| 1 | USING THE IJG JPEG LIBRARY
|
|---|
| 2 |
|
|---|
| 3 | Copyright (C) 1994-2009, Thomas G. Lane, Guido Vollbeding.
|
|---|
| 4 | This file is part of the Independent JPEG Group's software.
|
|---|
| 5 | For conditions of distribution and use, see the accompanying README file.
|
|---|
| 6 |
|
|---|
| 7 |
|
|---|
| 8 | This file describes how to use the IJG JPEG library within an application
|
|---|
| 9 | program. Read it if you want to write a program that uses the library.
|
|---|
| 10 |
|
|---|
| 11 | The file example.c provides heavily commented skeleton code for calling the
|
|---|
| 12 | JPEG library. Also see jpeglib.h (the include file to be used by application
|
|---|
| 13 | programs) for full details about data structures and function parameter lists.
|
|---|
| 14 | The library source code, of course, is the ultimate reference.
|
|---|
| 15 |
|
|---|
| 16 | Note that there have been *major* changes from the application interface
|
|---|
| 17 | presented by IJG version 4 and earlier versions. The old design had several
|
|---|
| 18 | inherent limitations, and it had accumulated a lot of cruft as we added
|
|---|
| 19 | features while trying to minimize application-interface changes. We have
|
|---|
| 20 | sacrificed backward compatibility in the version 5 rewrite, but we think the
|
|---|
| 21 | improvements justify this.
|
|---|
| 22 |
|
|---|
| 23 |
|
|---|
| 24 | TABLE OF CONTENTS
|
|---|
| 25 | -----------------
|
|---|
| 26 |
|
|---|
| 27 | Overview:
|
|---|
| 28 | Functions provided by the library
|
|---|
| 29 | Outline of typical usage
|
|---|
| 30 | Basic library usage:
|
|---|
| 31 | Data formats
|
|---|
| 32 | Compression details
|
|---|
| 33 | Decompression details
|
|---|
| 34 | Mechanics of usage: include files, linking, etc
|
|---|
| 35 | Advanced features:
|
|---|
| 36 | Compression parameter selection
|
|---|
| 37 | Decompression parameter selection
|
|---|
| 38 | Special color spaces
|
|---|
| 39 | Error handling
|
|---|
| 40 | Compressed data handling (source and destination managers)
|
|---|
| 41 | I/O suspension
|
|---|
| 42 | Progressive JPEG support
|
|---|
| 43 | Buffered-image mode
|
|---|
| 44 | Abbreviated datastreams and multiple images
|
|---|
| 45 | Special markers
|
|---|
| 46 | Raw (downsampled) image data
|
|---|
| 47 | Really raw data: DCT coefficients
|
|---|
| 48 | Progress monitoring
|
|---|
| 49 | Memory management
|
|---|
| 50 | Memory usage
|
|---|
| 51 | Library compile-time options
|
|---|
| 52 | Portability considerations
|
|---|
| 53 | Notes for MS-DOS implementors
|
|---|
| 54 |
|
|---|
| 55 | You should read at least the overview and basic usage sections before trying
|
|---|
| 56 | to program with the library. The sections on advanced features can be read
|
|---|
| 57 | if and when you need them.
|
|---|
| 58 |
|
|---|
| 59 |
|
|---|
| 60 | OVERVIEW
|
|---|
| 61 | ========
|
|---|
| 62 |
|
|---|
| 63 | Functions provided by the library
|
|---|
| 64 | ---------------------------------
|
|---|
| 65 |
|
|---|
| 66 | The IJG JPEG library provides C code to read and write JPEG-compressed image
|
|---|
| 67 | files. The surrounding application program receives or supplies image data a
|
|---|
| 68 | scanline at a time, using a straightforward uncompressed image format. All
|
|---|
| 69 | details of color conversion and other preprocessing/postprocessing can be
|
|---|
| 70 | handled by the library.
|
|---|
| 71 |
|
|---|
| 72 | The library includes a substantial amount of code that is not covered by the
|
|---|
| 73 | JPEG standard but is necessary for typical applications of JPEG. These
|
|---|
| 74 | functions preprocess the image before JPEG compression or postprocess it after
|
|---|
| 75 | decompression. They include colorspace conversion, downsampling/upsampling,
|
|---|
| 76 | and color quantization. The application indirectly selects use of this code
|
|---|
| 77 | by specifying the format in which it wishes to supply or receive image data.
|
|---|
| 78 | For example, if colormapped output is requested, then the decompression
|
|---|
| 79 | library automatically invokes color quantization.
|
|---|
| 80 |
|
|---|
| 81 | A wide range of quality vs. speed tradeoffs are possible in JPEG processing,
|
|---|
| 82 | and even more so in decompression postprocessing. The decompression library
|
|---|
| 83 | provides multiple implementations that cover most of the useful tradeoffs,
|
|---|
| 84 | ranging from very-high-quality down to fast-preview operation. On the
|
|---|
| 85 | compression side we have generally not provided low-quality choices, since
|
|---|
| 86 | compression is normally less time-critical. It should be understood that the
|
|---|
| 87 | low-quality modes may not meet the JPEG standard's accuracy requirements;
|
|---|
| 88 | nonetheless, they are useful for viewers.
|
|---|
| 89 |
|
|---|
| 90 | A word about functions *not* provided by the library. We handle a subset of
|
|---|
| 91 | the ISO JPEG standard; most baseline, extended-sequential, and progressive
|
|---|
| 92 | JPEG processes are supported. (Our subset includes all features now in common
|
|---|
| 93 | use.) Unsupported ISO options include:
|
|---|
| 94 | * Hierarchical storage
|
|---|
| 95 | * Lossless JPEG
|
|---|
| 96 | * DNL marker
|
|---|
| 97 | * Nonintegral subsampling ratios
|
|---|
| 98 | We support both 8- and 12-bit data precision, but this is a compile-time
|
|---|
| 99 | choice rather than a run-time choice; hence it is difficult to use both
|
|---|
| 100 | precisions in a single application.
|
|---|
| 101 |
|
|---|
| 102 | By itself, the library handles only interchange JPEG datastreams --- in
|
|---|
| 103 | particular the widely used JFIF file format. The library can be used by
|
|---|
| 104 | surrounding code to process interchange or abbreviated JPEG datastreams that
|
|---|
| 105 | are embedded in more complex file formats. (For example, this library is
|
|---|
| 106 | used by the free LIBTIFF library to support JPEG compression in TIFF.)
|
|---|
| 107 |
|
|---|
| 108 |
|
|---|
| 109 | Outline of typical usage
|
|---|
| 110 | ------------------------
|
|---|
| 111 |
|
|---|
| 112 | The rough outline of a JPEG compression operation is:
|
|---|
| 113 |
|
|---|
| 114 | Allocate and initialize a JPEG compression object
|
|---|
| 115 | Specify the destination for the compressed data (eg, a file)
|
|---|
| 116 | Set parameters for compression, including image size & colorspace
|
|---|
| 117 | jpeg_start_compress(...);
|
|---|
| 118 | while (scan lines remain to be written)
|
|---|
| 119 | jpeg_write_scanlines(...);
|
|---|
| 120 | jpeg_finish_compress(...);
|
|---|
| 121 | Release the JPEG compression object
|
|---|
| 122 |
|
|---|
| 123 | A JPEG compression object holds parameters and working state for the JPEG
|
|---|
| 124 | library. We make creation/destruction of the object separate from starting
|
|---|
| 125 | or finishing compression of an image; the same object can be re-used for a
|
|---|
| 126 | series of image compression operations. This makes it easy to re-use the
|
|---|
| 127 | same parameter settings for a sequence of images. Re-use of a JPEG object
|
|---|
| 128 | also has important implications for processing abbreviated JPEG datastreams,
|
|---|
| 129 | as discussed later.
|
|---|
| 130 |
|
|---|
| 131 | The image data to be compressed is supplied to jpeg_write_scanlines() from
|
|---|
| 132 | in-memory buffers. If the application is doing file-to-file compression,
|
|---|
| 133 | reading image data from the source file is the application's responsibility.
|
|---|
| 134 | The library emits compressed data by calling a "data destination manager",
|
|---|
| 135 | which typically will write the data into a file; but the application can
|
|---|
| 136 | provide its own destination manager to do something else.
|
|---|
| 137 |
|
|---|
| 138 | Similarly, the rough outline of a JPEG decompression operation is:
|
|---|
| 139 |
|
|---|
| 140 | Allocate and initialize a JPEG decompression object
|
|---|
| 141 | Specify the source of the compressed data (eg, a file)
|
|---|
| 142 | Call jpeg_read_header() to obtain image info
|
|---|
| 143 | Set parameters for decompression
|
|---|
| 144 | jpeg_start_decompress(...);
|
|---|
| 145 | while (scan lines remain to be read)
|
|---|
| 146 | jpeg_read_scanlines(...);
|
|---|
| 147 | jpeg_finish_decompress(...);
|
|---|
| 148 | Release the JPEG decompression object
|
|---|
| 149 |
|
|---|
| 150 | This is comparable to the compression outline except that reading the
|
|---|
| 151 | datastream header is a separate step. This is helpful because information
|
|---|
| 152 | about the image's size, colorspace, etc is available when the application
|
|---|
| 153 | selects decompression parameters. For example, the application can choose an
|
|---|
| 154 | output scaling ratio that will fit the image into the available screen size.
|
|---|
| 155 |
|
|---|
| 156 | The decompression library obtains compressed data by calling a data source
|
|---|
| 157 | manager, which typically will read the data from a file; but other behaviors
|
|---|
| 158 | can be obtained with a custom source manager. Decompressed data is delivered
|
|---|
| 159 | into in-memory buffers passed to jpeg_read_scanlines().
|
|---|
| 160 |
|
|---|
| 161 | It is possible to abort an incomplete compression or decompression operation
|
|---|
| 162 | by calling jpeg_abort(); or, if you do not need to retain the JPEG object,
|
|---|
| 163 | simply release it by calling jpeg_destroy().
|
|---|
| 164 |
|
|---|
| 165 | JPEG compression and decompression objects are two separate struct types.
|
|---|
| 166 | However, they share some common fields, and certain routines such as
|
|---|
| 167 | jpeg_destroy() can work on either type of object.
|
|---|
| 168 |
|
|---|
| 169 | The JPEG library has no static variables: all state is in the compression
|
|---|
| 170 | or decompression object. Therefore it is possible to process multiple
|
|---|
| 171 | compression and decompression operations concurrently, using multiple JPEG
|
|---|
| 172 | objects.
|
|---|
| 173 |
|
|---|
| 174 | Both compression and decompression can be done in an incremental memory-to-
|
|---|
| 175 | memory fashion, if suitable source/destination managers are used. See the
|
|---|
| 176 | section on "I/O suspension" for more details.
|
|---|
| 177 |
|
|---|
| 178 |
|
|---|
| 179 | BASIC LIBRARY USAGE
|
|---|
| 180 | ===================
|
|---|
| 181 |
|
|---|
| 182 | Data formats
|
|---|
| 183 | ------------
|
|---|
| 184 |
|
|---|
| 185 | Before diving into procedural details, it is helpful to understand the
|
|---|
| 186 | image data format that the JPEG library expects or returns.
|
|---|
| 187 |
|
|---|
| 188 | The standard input image format is a rectangular array of pixels, with each
|
|---|
| 189 | pixel having the same number of "component" or "sample" values (color
|
|---|
| 190 | channels). You must specify how many components there are and the colorspace
|
|---|
| 191 | interpretation of the components. Most applications will use RGB data
|
|---|
| 192 | (three components per pixel) or grayscale data (one component per pixel).
|
|---|
| 193 | PLEASE NOTE THAT RGB DATA IS THREE SAMPLES PER PIXEL, GRAYSCALE ONLY ONE.
|
|---|
| 194 | A remarkable number of people manage to miss this, only to find that their
|
|---|
| 195 | programs don't work with grayscale JPEG files.
|
|---|
| 196 |
|
|---|
| 197 | There is no provision for colormapped input. JPEG files are always full-color
|
|---|
| 198 | or full grayscale (or sometimes another colorspace such as CMYK). You can
|
|---|
| 199 | feed in a colormapped image by expanding it to full-color format. However
|
|---|
| 200 | JPEG often doesn't work very well with source data that has been colormapped,
|
|---|
| 201 | because of dithering noise. This is discussed in more detail in the JPEG FAQ
|
|---|
| 202 | and the other references mentioned in the README file.
|
|---|
| 203 |
|
|---|
| 204 | Pixels are stored by scanlines, with each scanline running from left to
|
|---|
| 205 | right. The component values for each pixel are adjacent in the row; for
|
|---|
| 206 | example, R,G,B,R,G,B,R,G,B,... for 24-bit RGB color. Each scanline is an
|
|---|
| 207 | array of data type JSAMPLE --- which is typically "unsigned char", unless
|
|---|
| 208 | you've changed jmorecfg.h. (You can also change the RGB pixel layout, say
|
|---|
| 209 | to B,G,R order, by modifying jmorecfg.h. But see the restrictions listed in
|
|---|
| 210 | that file before doing so.)
|
|---|
| 211 |
|
|---|
| 212 | A 2-D array of pixels is formed by making a list of pointers to the starts of
|
|---|
| 213 | scanlines; so the scanlines need not be physically adjacent in memory. Even
|
|---|
| 214 | if you process just one scanline at a time, you must make a one-element
|
|---|
| 215 | pointer array to conform to this structure. Pointers to JSAMPLE rows are of
|
|---|
| 216 | type JSAMPROW, and the pointer to the pointer array is of type JSAMPARRAY.
|
|---|
| 217 |
|
|---|
| 218 | The library accepts or supplies one or more complete scanlines per call.
|
|---|
| 219 | It is not possible to process part of a row at a time. Scanlines are always
|
|---|
| 220 | processed top-to-bottom. You can process an entire image in one call if you
|
|---|
| 221 | have it all in memory, but usually it's simplest to process one scanline at
|
|---|
| 222 | a time.
|
|---|
| 223 |
|
|---|
| 224 | For best results, source data values should have the precision specified by
|
|---|
| 225 | BITS_IN_JSAMPLE (normally 8 bits). For instance, if you choose to compress
|
|---|
| 226 | data that's only 6 bits/channel, you should left-justify each value in a
|
|---|
| 227 | byte before passing it to the compressor. If you need to compress data
|
|---|
| 228 | that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 12.
|
|---|
| 229 | (See "Library compile-time options", later.)
|
|---|
| 230 |
|
|---|
| 231 |
|
|---|
| 232 | The data format returned by the decompressor is the same in all details,
|
|---|
| 233 | except that colormapped output is supported. (Again, a JPEG file is never
|
|---|
| 234 | colormapped. But you can ask the decompressor to perform on-the-fly color
|
|---|
| 235 | quantization to deliver colormapped output.) If you request colormapped
|
|---|
| 236 | output then the returned data array contains a single JSAMPLE per pixel;
|
|---|
| 237 | its value is an index into a color map. The color map is represented as
|
|---|
| 238 | a 2-D JSAMPARRAY in which each row holds the values of one color component,
|
|---|
| 239 | that is, colormap[i][j] is the value of the i'th color component for pixel
|
|---|
| 240 | value (map index) j. Note that since the colormap indexes are stored in
|
|---|
| 241 | JSAMPLEs, the maximum number of colors is limited by the size of JSAMPLE
|
|---|
| 242 | (ie, at most 256 colors for an 8-bit JPEG library).
|
|---|
| 243 |
|
|---|
| 244 |
|
|---|
| 245 | Compression details
|
|---|
| 246 | -------------------
|
|---|
| 247 |
|
|---|
| 248 | Here we revisit the JPEG compression outline given in the overview.
|
|---|
| 249 |
|
|---|
| 250 | 1. Allocate and initialize a JPEG compression object.
|
|---|
| 251 |
|
|---|
| 252 | A JPEG compression object is a "struct jpeg_compress_struct". (It also has
|
|---|
| 253 | a bunch of subsidiary structures which are allocated via malloc(), but the
|
|---|
| 254 | application doesn't control those directly.) This struct can be just a local
|
|---|
| 255 | variable in the calling routine, if a single routine is going to execute the
|
|---|
| 256 | whole JPEG compression sequence. Otherwise it can be static or allocated
|
|---|
| 257 | from malloc().
|
|---|
| 258 |
|
|---|
| 259 | You will also need a structure representing a JPEG error handler. The part
|
|---|
| 260 | of this that the library cares about is a "struct jpeg_error_mgr". If you
|
|---|
| 261 | are providing your own error handler, you'll typically want to embed the
|
|---|
| 262 | jpeg_error_mgr struct in a larger structure; this is discussed later under
|
|---|
| 263 | "Error handling". For now we'll assume you are just using the default error
|
|---|
| 264 | handler. The default error handler will print JPEG error/warning messages
|
|---|
| 265 | on stderr, and it will call exit() if a fatal error occurs.
|
|---|
| 266 |
|
|---|
| 267 | You must initialize the error handler structure, store a pointer to it into
|
|---|
| 268 | the JPEG object's "err" field, and then call jpeg_create_compress() to
|
|---|
| 269 | initialize the rest of the JPEG object.
|
|---|
| 270 |
|
|---|
| 271 | Typical code for this step, if you are using the default error handler, is
|
|---|
| 272 |
|
|---|
| 273 | struct jpeg_compress_struct cinfo;
|
|---|
| 274 | struct jpeg_error_mgr jerr;
|
|---|
| 275 | ...
|
|---|
| 276 | cinfo.err = jpeg_std_error(&jerr);
|
|---|
| 277 | jpeg_create_compress(&cinfo);
|
|---|
| 278 |
|
|---|
| 279 | jpeg_create_compress allocates a small amount of memory, so it could fail
|
|---|
| 280 | if you are out of memory. In that case it will exit via the error handler;
|
|---|
| 281 | that's why the error handler must be initialized first.
|
|---|
| 282 |
|
|---|
| 283 |
|
|---|
| 284 | 2. Specify the destination for the compressed data (eg, a file).
|
|---|
| 285 |
|
|---|
| 286 | As previously mentioned, the JPEG library delivers compressed data to a
|
|---|
| 287 | "data destination" module. The library includes one data destination
|
|---|
| 288 | module which knows how to write to a stdio stream. You can use your own
|
|---|
| 289 | destination module if you want to do something else, as discussed later.
|
|---|
| 290 |
|
|---|
| 291 | If you use the standard destination module, you must open the target stdio
|
|---|
| 292 | stream beforehand. Typical code for this step looks like:
|
|---|
| 293 |
|
|---|
| 294 | FILE * outfile;
|
|---|
| 295 | ...
|
|---|
| 296 | if ((outfile = fopen(filename, "wb")) == NULL) {
|
|---|
| 297 | fprintf(stderr, "can't open %s\n", filename);
|
|---|
| 298 | exit(1);
|
|---|
| 299 | }
|
|---|
| 300 | jpeg_stdio_dest(&cinfo, outfile);
|
|---|
| 301 |
|
|---|
| 302 | where the last line invokes the standard destination module.
|
|---|
| 303 |
|
|---|
| 304 | WARNING: it is critical that the binary compressed data be delivered to the
|
|---|
| 305 | output file unchanged. On non-Unix systems the stdio library may perform
|
|---|
| 306 | newline translation or otherwise corrupt binary data. To suppress this
|
|---|
| 307 | behavior, you may need to use a "b" option to fopen (as shown above), or use
|
|---|
| 308 | setmode() or another routine to put the stdio stream in binary mode. See
|
|---|
| 309 | cjpeg.c and djpeg.c for code that has been found to work on many systems.
|
|---|
| 310 |
|
|---|
| 311 | You can select the data destination after setting other parameters (step 3),
|
|---|
| 312 | if that's more convenient. You may not change the destination between
|
|---|
| 313 | calling jpeg_start_compress() and jpeg_finish_compress().
|
|---|
| 314 |
|
|---|
| 315 |
|
|---|
| 316 | 3. Set parameters for compression, including image size & colorspace.
|
|---|
| 317 |
|
|---|
| 318 | You must supply information about the source image by setting the following
|
|---|
| 319 | fields in the JPEG object (cinfo structure):
|
|---|
| 320 |
|
|---|
| 321 | image_width Width of image, in pixels
|
|---|
| 322 | image_height Height of image, in pixels
|
|---|
| 323 | input_components Number of color channels (samples per pixel)
|
|---|
| 324 | in_color_space Color space of source image
|
|---|
| 325 |
|
|---|
| 326 | The image dimensions are, hopefully, obvious. JPEG supports image dimensions
|
|---|
| 327 | of 1 to 64K pixels in either direction. The input color space is typically
|
|---|
| 328 | RGB or grayscale, and input_components is 3 or 1 accordingly. (See "Special
|
|---|
| 329 | color spaces", later, for more info.) The in_color_space field must be
|
|---|
| 330 | assigned one of the J_COLOR_SPACE enum constants, typically JCS_RGB or
|
|---|
| 331 | JCS_GRAYSCALE.
|
|---|
| 332 |
|
|---|
| 333 | JPEG has a large number of compression parameters that determine how the
|
|---|
| 334 | image is encoded. Most applications don't need or want to know about all
|
|---|
| 335 | these parameters. You can set all the parameters to reasonable defaults by
|
|---|
| 336 | calling jpeg_set_defaults(); then, if there are particular values you want
|
|---|
| 337 | to change, you can do so after that. The "Compression parameter selection"
|
|---|
| 338 | section tells about all the parameters.
|
|---|
| 339 |
|
|---|
| 340 | You must set in_color_space correctly before calling jpeg_set_defaults(),
|
|---|
| 341 | because the defaults depend on the source image colorspace. However the
|
|---|
| 342 | other three source image parameters need not be valid until you call
|
|---|
| 343 | jpeg_start_compress(). There's no harm in calling jpeg_set_defaults() more
|
|---|
| 344 | than once, if that happens to be convenient.
|
|---|
| 345 |
|
|---|
| 346 | Typical code for a 24-bit RGB source image is
|
|---|
| 347 |
|
|---|
| 348 | cinfo.image_width = Width; /* image width and height, in pixels */
|
|---|
| 349 | cinfo.image_height = Height;
|
|---|
| 350 | cinfo.input_components = 3; /* # of color components per pixel */
|
|---|
| 351 | cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
|
|---|
| 352 |
|
|---|
| 353 | jpeg_set_defaults(&cinfo);
|
|---|
| 354 | /* Make optional parameter settings here */
|
|---|
| 355 |
|
|---|
| 356 |
|
|---|
| 357 | 4. jpeg_start_compress(...);
|
|---|
| 358 |
|
|---|
| 359 | After you have established the data destination and set all the necessary
|
|---|
| 360 | source image info and other parameters, call jpeg_start_compress() to begin
|
|---|
| 361 | a compression cycle. This will initialize internal state, allocate working
|
|---|
| 362 | storage, and emit the first few bytes of the JPEG datastream header.
|
|---|
| 363 |
|
|---|
| 364 | Typical code:
|
|---|
| 365 |
|
|---|
| 366 | jpeg_start_compress(&cinfo, TRUE);
|
|---|
| 367 |
|
|---|
| 368 | The "TRUE" parameter ensures that a complete JPEG interchange datastream
|
|---|
| 369 | will be written. This is appropriate in most cases. If you think you might
|
|---|
| 370 | want to use an abbreviated datastream, read the section on abbreviated
|
|---|
| 371 | datastreams, below.
|
|---|
| 372 |
|
|---|
| 373 | Once you have called jpeg_start_compress(), you may not alter any JPEG
|
|---|
| 374 | parameters or other fields of the JPEG object until you have completed
|
|---|
| 375 | the compression cycle.
|
|---|
| 376 |
|
|---|
| 377 |
|
|---|
| 378 | 5. while (scan lines remain to be written)
|
|---|
| 379 | jpeg_write_scanlines(...);
|
|---|
| 380 |
|
|---|
| 381 | Now write all the required image data by calling jpeg_write_scanlines()
|
|---|
| 382 | one or more times. You can pass one or more scanlines in each call, up
|
|---|
| 383 | to the total image height. In most applications it is convenient to pass
|
|---|
| 384 | just one or a few scanlines at a time. The expected format for the passed
|
|---|
| 385 | data is discussed under "Data formats", above.
|
|---|
| 386 |
|
|---|
| 387 | Image data should be written in top-to-bottom scanline order. The JPEG spec
|
|---|
| 388 | contains some weasel wording about how top and bottom are application-defined
|
|---|
| 389 | terms (a curious interpretation of the English language...) but if you want
|
|---|
| 390 | your files to be compatible with everyone else's, you WILL use top-to-bottom
|
|---|
| 391 | order. If the source data must be read in bottom-to-top order, you can use
|
|---|
| 392 | the JPEG library's virtual array mechanism to invert the data efficiently.
|
|---|
| 393 | Examples of this can be found in the sample application cjpeg.
|
|---|
| 394 |
|
|---|
| 395 | The library maintains a count of the number of scanlines written so far
|
|---|
| 396 | in the next_scanline field of the JPEG object. Usually you can just use
|
|---|
| 397 | this variable as the loop counter, so that the loop test looks like
|
|---|
| 398 | "while (cinfo.next_scanline < cinfo.image_height)".
|
|---|
| 399 |
|
|---|
| 400 | Code for this step depends heavily on the way that you store the source data.
|
|---|
| 401 | example.c shows the following code for the case of a full-size 2-D source
|
|---|
| 402 | array containing 3-byte RGB pixels:
|
|---|
| 403 |
|
|---|
| 404 | JSAMPROW row_pointer[1]; /* pointer to a single row */
|
|---|
| 405 | int row_stride; /* physical row width in buffer */
|
|---|
| 406 |
|
|---|
| 407 | row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */
|
|---|
| 408 |
|
|---|
| 409 | while (cinfo.next_scanline < cinfo.image_height) {
|
|---|
| 410 | row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
|
|---|
| 411 | jpeg_write_scanlines(&cinfo, row_pointer, 1);
|
|---|
| 412 | }
|
|---|
| 413 |
|
|---|
| 414 | jpeg_write_scanlines() returns the number of scanlines actually written.
|
|---|
| 415 | This will normally be equal to the number passed in, so you can usually
|
|---|
| 416 | ignore the return value. It is different in just two cases:
|
|---|
| 417 | * If you try to write more scanlines than the declared image height,
|
|---|
| 418 | the additional scanlines are ignored.
|
|---|
| 419 | * If you use a suspending data destination manager, output buffer overrun
|
|---|
| 420 | will cause the compressor to return before accepting all the passed lines.
|
|---|
| 421 | This feature is discussed under "I/O suspension", below. The normal
|
|---|
| 422 | stdio destination manager will NOT cause this to happen.
|
|---|
| 423 | In any case, the return value is the same as the change in the value of
|
|---|
| 424 | next_scanline.
|
|---|
| 425 |
|
|---|
| 426 |
|
|---|
| 427 | 6. jpeg_finish_compress(...);
|
|---|
| 428 |
|
|---|
| 429 | After all the image data has been written, call jpeg_finish_compress() to
|
|---|
| 430 | complete the compression cycle. This step is ESSENTIAL to ensure that the
|
|---|
| 431 | last bufferload of data is written to the data destination.
|
|---|
| 432 | jpeg_finish_compress() also releases working memory associated with the JPEG
|
|---|
| 433 | object.
