source: trunk/src/gui/painting/qbezier.cpp@ 651

Last change on this file since 651 was 651, checked in by Dmitry A. Kuminov, 15 years ago

trunk: Merged in qt 4.6.2 sources.

File size: 36.1 KB
Line 
1/****************************************************************************
2**
3** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
4** All rights reserved.
5** Contact: Nokia Corporation (qt-info@nokia.com)
6**
7** This file is part of the QtGui module of the Qt Toolkit.
8**
9** $QT_BEGIN_LICENSE:LGPL$
10** Commercial Usage
11** Licensees holding valid Qt Commercial licenses may use this file in
12** accordance with the Qt Commercial License Agreement provided with the
13** Software or, alternatively, in accordance with the terms contained in
14** a written agreement between you and Nokia.
15**
16** GNU Lesser General Public License Usage
17** Alternatively, this file may be used under the terms of the GNU Lesser
18** General Public License version 2.1 as published by the Free Software
19** Foundation and appearing in the file LICENSE.LGPL included in the
20** packaging of this file. Please review the following information to
21** ensure the GNU Lesser General Public License version 2.1 requirements
22** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
23**
24** In addition, as a special exception, Nokia gives you certain additional
25** rights. These rights are described in the Nokia Qt LGPL Exception
26** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
27**
28** GNU General Public License Usage
29** Alternatively, this file may be used under the terms of the GNU
30** General Public License version 3.0 as published by the Free Software
31** Foundation and appearing in the file LICENSE.GPL included in the
32** packaging of this file. Please review the following information to
33** ensure the GNU General Public License version 3.0 requirements will be
34** met: http://www.gnu.org/copyleft/gpl.html.
35**
36** If you have questions regarding the use of this file, please contact
37** Nokia at qt-info@nokia.com.
38** $QT_END_LICENSE$
39**
40****************************************************************************/
41
42#include "qbezier_p.h"
43#include <qdebug.h>
44#include <qline.h>
45#include <qpolygon.h>
46#include <qvector.h>
47#include <qlist.h>
48#include <qmath.h>
49
50#include <private/qnumeric_p.h>
51#include <private/qmath_p.h>
52
53QT_BEGIN_NAMESPACE
54
55//#define QDEBUG_BEZIER
56
57#ifdef FLOAT_ACCURACY
58#define INV_EPS (1L<<23)
59#else
60/* The value of 1.0 / (1L<<14) is enough for most applications */
61#define INV_EPS (1L<<14)
62#endif
63
64#ifndef M_SQRT2
65#define M_SQRT2 1.41421356237309504880
66#endif
67
68#define log2(x) (qLn(x)/qLn(2.))
69
70static inline qreal log4(qreal x)
71{
72 return qreal(0.5) * log2(x);
73}
74
75/*!
76 \internal
77*/
78QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
79 const QPointF &p3, const QPointF &p4)
80{
81 QBezier b;
82 b.x1 = p1.x();
83 b.y1 = p1.y();
84 b.x2 = p2.x();
85 b.y2 = p2.y();
86 b.x3 = p3.x();
87 b.y3 = p3.y();
88 b.x4 = p4.x();
89 b.y4 = p4.y();
90 return b;
91}
92
93/*!
94 \internal
95*/
96QPolygonF QBezier::toPolygon() const
97{
98 // flattening is done by splitting the bezier until we can replace the segment by a straight
99 // line. We split further until the control points are close enough to the line connecting the
100 // boundary points.
101 //
102 // the Distance of a point p from a line given by the points (a,b) is given by:
103 //
104 // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
105 //
106 // We can stop splitting if both control points are close enough to the line.
107 // To make the algorithm faster we use the manhattan length of the line.
108
109 QPolygonF polygon;
110 polygon.append(QPointF(x1, y1));
111 addToPolygon(&polygon);
112 return polygon;
113}
114
115//0.5 is really low
116static const qreal flatness = 0.5;
117
118//based on "Fast, precise flattening of cubic Bezier path and offset curves"
119// by T. F. Hain, A. L. Ahmad, S. V. R. Racherla and D. D. Langan
120static inline void flattenBezierWithoutInflections(QBezier &bez,
121 QPolygonF *&p)
122{
123 QBezier left;
124
125 while (1) {
126 qreal dx = bez.x2 - bez.x1;
127 qreal dy = bez.y2 - bez.y1;
128
129 qreal normalized = qSqrt(dx * dx + dy * dy);
130 if (qFuzzyIsNull(normalized))
131 break;
132
133 qreal d = qAbs(dx * (bez.y3 - bez.y2) - dy * (bez.x3 - bez.x2));
134
135 qreal t = qSqrt(4. / 3. * normalized * flatness / d);
136 if (t > 1 || qFuzzyIsNull(t - (qreal)1.))
