1 | /*
|
---|
2 | * jdhuff.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
5 | * Modified 2006-2009 by Guido Vollbeding.
|
---|
6 | * This file is part of the Independent JPEG Group's software.
|
---|
7 | * For conditions of distribution and use, see the accompanying README file.
|
---|
8 | *
|
---|
9 | * This file contains Huffman entropy decoding routines.
|
---|
10 | * Both sequential and progressive modes are supported in this single module.
|
---|
11 | *
|
---|
12 | * Much of the complexity here has to do with supporting input suspension.
|
---|
13 | * If the data source module demands suspension, we want to be able to back
|
---|
14 | * up to the start of the current MCU. To do this, we copy state variables
|
---|
15 | * into local working storage, and update them back to the permanent
|
---|
16 | * storage only upon successful completion of an MCU.
|
---|
17 | */
|
---|
18 |
|
---|
19 | #define JPEG_INTERNALS
|
---|
20 | #include "jinclude.h"
|
---|
21 | #include "jpeglib.h"
|
---|
22 |
|
---|
23 |
|
---|
24 | /* Derived data constructed for each Huffman table */
|
---|
25 |
|
---|
26 | #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
|
---|
27 |
|
---|
28 | typedef struct {
|
---|
29 | /* Basic tables: (element [0] of each array is unused) */
|
---|
30 | INT32 maxcode[18]; /* largest code of length k (-1 if none) */
|
---|
31 | /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
|
---|
32 | INT32 valoffset[17]; /* huffval[] offset for codes of length k */
|
---|
33 | /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
|
---|
34 | * the smallest code of length k; so given a code of length k, the
|
---|
35 | * corresponding symbol is huffval[code + valoffset[k]]
|
---|
36 | */
|
---|
37 |
|
---|
38 | /* Link to public Huffman table (needed only in jpeg_huff_decode) */
|
---|
39 | JHUFF_TBL *pub;
|
---|
40 |
|
---|
41 | /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
|
---|
42 | * the input data stream. If the next Huffman code is no more
|
---|
43 | * than HUFF_LOOKAHEAD bits long, we can obtain its length and
|
---|
44 | * the corresponding symbol directly from these tables.
|
---|
45 | */
|
---|
46 | int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
|
---|
47 | UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
|
---|
48 | } d_derived_tbl;
|
---|
49 |
|
---|
50 |
|
---|
51 | /*
|
---|
52 | * Fetching the next N bits from the input stream is a time-critical operation
|
---|
53 | * for the Huffman decoders. We implement it with a combination of inline
|
---|
54 | * macros and out-of-line subroutines. Note that N (the number of bits
|
---|
55 | * demanded at one time) never exceeds 15 for JPEG use.
|
---|
56 | *
|
---|
57 | * We read source bytes into get_buffer and dole out bits as needed.
|
---|
58 | * If get_buffer already contains enough bits, they are fetched in-line
|
---|
59 | * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
|
---|
60 | * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
|
---|
61 | * as full as possible (not just to the number of bits needed; this
|
---|
62 | * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
|
---|
63 | * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
|
---|
64 | * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
|
---|
65 | * at least the requested number of bits --- dummy zeroes are inserted if
|
---|
66 | * necessary.
|
---|
67 | */
|
---|
68 |
|
---|
69 | typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
|
---|
70 | #define BIT_BUF_SIZE 32 /* size of buffer in bits */
|
---|
71 |
|
---|
72 | /* If long is > 32 bits on your machine, and shifting/masking longs is
|
---|
73 | * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
|
---|
74 | * appropriately should be a win. Unfortunately we can't define the size
|
---|
75 | * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
|
---|
76 | * because not all machines measure sizeof in 8-bit bytes.
|
---|
77 | */
|
---|
78 |
|
---|
79 | typedef struct { /* Bitreading state saved across MCUs */
|
---|
80 | bit_buf_type get_buffer; /* current bit-extraction buffer */
|
---|
81 | int bits_left; /* # of unused bits in it */
|
---|
82 | } bitread_perm_state;
|
---|
83 |
|
---|
84 | typedef struct { /* Bitreading working state within an MCU */
|
---|
85 | /* Current data source location */
|
---|
86 | /* We need a copy, rather than munging the original, in case of suspension */
|
---|
87 | const JOCTET * next_input_byte; /* => next byte to read from source */
|
---|
88 | size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
|
---|
89 | /* Bit input buffer --- note these values are kept in register variables,
|
---|
90 | * not in this struct, inside the inner loops.
|
---|
91 | */
|
---|
92 | bit_buf_type get_buffer; /* current bit-extraction buffer */
|
---|
93 | int bits_left; /* # of unused bits in it */
|
---|
94 | /* Pointer needed by jpeg_fill_bit_buffer. */
|
---|
95 | j_decompress_ptr cinfo; /* back link to decompress master record */
|
---|
96 | } bitread_working_state;
|
---|
97 |
|
---|
98 | /* Macros to declare and load/save bitread local variables. */
|
---|
99 | #define BITREAD_STATE_VARS \
|
---|
100 | register bit_buf_type get_buffer; \
|
---|
101 | register int bits_left; \
|
---|
102 | bitread_working_state br_state
|
---|
103 |
|
---|
104 | #define BITREAD_LOAD_STATE(cinfop,permstate) \
|
---|
105 | br_state.cinfo = cinfop; \
|
---|
106 | br_state.next_input_byte = cinfop->src->next_input_byte; \
|
---|
107 | br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
|
---|
108 | get_buffer = permstate.get_buffer; \
|
---|
109 | bits_left = permstate.bits_left;
|
---|
110 |
|
---|
111 | #define BITREAD_SAVE_STATE(cinfop,permstate) \
|
---|
112 | cinfop->src->next_input_byte = br_state.next_input_byte; \
|
---|
113 | cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
|
---|
114 | permstate.get_buffer = get_buffer; \
|
---|
115 | permstate.bits_left = bits_left
|
---|
116 |
|
---|
117 | /*
|
---|
118 | * These macros provide the in-line portion of bit fetching.
