[2] | 1 | /*
|
---|
| 2 | * jfdctfst.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
[846] | 5 | * Modified 2003-2009 by Guido Vollbeding.
|
---|
[2] | 6 | * This file is part of the Independent JPEG Group's software.
|
---|
| 7 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 8 | *
|
---|
| 9 | * This file contains a fast, not so accurate integer implementation of the
|
---|
| 10 | * forward DCT (Discrete Cosine Transform).
|
---|
| 11 | *
|
---|
| 12 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
---|
| 13 | * on each column. Direct algorithms are also available, but they are
|
---|
| 14 | * much more complex and seem not to be any faster when reduced to code.
|
---|
| 15 | *
|
---|
| 16 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
---|
| 17 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
---|
| 18 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
---|
| 19 | * JPEG textbook (see REFERENCES section in file README). The following code
|
---|
| 20 | * is based directly on figure 4-8 in P&M.
|
---|
| 21 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
---|
| 22 | * possible to arrange the computation so that many of the multiplies are
|
---|
| 23 | * simple scalings of the final outputs. These multiplies can then be
|
---|
| 24 | * folded into the multiplications or divisions by the JPEG quantization
|
---|
| 25 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
---|
| 26 | * to be done in the DCT itself.
|
---|
| 27 | * The primary disadvantage of this method is that with fixed-point math,
|
---|
| 28 | * accuracy is lost due to imprecise representation of the scaled
|
---|
| 29 | * quantization values. The smaller the quantization table entry, the less
|
---|
| 30 | * precise the scaled value, so this implementation does worse with high-
|
---|
| 31 | * quality-setting files than with low-quality ones.
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 | #define JPEG_INTERNALS
|
---|
| 35 | #include "jinclude.h"
|
---|
| 36 | #include "jpeglib.h"
|
---|
| 37 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
| 38 |
|
---|
| 39 | #ifdef DCT_IFAST_SUPPORTED
|
---|
| 40 |
|
---|
| 41 |
|
---|
| 42 | /*
|
---|
| 43 | * This module is specialized to the case DCTSIZE = 8.
|
---|
| 44 | */
|
---|
| 45 |
|
---|
| 46 | #if DCTSIZE != 8
|
---|
| 47 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
| 48 | #endif
|
---|
| 49 |
|
---|
| 50 |
|
---|
| 51 | /* Scaling decisions are generally the same as in the LL&M algorithm;
|
---|
| 52 | * see jfdctint.c for more details. However, we choose to descale
|
---|
| 53 | * (right shift) multiplication products as soon as they are formed,
|
---|
| 54 | * rather than carrying additional fractional bits into subsequent additions.
|
---|
| 55 | * This compromises accuracy slightly, but it lets us save a few shifts.
|
---|
| 56 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
---|
| 57 | * everywhere except in the multiplications proper; this saves a good deal
|
---|
| 58 | * of work on 16-bit-int machines.
|
---|
| 59 | *
|
---|
| 60 | * Again to save a few shifts, the intermediate results between pass 1 and
|
---|
| 61 | * pass 2 are not upscaled, but are represented only to integral precision.
|
---|
| 62 | *
|
---|
| 63 | * A final compromise is to represent the multiplicative constants to only
|
---|
| 64 | * 8 fractional bits, rather than 13. This saves some shifting work on some
|
---|
| 65 | * machines, and may also reduce the cost of multiplication (since there
|
---|
| 66 | * are fewer one-bits in the constants).
|
---|
| 67 | */
|
---|
| 68 |
|
---|
| 69 | #define CONST_BITS 8
|
---|
| 70 |
|
---|
| 71 |
|
---|
| 72 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
---|
| 73 | * causing a lot of useless floating-point operations at run time.
|
---|
| 74 | * To get around this we use the following pre-calculated constants.
|
---|
| 75 | * If you change CONST_BITS you may want to add appropriate values.
|
---|
| 76 | * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
---|
| 77 | */
|
---|
| 78 |
|
---|
| 79 | #if CONST_BITS == 8
|
---|
| 80 | #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
---|
| 81 | #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
---|
| 82 | #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
---|
| 83 | #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
---|
| 84 | #else
|
---|
| 85 | #define FIX_0_382683433 FIX(0.382683433)
|
---|
| 86 | #define FIX_0_541196100 FIX(0.541196100)
|
---|
| 87 | #define FIX_0_707106781 FIX(0.707106781)
|
---|
| 88 | #define FIX_1_306562965 FIX(1.306562965)
|
---|
| 89 | #endif
|
---|
| 90 |
|
---|
| 91 |
|
---|
| 92 | /* We can gain a little more speed, with a further compromise in accuracy,
|
---|
| 93 | * by omitting the addition in a descaling shift. This yields an incorrectly
|
---|
| 94 | * rounded result half the time...
|
---|
| 95 | */
|
---|
| 96 |
|
---|
| 97 | #ifndef USE_ACCURATE_ROUNDING
|
---|
| 98 | #undef DESCALE
|
---|
| 99 | #define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
---|
| 100 | #endif
|
---|
| 101 |
|
---|
| 102 |
|
---|
| 103 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
---|
| 104 | * descale to yield a DCTELEM result.
|
---|
| 105 | */
|
---|
| 106 |
|
---|
| 107 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
---|
| 108 |
|
---|
| 109 |
|
---|
| 110 | /*
|
---|
| 111 | * Perform the forward DCT on one block of samples.