137 break;
138 bez.parameterSplitLeft(t, &left);
139 p->append(bez.pt1());
140 }
141}
142
143
144static inline int quadraticRoots(qreal a, qreal b, qreal c,
145 qreal *x1, qreal *x2)
146{
147 if (qFuzzyIsNull(a)) {
148 if (qFuzzyIsNull(b))
149 return 0;
150 *x1 = *x2 = (-c / b);
151 return 1;
152 } else {
153 const qreal det = b * b - 4 * a * c;
154 if (qFuzzyIsNull(det)) {
155 *x1 = *x2 = -b / (2 * a);
156 return 1;
157 }
158 if (det > 0) {
159 if (qFuzzyIsNull(b)) {
160 *x2 = qSqrt(-c / a);
161 *x1 = -(*x2);
162 return 2;
163 }
164 const qreal stableA = b / (2 * a);
165 const qreal stableB = c / (a * stableA * stableA);
166 const qreal stableC = -1 - qSqrt(1 - stableB);
167 *x2 = stableA * stableC;
168 *x1 = (stableA * stableB) / stableC;
169 return 2;
170 } else
171 return 0;
172 }
173}
174
175static inline bool findInflections(qreal a, qreal b, qreal c,
176 qreal *t1 , qreal *t2, qreal *tCups)
177{
178 qreal r1 = 0, r2 = 0;
179
180 short rootsCount = quadraticRoots(a, b, c, &r1, &r2);
181
182 if (rootsCount >= 1) {
183 if (r1 < r2) {
184 *t1 = r1;
185 *t2 = r2;
186 } else {
187 *t1 = r2;
188 *t2 = r1;
189 }
190 if (!qFuzzyIsNull(a))
191 *tCups = 0.5 * (-b / a);
192 else
193 *tCups = 2;
194
195 return true;
196 }
197
198 return false;
199}
200
201
202void QBezier::addToPolygon(QPolygonF *polygon) const
203{
204 QBezier beziers[32];
205 beziers[0] = *this;
206 QBezier *b = beziers;
207
208 while (b >= beziers) {
209 // check if we can pop the top bezier curve from the stack
210 qreal y4y1 = b->y4 - b->y1;
211 qreal x4x1 = b->x4 - b->x1;
212 qreal l = qAbs(x4x1) + qAbs(y4y1);
213 qreal d;
214 if (l > 1.) {
215 d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
216 + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
217 } else {
218 d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
219 qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
220 l = 1.;
221 }
222 if (d < flatness*l || b == beziers + 31) {
223 // good enough, we pop it off and add the endpoint
224 polygon->append(QPointF(b->x4, b->y4));
225 --b;
226 } else {
227 // split, second half of the polygon goes lower into the stack
228 b->split(b+1, b);
229 ++b;
230 }
231 }
232}
233
234void QBezier::addToPolygonMixed(QPolygonF *polygon) const
235{
236 qreal ax = -x1 + 3*x2 - 3*x3 + x4;
237 qreal ay = -y1 + 3*y2 - 3*y3 + y4;
238 qreal bx = 3*x1 - 6*x2 + 3*x3;
239 qreal by = 3*y1 - 6*y2 + 3*y3;
240 qreal cx = -3*x1 + 3*x2;
241 qreal cy = -3*y1 + 2*y2;
242 qreal a = 6 * (ay * bx - ax * by);
243 qreal b = 6 * (ay * cx - ax * cy);
244 qreal c = 2 * (by * cx - bx * cy);
245
246 if ((qFuzzyIsNull(a) && qFuzzyIsNull(b)) ||
247 (b * b - 4 * a *c) < 0) {
248 QBezier bez(*this);
249 flattenBezierWithoutInflections(bez, polygon);
250 polygon->append(QPointF(x4, y4));
251 } else {
252 QBezier beziers[32];
253 beziers[0] = *this;
254 QBezier *b = beziers;
255
256 while (b >= beziers) {
257 // check if we can pop the top bezier curve from the stack
258 qreal y4y1 = b->y4 - b->y1;
259 qreal x4x1 = b->x4 - b->x1;
260 qreal l = qAbs(x4x1) + qAbs(y4y1);
261 qreal d;
262 if (l > 1.) {
263 d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
264 + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
265 } else {
266 d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
267 qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
268 l = 1.;
269 }
270 if (d < .5*l || b == beziers + 31) {
271 // good enough, we pop it off and add the endpoint
272 polygon->append(QPointF(b->x4, b->y4));
273 --b;
274 } else {
275 // split, second half of the polygon goes lower into the stack
276 b->split(b+1, b);
277 ++b;
278 }
279 }
280 }
281}
282
283QRectF QBezier::bounds() const
284{
285 qreal xmin = x1;
286 qreal xmax = x1;
287 if (x2 < xmin)
288 xmin = x2;
289 else if (x2 > xmax)
290 xmax = x2;
291 if (x3 < xmin)
292 xmin = x3;
293 else if (x3 > xmax)
294 xmax = x3;
295 if (x4 < xmin)
296 xmin = x4;
297 else if (x4 > xmax)
298 xmax = x4;
299
300 qreal ymin = y1;
301 qreal ymax = y1;
302 if (y2 < ymin)
303 ymin = y2;
304 else if (y2 > ymax)
305 ymax = y2;
306 if (y3 < ymin)
307 ymin = y3;
308 else if (y3 > ymax)
309 ymax = y3;
310 if (y4 < ymin)
311 ymin = y4;
312 else if (y4 > ymax)
313 ymax = y4;
314 return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
315}
316
317
318enum ShiftResult {
319 Ok,
320 Discard,
321 Split,
322 Circle
323};
324
325static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
326{
327 const qreal o2 = offset*offset;
328 const qreal max_dist_line = threshold*offset*offset;
329 const qreal max_dist_normal = threshold*offset;
330 const qreal spacing = 0.25;
331 for (qreal i = spacing; i < 0.99; i += spacing) {
332 QPointF p1 = b1->pointAt(i);
333 QPointF p2 = b2->pointAt(i);
334 qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
335 if (qAbs(d - o2) > max_dist_line)
336 return Split;
337
338 QPointF normalPoint = b1->normalVector(i);