|
---|
119 | * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
|
---|
120 | * before using GET_BITS, PEEK_BITS, or DROP_BITS.
|
---|
121 | * The variables get_buffer and bits_left are assumed to be locals,
|
---|
122 | * but the state struct might not be (jpeg_huff_decode needs this).
|
---|
123 | * CHECK_BIT_BUFFER(state,n,action);
|
---|
124 | * Ensure there are N bits in get_buffer; if suspend, take action.
|
---|
125 | * val = GET_BITS(n);
|
---|
126 | * Fetch next N bits.
|
---|
127 | * val = PEEK_BITS(n);
|
---|
128 | * Fetch next N bits without removing them from the buffer.
|
---|
129 | * DROP_BITS(n);
|
---|
130 | * Discard next N bits.
|
---|
131 | * The value N should be a simple variable, not an expression, because it
|
---|
132 | * is evaluated multiple times.
|
---|
133 | */
|
---|
134 |
|
---|
135 | #define CHECK_BIT_BUFFER(state,nbits,action) \
|
---|
136 | { if (bits_left < (nbits)) { \
|
---|
137 | if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
|
---|
138 | { action; } \
|
---|
139 | get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
|
---|
140 |
|
---|
141 | #define GET_BITS(nbits) \
|
---|
142 | (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
|
---|
143 |
|
---|
144 | #define PEEK_BITS(nbits) \
|
---|
145 | (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
|
---|
146 |
|
---|
147 | #define DROP_BITS(nbits) \
|
---|
148 | (bits_left -= (nbits))
|
---|
149 |
|
---|
150 |
|
---|
151 | /*
|
---|
152 | * Code for extracting next Huffman-coded symbol from input bit stream.
|
---|
153 | * Again, this is time-critical and we make the main paths be macros.
|
---|
154 | *
|
---|
155 | * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
|
---|
156 | * without looping. Usually, more than 95% of the Huffman codes will be 8
|
---|
157 | * or fewer bits long. The few overlength codes are handled with a loop,
|
---|
158 | * which need not be inline code.
|
---|
159 | *
|
---|
160 | * Notes about the HUFF_DECODE macro:
|
---|
161 | * 1. Near the end of the data segment, we may fail to get enough bits
|
---|
162 | * for a lookahead. In that case, we do it the hard way.
|
---|
163 | * 2. If the lookahead table contains no entry, the next code must be
|
---|
164 | * more than HUFF_LOOKAHEAD bits long.
|
---|
165 | * 3. jpeg_huff_decode returns -1 if forced to suspend.
|
---|
166 | */
|
---|
167 |
|
---|
168 | #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
|
---|
169 | { register int nb, look; \
|
---|
170 | if (bits_left < HUFF_LOOKAHEAD) { \
|
---|
171 | if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
|
---|
172 | get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
---|
173 | if (bits_left < HUFF_LOOKAHEAD) { \
|
---|
174 | nb = 1; goto slowlabel; \
|
---|
175 | } \
|
---|
176 | } \
|
---|
177 | look = PEEK_BITS(HUFF_LOOKAHEAD); \
|
---|
178 | if ((nb = htbl->look_nbits[look]) != 0) { \
|
---|
179 | DROP_BITS(nb); \
|
---|
180 | result = htbl->look_sym[look]; \
|
---|
181 | } else { \
|
---|
182 | nb = HUFF_LOOKAHEAD+1; \
|
---|
183 | slowlabel: \
|
---|
184 | if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
|
---|
185 | { failaction; } \
|
---|
186 | get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
---|
187 | } \
|
---|
188 | }
|
---|
189 |
|
---|
190 |
|
---|
191 | /*
|
---|
192 | * Expanded entropy decoder object for Huffman decoding.
|
---|
193 | *
|
---|
194 | * The savable_state subrecord contains fields that change within an MCU,
|
---|
195 | * but must not be updated permanently until we complete the MCU.
|
---|
196 | */
|
---|
197 |
|
---|
198 | typedef struct {
|
---|
199 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
|
---|
200 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
201 | } savable_state;
|
---|
202 |
|
---|
203 | /* This macro is to work around compilers with missing or broken
|
---|
204 | * structure assignment. You'll need to fix this code if you have
|
---|
205 | * such a compiler and you change MAX_COMPS_IN_SCAN.
|
---|
206 | */
|
---|
207 |
|
---|
208 | #ifndef NO_STRUCT_ASSIGN
|
---|
209 | #define ASSIGN_STATE(dest,src) ((dest) = (src))
|
---|
210 | #else
|
---|
211 | #if MAX_COMPS_IN_SCAN == 4
|
---|
212 | #define ASSIGN_STATE(dest,src) \
|
---|
213 | ((dest).EOBRUN = (src).EOBRUN, \
|
---|
214 | (dest).last_dc_val[0] = (src).last_dc_val[0], \
|
---|
215 | (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
---|
216 | (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
---|
217 | (dest).last_dc_val[3] = (src).last_dc_val[3])
|
---|
218 | #endif
|
---|
219 | #endif
|
---|
220 |
|
---|
221 |
|
---|
222 | typedef struct {
|
---|
223 | struct jpeg_entropy_decoder pub; /* public fields */
|
---|
224 |
|
---|
225 | /* These fields are loaded into local variables at start of each MCU.
