| 1 | /**************************************************************************** | 
|---|
| 2 | ** | 
|---|
| 3 | ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). | 
|---|
| 4 | ** All rights reserved. | 
|---|
| 5 | ** Contact: Nokia Corporation (qt-info@nokia.com) | 
|---|
| 6 | ** | 
|---|
| 7 | ** This file is part of the QtGui module of the Qt Toolkit. | 
|---|
| 8 | ** | 
|---|
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ | 
|---|
| 10 | ** Commercial Usage | 
|---|
| 11 | ** Licensees holding valid Qt Commercial licenses may use this file in | 
|---|
| 12 | ** accordance with the Qt Commercial License Agreement provided with the | 
|---|
| 13 | ** Software or, alternatively, in accordance with the terms contained in | 
|---|
| 14 | ** a written agreement between you and Nokia. | 
|---|
| 15 | ** | 
|---|
| 16 | ** GNU Lesser General Public License Usage | 
|---|
| 17 | ** Alternatively, this file may be used under the terms of the GNU Lesser | 
|---|
| 18 | ** General Public License version 2.1 as published by the Free Software | 
|---|
| 19 | ** Foundation and appearing in the file LICENSE.LGPL included in the | 
|---|
| 20 | ** packaging of this file.  Please review the following information to | 
|---|
| 21 | ** ensure the GNU Lesser General Public License version 2.1 requirements | 
|---|
| 22 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. | 
|---|
| 23 | ** | 
|---|
| 24 | ** In addition, as a special exception, Nokia gives you certain additional | 
|---|
| 25 | ** rights.  These rights are described in the Nokia Qt LGPL Exception | 
|---|
| 26 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. | 
|---|
| 27 | ** | 
|---|
| 28 | ** GNU General Public License Usage | 
|---|
| 29 | ** Alternatively, this file may be used under the terms of the GNU | 
|---|
| 30 | ** General Public License version 3.0 as published by the Free Software | 
|---|
| 31 | ** Foundation and appearing in the file LICENSE.GPL included in the | 
|---|
| 32 | ** packaging of this file.  Please review the following information to | 
|---|
| 33 | ** ensure the GNU General Public License version 3.0 requirements will be | 
|---|
| 34 | ** met: http://www.gnu.org/copyleft/gpl.html. | 
|---|
| 35 | ** | 
|---|
| 36 | ** If you have questions regarding the use of this file, please contact | 
|---|
| 37 | ** Nokia at qt-info@nokia.com. | 
|---|
| 38 | ** $QT_END_LICENSE$ | 
|---|
| 39 | ** | 
|---|
| 40 | ****************************************************************************/ | 
|---|
| 41 |  | 
|---|
| 42 | #include "qquaternion.h" | 
|---|
| 43 | #include <QtCore/qmath.h> | 
|---|
| 44 | #include <QtCore/qvariant.h> | 
|---|
| 45 | #include <QtCore/qdebug.h> | 
|---|
| 46 |  | 
|---|
| 47 | QT_BEGIN_NAMESPACE | 
|---|
| 48 |  | 
|---|
| 49 | #ifndef QT_NO_QUATERNION | 
|---|
| 50 |  | 
|---|
| 51 | /*! | 
|---|
| 52 | \class QQuaternion | 
|---|
| 53 | \brief The QQuaternion class represents a quaternion consisting of a vector and scalar. | 
|---|
| 54 | \since 4.6 | 
|---|
| 55 | \ingroup painting-3D | 
|---|
| 56 |  | 
|---|
| 57 | Quaternions are used to represent rotations in 3D space, and | 
|---|