|
|---|
| 434 |
|
|---|
| 435 | Typical code:
|
|---|
| 436 |
|
|---|
| 437 | jpeg_finish_compress(&cinfo);
|
|---|
| 438 |
|
|---|
| 439 | If using the stdio destination manager, don't forget to close the output
|
|---|
| 440 | stdio stream (if necessary) afterwards.
|
|---|
| 441 |
|
|---|
| 442 | If you have requested a multi-pass operating mode, such as Huffman code
|
|---|
| 443 | optimization, jpeg_finish_compress() will perform the additional passes using
|
|---|
| 444 | data buffered by the first pass. In this case jpeg_finish_compress() may take
|
|---|
| 445 | quite a while to complete. With the default compression parameters, this will
|
|---|
| 446 | not happen.
|
|---|
| 447 |
|
|---|
| 448 | It is an error to call jpeg_finish_compress() before writing the necessary
|
|---|
| 449 | total number of scanlines. If you wish to abort compression, call
|
|---|
| 450 | jpeg_abort() as discussed below.
|
|---|
| 451 |
|
|---|
| 452 | After completing a compression cycle, you may dispose of the JPEG object
|
|---|
| 453 | as discussed next, or you may use it to compress another image. In that case
|
|---|
| 454 | return to step 2, 3, or 4 as appropriate. If you do not change the
|
|---|
| 455 | destination manager, the new datastream will be written to the same target.
|
|---|
| 456 | If you do not change any JPEG parameters, the new datastream will be written
|
|---|
| 457 | with the same parameters as before. Note that you can change the input image
|
|---|
| 458 | dimensions freely between cycles, but if you change the input colorspace, you
|
|---|
| 459 | should call jpeg_set_defaults() to adjust for the new colorspace; and then
|
|---|
| 460 | you'll need to repeat all of step 3.
|
|---|
| 461 |
|
|---|
| 462 |
|
|---|
| 463 | 7. Release the JPEG compression object.
|
|---|
| 464 |
|
|---|
| 465 | When you are done with a JPEG compression object, destroy it by calling
|
|---|
| 466 | jpeg_destroy_compress(). This will free all subsidiary memory (regardless of
|
|---|
| 467 | the previous state of the object). Or you can call jpeg_destroy(), which
|
|---|
| 468 | works for either compression or decompression objects --- this may be more
|
|---|
| 469 | convenient if you are sharing code between compression and decompression
|
|---|
| 470 | cases. (Actually, these routines are equivalent except for the declared type
|
|---|
| 471 | of the passed pointer. To avoid gripes from ANSI C compilers, jpeg_destroy()
|
|---|
| 472 | should be passed a j_common_ptr.)
|
|---|
| 473 |
|
|---|
| 474 | If you allocated the jpeg_compress_struct structure from malloc(), freeing
|
|---|
| 475 | it is your responsibility --- jpeg_destroy() won't. Ditto for the error
|
|---|
| 476 | handler structure.
|
|---|
| 477 |
|
|---|
| 478 | Typical code:
|
|---|
| 479 |
|
|---|
| 480 | jpeg_destroy_compress(&cinfo);
|
|---|
| 481 |
|
|---|
| 482 |
|
|---|
| 483 | 8. Aborting.
|
|---|
| 484 |
|
|---|
| 485 | If you decide to abort a compression cycle before finishing, you can clean up
|
|---|
| 486 | in either of two ways:
|
|---|
| 487 |
|
|---|
| 488 | * If you don't need the JPEG object any more, just call
|
|---|
| 489 | jpeg_destroy_compress() or jpeg_destroy() to release memory. This is
|
|---|
| 490 | legitimate at any point after calling jpeg_create_compress() --- in fact,
|
|---|
| 491 | it's safe even if jpeg_create_compress() fails.
|
|---|
| 492 |
|
|---|
| 493 | * If you want to re-use the JPEG object, call jpeg_abort_compress(), or call
|
|---|
| 494 | jpeg_abort() which works on both compression and decompression objects.
|
|---|
| 495 | This will return the object to an idle state, releasing any working memory.
|
|---|
| 496 | jpeg_abort() is allowed at any time after successful object creation.
|
|---|
| 497 |
|
|---|
| 498 | Note that cleaning up the data destination, if required, is your
|
|---|
| 499 | responsibility; neither of these routines will call term_destination().
|
|---|
| 500 | (See "Compressed data handling", below, for more about that.)
|
|---|
| 501 |
|
|---|
| 502 | jpeg_destroy() and jpeg_abort() are the only safe calls to make on a JPEG
|
|---|
| 503 | object that has reported an error by calling error_exit (see "Error handling"
|
|---|
| 504 | for more info). The internal state of such an object is likely to be out of
|
|---|
| 505 | whack. Either of these two routines will return the object to a known state.
|
|---|
| 506 |
|
|---|
| 507 |
|
|---|
| 508 | Decompression details
|
|---|
| 509 | ---------------------
|
|---|
| 510 |
|
|---|
| 511 | Here we revisit the JPEG decompression outline given in the overview.
|
|---|
| 512 |
|
|---|
| 513 | 1. Allocate and initialize a JPEG decompression object.
|
|---|
| 514 |
|
|---|
| 515 | This is just like initialization for compression, as discussed above,
|
|---|
| 516 | except that the object is a "struct jpeg_decompress_struct" and you
|
|---|
| 517 | call jpeg_create_decompress(). Error handling is exactly the same.
|
|---|
| 518 |
|
|---|
| 519 | Typical code:
|
|---|
| 520 |
|
|---|
| 521 | struct jpeg_decompress_struct cinfo;
|
|---|
| 522 | struct jpeg_error_mgr jerr;
|
|---|
| 523 | ...
|
|---|
| 524 | cinfo.err = jpeg_std_error(&jerr);
|
|---|
| 525 | jpeg_create_decompress(&cinfo);
|
|---|
| 526 |
|
|---|
| 527 | (Both here and in the IJG code, we usually use variable name "cinfo" for
|
|---|
| 528 | both compression and decompression objects.)
|
|---|
| 529 |
|
|---|
| 530 |
|
|---|
| 531 | 2. Specify the source of the compressed data (eg, a file).
|
|---|
| 532 |
|
|---|
| 533 | As previously mentioned, the JPEG library reads compressed data from a "data
|
|---|
| 534 | source" module. The library includes one data source module which knows how
|
|---|
| 535 | to read from a stdio stream. You can use your own source module if you want
|
|---|
| 536 | to do something else, as discussed later.
|
|---|
| 537 |
|
|---|
| 538 | If you use the standard source module, you must open the source stdio stream
|
|---|
| 539 | beforehand. Typical code for this step looks like:
|
|---|
| 540 |
|
|---|
| 541 | FILE * infile;
|
|---|
| 542 | ...
|
|---|
| 543 | if ((infile = fopen(filename, "rb")) == NULL) {
|
|---|
| 544 | fprintf(stderr, "can't open %s\n", filename);
|
|---|
| 545 | exit(1);
|
|---|
| 546 | }
|
|---|
| 547 | jpeg_stdio_src(&cinfo, infile);
|
|---|
| 548 |
|
|---|
| 549 | where the last line invokes the standard source module.
|
|---|
| 550 |
|
|---|
| 551 | WARNING: it is critical that the binary compressed data be read unchanged.
|
|---|
| 552 | On non-Unix systems the stdio library may perform newline translation or
|
|---|
| 553 | otherwise corrupt binary data. To suppress this behavior, you may need to use
|
|---|
| 554 | a "b" option to fopen (as shown above), or use setmode() or another routine to
|
|---|
| 555 | put the stdio stream in binary mode. See cjpeg.c and djpeg.c for code that
|
|---|
| 556 | has been found to work on many systems.
|
|---|
| 557 |
|
|---|
| 558 | You may not change the data source between calling jpeg_read_header() and
|
|---|
| 559 | jpeg_finish_decompress(). If you wish to read a series of JPEG images from
|
|---|
| 560 | a single source file, you should repeat the jpeg_read_header() to
|
|---|
| 561 | jpeg_finish_decompress() sequence without reinitializing either the JPEG
|
|---|
| 562 | object or the data source module; this prevents buffered input data from
|
|---|
| 563 | being discarded.
|
|---|
| 564 |
|
|---|
| 565 |
|
|---|
| 566 | 3. Call jpeg_read_header() to obtain image info.
|
|---|
| 567 |
|
|---|
| 568 | Typical code for this step is just
|
|---|
| 569 |
|
|---|
| 570 | jpeg_read_header(&cinfo, TRUE);
|
|---|
| 571 |
|
|---|
| 572 | This will read the source datastream header markers, up to the beginning
|
|---|
| 573 | of the compressed data proper. On return, the image dimensions and other
|
|---|
| 574 | info have been stored in the JPEG object. The application may wish to
|
|---|
| 575 | consult this information before selecting decompression parameters.
|
|---|
| 576 |
|
|---|
| 577 | More complex code is necessary if
|
|---|
| 578 | * A suspending data source is used --- in that case jpeg_read_header()
|
|---|
| 579 | may return before it has read all the header data. See "I/O suspension",
|
|---|
| 580 | below. The normal stdio source manager will NOT cause this to happen.
|
|---|
| 581 | * Abbreviated JPEG files are to be processed --- see the section on
|
|---|
| 582 | abbreviated datastreams. Standard applications that deal only in
|
|---|
| 583 | interchange JPEG files need not be concerned with this case either.
|
|---|
| 584 |
|
|---|
| 585 | It is permissible to stop at this point if you just wanted to find out the
|
|---|
| 586 | image dimensions and other header info for a JPEG file. In that case,
|
|---|
| 587 | call jpeg_destroy() when you are done with the JPEG object, or call
|
|---|
| 588 | jpeg_abort() to return it to an idle state before selecting a new data
|
|---|
| 589 | source and reading another header.
|
|---|
| 590 |
|
|---|
| 591 |
|
|---|
| 592 | 4. Set parameters for decompression.
|
|---|
| 593 |
|
|---|
| 594 | jpeg_read_header() sets appropriate default decompression parameters based on
|
|---|
| 595 | the properties of the image (in particular, its colorspace). However, you
|
|---|
| 596 | may well want to alter these defaults before beginning the decompression.
|
|---|
| 597 | For example, the default is to produce full color output from a color file.
|
|---|
| 598 | If you want colormapped output you must ask for it. Other options allow the
|
|---|
| 599 | returned image to be scaled and allow various speed/quality tradeoffs to be
|
|---|
| 600 | selected. "Decompression parameter selection", below, gives details.
|
|---|
| 601 |
|
|---|
| 602 | If the defaults are appropriate, nothing need be done at this step.
|
|---|
| 603 |
|
|---|
| 604 | Note that all default values are set by each call to jpeg_read_header().
|
|---|
| 605 | If you reuse a decompression object, you cannot expect your parameter
|
|---|
| 606 | settings to be preserved across cycles, as you can for compression.
|
|---|
| 607 | You must set desired parameter values each time.
|
|---|
| 608 |
|
|---|
| 609 |
|
|---|
| 610 | 5. jpeg_start_decompress(...);
|
|---|
| 611 |
|
|---|
| 612 | Once the parameter values are satisfactory, call jpeg_start_decompress() to
|
|---|
| 613 | begin decompression. This will initialize internal state, allocate working
|
|---|
| 614 | memory, and prepare for returning data.
|
|---|
| 615 |
|
|---|
| 616 | Typical code is just
|
|---|
| 617 |
|
|---|
| 618 | jpeg_start_decompress(&cinfo);
|
|---|
| 619 |
|
|---|
| 620 | If you have requested a multi-pass operating mode, such as 2-pass color
|
|---|
| 621 | quantization, jpeg_start_decompress() will do everything needed before data
|
|---|
| 622 | output can begin. In this case jpeg_start_decompress() may take quite a while
|
|---|
| 623 | to complete. With a single-scan (non progressive) JPEG file and default
|
|---|
| 624 | decompression parameters, this will not happen; jpeg_start_decompress() will
|
|---|
| 625 | return quickly.
|
|---|
| 626 |
|
|---|
| 627 | After this call, the final output image dimensions, including any requested
|
|---|
| 628 | scaling, are available in the JPEG object; so is the selected colormap, if
|
|---|
| 629 | colormapped output has been requested. Useful fields include
|
|---|
| 630 |
|
|---|
| 631 | output_width image width and height, as scaled
|
|---|
| 632 | output_height
|
|---|
| 633 | out_color_components # of color components in out_color_space
|
|---|
| 634 | output_components # of color components returned per pixel
|
|---|
| 635 | colormap the selected colormap, if any
|
|---|
| 636 | actual_number_of_colors number of entries in colormap
|
|---|
| 637 |
|
|---|
| 638 | output_components is 1 (a colormap index) when quantizing colors; otherwise it
|
|---|
| 639 | equals out_color_components. It is the number of JSAMPLE values that will be
|
|---|
| 640 | emitted per pixel in the output arrays.
|
|---|
| 641 |
|
|---|
| 642 | Typically you will need to allocate data buffers to hold the incoming image.
|
|---|
| 643 | You will need output_width * output_components JSAMPLEs per scanline in your
|
|---|
| 644 | output buffer, and a total of output_height scanlines will be returned.
|
|---|
| 645 |
|
|---|
| 646 | Note: if you are using the JPEG library's internal memory manager to allocate
|
|---|
| 647 | data buffers (as djpeg does), then the manager's protocol requires that you
|
|---|
| 648 | request large buffers *before* calling jpeg_start_decompress(). This is a
|
|---|
| 649 | little tricky since the output_XXX fields are not normally valid then. You
|
|---|
| 650 | can make them valid by calling jpeg_calc_output_dimensions() after setting the
|
|---|
| 651 | relevant parameters (scaling, output color space, and quantization flag).
|
|---|
| 652 |
|
|---|
| 653 |
|
|---|
| 654 | 6. while (scan lines remain to be read)
|
|---|
| 655 | jpeg_read_scanlines(...);
|
|---|
| 656 |
|
|---|
| 657 | Now you can read the decompressed image data by calling jpeg_read_scanlines()
|
|---|
| 658 | one or more times. At each call, you pass in the maximum number of scanlines
|
|---|
| 659 | to be read (ie, the height of your working buffer); jpeg_read_scanlines()
|
|---|
| 660 | will return up to that many lines. The return value is the number of lines
|
|---|
| 661 | actually read. The format of the returned data is discussed under "Data
|
|---|
| 662 | formats", above. Don't forget that grayscale and color JPEGs will return
|
|---|
| 663 | different data formats!
|
|---|
| 664 |
|
|---|
| 665 | Image data is returned in top-to-bottom scanline order. If you must write
|
|---|
| 666 | out the image in bottom-to-top order, you can use the JPEG library's virtual
|
|---|
| 667 | array mechanism to invert the data efficiently. Examples of this can be
|
|---|
| 668 | found in the sample application djpeg.
|
|---|
| 669 |
|
|---|
| 670 | The library maintains a count of the number of scanlines returned so far
|
|---|
| 671 | in the output_scanline field of the JPEG object. Usually you can just use
|
|---|
| 672 | this variable as the loop counter, so that the loop test looks like
|
|---|
| 673 | "while (cinfo.output_scanline < cinfo.output_height)". (Note that the test
|
|---|
| 674 | should NOT be against image_height, unless you never use scaling. The
|
|---|
| 675 | image_height field is the height of the original unscaled image.)
|
|---|
| 676 | The return value always equals the change in the value of output_scanline.
|
|---|
| 677 |
|
|---|
| 678 | If you don't use a suspending data source, it is safe to assume that
|
|---|
| 679 | jpeg_read_scanlines() reads at least one scanline per call, until the
|
|---|
| 680 | bottom of the image has been reached.
|
|---|
| 681 |
|
|---|
| 682 | If you use a buffer larger than one scanline, it is NOT safe to assume that
|
|---|
| 683 | jpeg_read_scanlines() fills it. (The current implementation returns only a
|
|---|
| 684 | few scanlines per call, no matter how large a buffer you pass.) So you must
|
|---|
| 685 | always provide a loop that calls jpeg_read_scanlines() repeatedly until the
|
|---|
| 686 | whole image has been read.
|
|---|
| 687 |
|
|---|
| 688 |
|
|---|
| 689 | 7. jpeg_finish_decompress(...);
|
|---|
| 690 |
|
|---|
| 691 | After all the image data has been read, call jpeg_finish_decompress() to
|
|---|
| 692 | complete the decompression cycle. This causes working memory associated
|
|---|
| 693 | with the JPEG object to be released.
|
|---|
| 694 |
|
|---|
| 695 | Typical code:
|
|---|
| 696 |
|
|---|
| 697 | jpeg_finish_decompress(&cinfo);
|
|---|
| 698 |
|
|---|
| 699 | If using the stdio source manager, don't forget to close the source stdio
|
|---|
| 700 | stream if necessary.
|
|---|
| 701 |
|
|---|
| 702 | It is an error to call jpeg_finish_decompress() before reading the correct
|
|---|
| 703 | total number of scanlines. If you wish to abort decompression, call
|
|---|
| 704 | jpeg_abort() as discussed below.
|
|---|
| 705 |
|
|---|
| 706 | After completing a decompression cycle, you may dispose of the JPEG object as
|
|---|
| 707 | discussed next, or you may use it to decompress another image. In that case
|
|---|
| 708 | return to step 2 or 3 as appropriate. If you do not change the source
|
|---|
| 709 | manager, the next image will be read from the same source.
|
|---|
| 710 |
|
|---|
| 711 |
|
|---|
| 712 | 8. Release the JPEG decompression object.
|
|---|
| 713 |
|
|---|
| 714 | When you are done with a JPEG decompression object, destroy it by calling
|
|---|
| 715 | jpeg_destroy_decompress() or jpeg_destroy(). The previous discussion of
|
|---|
| 716 | destroying compression objects applies here too.
|
|---|
| 717 |
|
|---|
| 718 | Typical code:
|
|---|
| 719 |
|
|---|
| 720 | jpeg_destroy_decompress(&cinfo);
|
|---|
| 721 |
|
|---|
| 722 |
|
|---|
| 723 | 9. Aborting.
|
|---|
| 724 |
|
|---|
| 725 | You can abort a decompression cycle by calling jpeg_destroy_decompress() or
|
|---|
| 726 | jpeg_destroy() if you don't need the JPEG object any more, or
|
|---|
| 727 | jpeg_abort_decompress() or jpeg_abort() if you want to reuse the object.
|
|---|
| 728 | The previous discussion of aborting compression cycles applies here too.
|
|---|
| 729 |
|
|---|
| 730 |
|
|---|
| 731 | Mechanics of usage: include files, linking, etc
|
|---|
| 732 | -----------------------------------------------
|
|---|
| 733 |
|
|---|
| 734 | Applications using the JPEG library should include the header file jpeglib.h
|
|---|
| 735 | to obtain declarations of data types and routines. Before including
|
|---|
| 736 | jpeglib.h, include system headers that define at least the typedefs FILE and
|
|---|
| 737 | size_t. On ANSI-conforming systems, including <stdio.h> is sufficient; on
|
|---|
| 738 | older Unix systems, you may need <sys/types.h> to define size_t.
|
|---|
| 739 |
|
|---|
| 740 | If the application needs to refer to individual JPEG library error codes, also
|
|---|
| 741 | include jerror.h to define those symbols.
|
|---|
| 742 |
|
|---|
| 743 | jpeglib.h indirectly includes the files jconfig.h and jmorecfg.h. If you are
|
|---|
| 744 | installing the JPEG header files in a system directory, you will want to
|
|---|
| 745 | install all four files: jpeglib.h, jerror.h, jconfig.h, jmorecfg.h.
|
|---|
| 746 |
|
|---|
| 747 | The most convenient way to include the JPEG code into your executable program
|
|---|
| 748 | is to prepare a library file ("libjpeg.a", or a corresponding name on non-Unix
|
|---|
| 749 | machines) and reference it at your link step. If you use only half of the
|
|---|
| 750 | library (only compression or only decompression), only that much code will be
|
|---|
| 751 | included from the library, unless your linker is hopelessly brain-damaged.
|
|---|
| 752 | The supplied makefiles build libjpeg.a automatically (see install.txt).
|
|---|
| 753 |
|
|---|
| 754 | While you can build the JPEG library as a shared library if the whim strikes
|
|---|
| 755 | you, we don't really recommend it. The trouble with shared libraries is that
|
|---|
| 756 | at some point you'll probably try to substitute a new version of the library
|
|---|
| 757 | without recompiling the calling applications. That generally doesn't work
|
|---|
| 758 | because the parameter struct declarations usually change with each new
|
|---|
| 759 | version. In other words, the library's API is *not* guaranteed binary
|
|---|
| 760 | compatible across versions; we only try to ensure source-code compatibility.
|
|---|
| 761 | (In hindsight, it might have been smarter to hide the parameter structs from
|
|---|
| 762 | applications and introduce a ton of access functions instead. Too late now,
|
|---|
| 763 | however.)
|
|---|
| 764 |
|
|---|
| 765 | On some systems your application may need to set up a signal handler to ensure
|
|---|
| 766 | that temporary files are deleted if the program is interrupted. This is most
|
|---|
| 767 | critical if you are on MS-DOS and use the jmemdos.c memory manager back end;
|
|---|
| 768 | it will try to grab extended memory for temp files, and that space will NOT be
|
|---|
| 769 | freed automatically. See cjpeg.c or djpeg.c for an example signal handler.
|
|---|
| 770 |
|
|---|
| 771 | It may be worth pointing out that the core JPEG library does not actually
|
|---|
| 772 | require the stdio library: only the default source/destination managers and
|
|---|
| 773 | error handler need it. You can use the library in a stdio-less environment
|
|---|
| 774 | if you replace those modules and use jmemnobs.c (or another memory manager of
|
|---|
| 775 | your own devising). More info about the minimum system library requirements
|
|---|
| 776 | may be found in jinclude.h.
|
|---|
| 777 |
|
|---|
| 778 |
|
|---|
| 779 | ADVANCED FEATURES
|
|---|
| 780 | =================
|
|---|
| 781 |
|
|---|
| 782 | Compression parameter selection
|
|---|
| 783 | -------------------------------
|
|---|
| 784 |
|
|---|
| 785 | This section describes all the optional parameters you can set for JPEG
|
|---|
| 786 | compression, as well as the "helper" routines provided to assist in this
|
|---|
| 787 | task. Proper setting of some parameters requires detailed understanding
|
|---|
| 788 | of the JPEG standard; if you don't know what a parameter is for, it's best
|
|---|
| 789 | not to mess with it! See REFERENCES in the README file for pointers to
|
|---|
| 790 | more info about JPEG.
|
|---|
| 791 |
|
|---|
| 792 | It's a good idea to call jpeg_set_defaults() first, even if you plan to set
|
|---|
| 793 | all the parameters; that way your code is more likely to work with future JPEG
|
|---|
| 794 | libraries that have additional parameters. For the same reason, we recommend
|
|---|
| 795 | you use a helper routine where one is provided, in preference to twiddling
|
|---|
| 796 | cinfo fields directly.
|
|---|
| 797 |
|
|---|
| 798 | The helper routines are:
|
|---|
| 799 |
|
|---|
| 800 | jpeg_set_defaults (j_compress_ptr cinfo)
|
|---|
| 801 | This routine sets all JPEG parameters to reasonable defaults, using
|
|---|
| 802 | only the input image's color space (field in_color_space, which must
|
|---|
| 803 | already be set in cinfo). Many applications will only need to use
|
|---|
| 804 | this routine and perhaps jpeg_set_quality().
|
|---|
| 805 |
|
|---|
| 806 | jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
|---|
| 807 | Sets the JPEG file's colorspace (field jpeg_color_space) as specified,
|
|---|
| 808 | and sets other color-space-dependent parameters appropriately. See
|
|---|
| 809 | "Special color spaces", below, before using this. A large number of
|
|---|
| 810 | parameters, including all per-component parameters, are set by this
|
|---|
| 811 | routine; if you want to twiddle individual parameters you should call
|
|---|
| 812 | jpeg_set_colorspace() before rather than after.
|
|---|
| 813 |
|
|---|
| 814 | jpeg_default_colorspace (j_compress_ptr cinfo)
|
|---|
| 815 | Selects an appropriate JPEG colorspace based on cinfo->in_color_space,
|
|---|
| 816 | and calls jpeg_set_colorspace(). This is actually a subroutine of
|
|---|
| 817 | jpeg_set_defaults(). It's broken out in case you want to change
|
|---|
| 818 | just the colorspace-dependent JPEG parameters.
|
|---|
| 819 |
|
|---|
| 820 | jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
|
|---|
| 821 | Constructs JPEG quantization tables appropriate for the indicated
|
|---|
| 822 | quality setting. The quality value is expressed on the 0..100 scale
|
|---|
| 823 | recommended by IJG (cjpeg's "-quality" switch uses this routine).
|
|---|
| 824 | Note that the exact mapping from quality values to tables may change
|
|---|
| 825 | in future IJG releases as more is learned about DCT quantization.
|
|---|
| 826 | If the force_baseline parameter is TRUE, then the quantization table
|
|---|
| 827 | entries are constrained to the range 1..255 for full JPEG baseline
|
|---|
| 828 | compatibility. In the current implementation, this only makes a
|
|---|
| 829 | difference for quality settings below 25, and it effectively prevents
|
|---|
| 830 | very small/low quality files from being generated. The IJG decoder
|
|---|
| 831 | is capable of reading the non-baseline files generated at low quality
|
|---|
| 832 | settings when force_baseline is FALSE, but other decoders may not be.
|
|---|
| 833 |
|
|---|
| 834 | jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
|
|---|
| 835 | boolean force_baseline)
|
|---|
| 836 | Same as jpeg_set_quality() except that the generated tables are the
|
|---|
| 837 | sample tables given in the JPEC spec section K.1, multiplied by the
|
|---|
| 838 | specified scale factor (which is expressed as a percentage; thus
|
|---|
| 839 | scale_factor = 100 reproduces the spec's tables). Note that larger
|
|---|
| 840 | scale factors give lower quality. This entry point is useful for
|
|---|
| 841 | conforming to the Adobe PostScript DCT conventions, but we do not
|
|---|
| 842 | recommend linear scaling as a user-visible quality scale otherwise.
|
|---|
| 843 | force_baseline again constrains the computed table entries to 1..255.
|
|---|
| 844 |
|
|---|
| 845 | int jpeg_quality_scaling (int quality)
|
|---|
| 846 | Converts a value on the IJG-recommended quality scale to a linear
|
|---|
| 847 | scaling percentage. Note that this routine may change or go away
|
|---|
| 848 | in future releases --- IJG may choose to adopt a scaling method that
|
|---|
| 849 | can't be expressed as a simple scalar multiplier, in which case the
|
|---|
| 850 | premise of this routine collapses. Caveat user.
|
|---|
| 851 |
|
|---|
| 852 | jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
|
|---|
| 853 | Set default quantization tables with linear q_scale_factor[] values
|
|---|
| 854 | (see below).
|
|---|
| 855 |
|
|---|
| 856 | jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
|
|---|
| 857 | const unsigned int *basic_table,
|
|---|
| 858 | int scale_factor, boolean force_baseline)
|
|---|
| 859 | Allows an arbitrary quantization table to be created. which_tbl
|
|---|
| 860 | indicates which table slot to fill. basic_table points to an array
|
|---|
| 861 | of 64 unsigned ints given in normal array order. These values are
|
|---|
| 862 | multiplied by scale_factor/100 and then clamped to the range 1..65535
|
|---|
| 863 | (or to 1..255 if force_baseline is TRUE).
