1 | /****************************************************************************
|
---|
2 | **
|
---|
3 | ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
|
---|
4 | ** All rights reserved.
|
---|
5 | ** Contact: Nokia Corporation (qt-info@nokia.com)
|
---|
6 | **
|
---|
7 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
8 | **
|
---|
9 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
10 | ** Commercial Usage
|
---|
11 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
12 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
13 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
14 | ** a written agreement between you and Nokia.
|
---|
15 | **
|
---|
16 | ** GNU Lesser General Public License Usage
|
---|
17 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
18 | ** General Public License version 2.1 as published by the Free Software
|
---|
19 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
20 | ** packaging of this file. Please review the following information to
|
---|
21 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
22 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
23 | **
|
---|
24 | ** In addition, as a special exception, Nokia gives you certain additional
|
---|
25 | ** rights. These rights are described in the Nokia Qt LGPL Exception
|
---|
26 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
---|
27 | **
|
---|
28 | ** GNU General Public License Usage
|
---|
29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
30 | ** General Public License version 3.0 as published by the Free Software
|
---|
31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
32 | ** packaging of this file. Please review the following information to
|
---|
33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
35 | **
|
---|
36 | ** If you have questions regarding the use of this file, please contact
|
---|
37 | ** Nokia at qt-info@nokia.com.
|
---|
38 | ** $QT_END_LICENSE$
|
---|
39 | **
|
---|
40 | ****************************************************************************/
|
---|
41 |
|
---|
42 | #include "qbezier_p.h"
|
---|
43 | #include <qdebug.h>
|
---|
44 | #include <qline.h>
|
---|
45 | #include <qpolygon.h>
|
---|
46 | #include <qvector.h>
|
---|
47 | #include <qlist.h>
|
---|
48 | #include <qmath.h>
|
---|
49 |
|
---|
50 | #include <private/qnumeric_p.h>
|
---|
51 | #include <private/qmath_p.h>
|
---|
52 |
|
---|
53 | QT_BEGIN_NAMESPACE
|
---|
54 |
|
---|
55 | //#define QDEBUG_BEZIER
|
---|
56 |
|
---|
57 | #ifdef FLOAT_ACCURACY
|
---|
58 | #define INV_EPS (1L<<23)
|
---|
59 | #else
|
---|
60 | /* The value of 1.0 / (1L<<14) is enough for most applications */
|
---|
61 | #define INV_EPS (1L<<14)
|
---|
62 | #endif
|
---|
63 |
|
---|
64 | #ifndef M_SQRT2
|
---|
65 | #define M_SQRT2 1.41421356237309504880
|
---|
66 | #endif
|
---|
67 |
|
---|
68 | #define log2(x) (qLn(x)/qLn(2.))
|
---|
69 |
|
---|
70 | static inline qreal log4(qreal x)
|
---|
71 | {
|
---|
72 | return qreal(0.5) * log2(x);
|
---|
73 | }
|
---|
74 |
|
---|
75 | /*!
|
---|
76 | \internal
|
---|
77 | */
|
---|
78 | QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
|
---|
79 | const QPointF &p3, const QPointF &p4)
|
---|
80 | {
|
---|
81 | QBezier b;
|
---|
82 | b.x1 = p1.x();
|
---|
83 | b.y1 = p1.y();
|
---|
84 | b.x2 = p2.x();
|
---|
85 | b.y2 = p2.y();
|
---|
86 | b.x3 = p3.x();
|
---|
87 | b.y3 = p3.y();
|
---|
88 | b.x4 = p4.x();
|
---|
89 | b.y4 = p4.y();
|
---|
90 | return b;
|
---|
91 | }
|
---|
92 |
|
---|
93 | /*!
|
---|
94 | \internal
|
---|
95 | */
|
---|
96 | QPolygonF QBezier::toPolygon() const
|
---|
97 | {
|
---|
98 | // flattening is done by splitting the bezier until we can replace the segment by a straight
|
---|
99 | // line. We split further until the control points are close enough to the line connecting the
|
---|
100 | // boundary points.
|
---|
101 | //
|
---|
102 | // the Distance of a point p from a line given by the points (a,b) is given by:
|
---|
103 | //
|
---|
104 | // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
|
---|
105 | //
|
---|
106 | // We can stop splitting if both control points are close enough to the line.
|
---|
107 | // To make the algorithm faster we use the manhattan length of the line.
|
---|
108 |
|
---|
109 | QPolygonF polygon;
|
---|
110 | polygon.append(QPointF(x1, y1));
|
---|
111 | addToPolygon(&polygon);
|
---|
112 | return polygon;
|
---|
113 | }
|
---|
114 |
|
---|
115 | //0.5 is really low
|
---|
116 | static const qreal flatness = 0.5;
|
---|
117 |
|
---|
118 | //based on "Fast, precise flattening of cubic Bezier path and offset curves"
|
---|
119 | // by T. F. Hain, A. L. Ahmad, S. V. R. Racherla and D. D. Langan
|
---|
120 | static inline void flattenBezierWithoutInflections(QBezier &bez,
|
---|
121 | QPolygonF *&p)
|
---|
122 | {
|
---|
123 | QBezier left;
|
---|
124 |
|
---|
125 | while (1) {
|
---|
126 | qreal dx = bez.x2 - bez.x1;
|
---|
127 | qreal dy = bez.y2 - bez.y1;
|
---|
128 |
|
---|
129 | qreal normalized = qSqrt(dx * dx + dy * dy);
|
---|
130 | if (qFuzzyIsNull(normalized))
|
---|
131 | break;
|
---|
132 |
|
---|
133 | qreal d = qAbs(dx * (bez.y3 - bez.y2) - dy * (bez.x3 - bez.x2));
|
---|
134 |
|
---|
135 | qreal t = qSqrt(4. / 3. * normalized * flatness / d);
|
---|
136 | if (t > 1 || qFuzzyIsNull(t - (qreal)1.))