| 58 | consist of a 3D rotation axis specified by the x, y, and z | 
|---|
| 59 | coordinates, and a scalar representing the rotation angle. | 
|---|
| 60 | */ | 
|---|
| 61 |  | 
|---|
| 62 | /*! | 
|---|
| 63 | \fn QQuaternion::QQuaternion() | 
|---|
| 64 |  | 
|---|
| 65 | Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0). | 
|---|
| 66 | */ | 
|---|
| 67 |  | 
|---|
| 68 | /*! | 
|---|
| 69 | \fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos) | 
|---|
| 70 |  | 
|---|
| 71 | Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) | 
|---|
| 72 | and \a scalar. | 
|---|
| 73 | */ | 
|---|
| 74 |  | 
|---|
| 75 | #ifndef QT_NO_VECTOR3D | 
|---|
| 76 |  | 
|---|
| 77 | /*! | 
|---|
| 78 | \fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector) | 
|---|
| 79 |  | 
|---|
| 80 | Constructs a quaternion vector from the specified \a vector and | 
|---|
| 81 | \a scalar. | 
|---|
| 82 |  | 
|---|
| 83 | \sa vector(), scalar() | 
|---|
| 84 | */ | 
|---|
| 85 |  | 
|---|
| 86 | /*! | 
|---|
| 87 | \fn QVector3D QQuaternion::vector() const | 
|---|
| 88 |  | 
|---|
| 89 | Returns the vector component of this quaternion. | 
|---|
| 90 |  | 
|---|
| 91 | \sa setVector(), scalar() | 
|---|
| 92 | */ | 
|---|
| 93 |  | 
|---|
| 94 | /*! | 
|---|
| 95 | \fn void QQuaternion::setVector(const QVector3D& vector) | 
|---|
| 96 |  | 
|---|
| 97 | Sets the vector component of this quaternion to \a vector. | 
|---|
| 98 |  | 
|---|
| 99 | \sa vector(), setScalar() | 
|---|
| 100 | */ | 
|---|
| 101 |  | 
|---|
| 102 | #endif | 
|---|
| 103 |  | 
|---|
| 104 | /*! | 
|---|
| 105 | \fn void QQuaternion::setVector(qreal x, qreal y, qreal z) | 
|---|
| 106 |  | 
|---|
| 107 | Sets the vector component of this quaternion to (\a x, \a y, \a z). | 
|---|
| 108 |  | 
|---|
| 109 | \sa vector(), setScalar() | 
|---|
| 110 | */ | 
|---|
| 111 |  | 
|---|
| 112 | #ifndef QT_NO_VECTOR4D | 
|---|
| 113 |  | 
|---|
| 114 | /*! | 
|---|
| 115 | \fn QQuaternion::QQuaternion(const QVector4D& vector) | 
|---|
| 116 |  | 
|---|
| 117 | Constructs a quaternion from the components of \a vector. | 
|---|
| 118 | */ | 
|---|
| 119 |  | 
|---|
| 120 | /*! | 
|---|
| 121 | \fn QVector4D QQuaternion::toVector4D() const | 
|---|
| 122 |  | 
|---|
| 123 | Returns this quaternion as a 4D vector. | 
|---|
| 124 | */ | 
|---|
| 125 |  | 
|---|
| 126 | #endif | 
|---|
| 127 |  | 
|---|
| 128 | /*! | 
|---|
| 129 | \fn bool QQuaternion::isNull() const | 
|---|
| 130 |  | 
|---|
| 131 | Returns true if the x, y, z, and scalar components of this | 
|---|
| 132 | quaternion are set to 0.0; otherwise returns false. | 
|---|
| 133 | */ | 
|---|
| 134 |  | 
|---|
| 135 | /*! | 
|---|
| 136 | \fn bool QQuaternion::isIdentity() const | 
|---|
| 137 |  | 
|---|
| 138 | Returns true if the x, y, and z components of this | 
|---|
| 139 | quaternion are set to 0.0, and the scalar component is set | 
|---|
| 140 | to 1.0; otherwise returns false. | 
|---|
| 141 | */ | 
|---|
| 142 |  | 
|---|
| 143 | /*! | 
|---|
| 144 | \fn qreal QQuaternion::x() const | 
|---|
| 145 |  | 
|---|
| 146 | Returns the x coordinate of this quaternion's vector. | 
|---|
| 147 |  | 
|---|
| 148 | \sa setX(), y(), z(), scalar() | 
|---|
| 149 | */ | 
