(Qt::PenStyle style)
|
---|
| 1027 | {
|
---|
| 1028 | const qfixed space = 2;
|
---|
| 1029 | const qfixed dot = 1;
|
---|
| 1030 | const qfixed dash = 4;
|
---|
| 1031 |
|
---|
| 1032 | QVector<qfixed> pattern;
|
---|
| 1033 |
|
---|
| 1034 | switch (style) {
|
---|
| 1035 | case Qt::DashLine:
|
---|
| 1036 | pattern << dash << space;
|
---|
| 1037 | break;
|
---|
| 1038 | case Qt::DotLine:
|
---|
| 1039 | pattern << dot << space;
|
---|
| 1040 | break;
|
---|
| 1041 | case Qt::DashDotLine:
|
---|
| 1042 | pattern << dash << space << dot << space;
|
---|
| 1043 | break;
|
---|
| 1044 | case Qt::DashDotDotLine:
|
---|
| 1045 | pattern << dash << space << dot << space << dot << space;
|
---|
| 1046 | break;
|
---|
| 1047 | default:
|
---|
| 1048 | break;
|
---|
| 1049 | }
|
---|
| 1050 |
|
---|
| 1051 | return pattern;
|
---|
| 1052 | }
|
---|
| 1053 |
|
---|
[846] | 1054 | static inline bool lineRectIntersectsRect(qfixed2d p1, qfixed2d p2, const qfixed2d &tl, const qfixed2d &br)
|
---|
| 1055 | {
|
---|
| 1056 | return ((p1.x > tl.x || p2.x > tl.x) && (p1.x < br.x || p2.x < br.x)
|
---|
| 1057 | && (p1.y > tl.y || p2.y > tl.y) && (p1.y < br.y || p2.y < br.y));
|
---|
| 1058 | }
|
---|
[2] | 1059 |
|
---|
[846] | 1060 | // If the line intersects the rectangle, this function will return true.
|
---|
| 1061 | static bool lineIntersectsRect(qfixed2d p1, qfixed2d p2, const qfixed2d &tl, const qfixed2d &br)
|
---|
| 1062 | {
|
---|
| 1063 | if (!lineRectIntersectsRect(p1, p2, tl, br))
|
---|
| 1064 | return false;
|
---|
| 1065 | if (p1.x == p2.x || p1.y == p2.y)
|
---|
| 1066 | return true;
|
---|
| 1067 |
|
---|
| 1068 | if (p1.y > p2.y)
|
---|
| 1069 | qSwap(p1, p2); // make p1 above p2
|
---|
| 1070 | qfixed2d u;
|
---|
| 1071 | qfixed2d v;
|
---|
| 1072 | qfixed2d w = {p2.x - p1.x, p2.y - p1.y};
|
---|
| 1073 | if (p1.x < p2.x) {
|
---|
| 1074 | // backslash
|
---|
| 1075 | u.x = tl.x - p1.x; u.y = br.y - p1.y;
|
---|
| 1076 | v.x = br.x - p1.x; v.y = tl.y - p1.y;
|
---|
| 1077 | } else {
|
---|
| 1078 | // slash
|
---|
| 1079 | u.x = tl.x - p1.x; u.y = tl.y - p1.y;
|
---|
| 1080 | v.x = br.x - p1.x; v.y = br.y - p1.y;
|
---|
| 1081 | }
|
---|
| 1082 | #if defined(QFIXED_IS_26_6) || defined(QFIXED_IS_16_16)
|
---|
| 1083 | qint64 val1 = qint64(u.x) * qint64(w.y) - qint64(u.y) * qint64(w.x);
|
---|
| 1084 | qint64 val2 = qint64(v.x) * qint64(w.y) - qint64(v.y) * qint64(w.x);
|
---|
| 1085 | return (val1 < 0 && val2 > 0) || (val1 > 0 && val2 < 0);
|
---|
| 1086 | #elif defined(QFIXED_IS_32_32)
|
---|
| 1087 | // Cannot do proper test because it may overflow.