|
---|
137 | break;
|
---|
138 | bez.parameterSplitLeft(t, &left);
|
---|
139 | p->append(bez.pt1());
|
---|
140 | }
|
---|
141 | }
|
---|
142 |
|
---|
143 |
|
---|
144 | static inline int quadraticRoots(qreal a, qreal b, qreal c,
|
---|
145 | qreal *x1, qreal *x2)
|
---|
146 | {
|
---|
147 | if (qFuzzyIsNull(a)) {
|
---|
148 | if (qFuzzyIsNull(b))
|
---|
149 | return 0;
|
---|
150 | *x1 = *x2 = (-c / b);
|
---|
151 | return 1;
|
---|
152 | } else {
|
---|
153 | const qreal det = b * b - 4 * a * c;
|
---|
154 | if (qFuzzyIsNull(det)) {
|
---|
155 | *x1 = *x2 = -b / (2 * a);
|
---|
156 | return 1;
|
---|
157 | }
|
---|
158 | if (det > 0) {
|
---|
159 | if (qFuzzyIsNull(b)) {
|
---|
160 | *x2 = qSqrt(-c / a);
|
---|
161 | *x1 = -(*x2);
|
---|
162 | return 2;
|
---|
163 | }
|
---|
164 | const qreal stableA = b / (2 * a);
|
---|
165 | const qreal stableB = c / (a * stableA * stableA);
|
---|
166 | const qreal stableC = -1 - qSqrt(1 - stableB);
|
---|
167 | *x2 = stableA * stableC;
|
---|
168 | *x1 = (stableA * stableB) / stableC;
|
---|
169 | return 2;
|
---|
170 | } else
|
---|
171 | return 0;
|
---|
172 | }
|
---|
173 | }
|
---|
174 |
|
---|
175 | static inline bool findInflections(qreal a, qreal b, qreal c,
|
---|
176 | qreal *t1 , qreal *t2, qreal *tCups)
|
---|
177 | {
|
---|
178 | qreal r1 = 0, r2 = 0;
|
---|
179 |
|
---|
180 | short rootsCount = quadraticRoots(a, b, c, &r1, &r2);
|
---|
181 |
|
---|
182 | if (rootsCount >= 1) {
|
---|
183 | if (r1 < r2) {
|
---|
184 | *t1 = r1;
|
---|
185 | *t2 = r2;
|
---|
186 | } else {
|
---|
187 | *t1 = r2;
|
---|
188 | *t2 = r1;
|
---|
189 | }
|
---|
190 | if (!qFuzzyIsNull(a))
|
---|
191 | *tCups = 0.5 * (-b / a);
|
---|
192 | else
|
---|
193 | *tCups = 2;
|
---|
194 |
|
---|
195 | return true;
|
---|
196 | }
|
---|
197 |
|
---|
198 | return false;
|
---|
199 | }
|
---|
200 |
|
---|
201 |
|
---|
202 | void QBezier::addToPolygon(QPolygonF *polygon) const
|
---|
203 | {
|
---|
204 | QBezier beziers[32];
|
---|
205 | beziers[0] = *this;
|
---|
206 | QBezier *b = beziers;
|
---|
207 |
|
---|
208 | while (b >= beziers) {
|
---|
209 | // check if we can pop the top bezier curve from the stack
|
---|
210 | qreal y4y1 = b->y4 - b->y1;
|
---|
211 | qreal x4x1 = b->x4 - b->x1;
|
---|
212 | qreal l = qAbs(x4x1) + qAbs(y4y1);
|
---|
213 | qreal d;
|
---|
214 | if (l > 1.) {
|
---|
215 | d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
|
---|
216 | + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
|
---|
217 | } else {
|
---|
218 | d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
|
---|
219 | qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
|
---|
220 | l = 1.;
|
---|
221 | }
|
---|
222 | if (d < flatness*l || b == beziers + 31) {
|
---|
223 | // good enough, we pop it off and add the endpoint
|
---|
224 | polygon->append(QPointF(b->x4, b->y4));
|
---|
225 | --b;
|
---|
226 | } else {
|
---|
227 | // split, second half of the polygon goes lower into the stack
|
---|
228 | b->split(b+1, b);
|
---|
229 | ++b;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|
233 |
|
---|
234 | void QBezier::addToPolygonMixed(QPolygonF *polygon) const
|
---|
235 | {
|
---|
236 | qreal ax = -x1 + 3*x2 - 3*x3 + x4;
|
---|
237 | qreal ay = -y1 + 3*y2 - 3*y3 + y4;
|
---|
238 | qreal bx = 3*x1 - 6*x2 + 3*x3;
|
---|
239 | qreal by = 3*y1 - 6*y2 + 3*y3;
|
---|
240 | qreal cx = -3*x1 + 3*x2;
|
---|
241 | qreal cy = -3*y1 + 2*y2;
|
---|
242 | qreal a = 6 * (ay * bx - ax * by);
|
---|
243 | qreal b = 6 * (ay * cx - ax * cy);
|
---|
244 | qreal c = 2 * (by * cx - bx * cy);
|
---|
245 |
|
---|
246 | if ((qFuzzyIsNull(a) && qFuzzyIsNull(b)) ||
|
---|
247 | (b * b - 4 * a *c) < 0) {
|
---|
248 | QBezier bez(*this);
|
---|
249 | flattenBezierWithoutInflections(bez, polygon);
|
---|
250 | polygon->append(QPointF(x4, y4));
|
---|
251 | } else {
|
---|
252 | QBezier beziers[32];
|
---|
253 | beziers[0] = *this;
|
---|
254 | QBezier *b = beziers;
|
---|
255 |
|
---|
256 | while (b >= beziers) {
|
---|
257 | // check if we can pop the top bezier curve from the stack
|
---|
258 | qreal y4y1 = b->y4 - b->y1;
|
---|
259 | qreal x4x1 = b->x4 - b->x1;
|
---|
260 | qreal l = qAbs(x4x1) + qAbs(y4y1);
|
---|
261 | qreal d;
|
---|
262 | if (l > 1.) {
|
---|
263 | d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
|
---|
264 | + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
|
---|
265 | } else {
|
---|
266 | d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
|
---|
267 | qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
|
---|
268 | l = 1.;
|
---|
269 | }
|
---|
270 | if (d < .5*l || b == beziers + 31) {
|
---|
271 | // good enough, we pop it off and add the endpoint
|
---|
272 | polygon->append(QPointF(b->x4, b->y4));
|
---|
273 | --b;
|
---|
274 | } else {
|
---|
275 | // split, second half of the polygon goes lower into the stack
|
---|
276 | b->split(b+1, b);
|
---|
277 | ++b;
|
---|
278 | }
|
---|
279 | }
|
---|
280 | }
|
---|
281 | }
|
---|
282 |
|
---|
283 | QRectF QBezier::bounds() const
|
---|
284 | {
|
---|
285 | qreal xmin = x1;
|
---|
286 | qreal xmax = x1;
|
---|
287 | if (x2 < xmin)
|
---|
288 | xmin = x2;
|
---|
289 | else if (x2 > xmax)
|
---|
290 | xmax = x2;
|
---|
291 | if (x3 < xmin)
|
---|
292 | xmin = x3;
|
---|
293 | else if (x3 > xmax)
|
---|
294 | xmax = x3;
|
---|
295 | if (x4 < xmin)
|
---|
296 | xmin = x4;
|
---|
297 | else if (x4 > xmax)
|
---|
298 | xmax = x4;
|
---|
299 |
|
---|
300 | qreal ymin = y1;
|
---|
301 | qreal ymax = y1;
|
---|
302 | if (y2 < ymin)
|
---|
303 | ymin = y2;
|
---|
304 | else if (y2 > ymax)
|
---|
305 | ymax = y2;
|
---|
306 | if (y3 < ymin)
|
---|
307 | ymin = y3;
|
---|
308 | else if (y3 > ymax)
|
---|
309 | ymax = y3;
|
---|
310 | if (y4 < ymin)
|
---|
311 | ymin = y4;
|
---|
312 | else if (y4 > ymax)
|
---|
313 | ymax = y4;
|
---|
314 | return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
|
---|
315 | }
|
---|
316 |
|
---|
317 |
|
---|
318 | enum ShiftResult {
|
---|
319 | Ok,
|
---|
320 | Discard,
|
---|
321 | Split,
|
---|
322 | Circle
|
---|
323 | };
|
---|
324 |
|
---|
325 | static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
|
---|
326 | {
|
---|
327 | const qreal o2 = offset*offset;
|
---|
328 | const qreal max_dist_line = threshold*offset*offset;
|
---|
329 | const qreal max_dist_normal = threshold*offset;
|
---|
330 | const qreal spacing = 0.25;
|
---|
331 | for (qreal i = spacing; i < 0.99; i += spacing) {
|
---|
332 | QPointF p1 = b1->pointAt(i);
|
---|
333 | QPointF p2 = b2->pointAt(i);
|