|---|
| 150 |  | 
|---|
| 151 | /*! | 
|---|
| 152 | \fn qreal QQuaternion::y() const | 
|---|
| 153 |  | 
|---|
| 154 | Returns the y coordinate of this quaternion's vector. | 
|---|
| 155 |  | 
|---|
| 156 | \sa setY(), x(), z(), scalar() | 
|---|
| 157 | */ | 
|---|
| 158 |  | 
|---|
| 159 | /*! | 
|---|
| 160 | \fn qreal QQuaternion::z() const | 
|---|
| 161 |  | 
|---|
| 162 | Returns the z coordinate of this quaternion's vector. | 
|---|
| 163 |  | 
|---|
| 164 | \sa setZ(), x(), y(), scalar() | 
|---|
| 165 | */ | 
|---|
| 166 |  | 
|---|
| 167 | /*! | 
|---|
| 168 | \fn qreal QQuaternion::scalar() const | 
|---|
| 169 |  | 
|---|
| 170 | Returns the scalar component of this quaternion. | 
|---|
| 171 |  | 
|---|
| 172 | \sa setScalar(), x(), y(), z() | 
|---|
| 173 | */ | 
|---|
| 174 |  | 
|---|
| 175 | /*! | 
|---|
| 176 | \fn void QQuaternion::setX(qreal x) | 
|---|
| 177 |  | 
|---|
| 178 | Sets the x coordinate of this quaternion's vector to the given | 
|---|
| 179 | \a x coordinate. | 
|---|
| 180 |  | 
|---|
| 181 | \sa x(), setY(), setZ(), setScalar() | 
|---|
| 182 | */ | 
|---|
| 183 |  | 
|---|
| 184 | /*! | 
|---|
| 185 | \fn void QQuaternion::setY(qreal y) | 
|---|
| 186 |  | 
|---|
| 187 | Sets the y coordinate of this quaternion's vector to the given | 
|---|
| 188 | \a y coordinate. | 
|---|
| 189 |  | 
|---|
| 190 | \sa y(), setX(), setZ(), setScalar() | 
|---|
| 191 | */ | 
|---|
| 192 |  | 
|---|
| 193 | /*! | 
|---|
| 194 | \fn void QQuaternion::setZ(qreal z) | 
|---|
| 195 |  | 
|---|
| 196 | Sets the z coordinate of this quaternion's vector to the given | 
|---|
| 197 | \a z coordinate. | 
|---|
| 198 |  | 
|---|
| 199 | \sa z(), setX(), setY(), setScalar() | 
|---|
| 200 | */ | 
|---|
| 201 |  | 
|---|
| 202 | /*! | 
|---|
| 203 | \fn void QQuaternion::setScalar(qreal scalar) | 
|---|
| 204 |  | 
|---|
| 205 | Sets the scalar component of this quaternion to \a scalar. | 
|---|
| 206 |  | 
|---|
| 207 | \sa scalar(), setX(), setY(), setZ() | 
|---|
| 208 | */ | 
|---|
| 209 |  | 
|---|
| 210 | /*! | 
|---|
| 211 | Returns the length of the quaternion.  This is also called the "norm". | 
|---|
| 212 |  | 
|---|
| 213 | \sa lengthSquared(), normalized() | 
|---|
| 214 | */ | 
|---|
| 215 | qreal QQuaternion::length() const | 
|---|
| 216 | { | 
|---|
| 217 | return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp); | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | /*! | 
|---|
| 221 | Returns the squared length of the quaternion. | 
|---|
| 222 |  | 
|---|
| 223 | \sa length() | 
|---|
| 224 | */ | 
|---|
| 225 | qreal QQuaternion::lengthSquared() const | 
|---|
| 226 | { | 
|---|
| 227 | return xp * xp + yp * yp + zp * zp + wp * wp; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | /*! | 
|---|
| 231 | Returns the normalized unit form of this quaternion. | 
|---|
| 232 |  | 
|---|
| 233 | If this quaternion is null, then a null quaternion is returned. | 
|---|
| 234 | If the length of the quaternion is very close to 1, then the quaternion | 
|---|
| 235 | will be returned as-is.  Otherwise the normalized form of the | 
|---|
| 236 | quaternion of length 1 will be returned. | 
|---|
| 237 |  | 
|---|