|
---|
226 | * In case of suspension, we exit WITHOUT updating them.
|
---|
227 | */
|
---|
228 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
---|
229 | savable_state saved; /* Other state at start of MCU */
|
---|
230 |
|
---|
231 | /* These fields are NOT loaded into local working state. */
|
---|
232 | boolean insufficient_data; /* set TRUE after emitting warning */
|
---|
233 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
234 |
|
---|
235 | /* Following two fields used only in progressive mode */
|
---|
236 |
|
---|
237 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
238 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
---|
239 |
|
---|
240 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
|
---|
241 |
|
---|
242 | /* Following fields used only in sequential mode */
|
---|
243 |
|
---|
244 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
245 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
---|
246 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
---|
247 |
|
---|
248 | /* Precalculated info set up by start_pass for use in decode_mcu: */
|
---|
249 |
|
---|
250 | /* Pointers to derived tables to be used for each block within an MCU */
|
---|
251 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
---|
252 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
---|
253 | /* Whether we care about the DC and AC coefficient values for each block */
|
---|
254 | int coef_limit[D_MAX_BLOCKS_IN_MCU];
|
---|
255 | } huff_entropy_decoder;
|
---|
256 |
|
---|
257 | typedef huff_entropy_decoder * huff_entropy_ptr;
|
---|
258 |
|
---|
259 |
|
---|
260 | static const int jpeg_zigzag_order[8][8] = {
|
---|
261 | { 0, 1, 5, 6, 14, 15, 27, 28 },
|
---|
262 | { 2, 4, 7, 13, 16, 26, 29, 42 },
|
---|
263 | { 3, 8, 12, 17, 25, 30, 41, 43 },
|
---|
264 | { 9, 11, 18, 24, 31, 40, 44, 53 },
|
---|
265 | { 10, 19, 23, 32, 39, 45, 52, 54 },
|
---|
266 | { 20, 22, 33, 38, 46, 51, 55, 60 },
|
---|
267 | { 21, 34, 37, 47, 50, 56, 59, 61 },
|
---|
268 | { 35, 36, 48, 49, 57, 58, 62, 63 }
|
---|
269 | };
|
---|
270 |
|
---|
271 | static const int jpeg_zigzag_order7[7][7] = {
|
---|
272 | { 0, 1, 5, 6, 14, 15, 27 },
|
---|
273 | { 2, 4, 7, 13, 16, 26, 28 },
|
---|
274 | { 3, 8, 12, 17, 25, 29, 38 },
|
---|
275 | { 9, 11, 18, 24, 30, 37, 39 },
|
---|
276 | { 10, 19, 23, 31, 36, 40, 45 },
|
---|
277 | { 20, 22, 32, 35, 41, 44, 46 },
|
---|
278 | { 21, 33, 34, 42, 43, 47, 48 }
|
---|
279 | };
|
---|
280 |
|
---|
281 | static const int jpeg_zigzag_order6[6][6] = {
|
---|
282 | { 0, 1, 5, 6, 14, 15 },
|
---|
283 | { 2, 4, 7, 13, 16, 25 },
|
---|
284 | { 3, 8, 12, 17, 24, 26 },
|
---|
285 | { 9, 11, 18, 23, 27, 32 },
|
---|
286 | { 10, 19, 22, 28, 31, 33 },
|
---|
287 | { 20, 21, 29, 30, 34, 35 }
|
---|
288 | };
|
---|
289 |
|
---|
290 | static const int jpeg_zigzag_order5[5][5] = {
|
---|
291 | { 0, 1, 5, 6, 14 },
|
---|
292 | { 2, 4, 7, 13, 15 },
|
---|
293 | { 3, 8, 12, 16, 21 },
|
---|
294 | { 9, 11, 17, 20, 22 },
|
---|
295 | { 10, 18, 19, 23, 24 }
|
---|
296 | };
|
---|
297 |
|
---|
298 | static const int jpeg_zigzag_order4[4][4] = {
|
---|
299 | { 0, 1, 5, 6 },
|
---|
300 | { 2, 4, 7, 12 },
|
---|
301 | { 3, 8, 11, 13 },
|
---|
302 | { 9, 10, 14, 15 }
|
---|
303 | };
|
---|
304 |
|
---|
305 | static const int jpeg_zigzag_order3[3][3] = {
|
---|
306 | { 0, 1, 5 },
|
---|
307 | { 2, 4, 6 },
|
---|
308 | { 3, 7, 8 }
|
---|
309 | };
|
---|
310 |
|
---|
311 | static const int jpeg_zigzag_order2[2][2] = {
|
---|
312 | { 0, 1 },
|
---|
313 | { 2, 3 }
|
---|
314 | };
|
---|
315 |
|
---|
316 |
|
---|
317 | /*
|
---|
318 | * Compute the derived values for a Huffman table.
|
---|
319 | * This routine also performs some validation checks on the table.