---|
334 | qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
|
---|
335 | if (qAbs(d - o2) > max_dist_line)
|
---|
336 | return Split;
|
---|
337 |
|
---|
338 | QPointF normalPoint = b1->normalVector(i);
|
---|
339 | qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
|
---|
340 | if (l != 0.) {
|
---|
341 | d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
|
---|
342 | if (d > max_dist_normal)
|
---|
343 | return Split;
|
---|
344 | }
|
---|
345 | }
|
---|
346 | return Ok;
|
---|
347 | }
|
---|
348 |
|
---|
349 | static inline QLineF qline_shifted(const QPointF &p1, const QPointF &p2, qreal offset)
|
---|
350 | {
|
---|
351 | QLineF l(p1, p2);
|
---|
352 | QLineF ln = l.normalVector().unitVector();
|
---|
353 | l.translate(ln.dx() * offset, ln.dy() * offset);
|
---|
354 | return l;
|
---|
355 | }
|
---|
356 |
|
---|
357 | static bool qbezier_is_line(QPointF *points, int pointCount)
|
---|
358 | {
|
---|
359 | Q_ASSERT(pointCount > 2);
|
---|
360 |
|
---|
361 | qreal dx13 = points[2].x() - points[0].x();
|
---|
362 | qreal dy13 = points[2].y() - points[0].y();
|
---|
363 |
|
---|
364 | qreal dx12 = points[1].x() - points[0].x();
|
---|
365 | qreal dy12 = points[1].y() - points[0].y();
|
---|
366 |
|
---|
367 | if (pointCount == 3) {
|
---|
368 | return qFuzzyCompare(dx12 * dy13, dx13 * dy12);
|
---|
369 | } else if (pointCount == 4) {
|
---|
370 | qreal dx14 = points[3].x() - points[0].x();
|
---|
371 | qreal dy14 = points[3].y() - points[0].y();
|
---|
372 |
|
---|
373 | return (qFuzzyCompare(dx12 * dy13, dx13 * dy12) && qFuzzyCompare(dx12 * dy14, dx14 * dy12));
|
---|
374 | }
|
---|
375 |
|
---|
376 | return false;
|
---|
377 | }
|
---|
378 |
|
---|
379 | static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
|
---|
380 | {
|
---|
381 | int map[4];
|
---|
382 | bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
|
---|
383 | bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
|
---|
384 | bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);
|
---|
385 |
|
---|
386 | QPointF points[4];
|
---|
387 | int np = 0;
|
---|
388 | points[np] = QPointF(orig->x1, orig->y1);
|
---|
389 | map[0] = 0;
|
---|
390 | ++np;
|
---|
391 | if (!p1_p2_equal) {
|
---|
392 | points[np] = QPointF(orig->x2, orig->y2);
|
---|
393 | ++np;
|
---|
394 | }
|
---|
395 | map[1] = np - 1;
|
---|
396 | if (!p2_p3_equal) {
|
---|
397 | points[np] = QPointF(orig->x3, orig->y3);
|
---|
398 | ++np;
|
---|
399 | }
|
---|
400 | map[2] = np - 1;
|
---|
401 | if (!p3_p4_equal) {
|
---|
402 | points[np] = QPointF(orig->x4, orig->y4);
|
---|
403 | ++np;
|
---|
404 | }
|
---|
405 | map[3] = np - 1;
|
---|
406 | if (np == 1)
|
---|
407 | return Discard;
|
---|
408 |
|
---|
409 | // We need to specialcase lines of 3 or 4 points due to numerical
|
---|
410 | // instability in intersections below
|
---|
411 | if (np > 2 && qbezier_is_line(points, np)) {
|
---|
412 | if (points[0] == points[np-1])
|
---|
413 | return Discard;
|
---|
414 |
|
---|
415 | QLineF l = qline_shifted(points[0], points[np-1], offset);
|
---|
416 | *shifted = QBezier::fromPoints(l.p1(), l.pointAt(qreal(0.33)), l.pointAt(qreal(0.66)), l.p2());
|
---|
417 | return Ok;
|
---|
418 | }
|
---|
419 |
|
---|
420 | QRectF b = orig->bounds();
|
---|
421 | if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
|
---|
422 | qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
|
---|
423 | (orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
|
---|
424 | (orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
|
---|
425 | (orig->y3 - orig->y4)*(orig->y3 - orig->y4);
|
---|
426 | qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
|
---|
427 | (orig->y1 - orig->y2)*(orig->y3 - orig->y4);
|
---|
428 | if (dot < 0 && dot*dot < 0.8*l)
|
---|
429 | // the points are close and reverse dirction. Approximate the whole
|
---|
430 | // thing by a semi circle
|
---|
431 | return Circle;
|
---|
432 | }
|
---|
433 |
|
---|
434 | QPointF points_shifted[4];
|
---|
435 |
|
---|
436 | QLineF prev = QLineF(QPointF(), points[1] - points[0]);
|
---|
437 | QPointF prev_normal = prev.normalVector().unitVector().p2();
|
---|
438 |
|
---|
439 | points_shifted[0] = points[0] + offset * prev_normal;
|
---|
440 |
|
---|
441 | for (int i = 1; i < np - 1; ++i) {
|
---|
442 | QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
|
---|
443 | QPointF next_normal = next.normalVector().unitVector().p2();
|
---|
444 |
|
---|
445 | QPointF normal_sum = prev_normal + next_normal;
|
---|
446 |
|
---|
447 | qreal r = 1.0 + prev_normal.x() * next_normal.x()
|
---|
448 | + prev_normal.y() * next_normal.y();
|
---|
449 |
|
---|
450 | if (qFuzzyIsNull(r)) {
|
---|
451 | points_shifted[i] = points[i] + offset * prev_normal;
|
---|
452 | } else {
|
---|
453 | qreal k = offset / r;
|
---|
454 | points_shifted[i] = points[i] + k * normal_sum;
|
---|
455 | }
|
---|
456 |
|
---|
457 | prev_normal = next_normal;
|
---|
458 | }
|
---|
459 |
|
---|
460 | points_shifted[np - 1] = points[np - 1] + offset * prev_normal;
|
---|
461 |
|
---|
462 | *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
|
---|
463 | points_shifted[map[2]], points_shifted[map[3]]);
|
---|
464 |
|
---|
465 | return good_offset(orig, shifted, offset, threshold);
|
---|
466 | }
|
---|
467 |
|
---|
468 | // This value is used to determine the length of control point vectors
|
---|
469 | // when approximating arc segments as curves. The factor is multiplied
|
---|
470 | // with the radius of the circle.
|
---|
471 | #define KAPPA 0.5522847498
|
---|
472 |
|
---|
473 |
|
---|
474 | static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
|
---|
475 | {
|
---|
476 | QPointF normals[3];
|
---|
477 |
|
---|
478 | normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
|
---|
479 | qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
|
---|
480 | if (qFuzzyIsNull(dist))
|
---|
481 | return false;
|
---|
482 | normals[0] /= dist;
|
---|
483 | normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
|
---|
484 | dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
|
---|
485 | if (qFuzzyIsNull(dist))
|
---|
486 | return false;
|
---|
487 | normals[2] /= dist;
|
---|
488 |
|
---|
489 | normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
|
---|
490 | normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());
|
---|
491 |
|
---|
492 | qreal angles[2];
|
---|
493 | qreal sign = 1.;
|
---|
494 | for (int i = 0; i < 2; ++i) {
|
---|
495 | qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
|
---|
496 | if (cos_a > 1.)