| 238 | \sa length(), normalize() | 
|---|
| 239 | */ | 
|---|
| 240 | QQuaternion QQuaternion::normalized() const | 
|---|
| 241 | { | 
|---|
| 242 | // Need some extra precision if the length is very small. | 
|---|
| 243 | double len = double(xp) * double(xp) + | 
|---|
| 244 | double(yp) * double(yp) + | 
|---|
| 245 | double(zp) * double(zp) + | 
|---|
| 246 | double(wp) * double(wp); | 
|---|
| 247 | if (qFuzzyIsNull(len - 1.0f)) | 
|---|
| 248 | return *this; | 
|---|
| 249 | else if (!qFuzzyIsNull(len)) | 
|---|
| 250 | return *this / qSqrt(len); | 
|---|
| 251 | else | 
|---|
| 252 | return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f); | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 | /*! | 
|---|
| 256 | Normalizes the currect quaternion in place.  Nothing happens if this | 
|---|
| 257 | is a null quaternion or the length of the quaternion is very close to 1. | 
|---|
| 258 |  | 
|---|
| 259 | \sa length(), normalized() | 
|---|
| 260 | */ | 
|---|
| 261 | void QQuaternion::normalize() | 
|---|
| 262 | { | 
|---|
| 263 | // Need some extra precision if the length is very small. | 
|---|
| 264 | double len = double(xp) * double(xp) + | 
|---|
| 265 | double(yp) * double(yp) + | 
|---|
| 266 | double(zp) * double(zp) + | 
|---|
| 267 | double(wp) * double(wp); | 
|---|
| 268 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len)) | 
|---|
| 269 | return; | 
|---|
| 270 |  | 
|---|
| 271 | len = qSqrt(len); | 
|---|
| 272 |  | 
|---|
| 273 | xp /= len; | 
|---|
| 274 | yp /= len; | 
|---|
| 275 | zp /= len; | 
|---|
| 276 | wp /= len; | 
|---|
| 277 | } | 
|---|
| 278 |  | 
|---|
| 279 | /*! | 
|---|
| 280 | \fn QQuaternion QQuaternion::conjugate() const | 
|---|
| 281 |  | 
|---|
| 282 | Returns the conjugate of this quaternion, which is | 
|---|
| 283 | (-x, -y, -z, scalar). | 
|---|
| 284 | */ | 
|---|
| 285 |  | 
|---|
| 286 | /*! | 
|---|
| 287 | Rotates \a vector with this quaternion to produce a new vector | 
|---|
| 288 | in 3D space.  The following code: | 
|---|
| 289 |  | 
|---|
| 290 | \code | 
|---|
| 291 | QVector3D result = q.rotatedVector(vector); | 
|---|
| 292 | \endcode | 
|---|
| 293 |  | 
|---|
| 294 | is equivalent to the following: | 
|---|
| 295 |  | 
|---|
| 296 | \code | 
|---|
| 297 | QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector(); | 
|---|
| 298 | \endcode | 
|---|
| 299 | */ | 
|---|
| 300 | QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const | 
|---|
| 301 | { | 
|---|
| 302 | return (*this * QQuaternion(0, vector) * conjugate()).vector(); | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 | /*! | 
|---|
| 306 | \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion) | 
|---|
| 307 |  | 
|---|
| 308 | Adds the given \a quaternion to this quaternion and returns a reference to | 
|---|
| 309 | this quaternion. | 
|---|
| 310 |  | 
|---|
| 311 | \sa operator-=() | 
|---|
| 312 | */ | 
|---|
| 313 |  | 
|---|
| 314 | /*! | 
|---|
| 315 | \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion) | 
|---|
| 316 |  | 
|---|
| 317 | Subtracts the given \a quaternion from this quaternion and returns a | 
|---|
| 318 | reference to this quaternion. | 
|---|
| 319 |  | 
|---|