|
---|
| 1088 | return true;
|
---|
| 1089 | #else
|
---|
| 1090 | qreal val1 = u.x * w.y - u.y * w.x;
|
---|
| 1091 | qreal val2 = v.x * w.y - v.y * w.x;
|
---|
| 1092 | return (val1 < 0 && val2 > 0) || (val1 > 0 && val2 < 0);
|
---|
| 1093 | #endif
|
---|
| 1094 | }
|
---|
| 1095 |
|
---|
[2] | 1096 | void QDashStroker::processCurrentSubpath()
|
---|
| 1097 | {
|
---|
| 1098 | int dashCount = qMin(m_dashPattern.size(), 32);
|
---|
| 1099 | qfixed dashes[32];
|
---|
| 1100 |
|
---|
[561] | 1101 | if (m_stroker) {
|
---|
| 1102 | m_customData = m_stroker;
|
---|
| 1103 | m_stroke_width = m_stroker->strokeWidth();
|
---|
| 1104 | m_miter_limit = m_stroker->miterLimit();
|
---|
| 1105 | }
|
---|
| 1106 |
|
---|
| 1107 | qreal longestLength = 0;
|
---|
[2] | 1108 | qreal sumLength = 0;
|
---|
| 1109 | for (int i=0; i<dashCount; ++i) {
|
---|
[561] | 1110 | dashes[i] = qMax(m_dashPattern.at(i), qreal(0)) * m_stroke_width;
|
---|
[2] | 1111 | sumLength += dashes[i];
|
---|
[561] | 1112 | if (dashes[i] > longestLength)
|
---|
| 1113 | longestLength = dashes[i];
|
---|
[2] | 1114 | }
|
---|
| 1115 |
|
---|
[561] | 1116 | if (qFuzzyIsNull(sumLength))
|
---|
[2] | 1117 | return;
|
---|
| 1118 |
|
---|
[846] | 1119 | qreal invSumLength = qreal(1) / sumLength;
|
---|
| 1120 |
|
---|
[2] | 1121 | Q_ASSERT(dashCount > 0);
|
---|
| 1122 |
|
---|
[846] | 1123 | dashCount = dashCount & -2; // Round down to even number
|
---|
[2] | 1124 |
|
---|
| 1125 | int idash = 0; // Index to current dash
|
---|
| 1126 | qreal pos = 0; // The position on the curve, 0 <= pos <= path.length
|
---|
| 1127 | qreal elen = 0; // element length
|
---|
[561] | 1128 | qreal doffset = m_dashOffset * m_stroke_width;
|
---|
[2] | 1129 |
|
---|
| 1130 | // make sure doffset is in range [0..sumLength)
|
---|
[846] | 1131 | doffset -= qFloor(doffset * invSumLength) * sumLength;
|
---|
[2] | 1132 |
|
---|
| 1133 | while (doffset >= dashes[idash]) {
|
---|
| 1134 | doffset -= dashes[idash];
|
---|
[846] | 1135 | if (++idash >= dashCount)
|
---|
| 1136 | idash = 0;
|
---|
[2] | 1137 | }
|
---|
| 1138 |
|
---|
| 1139 | qreal estart = 0; // The elements starting position
|
---|
| 1140 | qreal estop = 0; // The element stop position
|
---|
| 1141 |
|
---|
| 1142 | QLineF cline;
|
---|
| 1143 |
|
---|
| 1144 | QPainterPath dashPath;
|
---|
| 1145 |
|
---|
[846] | 1146 | QSubpathFlatIterator it(&m_elements, m_dashThreshold);
|
---|
[2] | 1147 | qfixed2d prev = it.next();
|
---|
| 1148 |
|
---|
| 1149 | bool clipping = !m_clip_rect.isEmpty();
|
---|
| 1150 | qfixed2d move_to_pos = prev;
|
---|
| 1151 | qfixed2d line_to_pos;
|
---|
| 1152 |
|
---|
| 1153 | // Pad to avoid clipping the borders of thick pens.
|
---|
[561] | 1154 | qfixed padding = qt_real_to_fixed(qMax(m_stroke_width, m_miter_limit) * longestLength);
|
---|
[2] | 1155 | qfixed2d clip_tl = { qt_real_to_fixed(m_clip_rect.left()) - padding,
|
---|
| 1156 | qt_real_to_fixed(m_clip_rect.top()) - padding };
|
---|
| 1157 | qfixed2d clip_br = { qt_real_to_fixed(m_clip_rect.right()) + padding ,
|
---|
| 1158 | qt_real_to_fixed(m_clip_rect.bottom()) + padding };
|
---|
| 1159 |
|
---|
| 1160 | bool hasMoveTo = false;
|
---|
| 1161 | while (it.hasNext()) {
|
---|
| 1162 | QStrokerOps::Element e = it.next();
|
---|
| 1163 |
|
---|
| 1164 | Q_ASSERT(e.isLineTo());
|
---|
| 1165 | cline = QLineF(qt_fixed_to_real(prev.x),
|
---|
| 1166 | qt_fixed_to_real(prev.y),
|
---|
| 1167 | qt_fixed_to_real(e.x),
|
---|
| 1168 | qt_fixed_to_real(e.y));
|
---|
| 1169 | elen = cline.length();
|
---|
| 1170 |
|
---|
| 1171 | estop = estart + elen;
|
---|
| 1172 |
|
---|
| 1173 | bool done = pos >= estop;
|
---|
[846] | 1174 |
|
---|
| 1175 | if (clipping) {
|
---|
| 1176 | // Check if the entire line can be clipped away.