|
---|
497 | cos_a = 1.;
|
---|
498 | if (cos_a < -1.)
|
---|
499 | cos_a = -1;
|
---|
500 | angles[i] = qAcos(cos_a)/Q_PI;
|
---|
501 | }
|
---|
502 |
|
---|
503 | if (angles[0] + angles[1] > 1.) {
|
---|
504 | // more than 180 degrees
|
---|
505 | normals[1] = -normals[1];
|
---|
506 | angles[0] = 1. - angles[0];
|
---|
507 | angles[1] = 1. - angles[1];
|
---|
508 | sign = -1.;
|
---|
509 |
|
---|
510 | }
|
---|
511 |
|
---|
512 | QPointF circle[3];
|
---|
513 | circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
|
---|
514 | circle[1] = QPointF(0.5*(b->x1 + b->x4), 0.5*(b->y1 + b->y4)) + normals[1]*offset;
|
---|
515 | circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;
|
---|
516 |
|
---|
517 | for (int i = 0; i < 2; ++i) {
|
---|
518 | qreal kappa = 2.*KAPPA * sign * offset * angles[i];
|
---|
519 |
|
---|
520 | o->x1 = circle[i].x();
|
---|
521 | o->y1 = circle[i].y();
|
---|
522 | o->x2 = circle[i].x() - normals[i].y()*kappa;
|
---|
523 | o->y2 = circle[i].y() + normals[i].x()*kappa;
|
---|
524 | o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
|
---|
525 | o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
|
---|
526 | o->x4 = circle[i+1].x();
|
---|
527 | o->y4 = circle[i+1].y();
|
---|
528 |
|
---|
529 | ++o;
|
---|
530 | }
|
---|
531 | return true;
|
---|
532 | }
|
---|
533 |
|
---|
534 | int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
|
---|
535 | {
|
---|
536 | Q_ASSERT(curveSegments);
|
---|
537 | Q_ASSERT(maxSegments > 0);
|
---|
538 |
|
---|
539 | if (x1 == x2 && x1 == x3 && x1 == x4 &&
|
---|
540 | y1 == y2 && y1 == y3 && y1 == y4)
|
---|
541 | return 0;
|
---|
542 |
|
---|
543 | --maxSegments;
|
---|
544 | QBezier beziers[10];
|
---|
545 | redo:
|
---|
546 | beziers[0] = *this;
|
---|
547 | QBezier *b = beziers;
|
---|
548 | QBezier *o = curveSegments;
|
---|
549 |
|
---|
550 | while (b >= beziers) {
|
---|
551 | int stack_segments = b - beziers + 1;
|
---|
552 | if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
|
---|
553 | threshold *= 1.5;
|
---|
554 | if (threshold > 2.)
|
---|
555 | goto give_up;
|
---|
556 | goto redo;
|
---|
557 | }
|
---|
558 | ShiftResult res = shift(b, o, offset, threshold);
|
---|
559 | if (res == Discard) {
|
---|
560 | --b;
|
---|
561 | } else if (res == Ok) {
|
---|
562 | ++o;
|
---|
563 | --b;
|
---|
564 | continue;
|
---|
565 | } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
|
---|
566 | // add semi circle
|
---|
567 | if (addCircle(b, offset, o))
|
---|
568 | o += 2;
|
---|
569 | --b;
|
---|
570 | } else {
|
---|
571 | b->split(b+1, b);
|
---|
572 | ++b;
|
---|
573 | }
|
---|
574 | }
|
---|
575 |
|
---|
576 | give_up:
|
---|
577 | while (b >= beziers) {
|
---|
578 | ShiftResult res = shift(b, o, offset, threshold);
|
---|
579 |
|
---|
580 | // if res isn't Ok or Split then *o is undefined
|
---|
581 | if (res == Ok || res == Split)
|
---|
582 | ++o;
|
---|
583 |
|
---|
584 | --b;
|
---|
585 | }
|
---|
586 |
|
---|
587 | Q_ASSERT(o - curveSegments <= maxSegments);
|
---|
588 | return o - curveSegments;
|
---|
589 | }
|
---|
590 |
|
---|
591 | #if 0
|
---|
592 | static inline bool IntersectBB(const QBezier &a, const QBezier &b)
|
---|
593 | {
|
---|
594 | return a.bounds().intersects(b.bounds());
|
---|
595 | }
|
---|
596 | #else
|
---|
597 | static int IntersectBB(const QBezier &a, const QBezier &b)
|
---|
598 | {
|
---|
599 | // Compute bounding box for a
|
---|
600 | qreal minax, maxax, minay, maxay;
|
---|
601 | if (a.x1 > a.x4) // These are the most likely to be extremal
|
---|
602 | minax = a.x4, maxax = a.x1;
|
---|
603 | else
|
---|
604 | minax = a.x1, maxax = a.x4;
|
---|
605 |
|
---|
606 | if (a.x3 < minax)
|
---|
607 | minax = a.x3;
|
---|
608 | else if (a.x3 > maxax)
|
---|
609 | maxax = a.x3;
|
---|
610 |
|
---|
611 | if (a.x2 < minax)
|
---|
612 | minax = a.x2;
|
---|
613 | else if (a.x2 > maxax)
|
---|
614 | maxax = a.x2;
|
---|
615 |
|
---|
616 | if (a.y1 > a.y4)
|
---|
617 | minay = a.y4, maxay = a.y1;
|
---|
618 | else
|
---|
619 | minay = a.y1, maxay = a.y4;
|
---|
620 |
|
---|
621 | if (a.y3 < minay)
|
---|
622 | minay = a.y3;
|
---|
623 | else if (a.y3 > maxay)
|
---|
624 | maxay = a.y3;
|
---|
625 |
|
---|
626 | if (a.y2 < minay)
|
---|
627 | minay = a.y2;
|
---|
628 | else if (a.y2 > maxay)
|
---|
629 | maxay = a.y2;
|
---|
630 |
|
---|
631 | // Compute bounding box for b
|
---|
632 | qreal minbx, maxbx, minby, maxby;
|
---|
633 | if (b.x1 > b.x4)
|
---|
634 | minbx = b.x4, maxbx = b.x1;
|
---|
635 | else
|
---|
636 | minbx = b.x1, maxbx = b.x4;
|
---|
637 |
|
---|
638 | if (b.x3 < minbx)
|
---|
639 | minbx = b.x3;
|
---|
640 | else if (b.x3 > maxbx)
|
---|
641 | maxbx = b.x3;
|
---|
642 |
|
---|
643 | if (b.x2 < minbx)
|
---|
644 | minbx = b.x2;
|
---|
645 | else if (b.x2 > maxbx)
|
---|
646 | maxbx = b.x2;
|
---|
647 |
|
---|
648 | if (b.y1 > b.y4)
|
---|
649 | minby = b.y4, maxby = b.y1;
|
---|
650 | else
|
---|
651 | minby = b.y1, maxby = b.y4;
|
---|
652 |
|
---|
653 | if (b.y3 < minby)
|
---|
654 | minby = b.y3;
|
---|
655 | else if (b.y3 > maxby)
|
---|
656 | maxby = b.y3;
|
---|
657 |
|
---|
658 | if (b.y2 < minby)
|
---|
659 | minby = b.y2;
|
---|
660 | else if (b.y2 > maxby)
|
---|
661 | maxby = b.y2;
|
---|
662 |
|
---|
663 | // Test bounding box of b against bounding box of a