|
|---|
| 864 | CAUTION: prior to library version 6a, jpeg_add_quant_table expected
|
|---|
| 865 | the basic table to be given in JPEG zigzag order. If you need to
|
|---|
| 866 | write code that works with either older or newer versions of this
|
|---|
| 867 | routine, you must check the library version number. Something like
|
|---|
| 868 | "#if JPEG_LIB_VERSION >= 61" is the right test.
|
|---|
| 869 |
|
|---|
| 870 | jpeg_simple_progression (j_compress_ptr cinfo)
|
|---|
| 871 | Generates a default scan script for writing a progressive-JPEG file.
|
|---|
| 872 | This is the recommended method of creating a progressive file,
|
|---|
| 873 | unless you want to make a custom scan sequence. You must ensure that
|
|---|
| 874 | the JPEG color space is set correctly before calling this routine.
|
|---|
| 875 |
|
|---|
| 876 |
|
|---|
| 877 | Compression parameters (cinfo fields) include:
|
|---|
| 878 |
|
|---|
| 879 | J_DCT_METHOD dct_method
|
|---|
| 880 | Selects the algorithm used for the DCT step. Choices are:
|
|---|
| 881 | JDCT_ISLOW: slow but accurate integer algorithm
|
|---|
| 882 | JDCT_IFAST: faster, less accurate integer method
|
|---|
| 883 | JDCT_FLOAT: floating-point method
|
|---|
| 884 | JDCT_DEFAULT: default method (normally JDCT_ISLOW)
|
|---|
| 885 | JDCT_FASTEST: fastest method (normally JDCT_IFAST)
|
|---|
| 886 | The FLOAT method is very slightly more accurate than the ISLOW method,
|
|---|
| 887 | but may give different results on different machines due to varying
|
|---|
| 888 | roundoff behavior. The integer methods should give the same results
|
|---|
| 889 | on all machines. On machines with sufficiently fast FP hardware, the
|
|---|
| 890 | floating-point method may also be the fastest. The IFAST method is
|
|---|
| 891 | considerably less accurate than the other two; its use is not
|
|---|
| 892 | recommended if high quality is a concern. JDCT_DEFAULT and
|
|---|
| 893 | JDCT_FASTEST are macros configurable by each installation.
|
|---|
| 894 |
|
|---|
| 895 | unsigned int scale_num, scale_denom
|
|---|
| 896 | Scale the image by the fraction scale_num/scale_denom. Default is
|
|---|
| 897 | 1/1, or no scaling. Currently, the supported scaling ratios are
|
|---|
| 898 | 8/N with all N from 1 to 16. (The library design allows for arbitrary
|
|---|
| 899 | scaling ratios but this is not likely to be implemented any time soon.)
|
|---|
| 900 |
|
|---|
| 901 | J_COLOR_SPACE jpeg_color_space
|
|---|
| 902 | int num_components
|
|---|
| 903 | The JPEG color space and corresponding number of components; see
|
|---|
| 904 | "Special color spaces", below, for more info. We recommend using
|
|---|
| 905 | jpeg_set_color_space() if you want to change these.
|
|---|
| 906 |
|
|---|
| 907 | boolean optimize_coding
|
|---|
| 908 | TRUE causes the compressor to compute optimal Huffman coding tables
|
|---|
| 909 | for the image. This requires an extra pass over the data and
|
|---|
| 910 | therefore costs a good deal of space and time. The default is
|
|---|
| 911 | FALSE, which tells the compressor to use the supplied or default
|
|---|
| 912 | Huffman tables. In most cases optimal tables save only a few percent
|
|---|
| 913 | of file size compared to the default tables. Note that when this is
|
|---|
| 914 | TRUE, you need not supply Huffman tables at all, and any you do
|
|---|
| 915 | supply will be overwritten.
|
|---|
| 916 |
|
|---|
| 917 | unsigned int restart_interval
|
|---|
| 918 | int restart_in_rows
|
|---|
| 919 | To emit restart markers in the JPEG file, set one of these nonzero.
|
|---|
| 920 | Set restart_interval to specify the exact interval in MCU blocks.
|
|---|
| 921 | Set restart_in_rows to specify the interval in MCU rows. (If
|
|---|
| 922 | restart_in_rows is not 0, then restart_interval is set after the
|
|---|
| 923 | image width in MCUs is computed.) Defaults are zero (no restarts).
|
|---|
| 924 | One restart marker per MCU row is often a good choice.
|
|---|
| 925 | NOTE: the overhead of restart markers is higher in grayscale JPEG
|
|---|
| 926 | files than in color files, and MUCH higher in progressive JPEGs.
|
|---|
| 927 | If you use restarts, you may want to use larger intervals in those
|
|---|
| 928 | cases.
|
|---|
| 929 |
|
|---|
| 930 | const jpeg_scan_info * scan_info
|
|---|
| 931 | int num_scans
|
|---|
| 932 | By default, scan_info is NULL; this causes the compressor to write a
|
|---|
| 933 | single-scan sequential JPEG file. If not NULL, scan_info points to
|
|---|
| 934 | an array of scan definition records of length num_scans. The
|
|---|
| 935 | compressor will then write a JPEG file having one scan for each scan
|
|---|
| 936 | definition record. This is used to generate noninterleaved or
|
|---|
| 937 | progressive JPEG files. The library checks that the scan array
|
|---|
| 938 | defines a valid JPEG scan sequence. (jpeg_simple_progression creates
|
|---|
| 939 | a suitable scan definition array for progressive JPEG.) This is
|
|---|
| 940 | discussed further under "Progressive JPEG support".
|
|---|
| 941 |
|
|---|
| 942 | boolean do_fancy_downsampling
|
|---|
| 943 | If TRUE, use direct DCT scaling with DCT size > 8 for downsampling
|
|---|
| 944 | of chroma components.
|
|---|
| 945 | If FALSE, use only DCT size <= 8 and simple separate downsampling.
|
|---|
| 946 | Default is TRUE.
|
|---|
| 947 | For better image stability in multiple generation compression cycles
|
|---|
| 948 | it is preferable that this value matches the corresponding
|
|---|
| 949 | do_fancy_upsampling value in decompression.
|
|---|
| 950 |
|
|---|
| 951 | int smoothing_factor
|
|---|
| 952 | If non-zero, the input image is smoothed; the value should be 1 for
|
|---|
| 953 | minimal smoothing to 100 for maximum smoothing. Consult jcsample.c
|
|---|
| 954 | for details of the smoothing algorithm. The default is zero.
|
|---|
| 955 |
|
|---|
| 956 | boolean write_JFIF_header
|
|---|
| 957 | If TRUE, a JFIF APP0 marker is emitted. jpeg_set_defaults() and
|
|---|
| 958 | jpeg_set_colorspace() set this TRUE if a JFIF-legal JPEG color space
|
|---|
| 959 | (ie, YCbCr or grayscale) is selected, otherwise FALSE.
|
|---|
| 960 |
|
|---|
| 961 | UINT8 JFIF_major_version
|
|---|
| 962 | UINT8 JFIF_minor_version
|
|---|
| 963 | The version number to be written into the JFIF marker.
|
|---|
| 964 | jpeg_set_defaults() initializes the version to 1.01 (major=minor=1).
|
|---|
| 965 | You should set it to 1.02 (major=1, minor=2) if you plan to write
|
|---|
| 966 | any JFIF 1.02 extension markers.
|
|---|
| 967 |
|
|---|
| 968 | UINT8 density_unit
|
|---|
| 969 | UINT16 X_density
|
|---|
| 970 | UINT16 Y_density
|
|---|
| 971 | The resolution information to be written into the JFIF marker;
|
|---|
| 972 | not used otherwise. density_unit may be 0 for unknown,
|
|---|
| 973 | 1 for dots/inch, or 2 for dots/cm. The default values are 0,1,1
|
|---|
| 974 | indicating square pixels of unknown size.
|
|---|
| 975 |
|
|---|
| 976 | boolean write_Adobe_marker
|
|---|
| 977 | If TRUE, an Adobe APP14 marker is emitted. jpeg_set_defaults() and
|
|---|
| 978 | jpeg_set_colorspace() set this TRUE if JPEG color space RGB, CMYK,
|
|---|
| 979 | or YCCK is selected, otherwise FALSE. It is generally a bad idea
|
|---|
| 980 | to set both write_JFIF_header and write_Adobe_marker. In fact,
|
|---|
| 981 | you probably shouldn't change the default settings at all --- the
|
|---|
| 982 | default behavior ensures that the JPEG file's color space can be
|
|---|
| 983 | recognized by the decoder.
|
|---|
| 984 |
|
|---|
| 985 | JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]
|
|---|
| 986 | Pointers to coefficient quantization tables, one per table slot,
|
|---|
| 987 | or NULL if no table is defined for a slot. Usually these should
|
|---|
| 988 | be set via one of the above helper routines; jpeg_add_quant_table()
|
|---|
| 989 | is general enough to define any quantization table. The other
|
|---|
| 990 | routines will set up table slot 0 for luminance quality and table
|
|---|
| 991 | slot 1 for chrominance.
|
|---|
| 992 |
|
|---|
| 993 | int q_scale_factor[NUM_QUANT_TBLS]
|
|---|
| 994 | Linear quantization scaling factors (percentage, initialized 100)
|
|---|
| 995 | for use with jpeg_default_qtables().
|
|---|
| 996 | See rdswitch.c and cjpeg.c for an example of usage.
|
|---|
| 997 | Note that the q_scale_factor[] fields are the "linear" scales, so you
|
|---|
| 998 | have to convert from user-defined ratings via jpeg_quality_scaling().
|
|---|
| 999 | Here is an example code which corresponds to cjpeg -quality 90,70:
|
|---|
| 1000 |
|
|---|
| 1001 | jpeg_set_defaults(cinfo);
|
|---|
| 1002 |
|
|---|
| 1003 | /* Set luminance quality 90. */
|
|---|
| 1004 | cinfo->q_scale_factor[0] = jpeg_quality_scaling(90);
|
|---|
| 1005 | /* Set chrominance quality 70. */
|
|---|
| 1006 | cinfo->q_scale_factor[1] = jpeg_quality_scaling(70);
|
|---|
| 1007 |
|
|---|
| 1008 | jpeg_default_qtables(cinfo, force_baseline);
|
|---|
| 1009 |
|
|---|
| 1010 | CAUTION: You must also set 1x1 subsampling for efficient separate
|
|---|
| 1011 | color quality selection, since the default value used by library
|
|---|
| 1012 | is 2x2:
|
|---|
| 1013 |
|
|---|
| 1014 | cinfo->comp_info[0].v_samp_factor = 1;
|
|---|
| 1015 | cinfo->comp_info[0].h_samp_factor = 1;
|
|---|
| 1016 |
|
|---|
| 1017 | JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]
|
|---|
| 1018 | JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]
|
|---|
| 1019 | Pointers to Huffman coding tables, one per table slot, or NULL if
|
|---|
| 1020 | no table is defined for a slot. Slots 0 and 1 are filled with the
|
|---|
| 1021 | JPEG sample tables by jpeg_set_defaults(). If you need to allocate
|
|---|
| 1022 | more table structures, jpeg_alloc_huff_table() may be used.
|
|---|
| 1023 | Note that optimal Huffman tables can be computed for an image
|
|---|
| 1024 | by setting optimize_coding, as discussed above; there's seldom
|
|---|
| 1025 | any need to mess with providing your own Huffman tables.
|
|---|
| 1026 |
|
|---|
| 1027 |
|
|---|
| 1028 | The actual dimensions of the JPEG image that will be written to the file are
|
|---|
| 1029 | given by the following fields. These are computed from the input image
|
|---|
| 1030 | dimensions and the compression parameters by jpeg_start_compress(). You can
|
|---|
| 1031 | also call jpeg_calc_jpeg_dimensions() to obtain the values that will result
|
|---|
| 1032 | from the current parameter settings. This can be useful if you are trying
|
|---|
| 1033 | to pick a scaling ratio that will get close to a desired target size.
|
|---|
| 1034 |
|
|---|
| 1035 | JDIMENSION jpeg_width Actual dimensions of output image.
|
|---|
| 1036 | JDIMENSION jpeg_height
|
|---|
| 1037 |
|
|---|
| 1038 |
|
|---|
| 1039 | Per-component parameters are stored in the struct cinfo.comp_info[i] for
|
|---|
| 1040 | component number i. Note that components here refer to components of the
|
|---|
| 1041 | JPEG color space, *not* the source image color space. A suitably large
|
|---|
| 1042 | comp_info[] array is allocated by jpeg_set_defaults(); if you choose not
|
|---|
| 1043 | to use that routine, it's up to you to allocate the array.
|
|---|
| 1044 |
|
|---|
| 1045 | int component_id
|
|---|
| 1046 | The one-byte identifier code to be recorded in the JPEG file for
|
|---|
| 1047 | this component. For the standard color spaces, we recommend you
|
|---|
| 1048 | leave the default values alone.
|
|---|
| 1049 |
|
|---|
| 1050 | int h_samp_factor
|
|---|
| 1051 | int v_samp_factor
|
|---|
| 1052 | Horizontal and vertical sampling factors for the component; must
|
|---|
| 1053 | be 1..4 according to the JPEG standard. Note that larger sampling
|
|---|
| 1054 | factors indicate a higher-resolution component; many people find
|
|---|
| 1055 | this behavior quite unintuitive. The default values are 2,2 for
|
|---|
| 1056 | luminance components and 1,1 for chrominance components, except
|
|---|
| 1057 | for grayscale where 1,1 is used.
|
|---|
| 1058 |
|
|---|
| 1059 | int quant_tbl_no
|
|---|
| 1060 | Quantization table number for component. The default value is
|
|---|
| 1061 | 0 for luminance components and 1 for chrominance components.
|
|---|
| 1062 |
|
|---|
| 1063 | int dc_tbl_no
|
|---|
| 1064 | int ac_tbl_no
|
|---|
| 1065 | DC and AC entropy coding table numbers. The default values are
|
|---|
| 1066 | 0 for luminance components and 1 for chrominance components.
|
|---|
| 1067 |
|
|---|
| 1068 | int component_index
|
|---|
| 1069 | Must equal the component's index in comp_info[]. (Beginning in
|
|---|
| 1070 | release v6, the compressor library will fill this in automatically;
|
|---|
| 1071 | you don't have to.)
|
|---|
| 1072 |
|
|---|
| 1073 |
|
|---|
| 1074 | Decompression parameter selection
|
|---|
| 1075 | ---------------------------------
|
|---|
| 1076 |
|
|---|
| 1077 | Decompression parameter selection is somewhat simpler than compression
|
|---|
| 1078 | parameter selection, since all of the JPEG internal parameters are
|
|---|
| 1079 | recorded in the source file and need not be supplied by the application.
|
|---|
| 1080 | (Unless you are working with abbreviated files, in which case see
|
|---|
| 1081 | "Abbreviated datastreams", below.) Decompression parameters control
|
|---|
| 1082 | the postprocessing done on the image to deliver it in a format suitable
|
|---|
| 1083 | for the application's use. Many of the parameters control speed/quality
|
|---|
| 1084 | tradeoffs, in which faster decompression may be obtained at the price of
|
|---|
| 1085 | a poorer-quality image. The defaults select the highest quality (slowest)
|
|---|
| 1086 | processing.
|
|---|
| 1087 |
|
|---|
| 1088 | The following fields in the JPEG object are set by jpeg_read_header() and
|
|---|
| 1089 | may be useful to the application in choosing decompression parameters:
|
|---|
| 1090 |
|
|---|
| 1091 | JDIMENSION image_width Width and height of image
|
|---|
| 1092 | JDIMENSION image_height
|
|---|
| 1093 | int num_components Number of color components
|
|---|
| 1094 | J_COLOR_SPACE jpeg_color_space Colorspace of image
|
|---|
| 1095 | boolean saw_JFIF_marker TRUE if a JFIF APP0 marker was seen
|
|---|
| 1096 | UINT8 JFIF_major_version Version information from JFIF marker
|
|---|
| 1097 | UINT8 JFIF_minor_version
|
|---|
| 1098 | UINT8 density_unit Resolution data from JFIF marker
|
|---|
| 1099 | UINT16 X_density
|
|---|
| 1100 | UINT16 Y_density
|
|---|
| 1101 | boolean saw_Adobe_marker TRUE if an Adobe APP14 marker was seen
|
|---|
| 1102 | UINT8 Adobe_transform Color transform code from Adobe marker
|
|---|
| 1103 |
|
|---|
| 1104 | The JPEG color space, unfortunately, is something of a guess since the JPEG
|
|---|
| 1105 | standard proper does not provide a way to record it. In practice most files
|
|---|
| 1106 | adhere to the JFIF or Adobe conventions, and the decoder will recognize these
|
|---|
| 1107 | correctly. See "Special color spaces", below, for more info.
|
|---|
| 1108 |
|
|---|
| 1109 |
|
|---|
| 1110 | The decompression parameters that determine the basic properties of the
|
|---|
| 1111 | returned image are:
|
|---|
| 1112 |
|
|---|
| 1113 | J_COLOR_SPACE out_color_space
|
|---|
| 1114 | Output color space. jpeg_read_header() sets an appropriate default
|
|---|
| 1115 | based on jpeg_color_space; typically it will be RGB or grayscale.
|
|---|
| 1116 | The application can change this field to request output in a different
|
|---|
| 1117 | colorspace. For example, set it to JCS_GRAYSCALE to get grayscale
|
|---|
| 1118 | output from a color file. (This is useful for previewing: grayscale
|
|---|
| 1119 | output is faster than full color since the color components need not
|
|---|
| 1120 | be processed.) Note that not all possible color space transforms are
|
|---|
| 1121 | currently implemented; you may need to extend jdcolor.c if you want an
|
|---|
| 1122 | unusual conversion.
|
|---|
| 1123 |
|
|---|
| 1124 | unsigned int scale_num, scale_denom
|
|---|
| 1125 | Scale the image by the fraction scale_num/scale_denom. Currently,
|
|---|
| 1126 | the supported scaling ratios are M/N with all M from 1 to 16, where
|
|---|
| 1127 | N is the source DCT size, which is 8 for baseline JPEG. (The library
|
|---|
| 1128 | design allows for arbitrary scaling ratios but this is not likely
|
|---|
| 1129 | to be implemented any time soon.) The values are initialized by
|
|---|
| 1130 | jpeg_read_header() with the source DCT size. For baseline JPEG
|
|---|
| 1131 | this is 8/8. If you change only the scale_num value while leaving
|
|---|
| 1132 | the other unchanged, then this specifies the DCT scaled size to be
|
|---|
| 1133 | applied on the given input. For baseline JPEG this is equivalent
|
|---|
| 1134 | to M/8 scaling, since the source DCT size for baseline JPEG is 8.
|
|---|
| 1135 | Smaller scaling ratios permit significantly faster decoding since
|
|---|
| 1136 | fewer pixels need be processed and a simpler IDCT method can be used.
|
|---|
| 1137 |
|
|---|
| 1138 | boolean quantize_colors
|
|---|
| 1139 | If set TRUE, colormapped output will be delivered. Default is FALSE,
|
|---|
| 1140 | meaning that full-color output will be delivered.
|
|---|
| 1141 |
|
|---|
| 1142 | The next three parameters are relevant only if quantize_colors is TRUE.
|
|---|
| 1143 |
|
|---|
| 1144 | int desired_number_of_colors
|
|---|
| 1145 | Maximum number of colors to use in generating a library-supplied color
|
|---|
| 1146 | map (the actual number of colors is returned in a different field).
|
|---|
| 1147 | Default 256. Ignored when the application supplies its own color map.
|
|---|
| 1148 |
|
|---|
| 1149 | boolean two_pass_quantize
|
|---|
| 1150 | If TRUE, an extra pass over the image is made to select a custom color
|
|---|
| 1151 | map for the image. This usually looks a lot better than the one-size-
|
|---|
| 1152 | fits-all colormap that is used otherwise. Default is TRUE. Ignored
|
|---|
| 1153 | when the application supplies its own color map.
|
|---|
| 1154 |
|
|---|
| 1155 | J_DITHER_MODE dither_mode
|
|---|
| 1156 | Selects color dithering method. Supported values are:
|
|---|
| 1157 | JDITHER_NONE no dithering: fast, very low quality
|
|---|
| 1158 | JDITHER_ORDERED ordered dither: moderate speed and quality
|
|---|
| 1159 | JDITHER_FS Floyd-Steinberg dither: slow, high quality
|
|---|
| 1160 | Default is JDITHER_FS. (At present, ordered dither is implemented
|
|---|
| 1161 | only in the single-pass, standard-colormap case. If you ask for
|
|---|
| 1162 | ordered dither when two_pass_quantize is TRUE or when you supply
|
|---|
| 1163 | an external color map, you'll get F-S dithering.)
|
|---|
| 1164 |
|
|---|
| 1165 | When quantize_colors is TRUE, the target color map is described by the next
|
|---|
| 1166 | two fields. colormap is set to NULL by jpeg_read_header(). The application
|
|---|
| 1167 | can supply a color map by setting colormap non-NULL and setting
|
|---|
| 1168 | actual_number_of_colors to the map size. Otherwise, jpeg_start_decompress()
|
|---|
| 1169 | selects a suitable color map and sets these two fields itself.
|
|---|
| 1170 | [Implementation restriction: at present, an externally supplied colormap is
|
|---|
| 1171 | only accepted for 3-component output color spaces.]
|
|---|
| 1172 |
|
|---|
| 1173 | JSAMPARRAY colormap
|
|---|
| 1174 | The color map, represented as a 2-D pixel array of out_color_components
|
|---|
| 1175 | rows and actual_number_of_colors columns. Ignored if not quantizing.
|
|---|
| 1176 | CAUTION: if the JPEG library creates its own colormap, the storage
|
|---|
| 1177 | pointed to by this field is released by jpeg_finish_decompress().
|
|---|
| 1178 | Copy the colormap somewhere else first, if you want to save it.
|
|---|
| 1179 |
|
|---|
| 1180 | int actual_number_of_colors
|
|---|
| 1181 | The number of colors in the color map.
|
|---|
| 1182 |
|
|---|
| 1183 | Additional decompression parameters that the application may set include:
|
|---|
| 1184 |
|
|---|
| 1185 | J_DCT_METHOD dct_method
|
|---|
| 1186 | Selects the algorithm used for the DCT step. Choices are the same
|
|---|
| 1187 | as described above for compression.
|
|---|
| 1188 |
|
|---|
| 1189 | boolean do_fancy_upsampling
|
|---|
| 1190 | If TRUE, use direct DCT scaling with DCT size > 8 for upsampling
|
|---|
| 1191 | of chroma components.
|
|---|
| 1192 | If FALSE, use only DCT size <= 8 and simple separate upsampling.
|
|---|
| 1193 | Default is TRUE.
|
|---|
| 1194 | For better image stability in multiple generation compression cycles
|
|---|
| 1195 | it is preferable that this value matches the corresponding
|
|---|
| 1196 | do_fancy_downsampling value in compression.
|
|---|
| 1197 |
|
|---|
| 1198 | boolean do_block_smoothing
|
|---|
| 1199 | If TRUE, interblock smoothing is applied in early stages of decoding
|
|---|
| 1200 | progressive JPEG files; if FALSE, not. Default is TRUE. Early
|
|---|
| 1201 | progression stages look "fuzzy" with smoothing, "blocky" without.
|
|---|
| 1202 | In any case, block smoothing ceases to be applied after the first few
|
|---|
| 1203 | AC coefficients are known to full accuracy, so it is relevant only
|
|---|
| 1204 | when using buffered-image mode for progressive images.
|
|---|
| 1205 |
|
|---|
| 1206 | boolean enable_1pass_quant
|
|---|
| 1207 | boolean enable_external_quant
|
|---|
| 1208 | boolean enable_2pass_quant
|
|---|
| 1209 | These are significant only in buffered-image mode, which is
|
|---|
| 1210 | described in its own section below.
|
|---|
| 1211 |
|
|---|
| 1212 |
|
|---|
| 1213 | The output image dimensions are given by the following fields. These are
|
|---|
| 1214 | computed from the source image dimensions and the decompression parameters
|
|---|
| 1215 | by jpeg_start_decompress(). You can also call jpeg_calc_output_dimensions()
|
|---|
| 1216 | to obtain the values that will result from the current parameter settings.
|
|---|
| 1217 | This can be useful if you are trying to pick a scaling ratio that will get
|
|---|
| 1218 | close to a desired target size. It's also important if you are using the
|
|---|
| 1219 | JPEG library's memory manager to allocate output buffer space, because you
|
|---|
| 1220 | are supposed to request such buffers *before* jpeg_start_decompress().
|
|---|
| 1221 |
|
|---|
| 1222 | JDIMENSION output_width Actual dimensions of output image.
|
|---|
| 1223 | JDIMENSION output_height
|
|---|
| 1224 | int out_color_components Number of color components in out_color_space.
|
|---|
| 1225 | int output_components Number of color components returned.
|
|---|
| 1226 | int rec_outbuf_height Recommended height of scanline buffer.
|
|---|
| 1227 |
|
|---|
| 1228 | When quantizing colors, output_components is 1, indicating a single color map
|
|---|
| 1229 | index per pixel. Otherwise it equals out_color_components. The output arrays
|
|---|
| 1230 | are required to be output_width * output_components JSAMPLEs wide.
|
|---|
| 1231 |
|
|---|
| 1232 | rec_outbuf_height is the recommended minimum height (in scanlines) of the
|
|---|
| 1233 | buffer passed to jpeg_read_scanlines(). If the buffer is smaller, the
|
|---|
| 1234 | library will still work, but time will be wasted due to unnecessary data
|
|---|
| 1235 | copying. In high-quality modes, rec_outbuf_height is always 1, but some
|
|---|
| 1236 | faster, lower-quality modes set it to larger values (typically 2 to 4).
|
|---|
| 1237 | If you are going to ask for a high-speed processing mode, you may as well
|
|---|
| 1238 | go to the trouble of honoring rec_outbuf_height so as to avoid data copying.
|
|---|
| 1239 | (An output buffer larger than rec_outbuf_height lines is OK, but won't
|
|---|
| 1240 | provide any material speed improvement over that height.)
|
|---|
| 1241 |
|
|---|
| 1242 |
|
|---|
| 1243 | Special color spaces
|
|---|
| 1244 | --------------------
|
|---|
| 1245 |
|
|---|
| 1246 | The JPEG standard itself is "color blind" and doesn't specify any particular
|
|---|
| 1247 | color space. It is customary to convert color data to a luminance/chrominance
|
|---|
| 1248 | color space before compressing, since this permits greater compression. The
|
|---|
| 1249 | existing de-facto JPEG file format standards specify YCbCr or grayscale data
|
|---|
| 1250 | (JFIF), or grayscale, RGB, YCbCr, CMYK, or YCCK (Adobe). For special
|
|---|
| 1251 | applications such as multispectral images, other color spaces can be used,
|
|---|
| 1252 | but it must be understood that such files will be unportable.