339 qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
340 if (l != 0.) {
341 d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
342 if (d > max_dist_normal)
343 return Split;
344 }
345 }
346 return Ok;
347}
348
349static inline QLineF qline_shifted(const QPointF &p1, const QPointF &p2, qreal offset)
350{
351 QLineF l(p1, p2);
352 QLineF ln = l.normalVector().unitVector();
353 l.translate(ln.dx() * offset, ln.dy() * offset);
354 return l;
355}
356
357static bool qbezier_is_line(QPointF *points, int pointCount)
358{
359 Q_ASSERT(pointCount > 2);
360
361 qreal dx13 = points[2].x() - points[0].x();
362 qreal dy13 = points[2].y() - points[0].y();
363
364 qreal dx12 = points[1].x() - points[0].x();
365 qreal dy12 = points[1].y() - points[0].y();
366
367 if (pointCount == 3) {
368 return qFuzzyCompare(dx12 * dy13, dx13 * dy12);
369 } else if (pointCount == 4) {
370 qreal dx14 = points[3].x() - points[0].x();
371 qreal dy14 = points[3].y() - points[0].y();
372
373 return (qFuzzyCompare(dx12 * dy13, dx13 * dy12) && qFuzzyCompare(dx12 * dy14, dx14 * dy12));
374 }
375
376 return false;
377}
378
379static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
380{
381 int map[4];
382 bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
383 bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
384 bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);
385
386 QPointF points[4];
387 int np = 0;
388 points[np] = QPointF(orig->x1, orig->y1);
389 map[0] = 0;
390 ++np;
391 if (!p1_p2_equal) {
392 points[np] = QPointF(orig->x2, orig->y2);
393 ++np;
394 }
395 map[1] = np - 1;
396 if (!p2_p3_equal) {
397 points[np] = QPointF(orig->x3, orig->y3);
398 ++np;
399 }
400 map[2] = np - 1;
401 if (!p3_p4_equal) {
402 points[np] = QPointF(orig->x4, orig->y4);
403 ++np;
404 }
405 map[3] = np - 1;
406 if (np == 1)
407 return Discard;
408
409 // We need to specialcase lines of 3 or 4 points due to numerical
410 // instability in intersections below
411 if (np > 2 && qbezier_is_line(points, np)) {
412 if (points[0] == points[np-1])
413 return Discard;
414
415 QLineF l = qline_shifted(points[0], points[np-1], offset);
416 *shifted = QBezier::fromPoints(l.p1(), l.pointAt(qreal(0.33)), l.pointAt(qreal(0.66)), l.p2());
417 return Ok;
418 }
419
420 QRectF b = orig->bounds();
421 if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
422 qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
423 (orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
424 (orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
425 (orig->y3 - orig->y4)*(orig->y3 - orig->y4);
426 qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
427 (orig->y1 - orig->y2)*(orig->y3 - orig->y4);
428 if (dot < 0 && dot*dot < 0.8*l)
429 // the points are close and reverse dirction. Approximate the whole
430 // thing by a semi circle
431 return Circle;
432 }
433
434 QPointF points_shifted[4];
435
436 QLineF prev = QLineF(QPointF(), points[1] - points[0]);
437 QPointF prev_normal = prev.normalVector().unitVector().p2();
438
439 points_shifted[0] = points[0] + offset * prev_normal;
440
441 for (int i = 1; i < np - 1; ++i) {
442 QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
443 QPointF next_normal = next.normalVector().unitVector().p2();
444
445 QPointF normal_sum = prev_normal + next_normal;
446
447 qreal r = 1.0 + prev_normal.x() * next_normal.x()
448 + prev_normal.y() * next_normal.y();
449
450 if (qFuzzyIsNull(r)) {
451 points_shifted[i] = points[i] + offset * prev_normal;
452 } else {
453 qreal k = offset / r;
454 points_shifted[i] = points[i] + k * normal_sum;
455 }
456
457 prev_normal = next_normal;
458 }
459
460 points_shifted[np - 1] = points[np - 1] + offset * prev_normal;
461
462 *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
463 points_shifted[map[2]], points_shifted[map[3]]);
464
465 return good_offset(orig, shifted, offset, threshold);
466}
467
468// This value is used to determine the length of control point vectors
469// when approximating arc segments as curves. The factor is multiplied
470// with the radius of the circle.
471#define KAPPA 0.5522847498
472
473
474static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
475{
476 QPointF normals[3];
477
478 normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
479 qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
480 if (qFuzzyIsNull(dist))
481 return false;
482 normals[0] /= dist;
483 normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
484 dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
485 if (qFuzzyIsNull(dist))
486 return false;
487 normals[2] /= dist;
488
489 normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
490 normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());
491
492 qreal angles[2];
493 qreal sign = 1.;
494 for (int i = 0; i < 2; ++i) {
495 qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
496 if (cos_a > 1.)