|
---|
664 | if ((minax > maxbx) || (minay > maxby) // Not >= : need boundary case
|
---|
665 | || (minbx > maxax) || (minby > maxay))
|
---|
666 | return 0; // they don't intersect
|
---|
667 | else
|
---|
668 | return 1; // they intersect
|
---|
669 | }
|
---|
670 | #endif
|
---|
671 |
|
---|
672 |
|
---|
673 | #ifdef QDEBUG_BEZIER
|
---|
674 | static QDebug operator<<(QDebug dbg, const QBezier &bz)
|
---|
675 | {
|
---|
676 | dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
|
---|
677 | << '[' << bz.x2 <<", " << bz.y2 << "], "
|
---|
678 | << '[' << bz.x3 <<", " << bz.y3 << "], "
|
---|
679 | << '[' << bz.x4 <<", " << bz.y4 << ']';
|
---|
680 | return dbg;
|
---|
681 | }
|
---|
682 | #endif
|
---|
683 |
|
---|
684 | static bool RecursivelyIntersect(const QBezier &a, qreal t0, qreal t1, int deptha,
|
---|
685 | const QBezier &b, qreal u0, qreal u1, int depthb,
|
---|
686 | QVector<QPair<qreal, qreal> > *t)
|
---|
687 | {
|
---|
688 | #ifdef QDEBUG_BEZIER
|
---|
689 | static int I = 0;
|
---|
690 | int currentD = I;
|
---|
691 | fprintf(stderr, "%d) t0 = %lf, t1 = %lf, deptha = %d\n"
|
---|
692 | "u0 = %lf, u1 = %lf, depthb = %d\n", I++, t0, t1, deptha,
|
---|
693 | u0, u1, depthb);
|
---|
694 | #endif
|
---|
695 | if (deptha > 0) {
|
---|
696 | QBezier A[2];
|
---|
697 | a.split(&A[0], &A[1]);
|
---|
698 | qreal tmid = (t0+t1)*0.5;
|
---|
699 | //qDebug()<<"\t1)"<<A[0];
|
---|
700 | //qDebug()<<"\t2)"<<A[1];
|
---|
701 | deptha--;
|
---|
702 | if (depthb > 0) {
|
---|
703 | QBezier B[2];
|
---|
704 | b.split(&B[0], &B[1]);
|
---|
705 | //qDebug()<<"\t3)"<<B[0];
|
---|
706 | //qDebug()<<"\t4)"<<B[1];
|
---|
707 | qreal umid = (u0+u1)*0.5;
|
---|
708 | depthb--;
|
---|
709 | if (IntersectBB(A[0], B[0])) {
|
---|
710 | //fprintf(stderr, "\t 1 from %d\n", currentD);
|
---|
711 | if (RecursivelyIntersect(A[0], t0, tmid, deptha,
|
---|
712 | B[0], u0, umid, depthb,
|
---|
713 | t) && !t)
|
---|
714 | return true;
|
---|
715 | }
|
---|
716 | if (IntersectBB(A[1], B[0])) {
|
---|
717 | //fprintf(stderr, "\t 2 from %d\n", currentD);
|
---|
718 | if (RecursivelyIntersect(A[1], tmid, t1, deptha,
|
---|
719 | B[0], u0, umid, depthb,
|
---|
720 | t) && !t)
|
---|
721 | return true;
|
---|
722 | }
|
---|
723 | if (IntersectBB(A[0], B[1])) {
|
---|
724 | //fprintf(stderr, "\t 3 from %d\n", currentD);
|
---|
725 | if (RecursivelyIntersect(A[0], t0, tmid, deptha,
|
---|
726 | B[1], umid, u1, depthb,
|
---|
727 | t) && !t)
|
---|
728 | return true;
|
---|
729 | }
|
---|
730 | if (IntersectBB(A[1], B[1])) {
|
---|
731 | //fprintf(stderr, "\t 4 from %d\n", currentD);
|
---|
732 | if (RecursivelyIntersect(A[1], tmid, t1, deptha,
|
---|
733 | B[1], umid, u1, depthb,
|
---|
734 | t) && !t)
|
---|
735 | return true;
|
---|
736 | }
|
---|
737 | return t ? !t->isEmpty() : false;
|
---|
738 | } else {
|
---|
739 | if (IntersectBB(A[0], b)) {
|
---|
740 | //fprintf(stderr, "\t 5 from %d\n", currentD);
|
---|
741 | if (RecursivelyIntersect(A[0], t0, tmid, deptha,
|
---|
742 | b, u0, u1, depthb,
|
---|
743 | t) && !t)
|
---|
744 | return true;
|
---|
745 | }
|
---|
746 | if (IntersectBB(A[1], b)) {
|
---|
747 | //fprintf(stderr, "\t 6 from %d\n", currentD);
|
---|
748 | if (RecursivelyIntersect(A[1], tmid, t1, deptha,
|
---|
749 | b, u0, u1, depthb,
|
---|
750 | t) && !t)
|
---|
751 | return true;
|
---|
752 | }
|
---|
753 | return t ? !t->isEmpty() : false;
|
---|
754 | }
|
---|
755 | } else {
|
---|
756 | if (depthb > 0) {
|
---|
757 | QBezier B[2];
|
---|
758 | b.split(&B[0], &B[1]);
|
---|
759 | qreal umid = (u0 + u1)*0.5;
|
---|
760 | depthb--;
|
---|
761 | if (IntersectBB(a, B[0])) {
|
---|
762 | //fprintf(stderr, "\t 7 from %d\n", currentD);
|
---|
763 | if (RecursivelyIntersect(a, t0, t1, deptha,
|
---|
764 | B[0], u0, umid, depthb,
|
---|
765 | t) && !t)
|
---|
766 | return true;
|
---|
767 | }
|
---|
768 | if (IntersectBB(a, B[1])) {
|
---|
769 | //fprintf(stderr, "\t 8 from %d\n", currentD);
|
---|
770 | if (RecursivelyIntersect(a, t0, t1, deptha,
|
---|
771 | B[1], umid, u1, depthb,
|
---|
772 | t) && !t)
|
---|
773 | return true;
|
---|
774 | }
|
---|
775 | return t ? !t->isEmpty() : false;
|
---|
776 | }
|
---|
777 | else {
|
---|
778 | // Both segments are fully subdivided; now do line segments
|
---|
779 | qreal xlk = a.x4 - a.x1;
|
---|
780 | qreal ylk = a.y4 - a.y1;
|
---|
781 | qreal xnm = b.x4 - b.x1;
|
---|
782 | qreal ynm = b.y4 - b.y1;
|
---|
783 | qreal xmk = b.x1 - a.x1;
|
---|
784 | qreal ymk = b.y1 - a.y1;
|
---|
785 | qreal det = xnm * ylk - ynm * xlk;
|
---|
786 | if (1.0 + det == 1.0) {
|
---|
787 | return false;
|
---|
788 | } else {
|
---|
789 | qreal detinv = 1.0 / det;
|
---|
790 | qreal rs = (xnm * ymk - ynm *xmk) * detinv;
|
---|
791 | qreal rt = (xlk * ymk - ylk * xmk) * detinv;
|
---|
792 | if ((rs < 0.0) || (rs > 1.0) || (rt < 0.0) || (rt > 1.0))
|
---|
793 | return false;
|
---|
794 |
|
---|
795 | if (t) {
|
---|
796 | const qreal alpha_a = t0 + rs * (t1 - t0);
|
---|
797 | const qreal alpha_b = u0 + rt * (u1 - u0);
|
---|
798 |
|
---|
799 | *t << qMakePair(alpha_a, alpha_b);
|
---|
800 | }
|
---|
801 |
|
---|
802 | return true;
|
---|
803 | }
|
---|
804 | }
|
---|
805 | }
|
---|
806 | }
|
---|
807 |
|
---|