|
|---|
| 1253 |
|
|---|
| 1254 | The JPEG library can handle the most common colorspace conversions (namely
|
|---|
| 1255 | RGB <=> YCbCr and CMYK <=> YCCK). It can also deal with data of an unknown
|
|---|
| 1256 | color space, passing it through without conversion. If you deal extensively
|
|---|
| 1257 | with an unusual color space, you can easily extend the library to understand
|
|---|
| 1258 | additional color spaces and perform appropriate conversions.
|
|---|
| 1259 |
|
|---|
| 1260 | For compression, the source data's color space is specified by field
|
|---|
| 1261 | in_color_space. This is transformed to the JPEG file's color space given
|
|---|
| 1262 | by jpeg_color_space. jpeg_set_defaults() chooses a reasonable JPEG color
|
|---|
| 1263 | space depending on in_color_space, but you can override this by calling
|
|---|
| 1264 | jpeg_set_colorspace(). Of course you must select a supported transformation.
|
|---|
| 1265 | jccolor.c currently supports the following transformations:
|
|---|
| 1266 | RGB => YCbCr
|
|---|
| 1267 | RGB => GRAYSCALE
|
|---|
| 1268 | YCbCr => GRAYSCALE
|
|---|
| 1269 | CMYK => YCCK
|
|---|
| 1270 | plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB,
|
|---|
| 1271 | YCbCr => YCbCr, CMYK => CMYK, YCCK => YCCK, and UNKNOWN => UNKNOWN.
|
|---|
| 1272 |
|
|---|
| 1273 | The de-facto file format standards (JFIF and Adobe) specify APPn markers that
|
|---|
| 1274 | indicate the color space of the JPEG file. It is important to ensure that
|
|---|
| 1275 | these are written correctly, or omitted if the JPEG file's color space is not
|
|---|
| 1276 | one of the ones supported by the de-facto standards. jpeg_set_colorspace()
|
|---|
| 1277 | will set the compression parameters to include or omit the APPn markers
|
|---|
| 1278 | properly, so long as it is told the truth about the JPEG color space.
|
|---|
| 1279 | For example, if you are writing some random 3-component color space without
|
|---|
| 1280 | conversion, don't try to fake out the library by setting in_color_space and
|
|---|
| 1281 | jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN. You may want to write an
|
|---|
| 1282 | APPn marker of your own devising to identify the colorspace --- see "Special
|
|---|
| 1283 | markers", below.
|
|---|
| 1284 |
|
|---|
| 1285 | When told that the color space is UNKNOWN, the library will default to using
|
|---|
| 1286 | luminance-quality compression parameters for all color components. You may
|
|---|
| 1287 | well want to change these parameters. See the source code for
|
|---|
| 1288 | jpeg_set_colorspace(), in jcparam.c, for details.
|
|---|
| 1289 |
|
|---|
| 1290 | For decompression, the JPEG file's color space is given in jpeg_color_space,
|
|---|
| 1291 | and this is transformed to the output color space out_color_space.
|
|---|
| 1292 | jpeg_read_header's setting of jpeg_color_space can be relied on if the file
|
|---|
| 1293 | conforms to JFIF or Adobe conventions, but otherwise it is no better than a
|
|---|
| 1294 | guess. If you know the JPEG file's color space for certain, you can override
|
|---|
| 1295 | jpeg_read_header's guess by setting jpeg_color_space. jpeg_read_header also
|
|---|
| 1296 | selects a default output color space based on (its guess of) jpeg_color_space;
|
|---|
| 1297 | set out_color_space to override this. Again, you must select a supported
|
|---|
| 1298 | transformation. jdcolor.c currently supports
|
|---|
| 1299 | YCbCr => GRAYSCALE
|
|---|
| 1300 | YCbCr => RGB
|
|---|
| 1301 | GRAYSCALE => RGB
|
|---|
| 1302 | YCCK => CMYK
|
|---|
| 1303 | as well as the null transforms. (Since GRAYSCALE=>RGB is provided, an
|
|---|
| 1304 | application can force grayscale JPEGs to look like color JPEGs if it only
|
|---|
| 1305 | wants to handle one case.)
|
|---|
| 1306 |
|
|---|
| 1307 | The two-pass color quantizer, jquant2.c, is specialized to handle RGB data
|
|---|
| 1308 | (it weights distances appropriately for RGB colors). You'll need to modify
|
|---|
| 1309 | the code if you want to use it for non-RGB output color spaces. Note that
|
|---|
| 1310 | jquant2.c is used to map to an application-supplied colormap as well as for
|
|---|
| 1311 | the normal two-pass colormap selection process.
|
|---|
| 1312 |
|
|---|
| 1313 | CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG
|
|---|
| 1314 | files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect.
|
|---|
| 1315 | This is arguably a bug in Photoshop, but if you need to work with Photoshop
|
|---|
| 1316 | CMYK files, you will have to deal with it in your application. We cannot
|
|---|
| 1317 | "fix" this in the library by inverting the data during the CMYK<=>YCCK
|
|---|
| 1318 | transform, because that would break other applications, notably Ghostscript.
|
|---|
| 1319 | Photoshop versions prior to 3.0 write EPS files containing JPEG-encoded CMYK
|
|---|
| 1320 | data in the same inverted-YCCK representation used in bare JPEG files, but
|
|---|
| 1321 | the surrounding PostScript code performs an inversion using the PS image
|
|---|
| 1322 | operator. I am told that Photoshop 3.0 will write uninverted YCCK in
|
|---|
| 1323 | EPS/JPEG files, and will omit the PS-level inversion. (But the data
|
|---|
| 1324 | polarity used in bare JPEG files will not change in 3.0.) In either case,
|
|---|
| 1325 | the JPEG library must not invert the data itself, or else Ghostscript would
|
|---|
| 1326 | read these EPS files incorrectly.
|
|---|
| 1327 |
|
|---|
| 1328 |
|
|---|
| 1329 | Error handling
|
|---|
| 1330 | --------------
|
|---|
| 1331 |
|
|---|
| 1332 | When the default error handler is used, any error detected inside the JPEG
|
|---|
| 1333 | routines will cause a message to be printed on stderr, followed by exit().
|
|---|
| 1334 | You can supply your own error handling routines to override this behavior
|
|---|
| 1335 | and to control the treatment of nonfatal warnings and trace/debug messages.
|
|---|
| 1336 | The file example.c illustrates the most common case, which is to have the
|
|---|
| 1337 | application regain control after an error rather than exiting.
|
|---|
| 1338 |
|
|---|
| 1339 | The JPEG library never writes any message directly; it always goes through
|
|---|
| 1340 | the error handling routines. Three classes of messages are recognized:
|
|---|
| 1341 | * Fatal errors: the library cannot continue.
|
|---|
| 1342 | * Warnings: the library can continue, but the data is corrupt, and a
|
|---|
| 1343 | damaged output image is likely to result.
|
|---|
| 1344 | * Trace/informational messages. These come with a trace level indicating
|
|---|
| 1345 | the importance of the message; you can control the verbosity of the
|
|---|
| 1346 | program by adjusting the maximum trace level that will be displayed.
|
|---|
| 1347 |
|
|---|
| 1348 | You may, if you wish, simply replace the entire JPEG error handling module
|
|---|
| 1349 | (jerror.c) with your own code. However, you can avoid code duplication by
|
|---|
| 1350 | only replacing some of the routines depending on the behavior you need.
|
|---|
| 1351 | This is accomplished by calling jpeg_std_error() as usual, but then overriding
|
|---|
| 1352 | some of the method pointers in the jpeg_error_mgr struct, as illustrated by
|
|---|
| 1353 | example.c.
|
|---|
| 1354 |
|
|---|
| 1355 | All of the error handling routines will receive a pointer to the JPEG object
|
|---|
| 1356 | (a j_common_ptr which points to either a jpeg_compress_struct or a
|
|---|
| 1357 | jpeg_decompress_struct; if you need to tell which, test the is_decompressor
|
|---|
| 1358 | field). This struct includes a pointer to the error manager struct in its
|
|---|
| 1359 | "err" field. Frequently, custom error handler routines will need to access
|
|---|
| 1360 | additional data which is not known to the JPEG library or the standard error
|
|---|
| 1361 | handler. The most convenient way to do this is to embed either the JPEG
|
|---|
| 1362 | object or the jpeg_error_mgr struct in a larger structure that contains
|
|---|
| 1363 | additional fields; then casting the passed pointer provides access to the
|
|---|
| 1364 | additional fields. Again, see example.c for one way to do it. (Beginning
|
|---|
| 1365 | with IJG version 6b, there is also a void pointer "client_data" in each
|
|---|
| 1366 | JPEG object, which the application can also use to find related data.
|
|---|
| 1367 | The library does not touch client_data at all.)
|
|---|
| 1368 |
|
|---|
| 1369 | The individual methods that you might wish to override are:
|
|---|
| 1370 |
|
|---|
| 1371 | error_exit (j_common_ptr cinfo)
|
|---|
| 1372 | Receives control for a fatal error. Information sufficient to
|
|---|
| 1373 | generate the error message has been stored in cinfo->err; call
|
|---|
| 1374 | output_message to display it. Control must NOT return to the caller;
|
|---|
| 1375 | generally this routine will exit() or longjmp() somewhere.
|
|---|
| 1376 | Typically you would override this routine to get rid of the exit()
|
|---|
| 1377 | default behavior. Note that if you continue processing, you should
|
|---|
| 1378 | clean up the JPEG object with jpeg_abort() or jpeg_destroy().
|
|---|
| 1379 |
|
|---|
| 1380 | output_message (j_common_ptr cinfo)
|
|---|
| 1381 | Actual output of any JPEG message. Override this to send messages
|
|---|
| 1382 | somewhere other than stderr. Note that this method does not know
|
|---|
| 1383 | how to generate a message, only where to send it.
|
|---|
| 1384 |
|
|---|
| 1385 | format_message (j_common_ptr cinfo, char * buffer)
|
|---|
| 1386 | Constructs a readable error message string based on the error info
|
|---|
| 1387 | stored in cinfo->err. This method is called by output_message. Few
|
|---|
| 1388 | applications should need to override this method. One possible
|
|---|
| 1389 | reason for doing so is to implement dynamic switching of error message
|
|---|
| 1390 | language.
|
|---|
| 1391 |
|
|---|
| 1392 | emit_message (j_common_ptr cinfo, int msg_level)
|
|---|
| 1393 | Decide whether or not to emit a warning or trace message; if so,
|
|---|
| 1394 | calls output_message. The main reason for overriding this method
|
|---|
| 1395 | would be to abort on warnings. msg_level is -1 for warnings,
|
|---|
| 1396 | 0 and up for trace messages.
|
|---|
| 1397 |
|
|---|
| 1398 | Only error_exit() and emit_message() are called from the rest of the JPEG
|
|---|
| 1399 | library; the other two are internal to the error handler.
|
|---|
| 1400 |
|
|---|
| 1401 | The actual message texts are stored in an array of strings which is pointed to
|
|---|
| 1402 | by the field err->jpeg_message_table. The messages are numbered from 0 to
|
|---|
| 1403 | err->last_jpeg_message, and it is these code numbers that are used in the
|
|---|
| 1404 | JPEG library code. You could replace the message texts (for instance, with
|
|---|
| 1405 | messages in French or German) by changing the message table pointer. See
|
|---|
| 1406 | jerror.h for the default texts. CAUTION: this table will almost certainly
|
|---|
| 1407 | change or grow from one library version to the next.
|
|---|
| 1408 |
|
|---|
| 1409 | It may be useful for an application to add its own message texts that are
|
|---|
| 1410 | handled by the same mechanism. The error handler supports a second "add-on"
|
|---|
| 1411 | message table for this purpose. To define an addon table, set the pointer
|
|---|
| 1412 | err->addon_message_table and the message numbers err->first_addon_message and
|
|---|
| 1413 | err->last_addon_message. If you number the addon messages beginning at 1000
|
|---|
| 1414 | or so, you won't have to worry about conflicts with the library's built-in
|
|---|
| 1415 | messages. See the sample applications cjpeg/djpeg for an example of using
|
|---|
| 1416 | addon messages (the addon messages are defined in cderror.h).
|
|---|
| 1417 |
|
|---|
| 1418 | Actual invocation of the error handler is done via macros defined in jerror.h:
|
|---|
| 1419 | ERREXITn(...) for fatal errors
|
|---|
| 1420 | WARNMSn(...) for corrupt-data warnings
|
|---|
| 1421 | TRACEMSn(...) for trace and informational messages.
|
|---|
| 1422 | These macros store the message code and any additional parameters into the
|
|---|
| 1423 | error handler struct, then invoke the error_exit() or emit_message() method.
|
|---|
| 1424 | The variants of each macro are for varying numbers of additional parameters.
|
|---|
| 1425 | The additional parameters are inserted into the generated message using
|
|---|
| 1426 | standard printf() format codes.
|
|---|
| 1427 |
|
|---|
| 1428 | See jerror.h and jerror.c for further details.
|
|---|
| 1429 |
|
|---|
| 1430 |
|
|---|
| 1431 | Compressed data handling (source and destination managers)
|
|---|
| 1432 | ----------------------------------------------------------
|
|---|
| 1433 |
|
|---|
| 1434 | The JPEG compression library sends its compressed data to a "destination
|
|---|
| 1435 | manager" module. The default destination manager just writes the data to a
|
|---|
| 1436 | memory buffer or to a stdio stream, but you can provide your own manager to
|
|---|
| 1437 | do something else. Similarly, the decompression library calls a "source
|
|---|
| 1438 | manager" to obtain the compressed data; you can provide your own source
|
|---|
| 1439 | manager if you want the data to come from somewhere other than a memory
|
|---|
| 1440 | buffer or a stdio stream.
|
|---|
| 1441 |
|
|---|
| 1442 | In both cases, compressed data is processed a bufferload at a time: the
|
|---|
| 1443 | destination or source manager provides a work buffer, and the library invokes
|
|---|
| 1444 | the manager only when the buffer is filled or emptied. (You could define a
|
|---|
| 1445 | one-character buffer to force the manager to be invoked for each byte, but
|
|---|
| 1446 | that would be rather inefficient.) The buffer's size and location are
|
|---|
| 1447 | controlled by the manager, not by the library. For example, the memory
|
|---|
| 1448 | source manager just makes the buffer pointer and length point to the original
|
|---|
| 1449 | data in memory. In this case the buffer-reload procedure will be invoked
|
|---|
| 1450 | only if the decompressor ran off the end of the datastream, which would
|
|---|
| 1451 | indicate an erroneous datastream.
|
|---|
| 1452 |
|
|---|
| 1453 | The work buffer is defined as an array of datatype JOCTET, which is generally
|
|---|
| 1454 | "char" or "unsigned char". On a machine where char is not exactly 8 bits
|
|---|
| 1455 | wide, you must define JOCTET as a wider data type and then modify the data
|
|---|
| 1456 | source and destination modules to transcribe the work arrays into 8-bit units
|
|---|
| 1457 | on external storage.
|
|---|
| 1458 |
|
|---|
| 1459 | A data destination manager struct contains a pointer and count defining the
|
|---|
| 1460 | next byte to write in the work buffer and the remaining free space:
|
|---|
| 1461 |
|
|---|
| 1462 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
|---|
| 1463 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
|---|
| 1464 |
|
|---|
| 1465 | The library increments the pointer and decrements the count until the buffer
|
|---|
| 1466 | is filled. The manager's empty_output_buffer method must reset the pointer
|
|---|
| 1467 | and count. The manager is expected to remember the buffer's starting address
|
|---|
| 1468 | and total size in private fields not visible to the library.
|
|---|
| 1469 |
|
|---|
| 1470 | A data destination manager provides three methods:
|
|---|
| 1471 |
|
|---|
| 1472 | init_destination (j_compress_ptr cinfo)
|
|---|
| 1473 | Initialize destination. This is called by jpeg_start_compress()
|
|---|
| 1474 | before any data is actually written. It must initialize
|
|---|
| 1475 | next_output_byte and free_in_buffer. free_in_buffer must be
|
|---|
| 1476 | initialized to a positive value.
|
|---|
| 1477 |
|
|---|
| 1478 | empty_output_buffer (j_compress_ptr cinfo)
|
|---|
| 1479 | This is called whenever the buffer has filled (free_in_buffer
|
|---|
| 1480 | reaches zero). In typical applications, it should write out the
|
|---|
| 1481 | *entire* buffer (use the saved start address and buffer length;
|
|---|
| 1482 | ignore the current state of next_output_byte and free_in_buffer).
|
|---|
| 1483 | Then reset the pointer & count to the start of the buffer, and
|
|---|
| 1484 | return TRUE indicating that the buffer has been dumped.
|
|---|
| 1485 | free_in_buffer must be set to a positive value when TRUE is
|
|---|
| 1486 | returned. A FALSE return should only be used when I/O suspension is
|
|---|
| 1487 | desired (this operating mode is discussed in the next section).
|
|---|
| 1488 |
|
|---|
| 1489 | term_destination (j_compress_ptr cinfo)
|
|---|
| 1490 | Terminate destination --- called by jpeg_finish_compress() after all
|
|---|
| 1491 | data has been written. In most applications, this must flush any
|
|---|
| 1492 | data remaining in the buffer. Use either next_output_byte or
|
|---|
| 1493 | free_in_buffer to determine how much data is in the buffer.
|
|---|
| 1494 |
|
|---|
| 1495 | term_destination() is NOT called by jpeg_abort() or jpeg_destroy(). If you
|
|---|
| 1496 | want the destination manager to be cleaned up during an abort, you must do it
|
|---|
| 1497 | yourself.
|
|---|
| 1498 |
|
|---|
| 1499 | You will also need code to create a jpeg_destination_mgr struct, fill in its
|
|---|
| 1500 | method pointers, and insert a pointer to the struct into the "dest" field of
|
|---|
| 1501 | the JPEG compression object. This can be done in-line in your setup code if
|
|---|
| 1502 | you like, but it's probably cleaner to provide a separate routine similar to
|
|---|
| 1503 | the jpeg_stdio_dest() or jpeg_mem_dest() routines of the supplied destination
|
|---|
| 1504 | managers.
|
|---|
| 1505 |
|
|---|
| 1506 | Decompression source managers follow a parallel design, but with some
|
|---|
| 1507 | additional frammishes. The source manager struct contains a pointer and count
|
|---|
| 1508 | defining the next byte to read from the work buffer and the number of bytes
|
|---|
| 1509 | remaining:
|
|---|
| 1510 |
|
|---|
| 1511 | const JOCTET * next_input_byte; /* => next byte to read from buffer */
|
|---|
| 1512 | size_t bytes_in_buffer; /* # of bytes remaining in buffer */
|
|---|
| 1513 |
|
|---|
| 1514 | The library increments the pointer and decrements the count until the buffer
|
|---|
| 1515 | is emptied. The manager's fill_input_buffer method must reset the pointer and
|
|---|
| 1516 | count. In most applications, the manager must remember the buffer's starting
|
|---|
| 1517 | address and total size in private fields not visible to the library.
|
|---|
| 1518 |
|
|---|
| 1519 | A data source manager provides five methods:
|
|---|
| 1520 |
|
|---|
| 1521 | init_source (j_decompress_ptr cinfo)
|
|---|
| 1522 | Initialize source. This is called by jpeg_read_header() before any
|
|---|
| 1523 | data is actually read. Unlike init_destination(), it may leave
|
|---|
| 1524 | bytes_in_buffer set to 0 (in which case a fill_input_buffer() call
|
|---|
| 1525 | will occur immediately).
|
|---|
| 1526 |
|
|---|
| 1527 | fill_input_buffer (j_decompress_ptr cinfo)
|
|---|
| 1528 | This is called whenever bytes_in_buffer has reached zero and more
|
|---|
| 1529 | data is wanted. In typical applications, it should read fresh data
|
|---|
| 1530 | into the buffer (ignoring the current state of next_input_byte and
|
|---|
| 1531 | bytes_in_buffer), reset the pointer & count to the start of the
|
|---|
| 1532 | buffer, and return TRUE indicating that the buffer has been reloaded.
|
|---|
| 1533 | It is not necessary to fill the buffer entirely, only to obtain at
|
|---|
| 1534 | least one more byte. bytes_in_buffer MUST be set to a positive value
|
|---|
| 1535 | if TRUE is returned. A FALSE return should only be used when I/O
|
|---|
| 1536 | suspension is desired (this mode is discussed in the next section).
|
|---|
| 1537 |
|
|---|
| 1538 | skip_input_data (j_decompress_ptr cinfo, long num_bytes)
|
|---|
| 1539 | Skip num_bytes worth of data. The buffer pointer and count should
|
|---|
| 1540 | be advanced over num_bytes input bytes, refilling the buffer as
|
|---|
| 1541 | needed. This is used to skip over a potentially large amount of
|
|---|
| 1542 | uninteresting data (such as an APPn marker). In some applications
|
|---|
| 1543 | it may be possible to optimize away the reading of the skipped data,
|
|---|
| 1544 | but it's not clear that being smart is worth much trouble; large
|
|---|
| 1545 | skips are uncommon. bytes_in_buffer may be zero on return.
|
|---|
| 1546 | A zero or negative skip count should be treated as a no-op.
|
|---|
| 1547 |
|
|---|
| 1548 | resync_to_restart (j_decompress_ptr cinfo, int desired)
|
|---|
| 1549 | This routine is called only when the decompressor has failed to find
|
|---|
| 1550 | a restart (RSTn) marker where one is expected. Its mission is to
|
|---|
| 1551 | find a suitable point for resuming decompression. For most
|
|---|
| 1552 | applications, we recommend that you just use the default resync
|
|---|
| 1553 | procedure, jpeg_resync_to_restart(). However, if you are able to back
|
|---|
| 1554 | up in the input data stream, or if you have a-priori knowledge about
|
|---|
| 1555 | the likely location of restart markers, you may be able to do better.
|
|---|
| 1556 | Read the read_restart_marker() and jpeg_resync_to_restart() routines
|
|---|
| 1557 | in jdmarker.c if you think you'd like to implement your own resync
|
|---|
| 1558 | procedure.
|
|---|
| 1559 |
|
|---|
| 1560 | term_source (j_decompress_ptr cinfo)
|
|---|
| 1561 | Terminate source --- called by jpeg_finish_decompress() after all
|
|---|
| 1562 | data has been read. Often a no-op.
|
|---|
| 1563 |
|
|---|
| 1564 | For both fill_input_buffer() and skip_input_data(), there is no such thing
|
|---|
| 1565 | as an EOF return. If the end of the file has been reached, the routine has
|
|---|
| 1566 | a choice of exiting via ERREXIT() or inserting fake data into the buffer.
|
|---|
| 1567 | In most cases, generating a warning message and inserting a fake EOI marker
|
|---|
| 1568 | is the best course of action --- this will allow the decompressor to output
|
|---|
| 1569 | however much of the image is there. In pathological cases, the decompressor
|
|---|
| 1570 | may swallow the EOI and again demand data ... just keep feeding it fake EOIs.
|
|---|
| 1571 | jdatasrc.c illustrates the recommended error recovery behavior.
|
|---|
| 1572 |
|
|---|
| 1573 | term_source() is NOT called by jpeg_abort() or jpeg_destroy(). If you want
|
|---|
| 1574 | the source manager to be cleaned up during an abort, you must do it yourself.
|
|---|
| 1575 |
|
|---|
| 1576 | You will also need code to create a jpeg_source_mgr struct, fill in its method
|
|---|
| 1577 | pointers, and insert a pointer to the struct into the "src" field of the JPEG
|
|---|
| 1578 | decompression object. This can be done in-line in your setup code if you
|
|---|
| 1579 | like, but it's probably cleaner to provide a separate routine similar to the
|
|---|
| 1580 | jpeg_stdio_src() or jpeg_mem_src() routines of the supplied source managers.
|
|---|
| 1581 |
|
|---|
| 1582 | For more information, consult the memory and stdio source and destination
|
|---|
| 1583 | managers in jdatasrc.c and jdatadst.c.
|
|---|
| 1584 |
|
|---|
| 1585 |
|
|---|
| 1586 | I/O suspension
|
|---|
| 1587 | --------------
|
|---|
| 1588 |
|
|---|
| 1589 | Some applications need to use the JPEG library as an incremental memory-to-
|
|---|
| 1590 | memory filter: when the compressed data buffer is filled or emptied, they want
|
|---|
| 1591 | control to return to the outer loop, rather than expecting that the buffer can
|
|---|
| 1592 | be emptied or reloaded within the data source/destination manager subroutine.
|
|---|
| 1593 | The library supports this need by providing an "I/O suspension" mode, which we
|
|---|
| 1594 | describe in this section.
|
|---|
| 1595 |
|
|---|
| 1596 | The I/O suspension mode is not a panacea: nothing is guaranteed about the
|
|---|
| 1597 | maximum amount of time spent in any one call to the library, so it will not
|
|---|
| 1598 | eliminate response-time problems in single-threaded applications. If you
|
|---|
| 1599 | need guaranteed response time, we suggest you "bite the bullet" and implement
|
|---|
| 1600 | a real multi-tasking capability.
|
|---|
| 1601 |
|
|---|
| 1602 | To use I/O suspension, cooperation is needed between the calling application
|
|---|
| 1603 | and the data source or destination manager; you will always need a custom
|
|---|
| 1604 | source/destination manager. (Please read the previous section if you haven't
|
|---|
| 1605 | already.) The basic idea is that the empty_output_buffer() or
|
|---|
| 1606 | fill_input_buffer() routine is a no-op, merely returning FALSE to indicate
|
|---|
| 1607 | that it has done nothing. Upon seeing this, the JPEG library suspends
|
|---|
| 1608 | operation and returns to its caller. The surrounding application is
|
|---|
| 1609 | responsible for emptying or refilling the work buffer before calling the
|
|---|
| 1610 | JPEG library again.
|
|---|
| 1611 |
|
|---|
| 1612 | Compression suspension:
|
|---|
| 1613 |
|
|---|
| 1614 | For compression suspension, use an empty_output_buffer() routine that returns
|
|---|
| 1615 | FALSE; typically it will not do anything else. This will cause the
|
|---|
| 1616 | compressor to return to the caller of jpeg_write_scanlines(), with the return
|
|---|
| 1617 | value indicating that not all the supplied scanlines have been accepted.
|
|---|
| 1618 | The application must make more room in the output buffer, adjust the output
|
|---|
| 1619 | buffer pointer/count appropriately, and then call jpeg_write_scanlines()
|
|---|
| 1620 | again, pointing to the first unconsumed scanline.
|
|---|
| 1621 |
|
|---|
| 1622 | When forced to suspend, the compressor will backtrack to a convenient stopping
|
|---|
| 1623 | point (usually the start of the current MCU); it will regenerate some output
|
|---|
| 1624 | data when restarted. Therefore, although empty_output_buffer() is only
|
|---|
| 1625 | called when the buffer is filled, you should NOT write out the entire buffer
|
|---|
| 1626 | after a suspension. Write only the data up to the current position of
|
|---|
| 1627 | next_output_byte/free_in_buffer. The data beyond that point will be
|
|---|
| 1628 | regenerated after resumption.