|
---|
320 | */
|
---|
321 |
|
---|
322 | LOCAL(void)
|
---|
323 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
|
---|
324 | d_derived_tbl ** pdtbl)
|
---|
325 | {
|
---|
326 | JHUFF_TBL *htbl;
|
---|
327 | d_derived_tbl *dtbl;
|
---|
328 | int p, i, l, si, numsymbols;
|
---|
329 | int lookbits, ctr;
|
---|
330 | char huffsize[257];
|
---|
331 | unsigned int huffcode[257];
|
---|
332 | unsigned int code;
|
---|
333 |
|
---|
334 | /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
---|
335 | * paralleling the order of the symbols themselves in htbl->huffval[].
|
---|
336 | */
|
---|
337 |
|
---|
338 | /* Find the input Huffman table */
|
---|
339 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
---|
340 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
341 | htbl =
|
---|
342 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
---|
343 | if (htbl == NULL)
|
---|
344 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
345 |
|
---|
346 | /* Allocate a workspace if we haven't already done so. */
|
---|
347 | if (*pdtbl == NULL)
|
---|
348 | *pdtbl = (d_derived_tbl *)
|
---|
349 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
350 | SIZEOF(d_derived_tbl));
|
---|
351 | dtbl = *pdtbl;
|
---|
352 | dtbl->pub = htbl; /* fill in back link */
|
---|
353 |
|
---|
354 | /* Figure C.1: make table of Huffman code length for each symbol */
|
---|
355 |
|
---|
356 | p = 0;
|
---|
357 | for (l = 1; l <= 16; l++) {
|
---|
358 | i = (int) htbl->bits[l];
|
---|
359 | if (i < 0 || p + i > 256) /* protect against table overrun */
|
---|
360 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
361 | while (i--)
|
---|
362 | huffsize[p++] = (char) l;
|
---|
363 | }
|
---|
364 | huffsize[p] = 0;
|
---|
365 | numsymbols = p;
|
---|
366 |
|
---|
367 | /* Figure C.2: generate the codes themselves */
|
---|
368 | /* We also validate that the counts represent a legal Huffman code tree. */
|
---|
369 |
|
---|
370 | code = 0;
|
---|
371 | si = huffsize[0];
|
---|
372 | p = 0;
|
---|
373 | while (huffsize[p]) {
|
---|
374 | while (((int) huffsize[p]) == si) {
|
---|
375 | huffcode[p++] = code;
|
---|
376 | code++;
|
---|
377 | }
|
---|
378 | /* code is now 1 more than the last code used for codelength si; but
|
---|
379 | * it must still fit in si bits, since no code is allowed to be all ones.
|
---|
380 | */
|
---|
381 | if (((INT32) code) >= (((INT32) 1) << si))
|
---|
382 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
383 | code <<= 1;
|
---|
384 | si++;
|
---|
385 | }
|
---|
386 |
|
---|
387 | /* Figure F.15: generate decoding tables for bit-sequential decoding */
|
---|
388 |
|
---|
389 | p = 0;
|
---|
390 | for (l = 1; l <= 16; l++) {
|
---|
391 | if (htbl->bits[l]) {
|
---|
392 | /* valoffset[l] = huffval[] index of 1st symbol of code length l,
|
---|
393 | * minus the minimum code of length l
|
---|
394 | */
|
---|
395 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
|
---|
396 | p += htbl->bits[l];
|
---|
397 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
|
---|
398 | } else {
|
---|
399 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
|
---|
400 | }
|
---|
401 | }
|
---|
402 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
|
---|
403 |
|
---|
404 | /* Compute lookahead tables to speed up decoding.
|
---|
405 | * First we set all the table entries to 0, indicating "too long";
|
---|
406 | * then we iterate through the Huffman codes that are short enough and
|
---|
407 | * fill in all the entries that correspond to bit sequences starting
|
---|
408 | * with that code.
|
---|
409 | */
|
---|
410 |
|
---|
411 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
|
---|
412 |
|
---|
413 | p = 0;
|
---|
414 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
|
---|
415 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
|
---|
416 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */
|
---|
417 | /* Generate left-justified code followed by all possible bit sequences */
|
---|
418 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
|
---|
419 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
|
---|
420 | dtbl->look_nbits[lookbits] = l;
|
---|
421 | dtbl->look_sym[lookbits] = htbl->huffval[p];
|
---|
422 | lookbits++;
|
---|
423 | }
|
---|
424 | }
|
---|
425 | }
|
---|
426 |
|
---|
427 | /* Validate symbols as being reasonable.
|
---|
428 | * For AC tables, we make no check, but accept all byte values 0..255.
|
---|
429 | * For DC tables, we require the symbols to be in range 0..15.
|
---|
430 | * (Tighter bounds could be applied depending on the data depth and mode,
|
---|
431 | * but this is sufficient to ensure safe decoding.)
|
---|
432 | */
|
---|
433 | if (isDC) {
|
---|
434 | for (i = 0; i < numsymbols; i++) {
|
---|
435 | int sym = htbl->huffval[i];
|
---|
436 | if (sym < 0 || sym > 15)
|
---|
437 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
438 | }
|
---|
439 | }
|
---|
440 | }
|
---|
441 |
|
---|
442 |
|
---|
443 | /*
|
---|
444 | * Out-of-line code for bit fetching.
|
---|
445 | * Note: current values of get_buffer and bits_left are passed as parameters,
|
---|
446 | * but are returned in the corresponding fields of the state struct.
|
---|
447 | *
|
---|
448 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
|
---|
449 | * of get_buffer to be used. (On machines with wider words, an even larger
|
---|
450 | * buffer could be used.) However, on some machines 32-bit shifts are
|
---|
451 | * quite slow and take time proportional to the number of places shifted.