808 | QVector< QPair<qreal, qreal> > QBezier::findIntersections(const QBezier &a, const QBezier &b)
|
---|
809 | {
|
---|
810 | QVector< QPair<qreal, qreal> > v(2);
|
---|
811 | findIntersections(a, b, &v);
|
---|
812 | return v;
|
---|
813 | }
|
---|
814 |
|
---|
815 | bool QBezier::findIntersections(const QBezier &a, const QBezier &b,
|
---|
816 | QVector<QPair<qreal, qreal> > *t)
|
---|
817 | {
|
---|
818 | if (IntersectBB(a, b)) {
|
---|
819 | QPointF la1(qFabs((a.x3 - a.x2) - (a.x2 - a.x1)),
|
---|
820 | qFabs((a.y3 - a.y2) - (a.y2 - a.y1)));
|
---|
821 | QPointF la2(qFabs((a.x4 - a.x3) - (a.x3 - a.x2)),
|
---|
822 | qFabs((a.y4 - a.y3) - (a.y3 - a.y2)));
|
---|
823 | QPointF la;
|
---|
824 | if (la1.x() > la2.x()) la.setX(la1.x()); else la.setX(la2.x());
|
---|
825 | if (la1.y() > la2.y()) la.setY(la1.y()); else la.setY(la2.y());
|
---|
826 | QPointF lb1(qFabs((b.x3 - b.x2) - (b.x2 - b.x1)),
|
---|
827 | qFabs((b.y3 - b.y2) - (b.y2 - b.y1)));
|
---|
828 | QPointF lb2(qFabs((b.x4 - b.x3) - (b.x3 - b.x2)),
|
---|
829 | qFabs((b.y4 - b.y3) - (b.y3 - b.y2)));
|
---|
830 | QPointF lb;
|
---|
831 | if (lb1.x() > lb2.x()) lb.setX(lb1.x()); else lb.setX(lb2.x());
|
---|
832 | if (lb1.y() > lb2.y()) lb.setY(lb1.y()); else lb.setY(lb2.y());
|
---|
833 | qreal l0;
|
---|
834 | if (la.x() > la.y())
|
---|
835 | l0 = la.x();
|
---|
836 | else
|
---|
837 | l0 = la.y();
|
---|
838 | int ra;
|
---|
839 | if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
|
---|
840 | ra = 0;
|
---|
841 | else
|
---|
842 | ra = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
|
---|
843 | if (lb.x() > lb.y())
|
---|
844 | l0 = lb.x();
|
---|
845 | else
|
---|
846 | l0 = lb.y();
|
---|
847 | int rb;
|
---|
848 | if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
|
---|
849 | rb = 0;
|
---|
850 | else
|
---|
851 | rb = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
|
---|
852 |
|
---|
853 | // if qreal is float then halve the number of subdivisions
|
---|
854 | if (sizeof(qreal) == 4) {
|
---|
855 | ra /= 2;
|
---|
856 | rb /= 2;
|
---|
857 | }
|
---|
858 |
|
---|
859 | return RecursivelyIntersect(a, 0., 1., ra, b, 0., 1., rb, t);
|
---|
860 | }
|
---|
861 |
|
---|
862 | //Don't sort here because it breaks the orders of corresponding
|
---|
863 | // intersections points. this way t's at the same locations correspond
|
---|
864 | // to the same intersection point.
|
---|
865 | //qSort(parameters[0].begin(), parameters[0].end(), qLess<qreal>());
|
---|
866 | //qSort(parameters[1].begin(), parameters[1].end(), qLess<qreal>());
|
---|
867 |
|
---|
868 | return false;
|
---|
869 | }
|
---|
870 |
|
---|
871 | static inline void splitBezierAt(const QBezier &bez, qreal t,
|
---|
872 | QBezier *left, QBezier *right)
|
---|
873 | {
|
---|
874 | left->x1 = bez.x1;
|
---|
875 | left->y1 = bez.y1;
|
---|
876 |
|
---|
877 | left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
|
---|
878 | left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );
|
---|
879 |
|
---|
880 | left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
|
---|
881 | left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot
|
---|
882 |
|
---|
883 | right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
|
---|
884 | right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );
|
---|
885 |
|
---|
886 | right->x2 = left->x3 + t * ( right->x3 - left->x3);
|
---|
887 | right->y2 = left->y3 + t * ( right->y3 - left->y3);
|
---|
888 |
|
---|
889 | left->x3 = left->x2 + t * ( left->x3 - left->x2 );
|
---|
890 | left->y3 = left->y2 + t * ( left->y3 - left->y2 );
|
---|
891 |
|
---|
892 | left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
|
---|
893 | left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);
|
---|
894 |
|
---|
895 | right->x4 = bez.x4;
|
---|
896 | right->y4 = bez.y4;
|
---|
897 | }
|
---|
898 |
|
---|
899 | QVector< QList<QBezier> > QBezier::splitAtIntersections(QBezier &b)
|
---|
900 | {
|
---|
901 | QVector< QList<QBezier> > curves(2);
|
---|
902 |
|
---|
903 | QVector< QPair<qreal, qreal> > allInters = findIntersections(*this, b);
|
---|
904 |
|
---|
905 | QList<qreal> inters1;
|
---|
906 | QList<qreal> inters2;
|
---|
907 |
|
---|
908 | for (int i = 0; i < allInters.size(); ++i) {
|
---|
909 | inters1 << allInters[i].first;
|
---|
910 | inters2 << allInters[i].second;
|
---|
911 | }
|
---|
912 |
|
---|
913 | qSort(inters1.begin(), inters1.end(), qLess<qreal>());
|
---|
914 | qSort(inters2.begin(), inters2.end(), qLess<qreal>());
|
---|
915 |
|
---|
916 | Q_ASSERT(inters1.count() == inters2.count());
|
---|
917 |
|
---|
918 | int i;
|
---|
919 | for (i = 0; i < inters1.count(); ++i) {
|
---|
920 | qreal t1 = inters1.at(i);
|
---|
921 | qreal t2 = inters2.at(i);
|
---|
922 |
|
---|
923 | QBezier curve1, curve2;
|
---|
924 | parameterSplitLeft(t1, &curve1);
|
---|
925 | b.parameterSplitLeft(t2, &curve2);
|
---|
926 | curves[0].append(curve1);
|
---|
927 | curves[0].append(curve2);
|
---|
928 | }
|
---|
929 | curves[0].append(*this);
|
---|
930 | curves[1].append(b);
|
---|
931 |
|
---|
932 | return curves;
|
---|
933 | }
|
---|
934 |
|
---|
935 | qreal QBezier::length(qreal error) const
|
---|
936 | {
|
---|
937 | qreal length = 0.0;
|
---|
938 |
|
---|
939 | addIfClose(&length, error);
|
---|
940 |
|
---|
941 | return length;
|
---|