|
|---|
| 1629 |
|
|---|
| 1630 | Because of the backtracking behavior, a good-size output buffer is essential
|
|---|
| 1631 | for efficiency; you don't want the compressor to suspend often. (In fact, an
|
|---|
| 1632 | overly small buffer could lead to infinite looping, if a single MCU required
|
|---|
| 1633 | more data than would fit in the buffer.) We recommend a buffer of at least
|
|---|
| 1634 | several Kbytes. You may want to insert explicit code to ensure that you don't
|
|---|
| 1635 | call jpeg_write_scanlines() unless there is a reasonable amount of space in
|
|---|
| 1636 | the output buffer; in other words, flush the buffer before trying to compress
|
|---|
| 1637 | more data.
|
|---|
| 1638 |
|
|---|
| 1639 | The compressor does not allow suspension while it is trying to write JPEG
|
|---|
| 1640 | markers at the beginning and end of the file. This means that:
|
|---|
| 1641 | * At the beginning of a compression operation, there must be enough free
|
|---|
| 1642 | space in the output buffer to hold the header markers (typically 600 or
|
|---|
| 1643 | so bytes). The recommended buffer size is bigger than this anyway, so
|
|---|
| 1644 | this is not a problem as long as you start with an empty buffer. However,
|
|---|
| 1645 | this restriction might catch you if you insert large special markers, such
|
|---|
| 1646 | as a JFIF thumbnail image, without flushing the buffer afterwards.
|
|---|
| 1647 | * When you call jpeg_finish_compress(), there must be enough space in the
|
|---|
| 1648 | output buffer to emit any buffered data and the final EOI marker. In the
|
|---|
| 1649 | current implementation, half a dozen bytes should suffice for this, but
|
|---|
| 1650 | for safety's sake we recommend ensuring that at least 100 bytes are free
|
|---|
| 1651 | before calling jpeg_finish_compress().
|
|---|
| 1652 |
|
|---|
| 1653 | A more significant restriction is that jpeg_finish_compress() cannot suspend.
|
|---|
| 1654 | This means you cannot use suspension with multi-pass operating modes, namely
|
|---|
| 1655 | Huffman code optimization and multiple-scan output. Those modes write the
|
|---|
| 1656 | whole file during jpeg_finish_compress(), which will certainly result in
|
|---|
| 1657 | buffer overrun. (Note that this restriction applies only to compression,
|
|---|
| 1658 | not decompression. The decompressor supports input suspension in all of its
|
|---|
| 1659 | operating modes.)
|
|---|
| 1660 |
|
|---|
| 1661 | Decompression suspension:
|
|---|
| 1662 |
|
|---|
| 1663 | For decompression suspension, use a fill_input_buffer() routine that simply
|
|---|
| 1664 | returns FALSE (except perhaps during error recovery, as discussed below).
|
|---|
| 1665 | This will cause the decompressor to return to its caller with an indication
|
|---|
| 1666 | that suspension has occurred. This can happen at four places:
|
|---|
| 1667 | * jpeg_read_header(): will return JPEG_SUSPENDED.
|
|---|
| 1668 | * jpeg_start_decompress(): will return FALSE, rather than its usual TRUE.
|
|---|
| 1669 | * jpeg_read_scanlines(): will return the number of scanlines already
|
|---|
| 1670 | completed (possibly 0).
|
|---|
| 1671 | * jpeg_finish_decompress(): will return FALSE, rather than its usual TRUE.
|
|---|
| 1672 | The surrounding application must recognize these cases, load more data into
|
|---|
| 1673 | the input buffer, and repeat the call. In the case of jpeg_read_scanlines(),
|
|---|
| 1674 | increment the passed pointers past any scanlines successfully read.
|
|---|
| 1675 |
|
|---|
| 1676 | Just as with compression, the decompressor will typically backtrack to a
|
|---|
| 1677 | convenient restart point before suspending. When fill_input_buffer() is
|
|---|
| 1678 | called, next_input_byte/bytes_in_buffer point to the current restart point,
|
|---|
| 1679 | which is where the decompressor will backtrack to if FALSE is returned.
|
|---|
| 1680 | The data beyond that position must NOT be discarded if you suspend; it needs
|
|---|
| 1681 | to be re-read upon resumption. In most implementations, you'll need to shift
|
|---|
| 1682 | this data down to the start of your work buffer and then load more data after
|
|---|
| 1683 | it. Again, this behavior means that a several-Kbyte work buffer is essential
|
|---|
| 1684 | for decent performance; furthermore, you should load a reasonable amount of
|
|---|
| 1685 | new data before resuming decompression. (If you loaded, say, only one new
|
|---|
| 1686 | byte each time around, you could waste a LOT of cycles.)
|
|---|
| 1687 |
|
|---|
| 1688 | The skip_input_data() source manager routine requires special care in a
|
|---|
| 1689 | suspension scenario. This routine is NOT granted the ability to suspend the
|
|---|
| 1690 | decompressor; it can decrement bytes_in_buffer to zero, but no more. If the
|
|---|
| 1691 | requested skip distance exceeds the amount of data currently in the input
|
|---|
| 1692 | buffer, then skip_input_data() must set bytes_in_buffer to zero and record the
|
|---|
| 1693 | additional skip distance somewhere else. The decompressor will immediately
|
|---|
| 1694 | call fill_input_buffer(), which should return FALSE, which will cause a
|
|---|
| 1695 | suspension return. The surrounding application must then arrange to discard
|
|---|
| 1696 | the recorded number of bytes before it resumes loading the input buffer.
|
|---|
| 1697 | (Yes, this design is rather baroque, but it avoids complexity in the far more
|
|---|
| 1698 | common case where a non-suspending source manager is used.)
|
|---|
| 1699 |
|
|---|
| 1700 | If the input data has been exhausted, we recommend that you emit a warning
|
|---|
| 1701 | and insert dummy EOI markers just as a non-suspending data source manager
|
|---|
| 1702 | would do. This can be handled either in the surrounding application logic or
|
|---|
| 1703 | within fill_input_buffer(); the latter is probably more efficient. If
|
|---|
| 1704 | fill_input_buffer() knows that no more data is available, it can set the
|
|---|
| 1705 | pointer/count to point to a dummy EOI marker and then return TRUE just as
|
|---|
| 1706 | though it had read more data in a non-suspending situation.
|
|---|
| 1707 |
|
|---|
| 1708 | The decompressor does not attempt to suspend within standard JPEG markers;
|
|---|
| 1709 | instead it will backtrack to the start of the marker and reprocess the whole
|
|---|
| 1710 | marker next time. Hence the input buffer must be large enough to hold the
|
|---|
| 1711 | longest standard marker in the file. Standard JPEG markers should normally
|
|---|
| 1712 | not exceed a few hundred bytes each (DHT tables are typically the longest).
|
|---|
| 1713 | We recommend at least a 2K buffer for performance reasons, which is much
|
|---|
| 1714 | larger than any correct marker is likely to be. For robustness against
|
|---|
| 1715 | damaged marker length counts, you may wish to insert a test in your
|
|---|
| 1716 | application for the case that the input buffer is completely full and yet
|
|---|
| 1717 | the decoder has suspended without consuming any data --- otherwise, if this
|
|---|
| 1718 | situation did occur, it would lead to an endless loop. (The library can't
|
|---|
| 1719 | provide this test since it has no idea whether "the buffer is full", or
|
|---|
| 1720 | even whether there is a fixed-size input buffer.)
|
|---|
| 1721 |
|
|---|
| 1722 | The input buffer would need to be 64K to allow for arbitrary COM or APPn
|
|---|
| 1723 | markers, but these are handled specially: they are either saved into allocated
|
|---|
| 1724 | memory, or skipped over by calling skip_input_data(). In the former case,
|
|---|
| 1725 | suspension is handled correctly, and in the latter case, the problem of
|
|---|
| 1726 | buffer overrun is placed on skip_input_data's shoulders, as explained above.
|
|---|
| 1727 | Note that if you provide your own marker handling routine for large markers,
|
|---|
| 1728 | you should consider how to deal with buffer overflow.
|
|---|
| 1729 |
|
|---|
| 1730 | Multiple-buffer management:
|
|---|
| 1731 |
|
|---|
| 1732 | In some applications it is desirable to store the compressed data in a linked
|
|---|
| 1733 | list of buffer areas, so as to avoid data copying. This can be handled by
|
|---|
| 1734 | having empty_output_buffer() or fill_input_buffer() set the pointer and count
|
|---|
| 1735 | to reference the next available buffer; FALSE is returned only if no more
|
|---|
| 1736 | buffers are available. Although seemingly straightforward, there is a
|
|---|
| 1737 | pitfall in this approach: the backtrack that occurs when FALSE is returned
|
|---|
| 1738 | could back up into an earlier buffer. For example, when fill_input_buffer()
|
|---|
| 1739 | is called, the current pointer & count indicate the backtrack restart point.
|
|---|
| 1740 | Since fill_input_buffer() will set the pointer and count to refer to a new
|
|---|
| 1741 | buffer, the restart position must be saved somewhere else. Suppose a second
|
|---|
| 1742 | call to fill_input_buffer() occurs in the same library call, and no
|
|---|
| 1743 | additional input data is available, so fill_input_buffer must return FALSE.
|
|---|
| 1744 | If the JPEG library has not moved the pointer/count forward in the current
|
|---|
| 1745 | buffer, then *the correct restart point is the saved position in the prior
|
|---|
| 1746 | buffer*. Prior buffers may be discarded only after the library establishes
|
|---|
| 1747 | a restart point within a later buffer. Similar remarks apply for output into
|
|---|
| 1748 | a chain of buffers.
|
|---|
| 1749 |
|
|---|
| 1750 | The library will never attempt to backtrack over a skip_input_data() call,
|
|---|
| 1751 | so any skipped data can be permanently discarded. You still have to deal
|
|---|
| 1752 | with the case of skipping not-yet-received data, however.
|
|---|
| 1753 |
|
|---|
| 1754 | It's much simpler to use only a single buffer; when fill_input_buffer() is
|
|---|
| 1755 | called, move any unconsumed data (beyond the current pointer/count) down to
|
|---|
| 1756 | the beginning of this buffer and then load new data into the remaining buffer
|
|---|
| 1757 | space. This approach requires a little more data copying but is far easier
|
|---|
| 1758 | to get right.
|
|---|
| 1759 |
|
|---|
| 1760 |
|
|---|
| 1761 | Progressive JPEG support
|
|---|
| 1762 | ------------------------
|
|---|
| 1763 |
|
|---|
| 1764 | Progressive JPEG rearranges the stored data into a series of scans of
|
|---|
| 1765 | increasing quality. In situations where a JPEG file is transmitted across a
|
|---|
| 1766 | slow communications link, a decoder can generate a low-quality image very
|
|---|
| 1767 | quickly from the first scan, then gradually improve the displayed quality as
|
|---|
| 1768 | more scans are received. The final image after all scans are complete is
|
|---|
| 1769 | identical to that of a regular (sequential) JPEG file of the same quality
|
|---|
| 1770 | setting. Progressive JPEG files are often slightly smaller than equivalent
|
|---|
| 1771 | sequential JPEG files, but the possibility of incremental display is the main
|
|---|
| 1772 | reason for using progressive JPEG.
|
|---|
| 1773 |
|
|---|
| 1774 | The IJG encoder library generates progressive JPEG files when given a
|
|---|
| 1775 | suitable "scan script" defining how to divide the data into scans.
|
|---|
| 1776 | Creation of progressive JPEG files is otherwise transparent to the encoder.
|
|---|
| 1777 | Progressive JPEG files can also be read transparently by the decoder library.
|
|---|
| 1778 | If the decoding application simply uses the library as defined above, it
|
|---|
| 1779 | will receive a final decoded image without any indication that the file was
|
|---|
| 1780 | progressive. Of course, this approach does not allow incremental display.
|
|---|
| 1781 | To perform incremental display, an application needs to use the decoder
|
|---|
| 1782 | library's "buffered-image" mode, in which it receives a decoded image
|
|---|
| 1783 | multiple times.
|
|---|
| 1784 |
|
|---|
| 1785 | Each displayed scan requires about as much work to decode as a full JPEG
|
|---|
| 1786 | image of the same size, so the decoder must be fairly fast in relation to the
|
|---|
| 1787 | data transmission rate in order to make incremental display useful. However,
|
|---|
| 1788 | it is possible to skip displaying the image and simply add the incoming bits
|
|---|
| 1789 | to the decoder's coefficient buffer. This is fast because only Huffman
|
|---|
| 1790 | decoding need be done, not IDCT, upsampling, colorspace conversion, etc.
|
|---|
| 1791 | The IJG decoder library allows the application to switch dynamically between
|
|---|
| 1792 | displaying the image and simply absorbing the incoming bits. A properly
|
|---|
| 1793 | coded application can automatically adapt the number of display passes to
|
|---|
| 1794 | suit the time available as the image is received. Also, a final
|
|---|
| 1795 | higher-quality display cycle can be performed from the buffered data after
|
|---|
| 1796 | the end of the file is reached.
|
|---|
| 1797 |
|
|---|
| 1798 | Progressive compression:
|
|---|
| 1799 |
|
|---|
| 1800 | To create a progressive JPEG file (or a multiple-scan sequential JPEG file),
|
|---|
| 1801 | set the scan_info cinfo field to point to an array of scan descriptors, and
|
|---|
| 1802 | perform compression as usual. Instead of constructing your own scan list,
|
|---|
| 1803 | you can call the jpeg_simple_progression() helper routine to create a
|
|---|
| 1804 | recommended progression sequence; this method should be used by all
|
|---|
| 1805 | applications that don't want to get involved in the nitty-gritty of
|
|---|
| 1806 | progressive scan sequence design. (If you want to provide user control of
|
|---|
| 1807 | scan sequences, you may wish to borrow the scan script reading code found
|
|---|
| 1808 | in rdswitch.c, so that you can read scan script files just like cjpeg's.)
|
|---|
| 1809 | When scan_info is not NULL, the compression library will store DCT'd data
|
|---|
| 1810 | into a buffer array as jpeg_write_scanlines() is called, and will emit all
|
|---|
| 1811 | the requested scans during jpeg_finish_compress(). This implies that
|
|---|
| 1812 | multiple-scan output cannot be created with a suspending data destination
|
|---|
| 1813 | manager, since jpeg_finish_compress() does not support suspension. We
|
|---|
| 1814 | should also note that the compressor currently forces Huffman optimization
|
|---|
| 1815 | mode when creating a progressive JPEG file, because the default Huffman
|
|---|
| 1816 | tables are unsuitable for progressive files.
|
|---|
| 1817 |
|
|---|
| 1818 | Progressive decompression:
|
|---|
| 1819 |
|
|---|
| 1820 | When buffered-image mode is not used, the decoder library will read all of
|
|---|
| 1821 | a multi-scan file during jpeg_start_decompress(), so that it can provide a
|
|---|
| 1822 | final decoded image. (Here "multi-scan" means either progressive or
|
|---|
| 1823 | multi-scan sequential.) This makes multi-scan files transparent to the
|
|---|
| 1824 | decoding application. However, existing applications that used suspending
|
|---|
| 1825 | input with version 5 of the IJG library will need to be modified to check
|
|---|
| 1826 | for a suspension return from jpeg_start_decompress().
|
|---|
| 1827 |
|
|---|
| 1828 | To perform incremental display, an application must use the library's
|
|---|
| 1829 | buffered-image mode. This is described in the next section.
|
|---|
| 1830 |
|
|---|
| 1831 |
|
|---|
| 1832 | Buffered-image mode
|
|---|
| 1833 | -------------------
|
|---|
| 1834 |
|
|---|
| 1835 | In buffered-image mode, the library stores the partially decoded image in a
|
|---|
| 1836 | coefficient buffer, from which it can be read out as many times as desired.
|
|---|
| 1837 | This mode is typically used for incremental display of progressive JPEG files,
|
|---|
| 1838 | but it can be used with any JPEG file. Each scan of a progressive JPEG file
|
|---|
| 1839 | adds more data (more detail) to the buffered image. The application can
|
|---|
| 1840 | display in lockstep with the source file (one display pass per input scan),
|
|---|
| 1841 | or it can allow input processing to outrun display processing. By making
|
|---|
| 1842 | input and display processing run independently, it is possible for the
|
|---|
| 1843 | application to adapt progressive display to a wide range of data transmission
|
|---|
| 1844 | rates.
|
|---|
| 1845 |
|
|---|
| 1846 | The basic control flow for buffered-image decoding is
|
|---|
| 1847 |
|
|---|
| 1848 | jpeg_create_decompress()
|
|---|
| 1849 | set data source
|
|---|
| 1850 | jpeg_read_header()
|
|---|
| 1851 | set overall decompression parameters
|
|---|
| 1852 | cinfo.buffered_image = TRUE; /* select buffered-image mode */
|
|---|
| 1853 | jpeg_start_decompress()
|
|---|
| 1854 | for (each output pass) {
|
|---|
| 1855 | adjust output decompression parameters if required
|
|---|
| 1856 | jpeg_start_output() /* start a new output pass */
|
|---|
| 1857 | for (all scanlines in image) {
|
|---|
| 1858 | jpeg_read_scanlines()
|
|---|
| 1859 | display scanlines
|
|---|
| 1860 | }
|
|---|
| 1861 | jpeg_finish_output() /* terminate output pass */
|
|---|
| 1862 | }
|
|---|
| 1863 | jpeg_finish_decompress()
|
|---|
| 1864 | jpeg_destroy_decompress()
|
|---|
| 1865 |
|
|---|
| 1866 | This differs from ordinary unbuffered decoding in that there is an additional
|
|---|
| 1867 | level of looping. The application can choose how many output passes to make
|
|---|
| 1868 | and how to display each pass.
|
|---|
| 1869 |
|
|---|
| 1870 | The simplest approach to displaying progressive images is to do one display
|
|---|
| 1871 | pass for each scan appearing in the input file. In this case the outer loop
|
|---|
| 1872 | condition is typically
|
|---|
| 1873 | while (! jpeg_input_complete(&cinfo))
|
|---|
| 1874 | and the start-output call should read
|
|---|
| 1875 | jpeg_start_output(&cinfo, cinfo.input_scan_number);
|
|---|
| 1876 | The second parameter to jpeg_start_output() indicates which scan of the input
|
|---|
| 1877 | file is to be displayed; the scans are numbered starting at 1 for this
|
|---|
| 1878 | purpose. (You can use a loop counter starting at 1 if you like, but using
|
|---|
| 1879 | the library's input scan counter is easier.) The library automatically reads
|
|---|
| 1880 | data as necessary to complete each requested scan, and jpeg_finish_output()
|
|---|
| 1881 | advances to the next scan or end-of-image marker (hence input_scan_number
|
|---|
| 1882 | will be incremented by the time control arrives back at jpeg_start_output()).
|
|---|
| 1883 | With this technique, data is read from the input file only as needed, and
|
|---|
| 1884 | input and output processing run in lockstep.
|
|---|
| 1885 |
|
|---|
| 1886 | After reading the final scan and reaching the end of the input file, the
|
|---|
| 1887 | buffered image remains available; it can be read additional times by
|
|---|
| 1888 | repeating the jpeg_start_output()/jpeg_read_scanlines()/jpeg_finish_output()
|
|---|
| 1889 | sequence. For example, a useful technique is to use fast one-pass color
|
|---|
| 1890 | quantization for display passes made while the image is arriving, followed by
|
|---|
| 1891 | a final display pass using two-pass quantization for highest quality. This
|
|---|
| 1892 | is done by changing the library parameters before the final output pass.
|
|---|
| 1893 | Changing parameters between passes is discussed in detail below.
|
|---|
| 1894 |
|
|---|
| 1895 | In general the last scan of a progressive file cannot be recognized as such
|
|---|
| 1896 | until after it is read, so a post-input display pass is the best approach if
|
|---|
| 1897 | you want special processing in the final pass.
|
|---|
| 1898 |
|
|---|
| 1899 | When done with the image, be sure to call jpeg_finish_decompress() to release
|
|---|
| 1900 | the buffered image (or just use jpeg_destroy_decompress()).
|
|---|
| 1901 |
|
|---|
| 1902 | If input data arrives faster than it can be displayed, the application can
|
|---|
| 1903 | cause the library to decode input data in advance of what's needed to produce
|
|---|
| 1904 | output. This is done by calling the routine jpeg_consume_input().
|
|---|
| 1905 | The return value is one of the following:
|
|---|
| 1906 | JPEG_REACHED_SOS: reached an SOS marker (the start of a new scan)
|
|---|
| 1907 | JPEG_REACHED_EOI: reached the EOI marker (end of image)
|
|---|
| 1908 | JPEG_ROW_COMPLETED: completed reading one MCU row of compressed data
|
|---|
| 1909 | JPEG_SCAN_COMPLETED: completed reading last MCU row of current scan
|
|---|
| 1910 | JPEG_SUSPENDED: suspended before completing any of the above
|
|---|
| 1911 | (JPEG_SUSPENDED can occur only if a suspending data source is used.) This
|
|---|
| 1912 | routine can be called at any time after initializing the JPEG object. It
|
|---|
| 1913 | reads some additional data and returns when one of the indicated significant
|
|---|
| 1914 | events occurs. (If called after the EOI marker is reached, it will
|
|---|
| 1915 | immediately return JPEG_REACHED_EOI without attempting to read more data.)
|
|---|
| 1916 |
|
|---|
| 1917 | The library's output processing will automatically call jpeg_consume_input()
|
|---|
| 1918 | whenever the output processing overtakes the input; thus, simple lockstep
|
|---|
| 1919 | display requires no direct calls to jpeg_consume_input(). But by adding
|
|---|
| 1920 | calls to jpeg_consume_input(), you can absorb data in advance of what is
|
|---|
| 1921 | being displayed. This has two benefits:
|
|---|
| 1922 | * You can limit buildup of unprocessed data in your input buffer.
|
|---|
| 1923 | * You can eliminate extra display passes by paying attention to the
|
|---|
| 1924 | state of the library's input processing.
|
|---|
| 1925 |
|
|---|
| 1926 | The first of these benefits only requires interspersing calls to
|
|---|
| 1927 | jpeg_consume_input() with your display operations and any other processing
|
|---|
| 1928 | you may be doing. To avoid wasting cycles due to backtracking, it's best to
|
|---|
| 1929 | call jpeg_consume_input() only after a hundred or so new bytes have arrived.
|
|---|
| 1930 | This is discussed further under "I/O suspension", above. (Note: the JPEG
|
|---|
| 1931 | library currently is not thread-safe. You must not call jpeg_consume_input()
|
|---|
| 1932 | from one thread of control if a different library routine is working on the
|
|---|
| 1933 | same JPEG object in another thread.)
|
|---|
| 1934 |
|
|---|
| 1935 | When input arrives fast enough that more than one new scan is available
|
|---|
| 1936 | before you start a new output pass, you may as well skip the output pass
|
|---|
| 1937 | corresponding to the completed scan. This occurs for free if you pass
|
|---|
| 1938 | cinfo.input_scan_number as the target scan number to jpeg_start_output().
|
|---|
| 1939 | The input_scan_number field is simply the index of the scan currently being
|
|---|
| 1940 | consumed by the input processor. You can ensure that this is up-to-date by
|
|---|
| 1941 | emptying the input buffer just before calling jpeg_start_output(): call
|
|---|
| 1942 | jpeg_consume_input() repeatedly until it returns JPEG_SUSPENDED or
|
|---|
| 1943 | JPEG_REACHED_EOI.
|
|---|
| 1944 |
|
|---|
| 1945 | The target scan number passed to jpeg_start_output() is saved in the
|
|---|
| 1946 | cinfo.output_scan_number field. The library's output processing calls
|
|---|
| 1947 | jpeg_consume_input() whenever the current input scan number and row within
|
|---|
| 1948 | that scan is less than or equal to the current output scan number and row.
|
|---|
| 1949 | Thus, input processing can "get ahead" of the output processing but is not
|
|---|
| 1950 | allowed to "fall behind". You can achieve several different effects by
|
|---|
| 1951 | manipulating this interlock rule. For example, if you pass a target scan
|
|---|
| 1952 | number greater than the current input scan number, the output processor will
|
|---|
| 1953 | wait until that scan starts to arrive before producing any output. (To avoid
|
|---|
| 1954 | an infinite loop, the target scan number is automatically reset to the last
|
|---|
| 1955 | scan number when the end of image is reached. Thus, if you specify a large
|
|---|
| 1956 | target scan number, the library will just absorb the entire input file and
|
|---|
| 1957 | then perform an output pass. This is effectively the same as what
|
|---|
| 1958 | jpeg_start_decompress() does when you don't select buffered-image mode.)
|
|---|
| 1959 | When you pass a target scan number equal to the current input scan number,
|
|---|
| 1960 | the image is displayed no faster than the current input scan arrives. The
|
|---|
| 1961 | final possibility is to pass a target scan number less than the current input
|
|---|
| 1962 | scan number; this disables the input/output interlock and causes the output
|
|---|
| 1963 | processor to simply display whatever it finds in the image buffer, without
|
|---|
| 1964 | waiting for input. (However, the library will not accept a target scan
|
|---|
| 1965 | number less than one, so you can't avoid waiting for the first scan.)
|
|---|
| 1966 |
|
|---|
| 1967 | When data is arriving faster than the output display processing can advance
|
|---|
| 1968 | through the image, jpeg_consume_input() will store data into the buffered
|
|---|
| 1969 | image beyond the point at which the output processing is reading data out
|
|---|
| 1970 | again. If the input arrives fast enough, it may "wrap around" the buffer to
|
|---|
| 1971 | the point where the input is more than one whole scan ahead of the output.
|
|---|
| 1972 | If the output processing simply proceeds through its display pass without
|
|---|
| 1973 | paying attention to the input, the effect seen on-screen is that the lower
|
|---|
| 1974 | part of the image is one or more scans better in quality than the upper part.
|
|---|
| 1975 | Then, when the next output scan is started, you have a choice of what target
|
|---|
| 1976 | scan number to use. The recommended choice is to use the current input scan
|
|---|
| 1977 | number at that time, which implies that you've skipped the output scans
|
|---|
| 1978 | corresponding to the input scans that were completed while you processed the
|
|---|
| 1979 | previous output scan. In this way, the decoder automatically adapts its
|
|---|
| 1980 | speed to the arriving data, by skipping output scans as necessary to keep up
|
|---|
| 1981 | with the arriving data.
|
|---|
| 1982 |
|
|---|
| 1983 | When using this strategy, you'll want to be sure that you perform a final
|
|---|
| 1984 | output pass after receiving all the data; otherwise your last display may not
|
|---|
| 1985 | be full quality across the whole screen. So the right outer loop logic is
|
|---|
| 1986 | something like this:
|
|---|
| 1987 | do {
|
|---|
| 1988 | absorb any waiting input by calling jpeg_consume_input()
|
|---|
| 1989 | final_pass = jpeg_input_complete(&cinfo);
|
|---|
| 1990 | adjust output decompression parameters if required
|
|---|
| 1991 | jpeg_start_output(&cinfo, cinfo.input_scan_number);
|
|---|
| 1992 | ...
|
|---|
| 1993 | jpeg_finish_output()
|
|---|
| 1994 | } while (! final_pass);
|
|---|
| 1995 | rather than quitting as soon as jpeg_input_complete() returns TRUE. This
|
|---|
| 1996 | arrangement makes it simple to use higher-quality decoding parameters
|
|---|
| 1997 | for the final pass. But if you don't want to use special parameters for
|
|---|
| 1998 | the final pass, the right loop logic is like this:
|
|---|
| 1999 | for (;;) {
|
|---|
| 2000 | absorb any waiting input by calling jpeg_consume_input()
|
|---|
| 2001 | jpeg_start_output(&cinfo, cinfo.input_scan_number);
|
|---|
| 2002 | ...