|
---|
| 1177 | if (!lineIntersectsRect(prev, e, clip_tl, clip_br)) {
|
---|
| 1178 | // Cut away full dash sequences.
|
---|
| 1179 | elen -= qFloor(elen * invSumLength) * sumLength;
|
---|
| 1180 | // Update dash offset.
|
---|
| 1181 | while (!done) {
|
---|
| 1182 | qreal dpos = pos + dashes[idash] - doffset - estart;
|
---|
| 1183 |
|
---|
| 1184 | Q_ASSERT(dpos >= 0);
|
---|
| 1185 |
|
---|
| 1186 | if (dpos > elen) { // dash extends this line
|
---|
| 1187 | doffset = dashes[idash] - (dpos - elen); // subtract the part already used
|
---|
| 1188 | pos = estop; // move pos to next path element
|
---|
| 1189 | done = true;
|
---|
| 1190 | } else { // Dash is on this line
|
---|
| 1191 | pos = dpos + estart;
|
---|
| 1192 | done = pos >= estop;
|
---|
| 1193 | if (++idash >= dashCount)
|
---|
| 1194 | idash = 0;
|
---|
| 1195 | doffset = 0; // full segment so no offset on next.
|
---|
| 1196 | }
|
---|
| 1197 | }
|
---|
| 1198 | hasMoveTo = false;
|
---|
| 1199 | move_to_pos = e;
|
---|
| 1200 | }
|
---|
| 1201 | }
|
---|
| 1202 |
|
---|
[2] | 1203 | // Dash away...
|
---|
| 1204 | while (!done) {
|
---|
| 1205 | QPointF p2;
|
---|
| 1206 |
|
---|
| 1207 | bool has_offset = doffset > 0;
|
---|
[846] | 1208 | bool evenDash = (idash & 1) == 0;
|
---|
[2] | 1209 | qreal dpos = pos + dashes[idash] - doffset - estart;
|
---|
| 1210 |
|
---|
| 1211 | Q_ASSERT(dpos >= 0);
|
---|
| 1212 |
|
---|
| 1213 | if (dpos > elen) { // dash extends this line
|
---|
| 1214 | doffset = dashes[idash] - (dpos - elen); // subtract the part already used
|
---|
| 1215 | pos = estop; // move pos to next path element
|
---|
| 1216 | done = true;
|
---|
| 1217 | p2 = cline.p2();
|
---|
| 1218 | } else { // Dash is on this line
|
---|
| 1219 | p2 = cline.pointAt(dpos/elen);
|
---|
| 1220 | pos = dpos + estart;
|
---|
| 1221 | done = pos >= estop;
|
---|
[846] | 1222 | if (++idash >= dashCount)
|
---|
| 1223 | idash = 0;
|
---|
[2] | 1224 | doffset = 0; // full segment so no offset on next.
|
---|
| 1225 | }
|
---|
| 1226 |
|
---|
[846] | 1227 | if (evenDash) {
|
---|
[2] | 1228 | line_to_pos.x = qt_real_to_fixed(p2.x());
|
---|
| 1229 | line_to_pos.y = qt_real_to_fixed(p2.y());
|
---|
| 1230 |
|
---|
| 1231 | if (!clipping
|
---|
[846] | 1232 | || lineRectIntersectsRect(move_to_pos, line_to_pos, clip_tl, clip_br))
|
---|
[2] | 1233 | {
|
---|
[846] | 1234 | // If we have an offset, we're continuing a dash
|
---|
| 1235 | // from a previous element and should only
|
---|
| 1236 | // continue the current dash, without starting a
|
---|
| 1237 | // new subpath.
|
---|
| 1238 | if (!has_offset || !hasMoveTo) {
|
---|
| 1239 | emitMoveTo(move_to_pos.x, move_to_pos.y);
|
---|
| 1240 | hasMoveTo = true;
|
---|
| 1241 | }
|
---|
| 1242 |
|
---|
[561] | 1243 | emitLineTo(line_to_pos.x, line_to_pos.y);
|
---|
[846] | 1244 | } else {
|
---|
| 1245 | hasMoveTo = false;
|
---|
[2] | 1246 | }
|
---|
[846] | 1247 | move_to_pos = line_to_pos;
|
---|
[2] | 1248 | } else {
|
---|
| 1249 | move_to_pos.x = qt_real_to_fixed(p2.x());
|
---|
| 1250 | move_to_pos.y = qt_real_to_fixed(p2.y());
|
---|
| 1251 | }
|
---|
| 1252 | }
|
---|
| 1253 |
|
---|
| 1254 | // Shuffle to the next cycle...
|
---|
| 1255 | estart = estop;
|
---|
| 1256 | prev = e;
|
---|
| 1257 | }
|
---|
[561] | 1258 |
|
---|
[2] | 1259 | }
|
---|
| 1260 |
|
---|
| 1261 | QT_END_NAMESPACE
|
---|