942 | }
|
---|
943 |
|
---|
944 | void QBezier::addIfClose(qreal *length, qreal error) const
|
---|
945 | {
|
---|
946 | QBezier left, right; /* bez poly splits */
|
---|
947 |
|
---|
948 | qreal len = 0.0; /* arc length */
|
---|
949 | qreal chord; /* chord length */
|
---|
950 |
|
---|
951 | len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
|
---|
952 | len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
|
---|
953 | len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();
|
---|
954 |
|
---|
955 | chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();
|
---|
956 |
|
---|
957 | if((len-chord) > error) {
|
---|
958 | split(&left, &right); /* split in two */
|
---|
959 | left.addIfClose(length, error); /* try left side */
|
---|
960 | right.addIfClose(length, error); /* try right side */
|
---|
961 | return;
|
---|
962 | }
|
---|
963 |
|
---|
964 | *length = *length + len;
|
---|
965 |
|
---|
966 | return;
|
---|
967 | }
|
---|
968 |
|
---|
969 | qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
|
---|
970 | {
|
---|
971 | qreal py0 = pointAt(t0).y();
|
---|
972 | qreal py1 = pointAt(t1).y();
|
---|
973 |
|
---|
974 | if (py0 > py1) {
|
---|
975 | qSwap(py0, py1);
|
---|
976 | qSwap(t0, t1);
|
---|
977 | }
|
---|
978 |
|
---|
979 | Q_ASSERT(py0 <= py1);
|
---|
980 |
|
---|
981 | if (py0 >= y)
|
---|
982 | return t0;
|
---|
983 | else if (py1 <= y)
|
---|
984 | return t1;
|
---|
985 |
|
---|
986 | Q_ASSERT(py0 < y && y < py1);
|
---|
987 |
|
---|
988 | qreal lt = t0;
|
---|
989 | qreal dt;
|
---|
990 | do {
|
---|
991 | qreal t = 0.5 * (t0 + t1);
|
---|
992 |
|
---|
993 | qreal a, b, c, d;
|
---|
994 | QBezier::coefficients(t, a, b, c, d);
|
---|
995 | qreal yt = a * y1 + b * y2 + c * y3 + d * y4;
|
---|
996 |
|
---|
997 | if (yt < y) {
|
---|
998 | t0 = t;
|
---|
999 | py0 = yt;
|
---|
1000 | } else {
|
---|
1001 | t1 = t;
|
---|
1002 | py1 = yt;
|
---|
1003 | }
|
---|
1004 | dt = lt - t;
|
---|
1005 | lt = t;
|
---|
1006 | } while (qAbs(dt) > 1e-7);
|
---|
1007 |
|
---|
1008 | return t0;
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
|
---|
1012 | {
|
---|
1013 | // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
|
---|
1014 | // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
|
---|
1015 | // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))
|
---|
1016 |
|
---|
1017 | const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
|
---|
1018 | const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
|
---|
1019 | const qreal c = -y1 + y2;
|
---|
1020 |
|
---|
1021 | qreal reciprocal = b * b - 4 * a * c;
|
---|
1022 |
|
---|
1023 | QList<qreal> result;
|
---|
1024 |
|
---|
1025 | if (qFuzzyIsNull(reciprocal)) {
|
---|
1026 | t0 = -b / (2 * a);
|
---|
1027 | return 1;
|
---|
1028 | } else if (reciprocal > 0) {
|
---|
1029 | qreal temp = qSqrt(reciprocal);
|
---|
1030 |
|
---|
1031 | t0 = (-b - temp)/(2*a);
|
---|
1032 | t1 = (-b + temp)/(2*a);
|
---|
1033 |
|
---|
1034 | if (t1 < t0)
|
---|
1035 | qSwap(t0, t1);
|
---|
1036 |
|
---|
1037 | int count = 0;
|
---|
1038 | qreal t[2] = { 0, 1 };
|
---|
1039 |
|
---|
1040 | if (t0 > 0 && t0 < 1)
|
---|
1041 | t[count++] = t0;
|
---|
1042 | if (t1 > 0 && t1 < 1)
|
---|
1043 | t[count++] = t1;
|
---|
1044 |
|
---|
1045 | t0 = t[0];
|
---|
1046 | t1 = t[1];
|
---|
1047 |
|
---|
1048 | return count;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | return 0;
|
---|
1052 | }
|
---|
1053 |
|
---|
1054 | qreal QBezier::tAtLength(qreal l) const
|
---|
1055 | {
|
---|
1056 | qreal len = length();
|
---|
1057 | qreal t = 1.0;
|
---|
1058 | const qreal error = (qreal)0.01;
|
---|
1059 | if (l > len || qFuzzyCompare(l, len))
|
---|
1060 | return t;
|
---|
1061 |
|
---|
1062 | t *= 0.5;
|
---|
1063 | //int iters = 0;
|
---|
1064 | //qDebug()<<"LEN is "<<l<<len;
|
---|
1065 | qreal lastBigger = 1.;
|
---|
1066 | while (1) {
|
---|
1067 | //qDebug()<<"\tt is "<<t;
|
---|
1068 | QBezier right = *this;
|
---|
1069 | QBezier left;
|
---|
1070 | right.parameterSplitLeft(t, &left);
|
---|
1071 | qreal lLen = left.length();
|
---|
1072 | if (qAbs(lLen - l) < error)
|
---|
1073 | break;
|
---|
1074 |
|
---|
1075 | if (lLen < l) {
|
---|
1076 | t += (lastBigger - t)*.5;
|
---|
1077 | } else {
|
---|
1078 | lastBigger = t;
|
---|
1079 | t -= t*.5;
|
---|
1080 | }
|
---|
1081 | //++iters;
|
---|
1082 | }
|
---|
1083 | //qDebug()<<"number of iters is "<<iters;
|
---|
1084 | return t;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
|
---|
1088 | {
|
---|
1089 | if (t0 == 0 && t1 == 1)
|
---|
1090 | return *this;
|
---|
1091 |
|
---|
1092 | QBezier bezier = *this;
|
---|
1093 |
|
---|
1094 | QBezier result;
|
---|
1095 | bezier.parameterSplitLeft(t0, &result);
|
---|
1096 | qreal trueT = (t1-t0)/(1-t0);
|
---|
1097 | bezier.parameterSplitLeft(trueT, &result);
|
---|
1098 |
|
---|
1099 | return result;
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 |
|
---|
1103 | static inline void bindInflectionPoint(const QBezier &bez, const qreal t,
|
---|
1104 | qreal *tMinus , qreal *tPlus)
|
---|
1105 | {
|
---|
1106 | if (t <= 0) {
|
---|
1107 | *tMinus = *tPlus = -1;
|
---|
1108 | return;
|
---|
1109 | } else if (t >= 1) {
|
---|
1110 | *tMinus = *tPlus = 2;
|
---|
1111 | return;
|
---|
1112 | }
|
---|
1113 |
|