|
---|
452 | * (This is true with most PC compilers, for instance.) In this case it may
|
---|
453 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
|
---|
454 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
|
---|
455 | */
|
---|
456 |
|
---|
457 | #ifdef SLOW_SHIFT_32
|
---|
458 | #define MIN_GET_BITS 15 /* minimum allowable value */
|
---|
459 | #else
|
---|
460 | #define MIN_GET_BITS (BIT_BUF_SIZE-7)
|
---|
461 | #endif
|
---|
462 |
|
---|
463 |
|
---|
464 | LOCAL(boolean)
|
---|
465 | jpeg_fill_bit_buffer (bitread_working_state * state,
|
---|
466 | register bit_buf_type get_buffer, register int bits_left,
|
---|
467 | int nbits)
|
---|
468 | /* Load up the bit buffer to a depth of at least nbits */
|
---|
469 | {
|
---|
470 | /* Copy heavily used state fields into locals (hopefully registers) */
|
---|
471 | register const JOCTET * next_input_byte = state->next_input_byte;
|
---|
472 | register size_t bytes_in_buffer = state->bytes_in_buffer;
|
---|
473 | j_decompress_ptr cinfo = state->cinfo;
|
---|
474 |
|
---|
475 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
|
---|
476 | /* (It is assumed that no request will be for more than that many bits.) */
|
---|
477 | /* We fail to do so only if we hit a marker or are forced to suspend. */
|
---|
478 |
|
---|
479 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
|
---|
480 | while (bits_left < MIN_GET_BITS) {
|
---|
481 | register int c;
|
---|
482 |
|
---|
483 | /* Attempt to read a byte */
|
---|
484 | if (bytes_in_buffer == 0) {
|
---|
485 | if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
---|
486 | return FALSE;
|
---|
487 | next_input_byte = cinfo->src->next_input_byte;
|
---|
488 | bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
---|
489 | }
|
---|
490 | bytes_in_buffer--;
|
---|
491 | c = GETJOCTET(*next_input_byte++);
|
---|
492 |
|
---|
493 | /* If it's 0xFF, check and discard stuffed zero byte */
|
---|
494 | if (c == 0xFF) {
|
---|
495 | /* Loop here to discard any padding FF's on terminating marker,
|
---|
496 | * so that we can save a valid unread_marker value. NOTE: we will
|
---|
497 | * accept multiple FF's followed by a 0 as meaning a single FF data
|
---|
498 | * byte. This data pattern is not valid according to the standard.
|
---|
499 | */
|
---|
500 | do {
|
---|
501 | if (bytes_in_buffer == 0) {
|
---|
502 | if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
---|
503 | return FALSE;
|
---|
504 | next_input_byte = cinfo->src->next_input_byte;
|
---|
505 | bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
---|
506 | }
|
---|
507 | bytes_in_buffer--;
|
---|
508 | c = GETJOCTET(*next_input_byte++);
|
---|
509 | } while (c == 0xFF);
|
---|
510 |
|
---|
511 | if (c == 0) {
|
---|
512 | /* Found FF/00, which represents an FF data byte */
|
---|
513 | c = 0xFF;
|
---|
514 | } else {
|
---|
515 | /* Oops, it's actually a marker indicating end of compressed data.
|
---|
516 | * Save the marker code for later use.
|
---|
517 | * Fine point: it might appear that we should save the marker into
|
---|
518 | * bitread working state, not straight into permanent state. But
|
---|
519 | * once we have hit a marker, we cannot need to suspend within the
|
---|
520 | * current MCU, because we will read no more bytes from the data
|
---|
521 | * source. So it is OK to update permanent state right away.
|
---|
522 | */
|
---|
523 | cinfo->unread_marker = c;
|
---|
524 | /* See if we need to insert some fake zero bits. */
|
---|
525 | goto no_more_bytes;
|
---|
526 | }
|
---|
527 | }
|
---|
528 |
|
---|
529 | /* OK, load c into get_buffer */
|
---|
530 | get_buffer = (get_buffer << 8) | c;
|
---|
531 | bits_left += 8;
|
---|
532 | } /* end while */
|
---|
533 | } else {
|
---|
534 | no_more_bytes:
|
---|
535 | /* We get here if we've read the marker that terminates the compressed
|
---|
536 | * data segment. There should be enough bits in the buffer register
|
---|
537 | * to satisfy the request; if so, no problem.
|
---|
538 | */
|
---|
539 | if (nbits > bits_left) {
|
---|
540 | /* Uh-oh. Report corrupted data to user and stuff zeroes into
|
---|
541 | * the data stream, so that we can produce some kind of image.
|
---|
542 | * We use a nonvolatile flag to ensure that only one warning message
|
---|
543 | * appears per data segment.
|
---|
544 | */
|
---|
545 | if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
|
---|
546 | WARNMS(cinfo, JWRN_HIT_MARKER);
|
---|
547 | ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
|
---|
548 | }
|
---|
549 | /* Fill the buffer with zero bits */
|
---|
550 | get_buffer <<= MIN_GET_BITS - bits_left;
|
---|
551 | bits_left = MIN_GET_BITS;
|
---|
552 | }
|
---|
553 | }
|
---|
554 |
|
---|
555 | /* Unload the local registers */
|
---|
556 | state->next_input_byte = next_input_byte;
|
---|
557 | state->bytes_in_buffer = bytes_in_buffer;
|
---|
558 | state->get_buffer = get_buffer;
|
---|
559 | state->bits_left = bits_left;
|
---|
560 |
|
---|
561 | return TRUE;
|
---|
562 | }
|
---|
563 |
|
---|
564 |
|
---|
565 | /*
|
---|
566 | * Figure F.12: extend sign bit.