497 cos_a = 1.;
498 if (cos_a < -1.)
499 cos_a = -1;
500 angles[i] = qAcos(cos_a)/Q_PI;
501 }
502
503 if (angles[0] + angles[1] > 1.) {
504 // more than 180 degrees
505 normals[1] = -normals[1];
506 angles[0] = 1. - angles[0];
507 angles[1] = 1. - angles[1];
508 sign = -1.;
509
510 }
511
512 QPointF circle[3];
513 circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
514 circle[1] = QPointF(0.5*(b->x1 + b->x4), 0.5*(b->y1 + b->y4)) + normals[1]*offset;
515 circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;
516
517 for (int i = 0; i < 2; ++i) {
518 qreal kappa = 2.*KAPPA * sign * offset * angles[i];
519
520 o->x1 = circle[i].x();
521 o->y1 = circle[i].y();
522 o->x2 = circle[i].x() - normals[i].y()*kappa;
523 o->y2 = circle[i].y() + normals[i].x()*kappa;
524 o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
525 o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
526 o->x4 = circle[i+1].x();
527 o->y4 = circle[i+1].y();
528
529 ++o;
530 }
531 return true;
532}
533
534int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
535{
536 Q_ASSERT(curveSegments);
537 Q_ASSERT(maxSegments > 0);
538
539 if (x1 == x2 && x1 == x3 && x1 == x4 &&
540 y1 == y2 && y1 == y3 && y1 == y4)
541 return 0;
542
543 --maxSegments;
544 QBezier beziers[10];
545redo:
546 beziers[0] = *this;
547 QBezier *b = beziers;
548 QBezier *o = curveSegments;
549
550 while (b >= beziers) {
551 int stack_segments = b - beziers + 1;
552 if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
553 threshold *= 1.5;
554 if (threshold > 2.)
555 goto give_up;
556 goto redo;
557 }
558 ShiftResult res = shift(b, o, offset, threshold);
559 if (res == Discard) {
560 --b;
561 } else if (res == Ok) {
562 ++o;
563 --b;
564 continue;
565 } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
566 // add semi circle
567 if (addCircle(b, offset, o))
568 o += 2;
569 --b;
570 } else {
571 b->split(b+1, b);
572 ++b;
573 }
574 }
575
576give_up:
577 while (b >= beziers) {
578 ShiftResult res = shift(b, o, offset, threshold);
579
580 // if res isn't Ok or Split then *o is undefined
581 if (res == Ok || res == Split)
582 ++o;
583
584 --b;
585 }
586
587 Q_ASSERT(o - curveSegments <= maxSegments);
588 return o - curveSegments;
589}
590
591#if 0
592static inline bool IntersectBB(const QBezier &a, const QBezier &b)
593{
594 return a.bounds().intersects(b.bounds());
595}
596#else
597static int IntersectBB(const QBezier &a, const QBezier &b)
598{
599 // Compute bounding box for a
600 qreal minax, maxax, minay, maxay;
601 if (a.x1 > a.x4) // These are the most likely to be extremal
602 minax = a.x4, maxax = a.x1;
603 else
604 minax = a.x1, maxax = a.x4;
605
606 if (a.x3 < minax)
607 minax = a.x3;
608 else if (a.x3 > maxax)
609 maxax = a.x3;
610
611 if (a.x2 < minax)
612 minax = a.x2;
613 else if (a.x2 > maxax)
614 maxax = a.x2;
615
616 if (a.y1 > a.y4)
617 minay = a.y4, maxay = a.y1;
618 else
619 minay = a.y1, maxay = a.y4;
620
621 if (a.y3 < minay)
622 minay = a.y3;
623 else if (a.y3 > maxay)
624 maxay = a.y3;
625
626 if (a.y2 < minay)
627 minay = a.y2;
628 else if (a.y2 > maxay)
629 maxay = a.y2;
630
631 // Compute bounding box for b
632 qreal minbx, maxbx, minby, maxby;
633 if (b.x1 > b.x4)
634 minbx = b.x4, maxbx = b.x1;
635 else
636 minbx = b.x1, maxbx = b.x4;
637
638 if (b.x3 < minbx)
639 minbx = b.x3;
640 else if (b.x3 > maxbx)
641 maxbx = b.x3;
642
643 if (b.x2 < minbx)
644 minbx = b.x2;
645 else if (b.x2 > maxbx)
646 maxbx = b.x2;
647
648 if (b.y1 > b.y4)
649 minby = b.y4, maxby = b.y1;
650 else
651 minby = b.y1, maxby = b.y4;
652
653 if (b.y3 < minby)
654 minby = b.y3;
655 else if (b.y3 > maxby)
656 maxby = b.y3;
657
658 if (b.y2 < minby)
659 minby = b.y2;
660 else if (b.y2 > maxby)
661 maxby = b.y2;
662
663 // Test bounding box of b against bounding box of a
664 if ((minax > maxbx) || (minay > maxby) // Not >= : need boundary case
665 || (minbx > maxax) || (minby > maxay))
666 return 0; // they don't intersect