|
|---|
| 2003 | jpeg_finish_output()
|
|---|
| 2004 | if (jpeg_input_complete(&cinfo) &&
|
|---|
| 2005 | cinfo.input_scan_number == cinfo.output_scan_number)
|
|---|
| 2006 | break;
|
|---|
| 2007 | }
|
|---|
| 2008 | In this case you don't need to know in advance whether an output pass is to
|
|---|
| 2009 | be the last one, so it's not necessary to have reached EOF before starting
|
|---|
| 2010 | the final output pass; rather, what you want to test is whether the output
|
|---|
| 2011 | pass was performed in sync with the final input scan. This form of the loop
|
|---|
| 2012 | will avoid an extra output pass whenever the decoder is able (or nearly able)
|
|---|
| 2013 | to keep up with the incoming data.
|
|---|
| 2014 |
|
|---|
| 2015 | When the data transmission speed is high, you might begin a display pass,
|
|---|
| 2016 | then find that much or all of the file has arrived before you can complete
|
|---|
| 2017 | the pass. (You can detect this by noting the JPEG_REACHED_EOI return code
|
|---|
| 2018 | from jpeg_consume_input(), or equivalently by testing jpeg_input_complete().)
|
|---|
| 2019 | In this situation you may wish to abort the current display pass and start a
|
|---|
| 2020 | new one using the newly arrived information. To do so, just call
|
|---|
| 2021 | jpeg_finish_output() and then start a new pass with jpeg_start_output().
|
|---|
| 2022 |
|
|---|
| 2023 | A variant strategy is to abort and restart display if more than one complete
|
|---|
| 2024 | scan arrives during an output pass; this can be detected by noting
|
|---|
| 2025 | JPEG_REACHED_SOS returns and/or examining cinfo.input_scan_number. This
|
|---|
| 2026 | idea should be employed with caution, however, since the display process
|
|---|
| 2027 | might never get to the bottom of the image before being aborted, resulting
|
|---|
| 2028 | in the lower part of the screen being several passes worse than the upper.
|
|---|
| 2029 | In most cases it's probably best to abort an output pass only if the whole
|
|---|
| 2030 | file has arrived and you want to begin the final output pass immediately.
|
|---|
| 2031 |
|
|---|
| 2032 | When receiving data across a communication link, we recommend always using
|
|---|
| 2033 | the current input scan number for the output target scan number; if a
|
|---|
| 2034 | higher-quality final pass is to be done, it should be started (aborting any
|
|---|
| 2035 | incomplete output pass) as soon as the end of file is received. However,
|
|---|
| 2036 | many other strategies are possible. For example, the application can examine
|
|---|
| 2037 | the parameters of the current input scan and decide whether to display it or
|
|---|
| 2038 | not. If the scan contains only chroma data, one might choose not to use it
|
|---|
| 2039 | as the target scan, expecting that the scan will be small and will arrive
|
|---|
| 2040 | quickly. To skip to the next scan, call jpeg_consume_input() until it
|
|---|
| 2041 | returns JPEG_REACHED_SOS or JPEG_REACHED_EOI. Or just use the next higher
|
|---|
| 2042 | number as the target scan for jpeg_start_output(); but that method doesn't
|
|---|
| 2043 | let you inspect the next scan's parameters before deciding to display it.
|
|---|
| 2044 |
|
|---|
| 2045 |
|
|---|
| 2046 | In buffered-image mode, jpeg_start_decompress() never performs input and
|
|---|
| 2047 | thus never suspends. An application that uses input suspension with
|
|---|
| 2048 | buffered-image mode must be prepared for suspension returns from these
|
|---|
| 2049 | routines:
|
|---|
| 2050 | * jpeg_start_output() performs input only if you request 2-pass quantization
|
|---|
| 2051 | and the target scan isn't fully read yet. (This is discussed below.)
|
|---|
| 2052 | * jpeg_read_scanlines(), as always, returns the number of scanlines that it
|
|---|
| 2053 | was able to produce before suspending.
|
|---|
| 2054 | * jpeg_finish_output() will read any markers following the target scan,
|
|---|
| 2055 | up to the end of the file or the SOS marker that begins another scan.
|
|---|
| 2056 | (But it reads no input if jpeg_consume_input() has already reached the
|
|---|
| 2057 | end of the file or a SOS marker beyond the target output scan.)
|
|---|
| 2058 | * jpeg_finish_decompress() will read until the end of file, and thus can
|
|---|
| 2059 | suspend if the end hasn't already been reached (as can be tested by
|
|---|
| 2060 | calling jpeg_input_complete()).
|
|---|
| 2061 | jpeg_start_output(), jpeg_finish_output(), and jpeg_finish_decompress()
|
|---|
| 2062 | all return TRUE if they completed their tasks, FALSE if they had to suspend.
|
|---|
| 2063 | In the event of a FALSE return, the application must load more input data
|
|---|
| 2064 | and repeat the call. Applications that use non-suspending data sources need
|
|---|
| 2065 | not check the return values of these three routines.
|
|---|
| 2066 |
|
|---|
| 2067 |
|
|---|
| 2068 | It is possible to change decoding parameters between output passes in the
|
|---|
| 2069 | buffered-image mode. The decoder library currently supports only very
|
|---|
| 2070 | limited changes of parameters. ONLY THE FOLLOWING parameter changes are
|
|---|
| 2071 | allowed after jpeg_start_decompress() is called:
|
|---|
| 2072 | * dct_method can be changed before each call to jpeg_start_output().
|
|---|
| 2073 | For example, one could use a fast DCT method for early scans, changing
|
|---|
| 2074 | to a higher quality method for the final scan.
|
|---|
| 2075 | * dither_mode can be changed before each call to jpeg_start_output();
|
|---|
| 2076 | of course this has no impact if not using color quantization. Typically
|
|---|
| 2077 | one would use ordered dither for initial passes, then switch to
|
|---|
| 2078 | Floyd-Steinberg dither for the final pass. Caution: changing dither mode
|
|---|
| 2079 | can cause more memory to be allocated by the library. Although the amount
|
|---|
| 2080 | of memory involved is not large (a scanline or so), it may cause the
|
|---|
| 2081 | initial max_memory_to_use specification to be exceeded, which in the worst
|
|---|
| 2082 | case would result in an out-of-memory failure.
|
|---|
| 2083 | * do_block_smoothing can be changed before each call to jpeg_start_output().
|
|---|
| 2084 | This setting is relevant only when decoding a progressive JPEG image.
|
|---|
| 2085 | During the first DC-only scan, block smoothing provides a very "fuzzy" look
|
|---|
| 2086 | instead of the very "blocky" look seen without it; which is better seems a
|
|---|
| 2087 | matter of personal taste. But block smoothing is nearly always a win
|
|---|
| 2088 | during later stages, especially when decoding a successive-approximation
|
|---|
| 2089 | image: smoothing helps to hide the slight blockiness that otherwise shows
|
|---|
| 2090 | up on smooth gradients until the lowest coefficient bits are sent.
|
|---|
| 2091 | * Color quantization mode can be changed under the rules described below.
|
|---|
| 2092 | You *cannot* change between full-color and quantized output (because that
|
|---|
| 2093 | would alter the required I/O buffer sizes), but you can change which
|
|---|
| 2094 | quantization method is used.
|
|---|
| 2095 |
|
|---|
| 2096 | When generating color-quantized output, changing quantization method is a
|
|---|
| 2097 | very useful way of switching between high-speed and high-quality display.
|
|---|
| 2098 | The library allows you to change among its three quantization methods:
|
|---|
| 2099 | 1. Single-pass quantization to a fixed color cube.
|
|---|
| 2100 | Selected by cinfo.two_pass_quantize = FALSE and cinfo.colormap = NULL.
|
|---|
| 2101 | 2. Single-pass quantization to an application-supplied colormap.
|
|---|
| 2102 | Selected by setting cinfo.colormap to point to the colormap (the value of
|
|---|
| 2103 | two_pass_quantize is ignored); also set cinfo.actual_number_of_colors.
|
|---|
| 2104 | 3. Two-pass quantization to a colormap chosen specifically for the image.
|
|---|
| 2105 | Selected by cinfo.two_pass_quantize = TRUE and cinfo.colormap = NULL.
|
|---|
| 2106 | (This is the default setting selected by jpeg_read_header, but it is
|
|---|
| 2107 | probably NOT what you want for the first pass of progressive display!)
|
|---|
| 2108 | These methods offer successively better quality and lesser speed. However,
|
|---|
| 2109 | only the first method is available for quantizing in non-RGB color spaces.
|
|---|
| 2110 |
|
|---|
| 2111 | IMPORTANT: because the different quantizer methods have very different
|
|---|
| 2112 | working-storage requirements, the library requires you to indicate which
|
|---|
| 2113 | one(s) you intend to use before you call jpeg_start_decompress(). (If we did
|
|---|
| 2114 | not require this, the max_memory_to_use setting would be a complete fiction.)
|
|---|
| 2115 | You do this by setting one or more of these three cinfo fields to TRUE:
|
|---|
| 2116 | enable_1pass_quant Fixed color cube colormap
|
|---|
| 2117 | enable_external_quant Externally-supplied colormap
|
|---|
| 2118 | enable_2pass_quant Two-pass custom colormap
|
|---|
| 2119 | All three are initialized FALSE by jpeg_read_header(). But
|
|---|
| 2120 | jpeg_start_decompress() automatically sets TRUE the one selected by the
|
|---|
| 2121 | current two_pass_quantize and colormap settings, so you only need to set the
|
|---|
| 2122 | enable flags for any other quantization methods you plan to change to later.
|
|---|
| 2123 |
|
|---|
| 2124 | After setting the enable flags correctly at jpeg_start_decompress() time, you
|
|---|
| 2125 | can change to any enabled quantization method by setting two_pass_quantize
|
|---|
| 2126 | and colormap properly just before calling jpeg_start_output(). The following
|
|---|
| 2127 | special rules apply:
|
|---|
| 2128 | 1. You must explicitly set cinfo.colormap to NULL when switching to 1-pass
|
|---|
| 2129 | or 2-pass mode from a different mode, or when you want the 2-pass
|
|---|
| 2130 | quantizer to be re-run to generate a new colormap.
|
|---|
| 2131 | 2. To switch to an external colormap, or to change to a different external
|
|---|
| 2132 | colormap than was used on the prior pass, you must call
|
|---|
| 2133 | jpeg_new_colormap() after setting cinfo.colormap.
|
|---|
| 2134 | NOTE: if you want to use the same colormap as was used in the prior pass,
|
|---|
| 2135 | you should not do either of these things. This will save some nontrivial
|
|---|
| 2136 | switchover costs.
|
|---|
| 2137 | (These requirements exist because cinfo.colormap will always be non-NULL
|
|---|
| 2138 | after completing a prior output pass, since both the 1-pass and 2-pass
|
|---|
| 2139 | quantizers set it to point to their output colormaps. Thus you have to
|
|---|
| 2140 | do one of these two things to notify the library that something has changed.
|
|---|
| 2141 | Yup, it's a bit klugy, but it's necessary to do it this way for backwards
|
|---|
| 2142 | compatibility.)
|
|---|
| 2143 |
|
|---|
| 2144 | Note that in buffered-image mode, the library generates any requested colormap
|
|---|
| 2145 | during jpeg_start_output(), not during jpeg_start_decompress().
|
|---|
| 2146 |
|
|---|
| 2147 | When using two-pass quantization, jpeg_start_output() makes a pass over the
|
|---|
| 2148 | buffered image to determine the optimum color map; it therefore may take a
|
|---|
| 2149 | significant amount of time, whereas ordinarily it does little work. The
|
|---|
| 2150 | progress monitor hook is called during this pass, if defined. It is also
|
|---|
| 2151 | important to realize that if the specified target scan number is greater than
|
|---|
| 2152 | or equal to the current input scan number, jpeg_start_output() will attempt
|
|---|
| 2153 | to consume input as it makes this pass. If you use a suspending data source,
|
|---|
| 2154 | you need to check for a FALSE return from jpeg_start_output() under these
|
|---|
| 2155 | conditions. The combination of 2-pass quantization and a not-yet-fully-read
|
|---|
| 2156 | target scan is the only case in which jpeg_start_output() will consume input.
|
|---|
| 2157 |
|
|---|
| 2158 |
|
|---|
| 2159 | Application authors who support buffered-image mode may be tempted to use it
|
|---|
| 2160 | for all JPEG images, even single-scan ones. This will work, but it is
|
|---|
| 2161 | inefficient: there is no need to create an image-sized coefficient buffer for
|
|---|
| 2162 | single-scan images. Requesting buffered-image mode for such an image wastes
|
|---|
| 2163 | memory. Worse, it can cost time on large images, since the buffered data has
|
|---|
| 2164 | to be swapped out or written to a temporary file. If you are concerned about
|
|---|
| 2165 | maximum performance on baseline JPEG files, you should use buffered-image
|
|---|
| 2166 | mode only when the incoming file actually has multiple scans. This can be
|
|---|
| 2167 | tested by calling jpeg_has_multiple_scans(), which will return a correct
|
|---|
| 2168 | result at any time after jpeg_read_header() completes.
|
|---|
| 2169 |
|
|---|
| 2170 | It is also worth noting that when you use jpeg_consume_input() to let input
|
|---|
| 2171 | processing get ahead of output processing, the resulting pattern of access to
|
|---|
| 2172 | the coefficient buffer is quite nonsequential. It's best to use the memory
|
|---|
| 2173 | manager jmemnobs.c if you can (ie, if you have enough real or virtual main
|
|---|
| 2174 | memory). If not, at least make sure that max_memory_to_use is set as high as
|
|---|
| 2175 | possible. If the JPEG memory manager has to use a temporary file, you will
|
|---|
| 2176 | probably see a lot of disk traffic and poor performance. (This could be
|
|---|
| 2177 | improved with additional work on the memory manager, but we haven't gotten
|
|---|
| 2178 | around to it yet.)
|
|---|
| 2179 |
|
|---|
| 2180 | In some applications it may be convenient to use jpeg_consume_input() for all
|
|---|
| 2181 | input processing, including reading the initial markers; that is, you may
|
|---|
| 2182 | wish to call jpeg_consume_input() instead of jpeg_read_header() during
|
|---|
| 2183 | startup. This works, but note that you must check for JPEG_REACHED_SOS and
|
|---|
| 2184 | JPEG_REACHED_EOI return codes as the equivalent of jpeg_read_header's codes.
|
|---|
| 2185 | Once the first SOS marker has been reached, you must call
|
|---|
| 2186 | jpeg_start_decompress() before jpeg_consume_input() will consume more input;
|
|---|
| 2187 | it'll just keep returning JPEG_REACHED_SOS until you do. If you read a
|
|---|
| 2188 | tables-only file this way, jpeg_consume_input() will return JPEG_REACHED_EOI
|
|---|
| 2189 | without ever returning JPEG_REACHED_SOS; be sure to check for this case.
|
|---|
| 2190 | If this happens, the decompressor will not read any more input until you call
|
|---|
| 2191 | jpeg_abort() to reset it. It is OK to call jpeg_consume_input() even when not
|
|---|
| 2192 | using buffered-image mode, but in that case it's basically a no-op after the
|
|---|
| 2193 | initial markers have been read: it will just return JPEG_SUSPENDED.
|
|---|
| 2194 |
|
|---|
| 2195 |
|
|---|
| 2196 | Abbreviated datastreams and multiple images
|
|---|
| 2197 | -------------------------------------------
|
|---|
| 2198 |
|
|---|
| 2199 | A JPEG compression or decompression object can be reused to process multiple
|
|---|
| 2200 | images. This saves a small amount of time per image by eliminating the
|
|---|
| 2201 | "create" and "destroy" operations, but that isn't the real purpose of the
|
|---|
| 2202 | feature. Rather, reuse of an object provides support for abbreviated JPEG
|
|---|
| 2203 | datastreams. Object reuse can also simplify processing a series of images in
|
|---|
| 2204 | a single input or output file. This section explains these features.
|
|---|
| 2205 |
|
|---|
| 2206 | A JPEG file normally contains several hundred bytes worth of quantization
|
|---|
| 2207 | and Huffman tables. In a situation where many images will be stored or
|
|---|
| 2208 | transmitted with identical tables, this may represent an annoying overhead.
|
|---|
| 2209 | The JPEG standard therefore permits tables to be omitted. The standard
|
|---|
| 2210 | defines three classes of JPEG datastreams:
|
|---|
| 2211 | * "Interchange" datastreams contain an image and all tables needed to decode
|
|---|
| 2212 | the image. These are the usual kind of JPEG file.
|
|---|
| 2213 | * "Abbreviated image" datastreams contain an image, but are missing some or
|
|---|
| 2214 | all of the tables needed to decode that image.
|
|---|
| 2215 | * "Abbreviated table specification" (henceforth "tables-only") datastreams
|
|---|
| 2216 | contain only table specifications.
|
|---|
| 2217 | To decode an abbreviated image, it is necessary to load the missing table(s)
|
|---|
| 2218 | into the decoder beforehand. This can be accomplished by reading a separate
|
|---|
| 2219 | tables-only file. A variant scheme uses a series of images in which the first
|
|---|
| 2220 | image is an interchange (complete) datastream, while subsequent ones are
|
|---|
| 2221 | abbreviated and rely on the tables loaded by the first image. It is assumed
|
|---|
| 2222 | that once the decoder has read a table, it will remember that table until a
|
|---|
| 2223 | new definition for the same table number is encountered.
|
|---|
| 2224 |
|
|---|
| 2225 | It is the application designer's responsibility to figure out how to associate
|
|---|
| 2226 | the correct tables with an abbreviated image. While abbreviated datastreams
|
|---|
| 2227 | can be useful in a closed environment, their use is strongly discouraged in
|
|---|
| 2228 | any situation where data exchange with other applications might be needed.
|
|---|
| 2229 | Caveat designer.
|
|---|
| 2230 |
|
|---|
| 2231 | The JPEG library provides support for reading and writing any combination of
|
|---|
| 2232 | tables-only datastreams and abbreviated images. In both compression and
|
|---|
| 2233 | decompression objects, a quantization or Huffman table will be retained for
|
|---|
| 2234 | the lifetime of the object, unless it is overwritten by a new table definition.
|
|---|
| 2235 |
|
|---|
| 2236 |
|
|---|
| 2237 | To create abbreviated image datastreams, it is only necessary to tell the
|
|---|
| 2238 | compressor not to emit some or all of the tables it is using. Each
|
|---|
| 2239 | quantization and Huffman table struct contains a boolean field "sent_table",
|
|---|
| 2240 | which normally is initialized to FALSE. For each table used by the image, the
|
|---|
| 2241 | header-writing process emits the table and sets sent_table = TRUE unless it is
|
|---|
| 2242 | already TRUE. (In normal usage, this prevents outputting the same table
|
|---|
| 2243 | definition multiple times, as would otherwise occur because the chroma
|
|---|
| 2244 | components typically share tables.) Thus, setting this field to TRUE before
|
|---|
| 2245 | calling jpeg_start_compress() will prevent the table from being written at
|
|---|
| 2246 | all.
|
|---|
| 2247 |
|
|---|
| 2248 | If you want to create a "pure" abbreviated image file containing no tables,
|
|---|
| 2249 | just call "jpeg_suppress_tables(&cinfo, TRUE)" after constructing all the
|
|---|
| 2250 | tables. If you want to emit some but not all tables, you'll need to set the
|
|---|
| 2251 | individual sent_table fields directly.
|
|---|
| 2252 |
|
|---|
| 2253 | To create an abbreviated image, you must also call jpeg_start_compress()
|
|---|
| 2254 | with a second parameter of FALSE, not TRUE. Otherwise jpeg_start_compress()
|
|---|
| 2255 | will force all the sent_table fields to FALSE. (This is a safety feature to
|
|---|
| 2256 | prevent abbreviated images from being created accidentally.)
|
|---|
| 2257 |
|
|---|
| 2258 | To create a tables-only file, perform the same parameter setup that you
|
|---|
| 2259 | normally would, but instead of calling jpeg_start_compress() and so on, call
|
|---|
| 2260 | jpeg_write_tables(&cinfo). This will write an abbreviated datastream
|
|---|
| 2261 | containing only SOI, DQT and/or DHT markers, and EOI. All the quantization
|
|---|
| 2262 | and Huffman tables that are currently defined in the compression object will
|
|---|
| 2263 | be emitted unless their sent_tables flag is already TRUE, and then all the
|
|---|
| 2264 | sent_tables flags will be set TRUE.
|
|---|
| 2265 |
|
|---|
| 2266 | A sure-fire way to create matching tables-only and abbreviated image files
|
|---|
| 2267 | is to proceed as follows:
|
|---|
| 2268 |
|
|---|
| 2269 | create JPEG compression object
|
|---|
| 2270 | set JPEG parameters
|
|---|
| 2271 | set destination to tables-only file
|
|---|
| 2272 | jpeg_write_tables(&cinfo);
|
|---|
| 2273 | set destination to image file
|
|---|
| 2274 | jpeg_start_compress(&cinfo, FALSE);
|
|---|
| 2275 | write data...
|
|---|
| 2276 | jpeg_finish_compress(&cinfo);
|
|---|
| 2277 |
|
|---|
| 2278 | Since the JPEG parameters are not altered between writing the table file and
|
|---|
| 2279 | the abbreviated image file, the same tables are sure to be used. Of course,
|
|---|
| 2280 | you can repeat the jpeg_start_compress() ... jpeg_finish_compress() sequence
|
|---|
| 2281 | many times to produce many abbreviated image files matching the table file.
|
|---|
| 2282 |
|
|---|
| 2283 | You cannot suppress output of the computed Huffman tables when Huffman
|
|---|
| 2284 | optimization is selected. (If you could, there'd be no way to decode the
|
|---|
| 2285 | image...) Generally, you don't want to set optimize_coding = TRUE when
|
|---|
| 2286 | you are trying to produce abbreviated files.
|
|---|
| 2287 |
|
|---|
| 2288 | In some cases you might want to compress an image using tables which are
|
|---|
| 2289 | not stored in the application, but are defined in an interchange or
|
|---|
| 2290 | tables-only file readable by the application. This can be done by setting up
|
|---|
| 2291 | a JPEG decompression object to read the specification file, then copying the
|
|---|
| 2292 | tables into your compression object. See jpeg_copy_critical_parameters()
|
|---|
| 2293 | for an example of copying quantization tables.
|
|---|
| 2294 |
|
|---|
| 2295 |
|
|---|
| 2296 | To read abbreviated image files, you simply need to load the proper tables
|
|---|
| 2297 | into the decompression object before trying to read the abbreviated image.
|
|---|
| 2298 | If the proper tables are stored in the application program, you can just
|
|---|
| 2299 | allocate the table structs and fill in their contents directly. For example,
|
|---|
| 2300 | to load a fixed quantization table into table slot "n":
|
|---|
| 2301 |
|
|---|
| 2302 | if (cinfo.quant_tbl_ptrs[n] == NULL)
|
|---|
| 2303 | cinfo.quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) &cinfo);
|
|---|
| 2304 | quant_ptr = cinfo.quant_tbl_ptrs[n]; /* quant_ptr is JQUANT_TBL* */
|
|---|
| 2305 | for (i = 0; i < 64; i++) {
|
|---|
| 2306 | /* Qtable[] is desired quantization table, in natural array order */
|
|---|
| 2307 | quant_ptr->quantval[i] = Qtable[i];
|
|---|
| 2308 | }
|
|---|
| 2309 |
|
|---|
| 2310 | Code to load a fixed Huffman table is typically (for AC table "n"):
|
|---|
| 2311 |
|
|---|
| 2312 | if (cinfo.ac_huff_tbl_ptrs[n] == NULL)
|
|---|
| 2313 | cinfo.ac_huff_tbl_ptrs[n] = jpeg_alloc_huff_table((j_common_ptr) &cinfo);
|
|---|
| 2314 | huff_ptr = cinfo.ac_huff_tbl_ptrs[n]; /* huff_ptr is JHUFF_TBL* */
|
|---|
| 2315 | for (i = 1; i <= 16; i++) {
|
|---|
| 2316 | /* counts[i] is number of Huffman codes of length i bits, i=1..16 */
|
|---|
| 2317 | huff_ptr->bits[i] = counts[i];
|
|---|
| 2318 | }
|
|---|
| 2319 | for (i = 0; i < 256; i++) {
|
|---|
| 2320 | /* symbols[] is the list of Huffman symbols, in code-length order */
|
|---|
| 2321 | huff_ptr->huffval[i] = symbols[i];
|
|---|
| 2322 | }
|
|---|
| 2323 |
|
|---|
| 2324 | (Note that trying to set cinfo.quant_tbl_ptrs[n] to point directly at a
|
|---|
| 2325 | constant JQUANT_TBL object is not safe. If the incoming file happened to
|
|---|
| 2326 | contain a quantization table definition, your master table would get
|
|---|
| 2327 | overwritten! Instead allocate a working table copy and copy the master table
|
|---|
| 2328 | into it, as illustrated above. Ditto for Huffman tables, of course.)
|
|---|
| 2329 |
|
|---|
| 2330 | You might want to read the tables from a tables-only file, rather than
|
|---|
| 2331 | hard-wiring them into your application. The jpeg_read_header() call is
|
|---|
| 2332 | sufficient to read a tables-only file. You must pass a second parameter of
|
|---|
| 2333 | FALSE to indicate that you do not require an image to be present. Thus, the
|
|---|
| 2334 | typical scenario is
|
|---|
| 2335 |
|
|---|
| 2336 | create JPEG decompression object
|
|---|
| 2337 | set source to tables-only file
|
|---|
| 2338 | jpeg_read_header(&cinfo, FALSE);
|
|---|
| 2339 | set source to abbreviated image file
|
|---|
| 2340 | jpeg_read_header(&cinfo, TRUE);
|
|---|
| 2341 | set decompression parameters
|
|---|
| 2342 | jpeg_start_decompress(&cinfo);
|
|---|
| 2343 | read data...
|
|---|
| 2344 | jpeg_finish_decompress(&cinfo);
|
|---|
| 2345 |
|
|---|
| 2346 | In some cases, you may want to read a file without knowing whether it contains
|
|---|
| 2347 | an image or just tables. In that case, pass FALSE and check the return value
|
|---|
| 2348 | from jpeg_read_header(): it will be JPEG_HEADER_OK if an image was found,
|
|---|
| 2349 | JPEG_HEADER_TABLES_ONLY if only tables were found. (A third return value,
|
|---|
| 2350 | JPEG_SUSPENDED, is possible when using a suspending data source manager.)
|
|---|
| 2351 | Note that jpeg_read_header() will not complain if you read an abbreviated
|
|---|
| 2352 | image for which you haven't loaded the missing tables; the missing-table check
|
|---|
| 2353 | occurs later, in jpeg_start_decompress().