| 320 | \sa operator+=() | 
|---|
| 321 | */ | 
|---|
| 322 |  | 
|---|
| 323 | /*! | 
|---|
| 324 | \fn QQuaternion &QQuaternion::operator*=(qreal factor) | 
|---|
| 325 |  | 
|---|
| 326 | Multiplies this quaternion's components by the given \a factor, and | 
|---|
| 327 | returns a reference to this quaternion. | 
|---|
| 328 |  | 
|---|
| 329 | \sa operator/=() | 
|---|
| 330 | */ | 
|---|
| 331 |  | 
|---|
| 332 | /*! | 
|---|
| 333 | \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion) | 
|---|
| 334 |  | 
|---|
| 335 | Multiplies this quaternion by \a quaternion and returns a reference | 
|---|
| 336 | to this quaternion. | 
|---|
| 337 | */ | 
|---|
| 338 |  | 
|---|
| 339 | /*! | 
|---|
| 340 | \fn QQuaternion &QQuaternion::operator/=(qreal divisor) | 
|---|
| 341 |  | 
|---|
| 342 | Divides this quaternion's components by the given \a divisor, and | 
|---|
| 343 | returns a reference to this quaternion. | 
|---|
| 344 |  | 
|---|
| 345 | \sa operator*=() | 
|---|
| 346 | */ | 
|---|
| 347 |  | 
|---|
| 348 | #ifndef QT_NO_VECTOR3D | 
|---|
| 349 |  | 
|---|
| 350 | /*! | 
|---|
| 351 | Creates a normalized quaternion that corresponds to rotating through | 
|---|
| 352 | \a angle degrees about the specified 3D \a axis. | 
|---|
| 353 | */ | 
|---|
| 354 | QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle) | 
|---|
| 355 | { | 
|---|
| 356 | // Algorithm from: | 
|---|
| 357 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 | 
|---|
| 358 | // We normalize the result just in case the values are close | 
|---|
| 359 | // to zero, as suggested in the above FAQ. | 
|---|
| 360 | qreal a = (angle / 2.0f) * M_PI / 180.0f; | 
|---|
| 361 | qreal s = qSin(a); | 
|---|
| 362 | qreal c = qCos(a); | 
|---|
| 363 | QVector3D ax = axis.normalized(); | 
|---|
| 364 | return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized(); | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 | #endif | 
|---|
| 368 |  | 
|---|
| 369 | /*! | 
|---|
| 370 | Creates a normalized quaternion that corresponds to rotating through | 
|---|
| 371 | \a angle degrees about the 3D axis (\a x, \a y, \a z). | 
|---|
| 372 | */ | 
|---|
| 373 | QQuaternion QQuaternion::fromAxisAndAngle | 
|---|
| 374 | (qreal x, qreal y, qreal z, qreal angle) | 
|---|
| 375 | { | 
|---|
| 376 | qreal length = qSqrt(x * x + y * y + z * z); | 
|---|
| 377 | if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) { | 
|---|
| 378 | x /= length; | 
|---|
| 379 | y /= length; | 
|---|
| 380 | z /= length; | 
|---|
| 381 | } | 
|---|
| 382 | qreal a = (angle / 2.0f) * M_PI / 180.0f; | 
|---|
| 383 | qreal s = qSin(a); | 
|---|
| 384 | qreal c = qCos(a); | 
|---|
| 385 | return QQuaternion(c, x * s, y * s, z * s).normalized(); | 
|---|
| 386 | } | 
|---|
| 387 |  | 
|---|
| 388 | /*! | 
|---|
| 389 | \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 390 | \relates QQuaternion | 
|---|
| 391 |  | 
|---|
| 392 | Returns true if \a q1 is equal to \a q2; otherwise returns false. | 
|---|
| 393 | This operator uses an exact floating-point comparison. | 
|---|
| 394 | */ | 
|---|
| 395 |  | 
|---|
| 396 | /*! | 
|---|
| 397 | \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 398 | \relates QQuaternion | 