|
---|
567 | * On some machines, a shift and sub will be faster than a table lookup.
|
---|
568 | */
|
---|
569 |
|
---|
570 | #ifdef AVOID_TABLES
|
---|
571 |
|
---|
572 | #define BIT_MASK(nbits) ((1<<(nbits))-1)
|
---|
573 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
|
---|
574 |
|
---|
575 | #else
|
---|
576 |
|
---|
577 | #define BIT_MASK(nbits) bmask[nbits]
|
---|
578 | #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
|
---|
579 |
|
---|
580 | static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
|
---|
581 | { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
|
---|
582 | 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
|
---|
583 |
|
---|
584 | #endif /* AVOID_TABLES */
|
---|
585 |
|
---|
586 |
|
---|
587 | /*
|
---|
588 | * Out-of-line code for Huffman code decoding.
|
---|
589 | */
|
---|
590 |
|
---|
591 | LOCAL(int)
|
---|
592 | jpeg_huff_decode (bitread_working_state * state,
|
---|
593 | register bit_buf_type get_buffer, register int bits_left,
|
---|
594 | d_derived_tbl * htbl, int min_bits)
|
---|
595 | {
|
---|
596 | register int l = min_bits;
|
---|
597 | register INT32 code;
|
---|
598 |
|
---|
599 | /* HUFF_DECODE has determined that the code is at least min_bits */
|
---|
600 | /* bits long, so fetch that many bits in one swoop. */
|
---|
601 |
|
---|
602 | CHECK_BIT_BUFFER(*state, l, return -1);
|
---|
603 | code = GET_BITS(l);
|
---|
604 |
|
---|
605 | /* Collect the rest of the Huffman code one bit at a time. */
|
---|
606 | /* This is per Figure F.16 in the JPEG spec. */
|
---|
607 |
|
---|
608 | while (code > htbl->maxcode[l]) {
|
---|
609 | code <<= 1;
|
---|
610 | CHECK_BIT_BUFFER(*state, 1, return -1);
|
---|
611 | code |= GET_BITS(1);
|
---|
612 | l++;
|
---|
613 | }
|
---|
614 |
|
---|
615 | /* Unload the local registers */
|
---|
616 | state->get_buffer = get_buffer;
|
---|
617 | state->bits_left = bits_left;
|
---|
618 |
|
---|
619 | /* With garbage input we may reach the sentinel value l = 17. */
|
---|
620 |
|
---|
621 | if (l > 16) {
|
---|
622 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
|
---|
623 | return 0; /* fake a zero as the safest result */
|
---|
624 | }
|
---|
625 |
|
---|
626 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
|
---|
627 | }
|
---|
628 |
|
---|
629 |
|
---|
630 | /*
|
---|
631 | * Check for a restart marker & resynchronize decoder.
|
---|
632 | * Returns FALSE if must suspend.
|
---|
633 | */
|
---|
634 |
|
---|
635 | LOCAL(boolean)
|
---|
636 | process_restart (j_decompress_ptr cinfo)
|
---|
637 | {
|
---|
638 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
639 | int ci;
|
---|
640 |
|
---|
641 | /* Throw away any unused bits remaining in bit buffer; */
|
---|
642 | /* include any full bytes in next_marker's count of discarded bytes */
|
---|
643 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
---|
644 | entropy->bitstate.bits_left = 0;
|
---|
645 |
|
---|
646 | /* Advance past the RSTn marker */
|
---|
647 | if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
---|
648 | return FALSE;
|
---|
649 |
|
---|
650 | /* Re-initialize DC predictions to 0 */
|
---|
651 | for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
---|
652 | entropy->saved.last_dc_val[ci] = 0;
|
---|
653 | /* Re-init EOB run count, too */
|
---|
654 | entropy->saved.EOBRUN = 0;
|
---|
655 |
|
---|
656 | /* Reset restart counter */
|
---|
657 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
658 |
|
---|
659 | /* Reset out-of-data flag, unless read_restart_marker left us smack up
|
---|
660 | * against a marker. In that case we will end up treating the next data
|
---|
661 | * segment as empty, and we can avoid producing bogus output pixels by
|
---|
662 | * leaving the flag set.
|
---|
663 | */
|
---|
664 | if (cinfo->unread_marker == 0)
|
---|
665 | entropy->insufficient_data = FALSE;
|
---|
666 |
|
---|
667 | return TRUE;
|
---|
668 | }
|
---|
669 |
|
---|
670 |
|
---|
671 | /*
|
---|
672 | * Huffman MCU decoding.
|
---|
673 | * Each of these routines decodes and returns one MCU's worth of
|
---|
674 | * Huffman-compressed coefficients.
|
---|
675 | * The coefficients are reordered from zigzag order into natural array order,
|
---|
676 | * but are not dequantized.
|
---|
677 | *
|
---|
678 | * The i'th block of the MCU is stored into the block pointed to by
|
---|
679 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
---|
680 | * (Wholesale zeroing is usually a little faster than retail...)
|
---|
681 | *
|
---|
682 | * We return FALSE if data source requested suspension. In that case no
|
---|
683 | * changes have been made to permanent state. (Exception: some output
|
---|
684 | * coefficients may already have been assigned. This is harmless for
|
---|
685 | * spectral selection, since we'll just re-assign them on the next call.
|
---|
686 | * Successive approximation AC refinement has to be more careful, however.)