667 else
668 return 1; // they intersect
669}
670#endif
671
672
673#ifdef QDEBUG_BEZIER
674static QDebug operator<<(QDebug dbg, const QBezier &bz)
675{
676 dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
677 << '[' << bz.x2 <<", " << bz.y2 << "], "
678 << '[' << bz.x3 <<", " << bz.y3 << "], "
679 << '[' << bz.x4 <<", " << bz.y4 << ']';
680 return dbg;
681}
682#endif
683
684static bool RecursivelyIntersect(const QBezier &a, qreal t0, qreal t1, int deptha,
685 const QBezier &b, qreal u0, qreal u1, int depthb,
686 QVector<QPair<qreal, qreal> > *t)
687{
688#ifdef QDEBUG_BEZIER
689 static int I = 0;
690 int currentD = I;
691 fprintf(stderr, "%d) t0 = %lf, t1 = %lf, deptha = %d\n"
692 "u0 = %lf, u1 = %lf, depthb = %d\n", I++, t0, t1, deptha,
693 u0, u1, depthb);
694#endif
695 if (deptha > 0) {
696 QBezier A[2];
697 a.split(&A[0], &A[1]);
698 qreal tmid = (t0+t1)*0.5;
699 //qDebug()<<"\t1)"<<A[0];
700 //qDebug()<<"\t2)"<<A[1];
701 deptha--;
702 if (depthb > 0) {
703 QBezier B[2];
704 b.split(&B[0], &B[1]);
705 //qDebug()<<"\t3)"<<B[0];
706 //qDebug()<<"\t4)"<<B[1];
707 qreal umid = (u0+u1)*0.5;
708 depthb--;
709 if (IntersectBB(A[0], B[0])) {
710 //fprintf(stderr, "\t 1 from %d\n", currentD);
711 if (RecursivelyIntersect(A[0], t0, tmid, deptha,
712 B[0], u0, umid, depthb,
713 t) && !t)
714 return true;
715 }
716 if (IntersectBB(A[1], B[0])) {
717 //fprintf(stderr, "\t 2 from %d\n", currentD);
718 if (RecursivelyIntersect(A[1], tmid, t1, deptha,
719 B[0], u0, umid, depthb,
720 t) && !t)
721 return true;
722 }
723 if (IntersectBB(A[0], B[1])) {
724 //fprintf(stderr, "\t 3 from %d\n", currentD);
725 if (RecursivelyIntersect(A[0], t0, tmid, deptha,
726 B[1], umid, u1, depthb,
727 t) && !t)
728 return true;
729 }
730 if (IntersectBB(A[1], B[1])) {
731 //fprintf(stderr, "\t 4 from %d\n", currentD);
732 if (RecursivelyIntersect(A[1], tmid, t1, deptha,
733 B[1], umid, u1, depthb,
734 t) && !t)
735 return true;
736 }
737 return t ? !t->isEmpty() : false;
738 } else {
739 if (IntersectBB(A[0], b)) {
740 //fprintf(stderr, "\t 5 from %d\n", currentD);
741 if (RecursivelyIntersect(A[0], t0, tmid, deptha,
742 b, u0, u1, depthb,
743 t) && !t)
744 return true;
745 }
746 if (IntersectBB(A[1], b)) {
747 //fprintf(stderr, "\t 6 from %d\n", currentD);
748 if (RecursivelyIntersect(A[1], tmid, t1, deptha,
749 b, u0, u1, depthb,
750 t) && !t)
751 return true;
752 }
753 return t ? !t->isEmpty() : false;
754 }
755 } else {
756 if (depthb > 0) {
757 QBezier B[2];
758 b.split(&B[0], &B[1]);
759 qreal umid = (u0 + u1)*0.5;
760 depthb--;
761 if (IntersectBB(a, B[0])) {
762 //fprintf(stderr, "\t 7 from %d\n", currentD);
763 if (RecursivelyIntersect(a, t0, t1, deptha,
764 B[0], u0, umid, depthb,
765 t) && !t)
766 return true;
767 }
768 if (IntersectBB(a, B[1])) {
769 //fprintf(stderr, "\t 8 from %d\n", currentD);
770 if (RecursivelyIntersect(a, t0, t1, deptha,
771 B[1], umid, u1, depthb,
772 t) && !t)
773 return true;
774 }
775 return t ? !t->isEmpty() : false;
776 }
777 else {
778 // Both segments are fully subdivided; now do line segments
779 qreal xlk = a.x4 - a.x1;
780 qreal ylk = a.y4 - a.y1;
781 qreal xnm = b.x4 - b.x1;
782 qreal ynm = b.y4 - b.y1;
783 qreal xmk = b.x1 - a.x1;
784 qreal ymk = b.y1 - a.y1;
785 qreal det = xnm * ylk - ynm * xlk;
786 if (1.0 + det == 1.0) {
787 return false;
788 } else {
789 qreal detinv = 1.0 / det;
790 qreal rs = (xnm * ymk - ynm *xmk) * detinv;
791 qreal rt = (xlk * ymk - ylk * xmk) * detinv;
792 if ((rs < 0.0) || (rs > 1.0) || (rt < 0.0) || (rt > 1.0))
793 return false;
794
795 if (t) {
796 const qreal alpha_a = t0 + rs * (t1 - t0);
797 const qreal alpha_b = u0 + rt * (u1 - u0);
798
799 *t << qMakePair(alpha_a, alpha_b);
800 }
801
802 return true;
803 }
804 }
805 }
806}
807
808QVector< QPair<qreal, qreal> > QBezier::findIntersections(const QBezier &a, const QBezier &b)
809{
810 QVector< QPair<qreal, qreal> > v(2);
811 findIntersections(a, b, &v);