|---|
| 399 |  | 
|---|
| 400 | Returns true if \a q1 is not equal to \a q2; otherwise returns false. | 
|---|
| 401 | This operator uses an exact floating-point comparison. | 
|---|
| 402 | */ | 
|---|
| 403 |  | 
|---|
| 404 | /*! | 
|---|
| 405 | \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 406 | \relates QQuaternion | 
|---|
| 407 |  | 
|---|
| 408 | Returns a QQuaternion object that is the sum of the given quaternions, | 
|---|
| 409 | \a q1 and \a q2; each component is added separately. | 
|---|
| 410 |  | 
|---|
| 411 | \sa QQuaternion::operator+=() | 
|---|
| 412 | */ | 
|---|
| 413 |  | 
|---|
| 414 | /*! | 
|---|
| 415 | \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 416 | \relates QQuaternion | 
|---|
| 417 |  | 
|---|
| 418 | Returns a QQuaternion object that is formed by subtracting | 
|---|
| 419 | \a q2 from \a q1; each component is subtracted separately. | 
|---|
| 420 |  | 
|---|
| 421 | \sa QQuaternion::operator-=() | 
|---|
| 422 | */ | 
|---|
| 423 |  | 
|---|
| 424 | /*! | 
|---|
| 425 | \fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion) | 
|---|
| 426 | \relates QQuaternion | 
|---|
| 427 |  | 
|---|
| 428 | Returns a copy of the given \a quaternion,  multiplied by the | 
|---|
| 429 | given \a factor. | 
|---|
| 430 |  | 
|---|
| 431 | \sa QQuaternion::operator*=() | 
|---|
| 432 | */ | 
|---|
| 433 |  | 
|---|
| 434 | /*! | 
|---|
| 435 | \fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor) | 
|---|
| 436 | \relates QQuaternion | 
|---|
| 437 |  | 
|---|
| 438 | Returns a copy of the given \a quaternion,  multiplied by the | 
|---|
| 439 | given \a factor. | 
|---|
| 440 |  | 
|---|
| 441 | \sa QQuaternion::operator*=() | 
|---|
| 442 | */ | 
|---|
| 443 |  | 
|---|
| 444 | /*! | 
|---|
| 445 | \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2) | 
|---|
| 446 | \relates QQuaternion | 
|---|
| 447 |  | 
|---|
| 448 | Multiplies \a q1 and \a q2 using quaternion multiplication. | 
|---|
| 449 | The result corresponds to applying both of the rotations specified | 
|---|
| 450 | by \a q1 and \a q2. | 
|---|
| 451 |  | 
|---|
| 452 | \sa QQuaternion::operator*=() | 
|---|
| 453 | */ | 
|---|
| 454 |  | 
|---|
| 455 | /*! | 
|---|
| 456 | \fn const QQuaternion operator-(const QQuaternion &quaternion) | 
|---|
| 457 | \relates QQuaternion | 
|---|
| 458 | \overload | 
|---|
| 459 |  | 
|---|
| 460 | Returns a QQuaternion object that is formed by changing the sign of | 
|---|
| 461 | all three components of the given \a quaternion. | 
|---|
| 462 |  | 
|---|
| 463 | Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}. | 
|---|
| 464 | */ | 
|---|
| 465 |  | 
|---|
| 466 | /*! | 
|---|
| 467 | \fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor) | 
|---|
| 468 | \relates QQuaternion | 
|---|
| 469 |  | 
|---|
| 470 | Returns the QQuaternion object formed by dividing all components of | 
|---|
| 471 | the given \a quaternion by the given \a divisor. | 
|---|
| 472 |  | 
|---|
| 473 | \sa QQuaternion::operator/=() | 
|---|
| 474 | */ | 
|---|
| 475 |  | 
|---|
| 476 | /*! | 
|---|
| 477 | \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2) | 
|---|