|
|---|
| 2354 |
|
|---|
| 2355 |
|
|---|
| 2356 | It is possible to read a series of images from a single source file by
|
|---|
| 2357 | repeating the jpeg_read_header() ... jpeg_finish_decompress() sequence,
|
|---|
| 2358 | without releasing/recreating the JPEG object or the data source module.
|
|---|
| 2359 | (If you did reinitialize, any partial bufferload left in the data source
|
|---|
| 2360 | buffer at the end of one image would be discarded, causing you to lose the
|
|---|
| 2361 | start of the next image.) When you use this method, stored tables are
|
|---|
| 2362 | automatically carried forward, so some of the images can be abbreviated images
|
|---|
| 2363 | that depend on tables from earlier images.
|
|---|
| 2364 |
|
|---|
| 2365 | If you intend to write a series of images into a single destination file,
|
|---|
| 2366 | you might want to make a specialized data destination module that doesn't
|
|---|
| 2367 | flush the output buffer at term_destination() time. This would speed things
|
|---|
| 2368 | up by some trifling amount. Of course, you'd need to remember to flush the
|
|---|
| 2369 | buffer after the last image. You can make the later images be abbreviated
|
|---|
| 2370 | ones by passing FALSE to jpeg_start_compress().
|
|---|
| 2371 |
|
|---|
| 2372 |
|
|---|
| 2373 | Special markers
|
|---|
| 2374 | ---------------
|
|---|
| 2375 |
|
|---|
| 2376 | Some applications may need to insert or extract special data in the JPEG
|
|---|
| 2377 | datastream. The JPEG standard provides marker types "COM" (comment) and
|
|---|
| 2378 | "APP0" through "APP15" (application) to hold application-specific data.
|
|---|
| 2379 | Unfortunately, the use of these markers is not specified by the standard.
|
|---|
| 2380 | COM markers are fairly widely used to hold user-supplied text. The JFIF file
|
|---|
| 2381 | format spec uses APP0 markers with specified initial strings to hold certain
|
|---|
| 2382 | data. Adobe applications use APP14 markers beginning with the string "Adobe"
|
|---|
| 2383 | for miscellaneous data. Other APPn markers are rarely seen, but might
|
|---|
| 2384 | contain almost anything.
|
|---|
| 2385 |
|
|---|
| 2386 | If you wish to store user-supplied text, we recommend you use COM markers
|
|---|
| 2387 | and place readable 7-bit ASCII text in them. Newline conventions are not
|
|---|
| 2388 | standardized --- expect to find LF (Unix style), CR/LF (DOS style), or CR
|
|---|
| 2389 | (Mac style). A robust COM reader should be able to cope with random binary
|
|---|
| 2390 | garbage, including nulls, since some applications generate COM markers
|
|---|
| 2391 | containing non-ASCII junk. (But yours should not be one of them.)
|
|---|
| 2392 |
|
|---|
| 2393 | For program-supplied data, use an APPn marker, and be sure to begin it with an
|
|---|
| 2394 | identifying string so that you can tell whether the marker is actually yours.
|
|---|
| 2395 | It's probably best to avoid using APP0 or APP14 for any private markers.
|
|---|
| 2396 | (NOTE: the upcoming SPIFF standard will use APP8 markers; we recommend you
|
|---|
| 2397 | not use APP8 markers for any private purposes, either.)
|
|---|
| 2398 |
|
|---|
| 2399 | Keep in mind that at most 65533 bytes can be put into one marker, but you
|
|---|
| 2400 | can have as many markers as you like.
|
|---|
| 2401 |
|
|---|
| 2402 | By default, the IJG compression library will write a JFIF APP0 marker if the
|
|---|
| 2403 | selected JPEG colorspace is grayscale or YCbCr, or an Adobe APP14 marker if
|
|---|
| 2404 | the selected colorspace is RGB, CMYK, or YCCK. You can disable this, but
|
|---|
| 2405 | we don't recommend it. The decompression library will recognize JFIF and
|
|---|
| 2406 | Adobe markers and will set the JPEG colorspace properly when one is found.
|
|---|
| 2407 |
|
|---|
| 2408 |
|
|---|
| 2409 | You can write special markers immediately following the datastream header by
|
|---|
| 2410 | calling jpeg_write_marker() after jpeg_start_compress() and before the first
|
|---|
| 2411 | call to jpeg_write_scanlines(). When you do this, the markers appear after
|
|---|
| 2412 | the SOI and the JFIF APP0 and Adobe APP14 markers (if written), but before
|
|---|
| 2413 | all else. Specify the marker type parameter as "JPEG_COM" for COM or
|
|---|
| 2414 | "JPEG_APP0 + n" for APPn. (Actually, jpeg_write_marker will let you write
|
|---|
| 2415 | any marker type, but we don't recommend writing any other kinds of marker.)
|
|---|
| 2416 | For example, to write a user comment string pointed to by comment_text:
|
|---|
| 2417 | jpeg_write_marker(cinfo, JPEG_COM, comment_text, strlen(comment_text));
|
|---|
| 2418 |
|
|---|
| 2419 | If it's not convenient to store all the marker data in memory at once,
|
|---|
| 2420 | you can instead call jpeg_write_m_header() followed by multiple calls to
|
|---|
| 2421 | jpeg_write_m_byte(). If you do it this way, it's your responsibility to
|
|---|
| 2422 | call jpeg_write_m_byte() exactly the number of times given in the length
|
|---|
| 2423 | parameter to jpeg_write_m_header(). (This method lets you empty the
|
|---|
| 2424 | output buffer partway through a marker, which might be important when
|
|---|
| 2425 | using a suspending data destination module. In any case, if you are using
|
|---|
| 2426 | a suspending destination, you should flush its buffer after inserting
|
|---|
| 2427 | any special markers. See "I/O suspension".)
|
|---|
| 2428 |
|
|---|
| 2429 | Or, if you prefer to synthesize the marker byte sequence yourself,
|
|---|
| 2430 | you can just cram it straight into the data destination module.
|
|---|
| 2431 |
|
|---|
| 2432 | If you are writing JFIF 1.02 extension markers (thumbnail images), don't
|
|---|
| 2433 | forget to set cinfo.JFIF_minor_version = 2 so that the encoder will write the
|
|---|
| 2434 | correct JFIF version number in the JFIF header marker. The library's default
|
|---|
| 2435 | is to write version 1.01, but that's wrong if you insert any 1.02 extension
|
|---|
| 2436 | markers. (We could probably get away with just defaulting to 1.02, but there
|
|---|
| 2437 | used to be broken decoders that would complain about unknown minor version
|
|---|
| 2438 | numbers. To reduce compatibility risks it's safest not to write 1.02 unless
|
|---|
| 2439 | you are actually using 1.02 extensions.)
|
|---|
| 2440 |
|
|---|
| 2441 |
|
|---|
| 2442 | When reading, two methods of handling special markers are available:
|
|---|
| 2443 | 1. You can ask the library to save the contents of COM and/or APPn markers
|
|---|
| 2444 | into memory, and then examine them at your leisure afterwards.
|
|---|
| 2445 | 2. You can supply your own routine to process COM and/or APPn markers
|
|---|
| 2446 | on-the-fly as they are read.
|
|---|
| 2447 | The first method is simpler to use, especially if you are using a suspending
|
|---|
| 2448 | data source; writing a marker processor that copes with input suspension is
|
|---|
| 2449 | not easy (consider what happens if the marker is longer than your available
|
|---|
| 2450 | input buffer). However, the second method conserves memory since the marker
|
|---|
| 2451 | data need not be kept around after it's been processed.
|
|---|
| 2452 |
|
|---|
| 2453 | For either method, you'd normally set up marker handling after creating a
|
|---|
| 2454 | decompression object and before calling jpeg_read_header(), because the
|
|---|
| 2455 | markers of interest will typically be near the head of the file and so will
|
|---|
| 2456 | be scanned by jpeg_read_header. Once you've established a marker handling
|
|---|
| 2457 | method, it will be used for the life of that decompression object
|
|---|
| 2458 | (potentially many datastreams), unless you change it. Marker handling is
|
|---|
| 2459 | determined separately for COM markers and for each APPn marker code.
|
|---|
| 2460 |
|
|---|
| 2461 |
|
|---|
| 2462 | To save the contents of special markers in memory, call
|
|---|
| 2463 | jpeg_save_markers(cinfo, marker_code, length_limit)
|
|---|
| 2464 | where marker_code is the marker type to save, JPEG_COM or JPEG_APP0+n.
|
|---|
| 2465 | (To arrange to save all the special marker types, you need to call this
|
|---|
| 2466 | routine 17 times, for COM and APP0-APP15.) If the incoming marker is longer
|
|---|
| 2467 | than length_limit data bytes, only length_limit bytes will be saved; this
|
|---|
| 2468 | parameter allows you to avoid chewing up memory when you only need to see the
|
|---|
| 2469 | first few bytes of a potentially large marker. If you want to save all the
|
|---|
| 2470 | data, set length_limit to 0xFFFF; that is enough since marker lengths are only
|
|---|
| 2471 | 16 bits. As a special case, setting length_limit to 0 prevents that marker
|
|---|
| 2472 | type from being saved at all. (That is the default behavior, in fact.)
|
|---|
| 2473 |
|
|---|
| 2474 | After jpeg_read_header() completes, you can examine the special markers by
|
|---|
| 2475 | following the cinfo->marker_list pointer chain. All the special markers in
|
|---|
| 2476 | the file appear in this list, in order of their occurrence in the file (but
|
|---|
| 2477 | omitting any markers of types you didn't ask for). Both the original data
|
|---|
| 2478 | length and the saved data length are recorded for each list entry; the latter
|
|---|
| 2479 | will not exceed length_limit for the particular marker type. Note that these
|
|---|
| 2480 | lengths exclude the marker length word, whereas the stored representation
|
|---|
| 2481 | within the JPEG file includes it. (Hence the maximum data length is really
|
|---|
| 2482 | only 65533.)
|
|---|
| 2483 |
|
|---|
| 2484 | It is possible that additional special markers appear in the file beyond the
|
|---|
| 2485 | SOS marker at which jpeg_read_header stops; if so, the marker list will be
|
|---|
| 2486 | extended during reading of the rest of the file. This is not expected to be
|
|---|
| 2487 | common, however. If you are short on memory you may want to reset the length
|
|---|
| 2488 | limit to zero for all marker types after finishing jpeg_read_header, to
|
|---|
| 2489 | ensure that the max_memory_to_use setting cannot be exceeded due to addition
|
|---|
| 2490 | of later markers.
|
|---|
| 2491 |
|
|---|
| 2492 | The marker list remains stored until you call jpeg_finish_decompress or
|
|---|
| 2493 | jpeg_abort, at which point the memory is freed and the list is set to empty.
|
|---|
| 2494 | (jpeg_destroy also releases the storage, of course.)
|
|---|
| 2495 |
|
|---|
| 2496 | Note that the library is internally interested in APP0 and APP14 markers;
|
|---|
| 2497 | if you try to set a small nonzero length limit on these types, the library
|
|---|
| 2498 | will silently force the length up to the minimum it wants. (But you can set
|
|---|
| 2499 | a zero length limit to prevent them from being saved at all.) Also, in a
|
|---|
| 2500 | 16-bit environment, the maximum length limit may be constrained to less than
|
|---|
| 2501 | 65533 by malloc() limitations. It is therefore best not to assume that the
|
|---|
| 2502 | effective length limit is exactly what you set it to be.
|
|---|
| 2503 |
|
|---|
| 2504 |
|
|---|
| 2505 | If you want to supply your own marker-reading routine, you do it by calling
|
|---|
| 2506 | jpeg_set_marker_processor(). A marker processor routine must have the
|
|---|
| 2507 | signature
|
|---|
| 2508 | boolean jpeg_marker_parser_method (j_decompress_ptr cinfo)
|
|---|
| 2509 | Although the marker code is not explicitly passed, the routine can find it
|
|---|
| 2510 | in cinfo->unread_marker. At the time of call, the marker proper has been
|
|---|
| 2511 | read from the data source module. The processor routine is responsible for
|
|---|
| 2512 | reading the marker length word and the remaining parameter bytes, if any.
|
|---|
| 2513 | Return TRUE to indicate success. (FALSE should be returned only if you are
|
|---|
| 2514 | using a suspending data source and it tells you to suspend. See the standard
|
|---|
| 2515 | marker processors in jdmarker.c for appropriate coding methods if you need to
|
|---|
| 2516 | use a suspending data source.)
|
|---|
| 2517 |
|
|---|
| 2518 | If you override the default APP0 or APP14 processors, it is up to you to
|
|---|
| 2519 | recognize JFIF and Adobe markers if you want colorspace recognition to occur
|
|---|
| 2520 | properly. We recommend copying and extending the default processors if you
|
|---|
| 2521 | want to do that. (A better idea is to save these marker types for later
|
|---|
| 2522 | examination by calling jpeg_save_markers(); that method doesn't interfere
|
|---|
| 2523 | with the library's own processing of these markers.)
|
|---|
| 2524 |
|
|---|
| 2525 | jpeg_set_marker_processor() and jpeg_save_markers() are mutually exclusive
|
|---|
| 2526 | --- if you call one it overrides any previous call to the other, for the
|
|---|
| 2527 | particular marker type specified.
|
|---|
| 2528 |
|
|---|
| 2529 | A simple example of an external COM processor can be found in djpeg.c.
|
|---|
| 2530 | Also, see jpegtran.c for an example of using jpeg_save_markers.
|
|---|
| 2531 |
|
|---|
| 2532 |
|
|---|
| 2533 | Raw (downsampled) image data
|
|---|
| 2534 | ----------------------------
|
|---|
| 2535 |
|
|---|
| 2536 | Some applications need to supply already-downsampled image data to the JPEG
|
|---|
| 2537 | compressor, or to receive raw downsampled data from the decompressor. The
|
|---|
| 2538 | library supports this requirement by allowing the application to write or
|
|---|
| 2539 | read raw data, bypassing the normal preprocessing or postprocessing steps.
|
|---|
| 2540 | The interface is different from the standard one and is somewhat harder to
|
|---|
| 2541 | use. If your interest is merely in bypassing color conversion, we recommend
|
|---|
| 2542 | that you use the standard interface and simply set jpeg_color_space =
|
|---|
| 2543 | in_color_space (or jpeg_color_space = out_color_space for decompression).
|
|---|
| 2544 | The mechanism described in this section is necessary only to supply or
|
|---|
| 2545 | receive downsampled image data, in which not all components have the same
|
|---|
| 2546 | dimensions.
|
|---|
| 2547 |
|
|---|
| 2548 |
|
|---|
| 2549 | To compress raw data, you must supply the data in the colorspace to be used
|
|---|
| 2550 | in the JPEG file (please read the earlier section on Special color spaces)
|
|---|
| 2551 | and downsampled to the sampling factors specified in the JPEG parameters.
|
|---|
| 2552 | You must supply the data in the format used internally by the JPEG library,
|
|---|
| 2553 | namely a JSAMPIMAGE array. This is an array of pointers to two-dimensional
|
|---|
| 2554 | arrays, each of type JSAMPARRAY. Each 2-D array holds the values for one
|
|---|
| 2555 | color component. This structure is necessary since the components are of
|
|---|
| 2556 | different sizes. If the image dimensions are not a multiple of the MCU size,
|
|---|
| 2557 | you must also pad the data correctly (usually, this is done by replicating
|
|---|
| 2558 | the last column and/or row). The data must be padded to a multiple of a DCT
|
|---|
| 2559 | block in each component: that is, each downsampled row must contain a
|
|---|
| 2560 | multiple of 8 valid samples, and there must be a multiple of 8 sample rows
|
|---|
| 2561 | for each component. (For applications such as conversion of digital TV
|
|---|
| 2562 | images, the standard image size is usually a multiple of the DCT block size,
|
|---|
| 2563 | so that no padding need actually be done.)
|
|---|
| 2564 |
|
|---|
| 2565 | The procedure for compression of raw data is basically the same as normal
|
|---|
| 2566 | compression, except that you call jpeg_write_raw_data() in place of
|
|---|
| 2567 | jpeg_write_scanlines(). Before calling jpeg_start_compress(), you must do
|
|---|
| 2568 | the following:
|
|---|
| 2569 | * Set cinfo->raw_data_in to TRUE. (It is set FALSE by jpeg_set_defaults().)
|
|---|
| 2570 | This notifies the library that you will be supplying raw data.
|
|---|
| 2571 | Furthermore, set cinfo->do_fancy_downsampling to FALSE if you want to use
|
|---|
| 2572 | real downsampled data. (It is set TRUE by jpeg_set_defaults().)
|
|---|
| 2573 | * Ensure jpeg_color_space is correct --- an explicit jpeg_set_colorspace()
|
|---|
| 2574 | call is a good idea. Note that since color conversion is bypassed,
|
|---|
| 2575 | in_color_space is ignored, except that jpeg_set_defaults() uses it to
|
|---|
| 2576 | choose the default jpeg_color_space setting.
|
|---|
| 2577 | * Ensure the sampling factors, cinfo->comp_info[i].h_samp_factor and
|
|---|
| 2578 | cinfo->comp_info[i].v_samp_factor, are correct. Since these indicate the
|
|---|
| 2579 | dimensions of the data you are supplying, it's wise to set them
|
|---|
| 2580 | explicitly, rather than assuming the library's defaults are what you want.
|
|---|
| 2581 |
|
|---|
| 2582 | To pass raw data to the library, call jpeg_write_raw_data() in place of
|
|---|
| 2583 | jpeg_write_scanlines(). The two routines work similarly except that
|
|---|
| 2584 | jpeg_write_raw_data takes a JSAMPIMAGE data array rather than JSAMPARRAY.
|
|---|
| 2585 | The scanlines count passed to and returned from jpeg_write_raw_data is
|
|---|
| 2586 | measured in terms of the component with the largest v_samp_factor.
|
|---|
| 2587 |
|
|---|
| 2588 | jpeg_write_raw_data() processes one MCU row per call, which is to say
|
|---|
| 2589 | v_samp_factor*DCTSIZE sample rows of each component. The passed num_lines
|
|---|
| 2590 | value must be at least max_v_samp_factor*DCTSIZE, and the return value will
|
|---|
| 2591 | be exactly that amount (or possibly some multiple of that amount, in future
|
|---|
| 2592 | library versions). This is true even on the last call at the bottom of the
|
|---|
| 2593 | image; don't forget to pad your data as necessary.
|
|---|
| 2594 |
|
|---|
| 2595 | The required dimensions of the supplied data can be computed for each
|
|---|
| 2596 | component as
|
|---|
| 2597 | cinfo->comp_info[i].width_in_blocks*DCTSIZE samples per row
|
|---|
| 2598 | cinfo->comp_info[i].height_in_blocks*DCTSIZE rows in image
|
|---|
| 2599 | after jpeg_start_compress() has initialized those fields. If the valid data
|
|---|
| 2600 | is smaller than this, it must be padded appropriately. For some sampling
|
|---|
| 2601 | factors and image sizes, additional dummy DCT blocks are inserted to make
|
|---|
| 2602 | the image a multiple of the MCU dimensions. The library creates such dummy
|
|---|
| 2603 | blocks itself; it does not read them from your supplied data. Therefore you
|
|---|
| 2604 | need never pad by more than DCTSIZE samples. An example may help here.
|
|---|
| 2605 | Assume 2h2v downsampling of YCbCr data, that is
|
|---|
| 2606 | cinfo->comp_info[0].h_samp_factor = 2 for Y
|
|---|
| 2607 | cinfo->comp_info[0].v_samp_factor = 2
|
|---|
| 2608 | cinfo->comp_info[1].h_samp_factor = 1 for Cb
|
|---|
| 2609 | cinfo->comp_info[1].v_samp_factor = 1
|
|---|
| 2610 | cinfo->comp_info[2].h_samp_factor = 1 for Cr
|
|---|
| 2611 | cinfo->comp_info[2].v_samp_factor = 1
|
|---|
| 2612 | and suppose that the nominal image dimensions (cinfo->image_width and
|
|---|
| 2613 | cinfo->image_height) are 101x101 pixels. Then jpeg_start_compress() will
|
|---|
| 2614 | compute downsampled_width = 101 and width_in_blocks = 13 for Y,
|
|---|
| 2615 | downsampled_width = 51 and width_in_blocks = 7 for Cb and Cr (and the same
|
|---|
| 2616 | for the height fields). You must pad the Y data to at least 13*8 = 104
|
|---|
| 2617 | columns and rows, the Cb/Cr data to at least 7*8 = 56 columns and rows. The
|
|---|
| 2618 | MCU height is max_v_samp_factor = 2 DCT rows so you must pass at least 16
|
|---|
| 2619 | scanlines on each call to jpeg_write_raw_data(), which is to say 16 actual
|
|---|
| 2620 | sample rows of Y and 8 each of Cb and Cr. A total of 7 MCU rows are needed,
|
|---|
| 2621 | so you must pass a total of 7*16 = 112 "scanlines". The last DCT block row
|
|---|
| 2622 | of Y data is dummy, so it doesn't matter what you pass for it in the data
|
|---|
| 2623 | arrays, but the scanlines count must total up to 112 so that all of the Cb
|
|---|
| 2624 | and Cr data gets passed.
|
|---|
| 2625 |
|
|---|
| 2626 | Output suspension is supported with raw-data compression: if the data
|
|---|
| 2627 | destination module suspends, jpeg_write_raw_data() will return 0.
|
|---|
| 2628 | In this case the same data rows must be passed again on the next call.
|
|---|
| 2629 |
|
|---|
| 2630 |
|
|---|
| 2631 | Decompression with raw data output implies bypassing all postprocessing.
|
|---|
| 2632 | You must deal with the color space and sampling factors present in the
|
|---|
| 2633 | incoming file. If your application only handles, say, 2h1v YCbCr data,
|
|---|
| 2634 | you must check for and fail on other color spaces or other sampling factors.
|
|---|
| 2635 | The library will not convert to a different color space for you.
|
|---|
| 2636 |
|
|---|
| 2637 | To obtain raw data output, set cinfo->raw_data_out = TRUE before
|
|---|
| 2638 | jpeg_start_decompress() (it is set FALSE by jpeg_read_header()). Be sure to
|
|---|
| 2639 | verify that the color space and sampling factors are ones you can handle.
|
|---|
| 2640 | Furthermore, set cinfo->do_fancy_upsampling = FALSE if you want to get real
|
|---|
| 2641 | downsampled data (it is set TRUE by jpeg_read_header()).
|
|---|
| 2642 | Then call jpeg_read_raw_data() in place of jpeg_read_scanlines(). The
|
|---|
| 2643 | decompression process is otherwise the same as usual.
|
|---|
| 2644 |
|
|---|
| 2645 | jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a
|
|---|
| 2646 | buffer of at least max_v_samp_factor*DCTSIZE scanlines (scanline counting is
|
|---|
| 2647 | the same as for raw-data compression). The buffer you pass must be large
|
|---|
| 2648 | enough to hold the actual data plus padding to DCT-block boundaries. As with
|
|---|
| 2649 | compression, any entirely dummy DCT blocks are not processed so you need not
|
|---|
| 2650 | allocate space for them, but the total scanline count includes them. The
|
|---|
| 2651 | above example of computing buffer dimensions for raw-data compression is
|
|---|
| 2652 | equally valid for decompression.
|
|---|
| 2653 |
|
|---|
| 2654 | Input suspension is supported with raw-data decompression: if the data source
|
|---|
| 2655 | module suspends, jpeg_read_raw_data() will return 0. You can also use
|
|---|
| 2656 | buffered-image mode to read raw data in multiple passes.
|
|---|
| 2657 |
|
|---|
| 2658 |
|
|---|
| 2659 | Really raw data: DCT coefficients
|
|---|
| 2660 | ---------------------------------
|
|---|
| 2661 |
|
|---|
| 2662 | It is possible to read or write the contents of a JPEG file as raw DCT
|
|---|
| 2663 | coefficients. This facility is mainly intended for use in lossless
|
|---|
| 2664 | transcoding between different JPEG file formats. Other possible applications
|
|---|
| 2665 | include lossless cropping of a JPEG image, lossless reassembly of a
|
|---|
| 2666 | multi-strip or multi-tile TIFF/JPEG file into a single JPEG datastream, etc.
|
|---|
| 2667 |
|
|---|
| 2668 | To read the contents of a JPEG file as DCT coefficients, open the file and do
|
|---|
| 2669 | jpeg_read_header() as usual. But instead of calling jpeg_start_decompress()
|
|---|
| 2670 | and jpeg_read_scanlines(), call jpeg_read_coefficients(). This will read the
|
|---|
| 2671 | entire image into a set of virtual coefficient-block arrays, one array per
|
|---|
| 2672 | component. The return value is a pointer to an array of virtual-array
|
|---|
| 2673 | descriptors. Each virtual array can be accessed directly using the JPEG
|
|---|
| 2674 | memory manager's access_virt_barray method (see Memory management, below,
|
|---|
| 2675 | and also read structure.txt's discussion of virtual array handling). Or,
|
|---|
| 2676 | for simple transcoding to a different JPEG file format, the array list can
|
|---|
| 2677 | just be handed directly to jpeg_write_coefficients().
|
|---|
| 2678 |
|
|---|
| 2679 | Each block in the block arrays contains quantized coefficient values in
|
|---|
| 2680 | normal array order (not JPEG zigzag order). The block arrays contain only
|
|---|
| 2681 | DCT blocks containing real data; any entirely-dummy blocks added to fill out
|
|---|
| 2682 | interleaved MCUs at the right or bottom edges of the image are discarded
|
|---|
| 2683 | during reading and are not stored in the block arrays. (The size of each
|
|---|
| 2684 | block array can be determined from the width_in_blocks and height_in_blocks
|
|---|
| 2685 | fields of the component's comp_info entry.) This is also the data format
|
|---|
| 2686 | expected by jpeg_write_coefficients().
|
|---|
| 2687 |
|
|---|
| 2688 | When you are done using the virtual arrays, call jpeg_finish_decompress()
|
|---|
| 2689 | to release the array storage and return the decompression object to an idle
|
|---|
| 2690 | state; or just call jpeg_destroy() if you don't need to reuse the object.
|
|---|
| 2691 |
|
|---|
| 2692 | If you use a suspending data source, jpeg_read_coefficients() will return
|
|---|
| 2693 | NULL if it is forced to suspend; a non-NULL return value indicates successful
|
|---|
| 2694 | completion. You need not test for a NULL return value when using a
|
|---|
| 2695 | non-suspending data source.
|
|---|
| 2696 |
|
|---|
| 2697 | It is also possible to call jpeg_read_coefficients() to obtain access to the
|
|---|
| 2698 | decoder's coefficient arrays during a normal decode cycle in buffered-image
|
|---|
| 2699 | mode. This frammish might be useful for progressively displaying an incoming
|
|---|
| 2700 | image and then re-encoding it without loss. To do this, decode in buffered-
|
|---|
| 2701 | image mode as discussed previously, then call jpeg_read_coefficients() after
|
|---|
| 2702 | the last jpeg_finish_output() call. The arrays will be available for your use
|
|---|
| 2703 | until you call jpeg_finish_decompress().