812 return v;
813}
814
815bool QBezier::findIntersections(const QBezier &a, const QBezier &b,
816 QVector<QPair<qreal, qreal> > *t)
817{
818 if (IntersectBB(a, b)) {
819 QPointF la1(qFabs((a.x3 - a.x2) - (a.x2 - a.x1)),
820 qFabs((a.y3 - a.y2) - (a.y2 - a.y1)));
821 QPointF la2(qFabs((a.x4 - a.x3) - (a.x3 - a.x2)),
822 qFabs((a.y4 - a.y3) - (a.y3 - a.y2)));
823 QPointF la;
824 if (la1.x() > la2.x()) la.setX(la1.x()); else la.setX(la2.x());
825 if (la1.y() > la2.y()) la.setY(la1.y()); else la.setY(la2.y());
826 QPointF lb1(qFabs((b.x3 - b.x2) - (b.x2 - b.x1)),
827 qFabs((b.y3 - b.y2) - (b.y2 - b.y1)));
828 QPointF lb2(qFabs((b.x4 - b.x3) - (b.x3 - b.x2)),
829 qFabs((b.y4 - b.y3) - (b.y3 - b.y2)));
830 QPointF lb;
831 if (lb1.x() > lb2.x()) lb.setX(lb1.x()); else lb.setX(lb2.x());
832 if (lb1.y() > lb2.y()) lb.setY(lb1.y()); else lb.setY(lb2.y());
833 qreal l0;
834 if (la.x() > la.y())
835 l0 = la.x();
836 else
837 l0 = la.y();
838 int ra;
839 if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
840 ra = 0;
841 else
842 ra = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
843 if (lb.x() > lb.y())
844 l0 = lb.x();
845 else
846 l0 = lb.y();
847 int rb;
848 if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
849 rb = 0;
850 else
851 rb = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
852
853 // if qreal is float then halve the number of subdivisions
854 if (sizeof(qreal) == 4) {
855 ra /= 2;
856 rb /= 2;
857 }
858
859 return RecursivelyIntersect(a, 0., 1., ra, b, 0., 1., rb, t);
860 }
861
862 //Don't sort here because it breaks the orders of corresponding
863 // intersections points. this way t's at the same locations correspond
864 // to the same intersection point.
865 //qSort(parameters[0].begin(), parameters[0].end(), qLess<qreal>());
866 //qSort(parameters[1].begin(), parameters[1].end(), qLess<qreal>());
867
868 return false;
869}
870
871static inline void splitBezierAt(const QBezier &bez, qreal t,
872 QBezier *left, QBezier *right)
873{
874 left->x1 = bez.x1;
875 left->y1 = bez.y1;
876
877 left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
878 left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );
879
880 left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
881 left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot
882
883 right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
884 right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );
885
886 right->x2 = left->x3 + t * ( right->x3 - left->x3);
887 right->y2 = left->y3 + t * ( right->y3 - left->y3);
888
889 left->x3 = left->x2 + t * ( left->x3 - left->x2 );
890 left->y3 = left->y2 + t * ( left->y3 - left->y2 );
891
892 left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
893 left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);
894
895 right->x4 = bez.x4;
896 right->y4 = bez.y4;
897}
898
899QVector< QList<QBezier> > QBezier::splitAtIntersections(QBezier &b)
900{
901 QVector< QList<QBezier> > curves(2);
902
903 QVector< QPair<qreal, qreal> > allInters = findIntersections(*this, b);
904
905 QList<qreal> inters1;
906 QList<qreal> inters2;
907
908 for (int i = 0; i < allInters.size(); ++i) {
909 inters1 << allInters[i].first;
910 inters2 << allInters[i].second;
911 }
912
913 qSort(inters1.begin(), inters1.end(), qLess<qreal>());
914 qSort(inters2.begin(), inters2.end(), qLess<qreal>());
915
916 Q_ASSERT(inters1.count() == inters2.count());
917
918 int i;
919 for (i = 0; i < inters1.count(); ++i) {
920 qreal t1 = inters1.at(i);
921 qreal t2 = inters2.at(i);
922
923 QBezier curve1, curve2;
924 parameterSplitLeft(t1, &curve1);
925 b.parameterSplitLeft(t2, &curve2);
926 curves[0].append(curve1);
927 curves[0].append(curve2);
928 }
929 curves[0].append(*this);
930 curves[1].append(b);
931
932 return curves;
933}
934
935qreal QBezier::length(qreal error) const
936{
937 qreal length = 0.0;
938
939 addIfClose(&length, error);
940
941 return length;