|
---|
687 | */
|
---|
688 |
|
---|
689 | /*
|
---|
690 | * MCU decoding for DC initial scan (either spectral selection,
|
---|
691 | * or first pass of successive approximation).
|
---|
692 | */
|
---|
693 |
|
---|
694 | METHODDEF(boolean)
|
---|
695 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
696 | {
|
---|
697 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
698 | int Al = cinfo->Al;
|
---|
699 | register int s, r;
|
---|
700 | int blkn, ci;
|
---|
701 | JBLOCKROW block;
|
---|
702 | BITREAD_STATE_VARS;
|
---|
703 | savable_state state;
|
---|
704 | d_derived_tbl * tbl;
|
---|
705 | jpeg_component_info * compptr;
|
---|
706 |
|
---|
707 | /* Process restart marker if needed; may have to suspend */
|
---|
708 | if (cinfo->restart_interval) {
|
---|
709 | if (entropy->restarts_to_go == 0)
|
---|
710 | if (! process_restart(cinfo))
|
---|
711 | return FALSE;
|
---|
712 | }
|
---|
713 |
|
---|
714 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
715 | * This way, we return uniform gray for the remainder of the segment.
|
---|
716 | */
|
---|
717 | if (! entropy->insufficient_data) {
|
---|
718 |
|
---|
719 | /* Load up working state */
|
---|
720 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
721 | ASSIGN_STATE(state, entropy->saved);
|
---|
722 |
|
---|
723 | /* Outer loop handles each block in the MCU */
|
---|
724 |
|
---|
725 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
726 | block = MCU_data[blkn];
|
---|
727 | ci = cinfo->MCU_membership[blkn];
|
---|
728 | compptr = cinfo->cur_comp_info[ci];
|
---|
729 | tbl = entropy->derived_tbls[compptr->dc_tbl_no];
|
---|
730 |
|
---|
731 | /* Decode a single block's worth of coefficients */
|
---|
732 |
|
---|
733 | /* Section F.2.2.1: decode the DC coefficient difference */
|
---|
734 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
|
---|
735 | if (s) {
|
---|
736 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
737 | r = GET_BITS(s);
|
---|
738 | s = HUFF_EXTEND(r, s);
|
---|
739 | }
|
---|
740 |
|
---|
741 | /* Convert DC difference to actual value, update last_dc_val */
|
---|
742 | s += state.last_dc_val[ci];
|
---|
743 | state.last_dc_val[ci] = s;
|
---|
744 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
|
---|
745 | (*block)[0] = (JCOEF) (s << Al);
|
---|
746 | }
|
---|
747 |
|
---|
748 | /* Completed MCU, so update state */
|
---|
749 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
750 | ASSIGN_STATE(entropy->saved, state);
|
---|
751 | }
|
---|
752 |
|
---|
753 | /* Account for restart interval (no-op if not using restarts) */
|
---|
754 | entropy->restarts_to_go--;
|
---|
755 |
|
---|
756 | return TRUE;
|
---|
757 | }
|
---|
758 |
|
---|
759 |
|
---|
760 | /*
|
---|
761 | * MCU decoding for AC initial scan (either spectral selection,
|
---|
762 | * or first pass of successive approximation).
|
---|
763 | */
|
---|
764 |
|
---|
765 | METHODDEF(boolean)
|
---|
766 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
767 | {
|
---|
768 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
769 | register int s, k, r;
|
---|
770 | unsigned int EOBRUN;
|
---|
771 | int Se, Al;
|
---|
772 | const int * natural_order;
|
---|
773 | JBLOCKROW block;
|
---|
774 | BITREAD_STATE_VARS;
|
---|
775 | d_derived_tbl * tbl;
|
---|
776 |
|
---|
777 | /* Process restart marker if needed; may have to suspend */
|
---|
778 | if (cinfo->restart_interval) {
|
---|
779 | if (entropy->restarts_to_go == 0)
|
---|
780 | if (! process_restart(cinfo))
|
---|
781 | return FALSE;
|
---|
782 | }
|
---|
783 |
|
---|
784 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
785 | * This way, we return uniform gray for the remainder of the segment.
|
---|
786 | */
|
---|
787 | if (! entropy->insufficient_data) {
|
---|
788 |
|
---|
789 | Se = cinfo->Se;
|
---|
790 | Al = cinfo->Al;
|
---|
791 | natural_order = cinfo->natural_order;
|
---|
792 |
|
---|
793 | /* Load up working state.
|
---|
794 | * We can avoid loading/saving bitread state if in an EOB run.