|
|---|
| 2704 |
|
|---|
| 2705 |
|
|---|
| 2706 | To write the contents of a JPEG file as DCT coefficients, you must provide
|
|---|
| 2707 | the DCT coefficients stored in virtual block arrays. You can either pass
|
|---|
| 2708 | block arrays read from an input JPEG file by jpeg_read_coefficients(), or
|
|---|
| 2709 | allocate virtual arrays from the JPEG compression object and fill them
|
|---|
| 2710 | yourself. In either case, jpeg_write_coefficients() is substituted for
|
|---|
| 2711 | jpeg_start_compress() and jpeg_write_scanlines(). Thus the sequence is
|
|---|
| 2712 | * Create compression object
|
|---|
| 2713 | * Set all compression parameters as necessary
|
|---|
| 2714 | * Request virtual arrays if needed
|
|---|
| 2715 | * jpeg_write_coefficients()
|
|---|
| 2716 | * jpeg_finish_compress()
|
|---|
| 2717 | * Destroy or re-use compression object
|
|---|
| 2718 | jpeg_write_coefficients() is passed a pointer to an array of virtual block
|
|---|
| 2719 | array descriptors; the number of arrays is equal to cinfo.num_components.
|
|---|
| 2720 |
|
|---|
| 2721 | The virtual arrays need only have been requested, not realized, before
|
|---|
| 2722 | jpeg_write_coefficients() is called. A side-effect of
|
|---|
| 2723 | jpeg_write_coefficients() is to realize any virtual arrays that have been
|
|---|
| 2724 | requested from the compression object's memory manager. Thus, when obtaining
|
|---|
| 2725 | the virtual arrays from the compression object, you should fill the arrays
|
|---|
| 2726 | after calling jpeg_write_coefficients(). The data is actually written out
|
|---|
| 2727 | when you call jpeg_finish_compress(); jpeg_write_coefficients() only writes
|
|---|
| 2728 | the file header.
|
|---|
| 2729 |
|
|---|
| 2730 | When writing raw DCT coefficients, it is crucial that the JPEG quantization
|
|---|
| 2731 | tables and sampling factors match the way the data was encoded, or the
|
|---|
| 2732 | resulting file will be invalid. For transcoding from an existing JPEG file,
|
|---|
| 2733 | we recommend using jpeg_copy_critical_parameters(). This routine initializes
|
|---|
| 2734 | all the compression parameters to default values (like jpeg_set_defaults()),
|
|---|
| 2735 | then copies the critical information from a source decompression object.
|
|---|
| 2736 | The decompression object should have just been used to read the entire
|
|---|
| 2737 | JPEG input file --- that is, it should be awaiting jpeg_finish_decompress().
|
|---|
| 2738 |
|
|---|
| 2739 | jpeg_write_coefficients() marks all tables stored in the compression object
|
|---|
| 2740 | as needing to be written to the output file (thus, it acts like
|
|---|
| 2741 | jpeg_start_compress(cinfo, TRUE)). This is for safety's sake, to avoid
|
|---|
| 2742 | emitting abbreviated JPEG files by accident. If you really want to emit an
|
|---|
| 2743 | abbreviated JPEG file, call jpeg_suppress_tables(), or set the tables'
|
|---|
| 2744 | individual sent_table flags, between calling jpeg_write_coefficients() and
|
|---|
| 2745 | jpeg_finish_compress().
|
|---|
| 2746 |
|
|---|
| 2747 |
|
|---|
| 2748 | Progress monitoring
|
|---|
| 2749 | -------------------
|
|---|
| 2750 |
|
|---|
| 2751 | Some applications may need to regain control from the JPEG library every so
|
|---|
| 2752 | often. The typical use of this feature is to produce a percent-done bar or
|
|---|
| 2753 | other progress display. (For a simple example, see cjpeg.c or djpeg.c.)
|
|---|
| 2754 | Although you do get control back frequently during the data-transferring pass
|
|---|
| 2755 | (the jpeg_read_scanlines or jpeg_write_scanlines loop), any additional passes
|
|---|
| 2756 | will occur inside jpeg_finish_compress or jpeg_start_decompress; those
|
|---|
| 2757 | routines may take a long time to execute, and you don't get control back
|
|---|
| 2758 | until they are done.
|
|---|
| 2759 |
|
|---|
| 2760 | You can define a progress-monitor routine which will be called periodically
|
|---|
| 2761 | by the library. No guarantees are made about how often this call will occur,
|
|---|
| 2762 | so we don't recommend you use it for mouse tracking or anything like that.
|
|---|
| 2763 | At present, a call will occur once per MCU row, scanline, or sample row
|
|---|
| 2764 | group, whichever unit is convenient for the current processing mode; so the
|
|---|
| 2765 | wider the image, the longer the time between calls. During the data
|
|---|
| 2766 | transferring pass, only one call occurs per call of jpeg_read_scanlines or
|
|---|
| 2767 | jpeg_write_scanlines, so don't pass a large number of scanlines at once if
|
|---|
| 2768 | you want fine resolution in the progress count. (If you really need to use
|
|---|
| 2769 | the callback mechanism for time-critical tasks like mouse tracking, you could
|
|---|
| 2770 | insert additional calls inside some of the library's inner loops.)
|
|---|
| 2771 |
|
|---|
| 2772 | To establish a progress-monitor callback, create a struct jpeg_progress_mgr,
|
|---|
| 2773 | fill in its progress_monitor field with a pointer to your callback routine,
|
|---|
| 2774 | and set cinfo->progress to point to the struct. The callback will be called
|
|---|
| 2775 | whenever cinfo->progress is non-NULL. (This pointer is set to NULL by
|
|---|
| 2776 | jpeg_create_compress or jpeg_create_decompress; the library will not change
|
|---|
| 2777 | it thereafter. So if you allocate dynamic storage for the progress struct,
|
|---|
| 2778 | make sure it will live as long as the JPEG object does. Allocating from the
|
|---|
| 2779 | JPEG memory manager with lifetime JPOOL_PERMANENT will work nicely.) You
|
|---|
| 2780 | can use the same callback routine for both compression and decompression.
|
|---|
| 2781 |
|
|---|
| 2782 | The jpeg_progress_mgr struct contains four fields which are set by the library:
|
|---|
| 2783 | long pass_counter; /* work units completed in this pass */
|
|---|
| 2784 | long pass_limit; /* total number of work units in this pass */
|
|---|
| 2785 | int completed_passes; /* passes completed so far */
|
|---|
| 2786 | int total_passes; /* total number of passes expected */
|
|---|
| 2787 | During any one pass, pass_counter increases from 0 up to (not including)
|
|---|
| 2788 | pass_limit; the step size is usually but not necessarily 1. The pass_limit
|
|---|
| 2789 | value may change from one pass to another. The expected total number of
|
|---|
| 2790 | passes is in total_passes, and the number of passes already completed is in
|
|---|
| 2791 | completed_passes. Thus the fraction of work completed may be estimated as
|
|---|
| 2792 | completed_passes + (pass_counter/pass_limit)
|
|---|
| 2793 | --------------------------------------------
|
|---|
| 2794 | total_passes
|
|---|
| 2795 | ignoring the fact that the passes may not be equal amounts of work.
|
|---|
| 2796 |
|
|---|
| 2797 | When decompressing, pass_limit can even change within a pass, because it
|
|---|
| 2798 | depends on the number of scans in the JPEG file, which isn't always known in
|
|---|
| 2799 | advance. The computed fraction-of-work-done may jump suddenly (if the library
|
|---|
| 2800 | discovers it has overestimated the number of scans) or even decrease (in the
|
|---|
| 2801 | opposite case). It is not wise to put great faith in the work estimate.
|
|---|
| 2802 |
|
|---|
| 2803 | When using the decompressor's buffered-image mode, the progress monitor work
|
|---|
| 2804 | estimate is likely to be completely unhelpful, because the library has no way
|
|---|
| 2805 | to know how many output passes will be demanded of it. Currently, the library
|
|---|
| 2806 | sets total_passes based on the assumption that there will be one more output
|
|---|
| 2807 | pass if the input file end hasn't yet been read (jpeg_input_complete() isn't
|
|---|
| 2808 | TRUE), but no more output passes if the file end has been reached when the
|
|---|
| 2809 | output pass is started. This means that total_passes will rise as additional
|
|---|
| 2810 | output passes are requested. If you have a way of determining the input file
|
|---|
| 2811 | size, estimating progress based on the fraction of the file that's been read
|
|---|
| 2812 | will probably be more useful than using the library's value.
|
|---|
| 2813 |
|
|---|
| 2814 |
|
|---|
| 2815 | Memory management
|
|---|
| 2816 | -----------------
|
|---|
| 2817 |
|
|---|
| 2818 | This section covers some key facts about the JPEG library's built-in memory
|
|---|
| 2819 | manager. For more info, please read structure.txt's section about the memory
|
|---|
| 2820 | manager, and consult the source code if necessary.
|
|---|
| 2821 |
|
|---|
| 2822 | All memory and temporary file allocation within the library is done via the
|
|---|
| 2823 | memory manager. If necessary, you can replace the "back end" of the memory
|
|---|
| 2824 | manager to control allocation yourself (for example, if you don't want the
|
|---|
| 2825 | library to use malloc() and free() for some reason).
|
|---|
| 2826 |
|
|---|
| 2827 | Some data is allocated "permanently" and will not be freed until the JPEG
|
|---|
| 2828 | object is destroyed. Most data is allocated "per image" and is freed by
|
|---|
| 2829 | jpeg_finish_compress, jpeg_finish_decompress, or jpeg_abort. You can call the
|
|---|
| 2830 | memory manager yourself to allocate structures that will automatically be
|
|---|
| 2831 | freed at these times. Typical code for this is
|
|---|
| 2832 | ptr = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, size);
|
|---|
| 2833 | Use JPOOL_PERMANENT to get storage that lasts as long as the JPEG object.
|
|---|
| 2834 | Use alloc_large instead of alloc_small for anything bigger than a few Kbytes.
|
|---|
| 2835 | There are also alloc_sarray and alloc_barray routines that automatically
|
|---|
| 2836 | build 2-D sample or block arrays.
|
|---|
| 2837 |
|
|---|
| 2838 | The library's minimum space requirements to process an image depend on the
|
|---|
| 2839 | image's width, but not on its height, because the library ordinarily works
|
|---|
| 2840 | with "strip" buffers that are as wide as the image but just a few rows high.
|
|---|
| 2841 | Some operating modes (eg, two-pass color quantization) require full-image
|
|---|
| 2842 | buffers. Such buffers are treated as "virtual arrays": only the current strip
|
|---|
| 2843 | need be in memory, and the rest can be swapped out to a temporary file.
|
|---|
| 2844 |
|
|---|
| 2845 | If you use the simplest memory manager back end (jmemnobs.c), then no
|
|---|
| 2846 | temporary files are used; virtual arrays are simply malloc()'d. Images bigger
|
|---|
| 2847 | than memory can be processed only if your system supports virtual memory.
|
|---|
| 2848 | The other memory manager back ends support temporary files of various flavors
|
|---|
| 2849 | and thus work in machines without virtual memory. They may also be useful on
|
|---|
| 2850 | Unix machines if you need to process images that exceed available swap space.
|
|---|
| 2851 |
|
|---|
| 2852 | When using temporary files, the library will make the in-memory buffers for
|
|---|
| 2853 | its virtual arrays just big enough to stay within a "maximum memory" setting.
|
|---|
| 2854 | Your application can set this limit by setting cinfo->mem->max_memory_to_use
|
|---|
| 2855 | after creating the JPEG object. (Of course, there is still a minimum size for
|
|---|
| 2856 | the buffers, so the max-memory setting is effective only if it is bigger than
|
|---|
| 2857 | the minimum space needed.) If you allocate any large structures yourself, you
|
|---|
| 2858 | must allocate them before jpeg_start_compress() or jpeg_start_decompress() in
|
|---|
| 2859 | order to have them counted against the max memory limit. Also keep in mind
|
|---|
| 2860 | that space allocated with alloc_small() is ignored, on the assumption that
|
|---|
| 2861 | it's too small to be worth worrying about; so a reasonable safety margin
|
|---|
| 2862 | should be left when setting max_memory_to_use.
|
|---|
| 2863 |
|
|---|
| 2864 | If you use the jmemname.c or jmemdos.c memory manager back end, it is
|
|---|
| 2865 | important to clean up the JPEG object properly to ensure that the temporary
|
|---|
| 2866 | files get deleted. (This is especially crucial with jmemdos.c, where the
|
|---|
| 2867 | "temporary files" may be extended-memory segments; if they are not freed,
|
|---|
| 2868 | DOS will require a reboot to recover the memory.) Thus, with these memory
|
|---|
| 2869 | managers, it's a good idea to provide a signal handler that will trap any
|
|---|
| 2870 | early exit from your program. The handler should call either jpeg_abort()
|
|---|
| 2871 | or jpeg_destroy() for any active JPEG objects. A handler is not needed with
|
|---|
| 2872 | jmemnobs.c, and shouldn't be necessary with jmemansi.c or jmemmac.c either,
|
|---|
| 2873 | since the C library is supposed to take care of deleting files made with
|
|---|
| 2874 | tmpfile().
|
|---|
| 2875 |
|
|---|
| 2876 |
|
|---|
| 2877 | Memory usage
|
|---|
| 2878 | ------------
|
|---|
| 2879 |
|
|---|
| 2880 | Working memory requirements while performing compression or decompression
|
|---|
| 2881 | depend on image dimensions, image characteristics (such as colorspace and
|
|---|
| 2882 | JPEG process), and operating mode (application-selected options).
|
|---|
| 2883 |
|
|---|
| 2884 | As of v6b, the decompressor requires:
|
|---|
| 2885 | 1. About 24K in more-or-less-fixed-size data. This varies a bit depending
|
|---|
| 2886 | on operating mode and image characteristics (particularly color vs.
|
|---|
| 2887 | grayscale), but it doesn't depend on image dimensions.
|
|---|
| 2888 | 2. Strip buffers (of size proportional to the image width) for IDCT and
|
|---|
| 2889 | upsampling results. The worst case for commonly used sampling factors
|
|---|
| 2890 | is about 34 bytes * width in pixels for a color image. A grayscale image
|
|---|
| 2891 | only needs about 8 bytes per pixel column.
|
|---|
| 2892 | 3. A full-image DCT coefficient buffer is needed to decode a multi-scan JPEG
|
|---|
| 2893 | file (including progressive JPEGs), or whenever you select buffered-image
|
|---|
| 2894 | mode. This takes 2 bytes/coefficient. At typical 2x2 sampling, that's
|
|---|
| 2895 | 3 bytes per pixel for a color image. Worst case (1x1 sampling) requires
|
|---|
| 2896 | 6 bytes/pixel. For grayscale, figure 2 bytes/pixel.
|
|---|
| 2897 | 4. To perform 2-pass color quantization, the decompressor also needs a
|
|---|
| 2898 | 128K color lookup table and a full-image pixel buffer (3 bytes/pixel).
|
|---|
| 2899 | This does not count any memory allocated by the application, such as a
|
|---|
| 2900 | buffer to hold the final output image.
|
|---|
| 2901 |
|
|---|
| 2902 | The above figures are valid for 8-bit JPEG data precision and a machine with
|
|---|
| 2903 | 32-bit ints. For 12-bit JPEG data, double the size of the strip buffers and
|
|---|
| 2904 | quantization pixel buffer. The "fixed-size" data will be somewhat smaller
|
|---|
| 2905 | with 16-bit ints, larger with 64-bit ints. Also, CMYK or other unusual
|
|---|
| 2906 | color spaces will require different amounts of space.
|
|---|
| 2907 |
|
|---|
| 2908 | The full-image coefficient and pixel buffers, if needed at all, do not
|
|---|
| 2909 | have to be fully RAM resident; you can have the library use temporary
|
|---|
| 2910 | files instead when the total memory usage would exceed a limit you set.
|
|---|
| 2911 | (But if your OS supports virtual memory, it's probably better to just use
|
|---|
| 2912 | jmemnobs and let the OS do the swapping.)
|
|---|
| 2913 |
|
|---|
| 2914 | The compressor's memory requirements are similar, except that it has no need
|
|---|
| 2915 | for color quantization. Also, it needs a full-image DCT coefficient buffer
|
|---|
| 2916 | if Huffman-table optimization is asked for, even if progressive mode is not
|
|---|
| 2917 | requested.
|
|---|
| 2918 |
|
|---|
| 2919 | If you need more detailed information about memory usage in a particular
|
|---|
| 2920 | situation, you can enable the MEM_STATS code in jmemmgr.c.
|
|---|
| 2921 |
|
|---|
| 2922 |
|
|---|
| 2923 | Library compile-time options
|
|---|
| 2924 | ----------------------------
|
|---|
| 2925 |
|
|---|
| 2926 | A number of compile-time options are available by modifying jmorecfg.h.
|
|---|
| 2927 |
|
|---|
| 2928 | The JPEG standard provides for both the baseline 8-bit DCT process and
|
|---|
| 2929 | a 12-bit DCT process. The IJG code supports 12-bit lossy JPEG if you define
|
|---|
| 2930 | BITS_IN_JSAMPLE as 12 rather than 8. Note that this causes JSAMPLE to be
|
|---|
| 2931 | larger than a char, so it affects the surrounding application's image data.
|
|---|
| 2932 | The sample applications cjpeg and djpeg can support 12-bit mode only for PPM
|
|---|
| 2933 | and GIF file formats; you must disable the other file formats to compile a
|
|---|
| 2934 | 12-bit cjpeg or djpeg. (install.txt has more information about that.)
|
|---|
| 2935 | At present, a 12-bit library can handle *only* 12-bit images, not both
|
|---|
| 2936 | precisions. (If you need to include both 8- and 12-bit libraries in a single
|
|---|
| 2937 | application, you could probably do it by defining NEED_SHORT_EXTERNAL_NAMES
|
|---|
| 2938 | for just one of the copies. You'd have to access the 8-bit and 12-bit copies
|
|---|
| 2939 | from separate application source files. This is untested ... if you try it,
|
|---|
| 2940 | we'd like to hear whether it works!)
|
|---|
| 2941 |
|
|---|
| 2942 | Note that a 12-bit library always compresses in Huffman optimization mode,
|
|---|
| 2943 | in order to generate valid Huffman tables. This is necessary because our
|
|---|
| 2944 | default Huffman tables only cover 8-bit data. If you need to output 12-bit
|
|---|
| 2945 | files in one pass, you'll have to supply suitable default Huffman tables.
|
|---|
| 2946 | You may also want to supply your own DCT quantization tables; the existing
|
|---|
| 2947 | quality-scaling code has been developed for 8-bit use, and probably doesn't
|
|---|
| 2948 | generate especially good tables for 12-bit.
|
|---|
| 2949 |
|
|---|
| 2950 | The maximum number of components (color channels) in the image is determined
|
|---|
| 2951 | by MAX_COMPONENTS. The JPEG standard allows up to 255 components, but we
|
|---|
| 2952 | expect that few applications will need more than four or so.
|
|---|
| 2953 |
|
|---|
| 2954 | On machines with unusual data type sizes, you may be able to improve
|
|---|
| 2955 | performance or reduce memory space by tweaking the various typedefs in
|
|---|
| 2956 | jmorecfg.h. In particular, on some RISC CPUs, access to arrays of "short"s
|
|---|
| 2957 | is quite slow; consider trading memory for speed by making JCOEF, INT16, and
|
|---|
| 2958 | UINT16 be "int" or "unsigned int". UINT8 is also a candidate to become int.
|
|---|
| 2959 | You probably don't want to make JSAMPLE be int unless you have lots of memory
|
|---|
| 2960 | to burn.
|
|---|
| 2961 |
|
|---|
| 2962 | You can reduce the size of the library by compiling out various optional
|
|---|
| 2963 | functions. To do this, undefine xxx_SUPPORTED symbols as necessary.
|
|---|
| 2964 |
|
|---|
| 2965 | You can also save a few K by not having text error messages in the library;
|
|---|
| 2966 | the standard error message table occupies about 5Kb. This is particularly
|
|---|
| 2967 | reasonable for embedded applications where there's no good way to display
|
|---|
| 2968 | a message anyway. To do this, remove the creation of the message table
|
|---|
| 2969 | (jpeg_std_message_table[]) from jerror.c, and alter format_message to do
|
|---|
| 2970 | something reasonable without it. You could output the numeric value of the
|
|---|
| 2971 | message code number, for example. If you do this, you can also save a couple
|
|---|
| 2972 | more K by modifying the TRACEMSn() macros in jerror.h to expand to nothing;
|
|---|
| 2973 | you don't need trace capability anyway, right?
|
|---|
| 2974 |
|
|---|
| 2975 |
|
|---|
| 2976 | Portability considerations
|
|---|
| 2977 | --------------------------
|
|---|
| 2978 |
|
|---|
| 2979 | The JPEG library has been written to be extremely portable; the sample
|
|---|
| 2980 | applications cjpeg and djpeg are slightly less so. This section summarizes
|
|---|
| 2981 | the design goals in this area. (If you encounter any bugs that cause the
|
|---|
| 2982 | library to be less portable than is claimed here, we'd appreciate hearing
|
|---|
| 2983 | about them.)
|
|---|
| 2984 |
|
|---|
| 2985 | The code works fine on ANSI C, C++, and pre-ANSI C compilers, using any of
|
|---|
| 2986 | the popular system include file setups, and some not-so-popular ones too.
|
|---|
| 2987 | See install.txt for configuration procedures.
|
|---|
| 2988 |
|
|---|
| 2989 | The code is not dependent on the exact sizes of the C data types. As
|
|---|
| 2990 | distributed, we make the assumptions that
|
|---|
| 2991 | char is at least 8 bits wide
|
|---|
| 2992 | short is at least 16 bits wide
|
|---|
| 2993 | int is at least 16 bits wide
|
|---|
| 2994 | long is at least 32 bits wide
|
|---|
| 2995 | (These are the minimum requirements of the ANSI C standard.) Wider types will
|
|---|
| 2996 | work fine, although memory may be used inefficiently if char is much larger
|
|---|
| 2997 | than 8 bits or short is much bigger than 16 bits. The code should work
|
|---|
| 2998 | equally well with 16- or 32-bit ints.
|
|---|
| 2999 |
|
|---|
| 3000 | In a system where these assumptions are not met, you may be able to make the
|
|---|
| 3001 | code work by modifying the typedefs in jmorecfg.h. However, you will probably
|
|---|
| 3002 | have difficulty if int is less than 16 bits wide, since references to plain
|
|---|
| 3003 | int abound in the code.
|
|---|
| 3004 |
|
|---|
| 3005 | char can be either signed or unsigned, although the code runs faster if an
|
|---|
| 3006 | unsigned char type is available. If char is wider than 8 bits, you will need
|
|---|
| 3007 | to redefine JOCTET and/or provide custom data source/destination managers so
|
|---|
| 3008 | that JOCTET represents exactly 8 bits of data on external storage.
|
|---|
| 3009 |
|
|---|
| 3010 | The JPEG library proper does not assume ASCII representation of characters.
|
|---|
| 3011 | But some of the image file I/O modules in cjpeg/djpeg do have ASCII
|
|---|
| 3012 | dependencies in file-header manipulation; so does cjpeg's select_file_type()
|
|---|
| 3013 | routine.
|
|---|
| 3014 |
|
|---|
| 3015 | The JPEG library does not rely heavily on the C library. In particular, C
|
|---|
| 3016 | stdio is used only by the data source/destination modules and the error
|
|---|
| 3017 | handler, all of which are application-replaceable. (cjpeg/djpeg are more
|
|---|
| 3018 | heavily dependent on stdio.) malloc and free are called only from the memory
|
|---|
| 3019 | manager "back end" module, so you can use a different memory allocator by
|
|---|
| 3020 | replacing that one file.
|
|---|
| 3021 |
|
|---|
| 3022 | The code generally assumes that C names must be unique in the first 15
|
|---|
| 3023 | characters. However, global function names can be made unique in the
|
|---|
| 3024 | first 6 characters by defining NEED_SHORT_EXTERNAL_NAMES.
|
|---|
| 3025 |
|
|---|
| 3026 | More info about porting the code may be gleaned by reading jconfig.txt,
|
|---|
| 3027 | jmorecfg.h, and jinclude.h.
|
|---|
| 3028 |
|
|---|
| 3029 |
|
|---|
| 3030 | Notes for MS-DOS implementors
|
|---|
| 3031 | -----------------------------
|
|---|
| 3032 |
|
|---|
| 3033 | The IJG code is designed to work efficiently in 80x86 "small" or "medium"
|
|---|
| 3034 | memory models (i.e., data pointers are 16 bits unless explicitly declared
|
|---|
| 3035 | "far"; code pointers can be either size). You may be able to use small
|
|---|
| 3036 | model to compile cjpeg or djpeg by itself, but you will probably have to use
|
|---|
| 3037 | medium model for any larger application. This won't make much difference in
|
|---|
| 3038 | performance. You *will* take a noticeable performance hit if you use a
|
|---|
| 3039 | large-data memory model (perhaps 10%-25%), and you should avoid "huge" model
|
|---|
| 3040 | if at all possible.
|
|---|
| 3041 |
|
|---|
| 3042 | The JPEG library typically needs 2Kb-3Kb of stack space. It will also
|
|---|
| 3043 | malloc about 20K-30K of near heap space while executing (and lots of far
|
|---|
| 3044 | heap, but that doesn't count in this calculation). This figure will vary
|
|---|
| 3045 | depending on selected operating mode, and to a lesser extent on image size.
|
|---|
| 3046 | There is also about 5Kb-6Kb of constant data which will be allocated in the
|
|---|
| 3047 | near data segment (about 4Kb of this is the error message table).
|
|---|
| 3048 | Thus you have perhaps 20K available for other modules' static data and near
|
|---|
| 3049 | heap space before you need to go to a larger memory model. The C library's
|
|---|
| 3050 | static data will account for several K of this, but that still leaves a good
|
|---|
| 3051 | deal for your needs. (If you are tight on space, you could reduce the sizes
|
|---|
| 3052 | of the I/O buffers allocated by jdatasrc.c and jdatadst.c, say from 4K to
|
|---|
| 3053 | 1K. Another possibility is to move the error message table to far memory;
|
|---|
| 3054 | this should be doable with only localized hacking on jerror.c.)
|
|---|
| 3055 |
|
|---|
| 3056 | About 2K of the near heap space is "permanent" memory that will not be
|
|---|
| 3057 | released until you destroy the JPEG object. This is only an issue if you
|
|---|
| 3058 | save a JPEG object between compression or decompression operations.
|
|---|
| 3059 |
|
|---|
| 3060 | Far data space may also be a tight resource when you are dealing with large
|
|---|
| 3061 | images. The most memory-intensive case is decompression with two-pass color
|
|---|
| 3062 | quantization, or single-pass quantization to an externally supplied color
|
|---|
| 3063 | map. This requires a 128Kb color lookup table plus strip buffers amounting
|
|---|
| 3064 | to about 40 bytes per column for typical sampling ratios (eg, about 25600
|
|---|
| 3065 | bytes for a 640-pixel-wide image). You may not be able to process wide
|
|---|
| 3066 | images if you have large data structures of your own.
|
|---|
| 3067 |
|
|---|
| 3068 | Of course, all of these concerns vanish if you use a 32-bit flat-memory-model
|
|---|
| 3069 | compiler, such as DJGPP or Watcom C. We highly recommend flat model if you
|
|---|
| 3070 | can use it; the JPEG library is significantly faster in flat model.
|
|---|