942}
943
944void QBezier::addIfClose(qreal *length, qreal error) const
945{
946 QBezier left, right; /* bez poly splits */
947
948 qreal len = 0.0; /* arc length */
949 qreal chord; /* chord length */
950
951 len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
952 len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
953 len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();
954
955 chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();
956
957 if((len-chord) > error) {
958 split(&left, &right); /* split in two */
959 left.addIfClose(length, error); /* try left side */
960 right.addIfClose(length, error); /* try right side */
961 return;
962 }
963
964 *length = *length + len;
965
966 return;
967}
968
969qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
970{
971 qreal py0 = pointAt(t0).y();
972 qreal py1 = pointAt(t1).y();
973
974 if (py0 > py1) {
975 qSwap(py0, py1);
976 qSwap(t0, t1);
977 }
978
979 Q_ASSERT(py0 <= py1);
980
981 if (py0 >= y)
982 return t0;
983 else if (py1 <= y)
984 return t1;
985
986 Q_ASSERT(py0 < y && y < py1);
987
988 qreal lt = t0;
989 qreal dt;
990 do {
991 qreal t = 0.5 * (t0 + t1);
992
993 qreal a, b, c, d;
994 QBezier::coefficients(t, a, b, c, d);
995 qreal yt = a * y1 + b * y2 + c * y3 + d * y4;
996
997 if (yt < y) {
998 t0 = t;
999 py0 = yt;
1000 } else {
1001 t1 = t;
1002 py1 = yt;
1003 }
1004 dt = lt - t;
1005 lt = t;
1006 } while (qAbs(dt) > 1e-7);
1007
1008 return t0;
1009}
1010
1011int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
1012{
1013 // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
1014 // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
1015 // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))
1016
1017 const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
1018 const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
1019 const qreal c = -y1 + y2;
1020
1021 qreal reciprocal = b * b - 4 * a * c;
1022
1023 QList<qreal> result;
1024
1025 if (qFuzzyIsNull(reciprocal)) {
1026 t0 = -b / (2 * a);
1027 return 1;
1028 } else if (reciprocal > 0) {
1029 qreal temp = qSqrt(reciprocal);
1030
1031 t0 = (-b - temp)/(2*a);
1032 t1 = (-b + temp)/(2*a);
1033
1034 if (t1 < t0)
1035 qSwap(t0, t1);
1036
1037 int count = 0;
1038 qreal t[2] = { 0, 1 };
1039
1040 if (t0 > 0 && t0 < 1)
1041 t[count++] = t0;
1042 if (t1 > 0 && t1 < 1)
1043 t[count++] = t1;
1044
1045 t0 = t[0];
1046 t1 = t[1];
1047
1048 return count;
1049 }
1050
1051 return 0;
1052}
1053
1054qreal QBezier::tAtLength(qreal l) const
1055{
1056 qreal len = length();
1057 qreal t = 1.0;
1058 const qreal error = (qreal)0.01;
1059 if (l > len || qFuzzyCompare(l, len))
1060 return t;
1061
1062 t *= 0.5;
1063 //int iters = 0;
1064 //qDebug()<<"LEN is "<<l<<len;
1065 qreal lastBigger = 1.;
1066 while (1) {
1067 //qDebug()<<"\tt is "<<t;
1068 QBezier right = *this;
1069 QBezier left;
1070 right.parameterSplitLeft(t, &left);
1071 qreal lLen = left.length();
1072 if (qAbs(lLen - l) < error)
1073 break;
1074
1075 if (lLen < l) {
1076 t += (lastBigger - t)*.5;
1077 } else {
1078 lastBigger = t;
1079 t -= t*.5;
1080 }
1081 //++iters;
1082 }
1083 //qDebug()<<"number of iters is "<<iters;
1084 return t;
1085}
1086
1087QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
1088{
1089 if (t0 == 0 && t1 == 1)
1090 return *this;
1091
1092 QBezier bezier = *this;
1093
1094 QBezier result;
1095 bezier.parameterSplitLeft(t0, &result);
1096 qreal trueT = (t1-t0)/(1-t0);
1097 bezier.parameterSplitLeft(trueT, &result);
1098
1099 return result;
1100}
1101
1102
1103static inline void bindInflectionPoint(const QBezier &bez, const qreal t,
1104 qreal *tMinus , qreal *tPlus)
1105{
1106 if (t <= 0) {
1107 *tMinus = *tPlus = -1;
1108 return;
1109 } else if (t >= 1) {
1110 *tMinus = *tPlus = 2;
1111 return;
1112 }
1113
1114 QBezier left, right;
1115 splitBezierAt(bez, t, &left, &right);
1116
1117 qreal ax = -right.x1 + 3*right.x2 - 3*right.x3 + right.x4;