---|
1114 | QBezier left, right;
|
---|
1115 | splitBezierAt(bez, t, &left, &right);
|
---|
1116 |
|
---|
1117 | qreal ax = -right.x1 + 3*right.x2 - 3*right.x3 + right.x4;
|
---|
1118 | qreal ay = -right.y1 + 3*right.y2 - 3*right.y3 + right.y4;
|
---|
1119 | qreal ex = 3 * (right.x2 - right.x3);
|
---|
1120 | qreal ey = 3 * (right.y2 - right.y3);
|
---|
1121 |
|
---|
1122 | qreal s4 = qAbs(6 * (ey * ax - ex * ay) / qSqrt(ex * ex + ey * ey)) + 0.00001f;
|
---|
1123 | qreal tf = qPow(qreal(9 * flatness / s4), qreal(1./3.));
|
---|
1124 | *tMinus = t - (1 - t) * tf;
|
---|
1125 | *tPlus = t + (1 - t) * tf;
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 | void QBezier::addToPolygonIterative(QPolygonF *p) const
|
---|
1129 | {
|
---|
1130 | qreal t1, t2, tcusp;
|
---|
1131 | qreal t1min, t1plus, t2min, t2plus;
|
---|
1132 |
|
---|
1133 | qreal ax = -x1 + 3*x2 - 3*x3 + x4;
|
---|
1134 | qreal ay = -y1 + 3*y2 - 3*y3 + y4;
|
---|
1135 | qreal bx = 3*x1 - 6*x2 + 3*x3;
|
---|
1136 | qreal by = 3*y1 - 6*y2 + 3*y3;
|
---|
1137 | qreal cx = -3*x1 + 3*x2;
|
---|
1138 | qreal cy = -3*y1 + 2*y2;
|
---|
1139 |
|
---|
1140 | if (findInflections(6 * (ay * bx - ax * by),
|
---|
1141 | 6 * (ay * cx - ax * cy),
|
---|
1142 | 2 * (by * cx - bx * cy),
|
---|
1143 | &t1, &t2, &tcusp)) {
|
---|
1144 | bindInflectionPoint(*this, t1, &t1min, &t1plus);
|
---|
1145 | bindInflectionPoint(*this, t2, &t2min, &t2plus);
|
---|
1146 |
|
---|
1147 | QBezier tmpBez = *this;
|
---|
1148 | QBezier left, right, bez1, bez2, bez3;
|
---|
1149 | if (t1min > 0) {
|
---|
1150 | if (t1min >= 1) {
|
---|
1151 | flattenBezierWithoutInflections(tmpBez, p);
|
---|
1152 | } else {
|
---|
1153 | splitBezierAt(tmpBez, t1min, &left, &right);
|
---|
1154 | flattenBezierWithoutInflections(left, p);
|
---|
1155 | p->append(tmpBez.pointAt(t1min));
|
---|
1156 |
|
---|
1157 | if (t2min < t1plus) {
|
---|
1158 | if (tcusp < 1) {
|
---|
1159 | p->append(tmpBez.pointAt(tcusp));
|
---|
1160 | }
|
---|
1161 | if (t2plus < 1) {
|
---|
1162 | splitBezierAt(tmpBez, t2plus, &left, &right);
|
---|
1163 | flattenBezierWithoutInflections(right, p);
|
---|
1164 | }
|
---|
1165 | } else if (t1plus < 1) {
|
---|
1166 | if (t2min < 1) {
|
---|
1167 | splitBezierAt(tmpBez, t2min, &bez3, &right);
|
---|
1168 | splitBezierAt(bez3, t1plus, &left, &bez2);
|
---|
1169 |
|
---|
1170 | flattenBezierWithoutInflections(bez2, p);
|
---|
1171 | p->append(tmpBez.pointAt(t2min));
|
---|
1172 |
|
---|
1173 | if (t2plus < 1) {
|
---|
1174 | splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
---|
1175 | flattenBezierWithoutInflections(bez2, p);
|
---|
1176 | }
|
---|
1177 | } else {
|
---|
1178 | splitBezierAt(tmpBez, t1plus, &left, &bez2);
|
---|
1179 | flattenBezierWithoutInflections(bez2, p);
|
---|
1180 | }
|
---|
1181 | }
|
---|
1182 | }
|
---|
1183 | } else if (t1plus > 0) {
|
---|
1184 | p->append(QPointF(x1, y1));
|
---|
1185 | if (t2min < t1plus) {
|
---|
1186 | if (tcusp < 1) {
|
---|
1187 | p->append(tmpBez.pointAt(tcusp));
|
---|
1188 | }
|
---|
1189 | if (t2plus < 1) {
|
---|
1190 | splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
---|
1191 | flattenBezierWithoutInflections(bez2, p);
|
---|
1192 | }
|
---|
1193 | } else if (t1plus < 1) {
|
---|
1194 | if (t2min < 1) {
|
---|
1195 | splitBezierAt(tmpBez, t2min, &bez3, &right);
|
---|
1196 | splitBezierAt(bez3, t1plus, &left, &bez2);
|
---|
1197 |
|
---|
1198 | flattenBezierWithoutInflections(bez2, p);
|
---|
1199 |
|
---|
1200 | p->append(tmpBez.pointAt(t2min));
|
---|
1201 | if (t2plus < 1) {
|
---|
1202 | splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
---|
1203 | flattenBezierWithoutInflections(bez2, p);
|
---|
1204 | }
|
---|
1205 | } else {
|
---|
1206 | splitBezierAt(tmpBez, t1plus, &left, &bez2);
|
---|
1207 | flattenBezierWithoutInflections(bez2, p);
|
---|
1208 | }
|
---|
1209 | }
|
---|
1210 | } else if (t2min > 0) {
|
---|
1211 | if (t2min < 1) {
|
---|
1212 | splitBezierAt(tmpBez, t2min, &bez1, &right);
|
---|
1213 | flattenBezierWithoutInflections(bez1, p);
|
---|
1214 | p->append(tmpBez.pointAt(t2min));
|
---|
1215 |
|
---|
1216 | if (t2plus < 1) {
|
---|
1217 | splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
---|
1218 | flattenBezierWithoutInflections(bez2, p);
|
---|
1219 | }
|
---|
1220 | } else {
|
---|
1221 | //### in here we should check whether the area of the
|
---|
1222 | // triangle formed between pt1/pt2/pt3 is smaller
|
---|
1223 | // or equal to 0 and then do iterative flattening
|
---|
1224 | // if not we should fallback and do the recursive
|
---|
1225 | // flattening.
|
---|
1226 | flattenBezierWithoutInflections(tmpBez, p);
|
---|
1227 | }
|
---|
1228 | } else if (t2plus > 0) {
|
---|
1229 | p->append(QPointF(x1, y1));
|
---|
1230 | if (t2plus < 1) {
|
---|
1231 | splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
---|
1232 | flattenBezierWithoutInflections(bez2, p);
|
---|
1233 | }
|
---|
1234 | } else {
|
---|
1235 | flattenBezierWithoutInflections(tmpBez, p);
|
---|
1236 | }
|
---|
1237 | } else {
|
---|
1238 | QBezier bez = *this;
|
---|
1239 | flattenBezierWithoutInflections(bez, p);
|
---|
1240 | }
|
---|
1241 |
|
---|
1242 | p->append(QPointF(x4, y4));
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | QT_END_NAMESPACE
|
---|