|
---|
| 112 | */
|
---|
| 113 |
|
---|
| 114 | GLOBAL(void)
|
---|
[846] | 115 | jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
|
---|
[2] | 116 | {
|
---|
| 117 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
| 118 | DCTELEM tmp10, tmp11, tmp12, tmp13;
|
---|
| 119 | DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
---|
| 120 | DCTELEM *dataptr;
|
---|
[846] | 121 | JSAMPROW elemptr;
|
---|
[2] | 122 | int ctr;
|
---|
| 123 | SHIFT_TEMPS
|
---|
| 124 |
|
---|
| 125 | /* Pass 1: process rows. */
|
---|
| 126 |
|
---|
| 127 | dataptr = data;
|
---|
[846] | 128 | for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
---|
| 129 | elemptr = sample_data[ctr] + start_col;
|
---|
| 130 |
|
---|
| 131 | /* Load data into workspace */
|
---|
| 132 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
|
---|
| 133 | tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
|
---|
| 134 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
|
---|
| 135 | tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
|
---|
| 136 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
|
---|
| 137 | tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
|
---|
| 138 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
|
---|
| 139 | tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
|
---|
| 140 |
|
---|
[2] | 141 | /* Even part */
|
---|
[846] | 142 |
|
---|
[2] | 143 | tmp10 = tmp0 + tmp3; /* phase 2 */
|
---|
| 144 | tmp13 = tmp0 - tmp3;
|
---|
| 145 | tmp11 = tmp1 + tmp2;
|
---|
| 146 | tmp12 = tmp1 - tmp2;
|
---|
[846] | 147 |
|
---|
| 148 | /* Apply unsigned->signed conversion */
|
---|
| 149 | dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
|
---|
[2] | 150 | dataptr[4] = tmp10 - tmp11;
|
---|
[846] | 151 |
|
---|
[2] | 152 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
---|
| 153 | dataptr[2] = tmp13 + z1; /* phase 5 */
|
---|
| 154 | dataptr[6] = tmp13 - z1;
|
---|
[846] | 155 |
|
---|
[2] | 156 | /* Odd part */
|
---|
| 157 |
|
---|
| 158 | tmp10 = tmp4 + tmp5; /* phase 2 */
|
---|
| 159 | tmp11 = tmp5 + tmp6;
|
---|
| 160 | tmp12 = tmp6 + tmp7;
|
---|
| 161 |
|
---|
| 162 | /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
---|
| 163 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
---|
| 164 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
---|
| 165 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
---|
| 166 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
---|
| 167 |
|
---|
| 168 | z11 = tmp7 + z3; /* phase 5 */
|
---|
| 169 | z13 = tmp7 - z3;
|
---|
| 170 |
|
---|
| 171 | dataptr[5] = z13 + z2; /* phase 6 */
|
---|
| 172 | dataptr[3] = z13 - z2;
|
---|
| 173 | dataptr[1] = z11 + z4;
|
---|
| 174 | dataptr[7] = z11 - z4;
|
---|
| 175 |
|
---|
| 176 | dataptr += DCTSIZE; /* advance pointer to next row */
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | /* Pass 2: process columns. */
|
---|
| 180 |
|
---|
| 181 | dataptr = data;
|
---|
| 182 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
| 183 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
---|
| 184 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
---|
| 185 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
---|
| 186 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
---|
| 187 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
---|
| 188 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
---|
| 189 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
---|
| 190 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
---|
[846] | 191 |
|
---|
[2] | 192 | /* Even part */
|
---|
[846] | 193 |
|
---|
[2] | 194 | tmp10 = tmp0 + tmp3; /* phase 2 */
|
---|
| 195 | tmp13 = tmp0 - tmp3;
|
---|
| 196 | tmp11 = tmp1 + tmp2;
|
---|
| 197 | tmp12 = tmp1 - tmp2;
|
---|
[846] | 198 |
|
---|
[2] | 199 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
---|
| 200 | dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
---|
[846] | 201 |
|
---|
[2] | 202 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
---|
| 203 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
---|
| 204 | dataptr[DCTSIZE*6] = tmp13 - z1;
|
---|
[846] | 205 |
|
---|
[2] | 206 | /* Odd part */
|
---|
| 207 |
|
---|
| 208 | tmp10 = tmp4 + tmp5; /* phase 2 */
|
---|
| 209 | tmp11 = tmp5 + tmp6;
|
---|
| 210 | tmp12 = tmp6 + tmp7;
|
---|
| 211 |
|
---|
| 212 | /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
---|
| 213 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
---|
| 214 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
---|
| 215 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
---|
| 216 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
---|
| 217 |
|
---|
| 218 | z11 = tmp7 + z3; /* phase 5 */
|
---|
| 219 | z13 = tmp7 - z3;
|
---|
| 220 |
|
---|
| 221 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
---|
| 222 | dataptr[DCTSIZE*3] = z13 - z2;
|
---|
| 223 | dataptr[DCTSIZE*1] = z11 + z4;
|
---|
| 224 | dataptr[DCTSIZE*7] = z11 - z4;
|
---|
| 225 |
|
---|
| 226 | dataptr++; /* advance pointer to next column */
|
---|
| 227 | }
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | #endif /* DCT_IFAST_SUPPORTED */
|
---|