1118 qreal ay = -right.y1 + 3*right.y2 - 3*right.y3 + right.y4;
1119 qreal ex = 3 * (right.x2 - right.x3);
1120 qreal ey = 3 * (right.y2 - right.y3);
1121
1122 qreal s4 = qAbs(6 * (ey * ax - ex * ay) / qSqrt(ex * ex + ey * ey)) + 0.00001f;
1123 qreal tf = qPow(qreal(9 * flatness / s4), qreal(1./3.));
1124 *tMinus = t - (1 - t) * tf;
1125 *tPlus = t + (1 - t) * tf;
1126}
1127
1128void QBezier::addToPolygonIterative(QPolygonF *p) const
1129{
1130 qreal t1, t2, tcusp;
1131 qreal t1min, t1plus, t2min, t2plus;
1132
1133 qreal ax = -x1 + 3*x2 - 3*x3 + x4;
1134 qreal ay = -y1 + 3*y2 - 3*y3 + y4;
1135 qreal bx = 3*x1 - 6*x2 + 3*x3;
1136 qreal by = 3*y1 - 6*y2 + 3*y3;
1137 qreal cx = -3*x1 + 3*x2;
1138 qreal cy = -3*y1 + 2*y2;
1139
1140 if (findInflections(6 * (ay * bx - ax * by),
1141 6 * (ay * cx - ax * cy),
1142 2 * (by * cx - bx * cy),
1143 &t1, &t2, &tcusp)) {
1144 bindInflectionPoint(*this, t1, &t1min, &t1plus);
1145 bindInflectionPoint(*this, t2, &t2min, &t2plus);
1146
1147 QBezier tmpBez = *this;
1148 QBezier left, right, bez1, bez2, bez3;
1149 if (t1min > 0) {
1150 if (t1min >= 1) {
1151 flattenBezierWithoutInflections(tmpBez, p);
1152 } else {
1153 splitBezierAt(tmpBez, t1min, &left, &right);
1154 flattenBezierWithoutInflections(left, p);
1155 p->append(tmpBez.pointAt(t1min));
1156
1157 if (t2min < t1plus) {
1158 if (tcusp < 1) {
1159 p->append(tmpBez.pointAt(tcusp));
1160 }
1161 if (t2plus < 1) {
1162 splitBezierAt(tmpBez, t2plus, &left, &right);
1163 flattenBezierWithoutInflections(right, p);
1164 }
1165 } else if (t1plus < 1) {
1166 if (t2min < 1) {
1167 splitBezierAt(tmpBez, t2min, &bez3, &right);
1168 splitBezierAt(bez3, t1plus, &left, &bez2);
1169
1170 flattenBezierWithoutInflections(bez2, p);
1171 p->append(tmpBez.pointAt(t2min));
1172
1173 if (t2plus < 1) {
1174 splitBezierAt(tmpBez, t2plus, &left, &bez2);
1175 flattenBezierWithoutInflections(bez2, p);
1176 }
1177 } else {
1178 splitBezierAt(tmpBez, t1plus, &left, &bez2);
1179 flattenBezierWithoutInflections(bez2, p);
1180 }
1181 }
1182 }
1183 } else if (t1plus > 0) {
1184 p->append(QPointF(x1, y1));
1185 if (t2min < t1plus) {
1186 if (tcusp < 1) {
1187 p->append(tmpBez.pointAt(tcusp));
1188 }
1189 if (t2plus < 1) {
1190 splitBezierAt(tmpBez, t2plus, &left, &bez2);
1191 flattenBezierWithoutInflections(bez2, p);
1192 }
1193 } else if (t1plus < 1) {
1194 if (t2min < 1) {
1195 splitBezierAt(tmpBez, t2min, &bez3, &right);
1196 splitBezierAt(bez3, t1plus, &left, &bez2);
1197
1198 flattenBezierWithoutInflections(bez2, p);
1199
1200 p->append(tmpBez.pointAt(t2min));
1201 if (t2plus < 1) {
1202 splitBezierAt(tmpBez, t2plus, &left, &bez2);
1203 flattenBezierWithoutInflections(bez2, p);
1204 }
1205 } else {
1206 splitBezierAt(tmpBez, t1plus, &left, &bez2);
1207 flattenBezierWithoutInflections(bez2, p);
1208 }
1209 }
1210 } else if (t2min > 0) {
1211 if (t2min < 1) {
1212 splitBezierAt(tmpBez, t2min, &bez1, &right);
1213 flattenBezierWithoutInflections(bez1, p);
1214 p->append(tmpBez.pointAt(t2min));
1215
1216 if (t2plus < 1) {
1217 splitBezierAt(tmpBez, t2plus, &left, &bez2);
1218 flattenBezierWithoutInflections(bez2, p);
1219 }
1220 } else {
1221 //### in here we should check whether the area of the
1222 // triangle formed between pt1/pt2/pt3 is smaller
1223 // or equal to 0 and then do iterative flattening
1224 // if not we should fallback and do the recursive
1225 // flattening.
1226 flattenBezierWithoutInflections(tmpBez, p);
1227 }
1228 } else if (t2plus > 0) {
1229 p->append(QPointF(x1, y1));
1230 if (t2plus < 1) {
1231 splitBezierAt(tmpBez, t2plus, &left, &bez2);
1232 flattenBezierWithoutInflections(bez2, p);
1233 }
1234 } else {
1235 flattenBezierWithoutInflections(tmpBez, p);
1236 }
1237 } else {
1238 QBezier bez = *this;
1239 flattenBezierWithoutInflections(bez, p);
1240 }
1241
1242 p->append(QPointF(x4, y4));
1243}
1244
1245QT_END_NAMESPACE
Note: See TracBrowser for help on using the repository browser.