| 478 | \relates QQuaternion | 
|---|
| 479 |  | 
|---|
| 480 | Returns true if \a q1 and \a q2 are equal, allowing for a small | 
|---|
| 481 | fuzziness factor for floating-point comparisons; false otherwise. | 
|---|
| 482 | */ | 
|---|
| 483 |  | 
|---|
| 484 | /*! | 
|---|
| 485 | Interpolates along the shortest spherical path between the | 
|---|
| 486 | rotational positions \a q1 and \a q2.  The value \a t should | 
|---|
| 487 | be between 0 and 1, indicating the spherical distance to travel | 
|---|
| 488 | between \a q1 and \a q2. | 
|---|
| 489 |  | 
|---|
| 490 | If \a t is less than or equal to 0, then \a q1 will be returned. | 
|---|
| 491 | If \a t is greater than or equal to 1, then \a q2 will be returned. | 
|---|
| 492 |  | 
|---|
| 493 | \sa nlerp() | 
|---|
| 494 | */ | 
|---|
| 495 | QQuaternion QQuaternion::slerp | 
|---|
| 496 | (const QQuaternion& q1, const QQuaternion& q2, qreal t) | 
|---|
| 497 | { | 
|---|
| 498 | // Handle the easy cases first. | 
|---|
| 499 | if (t <= 0.0f) | 
|---|
| 500 | return q1; | 
|---|
| 501 | else if (t >= 1.0f) | 
|---|
| 502 | return q2; | 
|---|
| 503 |  | 
|---|
| 504 | // Determine the angle between the two quaternions. | 
|---|
| 505 | QQuaternion q2b; | 
|---|
| 506 | qreal dot; | 
|---|
| 507 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; | 
|---|
| 508 | if (dot >= 0.0f) { | 
|---|
| 509 | q2b = q2; | 
|---|
| 510 | } else { | 
|---|
| 511 | q2b = -q2; | 
|---|
| 512 | dot = -dot; | 
|---|
| 513 | } | 
|---|
| 514 |  | 
|---|
| 515 | // Get the scale factors.  If they are too small, | 
|---|
| 516 | // then revert to simple linear interpolation. | 
|---|
| 517 | qreal factor1 = 1.0f - t; | 
|---|
| 518 | qreal factor2 = t; | 
|---|
| 519 | if ((1.0f - dot) > 0.0000001) { | 
|---|
| 520 | qreal angle = qreal(qAcos(dot)); | 
|---|
| 521 | qreal sinOfAngle = qreal(qSin(angle)); | 
|---|
| 522 | if (sinOfAngle > 0.0000001) { | 
|---|
| 523 | factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle; | 
|---|
| 524 | factor2 = qreal(qSin(t * angle)) / sinOfAngle; | 
|---|
| 525 | } | 
|---|
| 526 | } | 
|---|
| 527 |  | 
|---|
| 528 | // Construct the result quaternion. | 
|---|
| 529 | return q1 * factor1 + q2b * factor2; | 
|---|
| 530 | } | 
|---|
| 531 |  | 
|---|
| 532 | /*! | 
|---|
| 533 | Interpolates along the shortest linear path between the rotational | 
|---|
| 534 | positions \a q1 and \a q2.  The value \a t should be between 0 and 1, | 
|---|
| 535 | indicating the distance to travel between \a q1 and \a q2. | 
|---|
| 536 | The result will be normalized(). | 
|---|
| 537 |  | 
|---|
| 538 | If \a t is less than or equal to 0, then \a q1 will be returned. | 
|---|
| 539 | If \a t is greater than or equal to 1, then \a q2 will be returned. | 
|---|
| 540 |  | 
|---|
| 541 | The nlerp() function is typically faster than slerp() and will | 
|---|
| 542 | give approximate results to spherical interpolation that are | 
|---|
| 543 | good enough for some applications. | 
|---|
| 544 |  | 
|---|
| 545 | \sa slerp() | 
|---|
| 546 | */ | 
|---|
| 547 | QQuaternion QQuaternion::nlerp | 
|---|
| 548 | (const QQuaternion& q1, const QQuaternion& q2, qreal t) | 
|---|
| 549 | { | 
|---|
| 550 | // Handle the easy cases first. | 
|---|
| 551 | if (t <= 0.0f) | 
|---|
| 552 | return q1; | 
|---|
| 553 | else if (t >= 1.0f) | 
|---|
| 554 | return q2; | 
|---|
| 555 |  | 
|---|
| 556 | // Determine the angle between the two quaternions. | 
|---|
| 557 | QQuaternion q2b; | 
|---|
| 558 | qreal dot; | 
|---|
| 559 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; | 
|---|
| 560 | if (dot >= 0.0f) | 
|---|
| 561 | q2b = q2; | 
|---|
| 562 | else | 
|---|
| 563 | q2b = -q2; | 
|---|
| 564 |  | 
|---|
| 565 | // Perform the linear interpolation. | 
|---|
| 566 | return (q1 * (1.0f - t) + q2b * t).normalized(); | 
|---|
| 567 | } | 
|---|
| 568 |  | 
|---|
| 569 | /*! | 
|---|
| 570 | Returns the quaternion as a QVariant. | 
|---|
| 571 | */ | 
|---|
| 572 | QQuaternion::operator QVariant() const | 
|---|
| 573 | { | 
|---|
| 574 | return QVariant(QVariant::Quaternion, this); | 
|---|
| 575 | } | 
|---|
| 576 |  | 
|---|
| 577 | #ifndef QT_NO_DEBUG_STREAM | 
|---|
| 578 |  | 
|---|
| 579 | QDebug operator<<(QDebug dbg, const QQuaternion &q) | 
|---|
| 580 | { | 
|---|
| 581 | dbg.nospace() << "QQuaternion(scalar:" << q.scalar() | 
|---|
| 582 | << ", vector:(" << q.x() << ", " | 
|---|
| 583 | << q.y() << ", " << q.z() << "))"; | 
|---|
| 584 | return dbg.space(); | 
|---|
| 585 | } | 
|---|
| 586 |  | 
|---|
| 587 | #endif | 
|---|
| 588 |  | 
|---|
| 589 | #ifndef QT_NO_DATASTREAM | 
|---|
| 590 |  | 
|---|
| 591 | /*! | 
|---|
| 592 | \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) | 
|---|
| 593 | \relates QQuaternion | 
|---|
| 594 |  | 
|---|
| 595 | Writes the given \a quaternion to the given \a stream and returns a | 
|---|
| 596 | reference to the stream. | 
|---|
| 597 |  | 
|---|
| 598 | \sa {Format of the QDataStream Operators} | 
|---|
| 599 | */ | 
|---|
| 600 |  | 
|---|
| 601 | QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) | 
|---|
| 602 | { | 
|---|
| 603 | stream << double(quaternion.scalar()) << double(quaternion.x()) | 
|---|
| 604 | << double(quaternion.y()) << double(quaternion.z()); | 
|---|
| 605 | return stream; | 
|---|
| 606 | } | 
|---|
| 607 |  | 
|---|
| 608 | /*! | 
|---|
| 609 | \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) | 
|---|
| 610 | \relates QQuaternion | 
|---|
| 611 |  | 
|---|
| 612 | Reads a quaternion from the given \a stream into the given \a quaternion | 
|---|
| 613 | and returns a reference to the stream. | 
|---|
| 614 |  | 
|---|
| 615 | \sa {Format of the QDataStream Operators} | 
|---|
| 616 | */ | 
|---|
| 617 |  | 
|---|
| 618 | QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) | 
|---|
| 619 | { | 
|---|
| 620 | double scalar, x, y, z; | 
|---|
| 621 | stream >> scalar; | 
|---|
| 622 | stream >> x; | 
|---|
| 623 | stream >> y; | 
|---|
| 624 | stream >> z; | 
|---|
| 625 | quaternion.setScalar(qreal(scalar)); | 
|---|
| 626 | quaternion.setX(qreal(x)); | 
|---|
| 627 | quaternion.setY(qreal(y)); | 
|---|
| 628 | quaternion.setZ(qreal(z)); | 
|---|
| 629 | return stream; | 
|---|
| 630 | } | 
|---|
| 631 |  | 
|---|
| 632 | #endif // QT_NO_DATASTREAM | 
|---|
| 633 |  | 
|---|
| 634 | #endif | 
|---|
| 635 |  | 
|---|
| 636 | QT_END_NAMESPACE | 
|---|