|
---|
795 | */
|
---|
796 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
---|
797 |
|
---|
798 | /* There is always only one block per MCU */
|
---|
799 |
|
---|
800 | if (EOBRUN > 0) /* if it's a band of zeroes... */
|
---|
801 | EOBRUN--; /* ...process it now (we do nothing) */
|
---|
802 | else {
|
---|
803 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
804 | block = MCU_data[0];
|
---|
805 | tbl = entropy->ac_derived_tbl;
|
---|
806 |
|
---|
807 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
808 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
|
---|
809 | r = s >> 4;
|
---|
810 | s &= 15;
|
---|
811 | if (s) {
|
---|
812 | k += r;
|
---|
813 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
814 | r = GET_BITS(s);
|
---|
815 | s = HUFF_EXTEND(r, s);
|
---|
816 | /* Scale and output coefficient in natural (dezigzagged) order */
|
---|
817 | (*block)[natural_order[k]] = (JCOEF) (s << Al);
|
---|
818 | } else {
|
---|
819 | if (r == 15) { /* ZRL */
|
---|
820 | k += 15; /* skip 15 zeroes in band */
|
---|
821 | } else { /* EOBr, run length is 2^r + appended bits */
|
---|
822 | EOBRUN = 1 << r;
|
---|
823 | if (r) { /* EOBr, r > 0 */
|
---|
824 | CHECK_BIT_BUFFER(br_state, r, return FALSE);
|
---|
825 | r = GET_BITS(r);
|
---|
826 | EOBRUN += r;
|
---|
827 | }
|
---|
828 | EOBRUN--; /* this band is processed at this moment */
|
---|
829 | break; /* force end-of-band */
|
---|
830 | }
|
---|
831 | }
|
---|
832 | }
|
---|
833 |
|
---|
834 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
835 | }
|
---|
836 |
|
---|
837 | /* Completed MCU, so update state */
|
---|
838 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
---|
839 | }
|
---|
840 |
|
---|
841 | /* Account for restart interval (no-op if not using restarts) */
|
---|
842 | entropy->restarts_to_go--;
|
---|
843 |
|
---|
844 | return TRUE;
|
---|
845 | }
|
---|
846 |
|
---|
847 |
|
---|
848 | /*
|
---|
849 | * MCU decoding for DC successive approximation refinement scan.
|
---|
850 | * Note: we assume such scans can be multi-component, although the spec
|
---|
851 | * is not very clear on the point.
|
---|
852 | */
|
---|
853 |
|
---|
854 | METHODDEF(boolean)
|
---|
855 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
856 | {
|
---|
857 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
858 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
---|
859 | int blkn;
|
---|
860 | JBLOCKROW block;
|
---|
861 | BITREAD_STATE_VARS;
|
---|
862 |
|
---|
863 | /* Process restart marker if needed; may have to suspend */
|
---|
864 | if (cinfo->restart_interval) {
|
---|
865 | if (entropy->restarts_to_go == 0)
|
---|
866 | if (! process_restart(cinfo))
|
---|
867 | return FALSE;
|
---|
868 | }
|
---|
869 |
|
---|
870 | /* Not worth the cycles to check insufficient_data here,
|
---|
871 | * since we will not change the data anyway if we read zeroes.
|
---|
872 | */
|
---|
873 |
|
---|
874 | /* Load up working state */
|
---|
875 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
876 |
|
---|
877 | /* Outer loop handles each block in the MCU */
|
---|
878 |
|
---|
879 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
880 | block = MCU_data[blkn];
|
---|
881 |
|
---|
882 | /* Encoded data is simply the next bit of the two's-complement DC value */
|
---|
883 | CHECK_BIT_BUFFER(br_state, 1, return FALSE);
|
---|
884 | if (GET_BITS(1))
|
---|
885 | (*block)[0] |= p1;
|
---|
886 | /* Note: since we use |=, repeating the assignment later is safe */
|
---|
887 | }
|
---|
888 |
|
---|
889 | /* Completed MCU, so update state */
|
---|
890 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
891 |
|
---|
892 | /* Account for restart interval (no-op if not using restarts) */
|
---|
893 | entropy->restarts_to_go--;
|
---|
894 |
|
---|
895 | return TRUE;
|
---|
896 | }
|
---|
897 |
|
---|
898 |
|
---|
899 | /*
|
---|
900 | * MCU decoding for AC successive approximation refinement scan.
|
---|
901 | */
|
---|
902 |
|
---|
903 | METHODDEF(boolean)
|
---|
904 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
905 | {
|
---|
906 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
907 | register int s, k, r;
|
---|
908 | unsigned int EOBRUN;
|
---|
909 | int Se, p1, m1;
|
---|
910 | const int * natural_order;
|
---|
911 | JBLOCKROW block;
|
---|
912 | JCOEFPTR thiscoef;
|
---|
913 | BITREAD_STATE_VARS;
|
---|
914 | d_derived_tbl * tbl;
|
---|
915 | int num_newnz;
|
---|
916 | int newnz_pos[DCTSIZE2];
|
---|
917 |
|
---|
918 | /* Process restart marker if needed; may have to suspend */
|
---|
919 | if (cinfo->restart_interval) {
|
---|
920 | if (entropy->restarts_to_go == 0)
|
---|
921 | if (! process_restart(cinfo))
|
---|
922 | return FALSE;
|
---|
923 | }
|
---|
924 |
|
---|
925 | /* If we've run out of data, don't modify the MCU.
|
---|
926 | */
|
---|
927 | if (! entropy->insufficient_data) {
|
---|
928 |
|
---|
929 | Se = cinfo->Se;
|
---|
930 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
---|
931 | m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
|
---|
932 | natural_order = cinfo->natural_order;
|
---|
933 |
|
---|
934 | /* Load up working state */
|
---|
935 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
936 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
---|
937 |
|
---|
938 | /* There is always only one block per MCU */
|
---|
939 | block = MCU_data[0];
|
---|
940 | tbl = entropy->ac_derived_tbl;
|
---|
941 |
|
---|
942 | /* If we are forced to suspend, we must undo the assignments to any newly
|
---|
943 | * nonzero coefficients in the block, because otherwise we'd get confused
|
---|
944 | * next time about which coefficients were already nonzero.
|
---|
945 | * But we need not undo addition of bits to already-nonzero coefficients;
|
---|
946 | * instead, we can test the current bit to see if we already did it.
|
---|
947 | */
|
---|
948 | num_newnz = 0;
|
---|
949 |
|
---|
950 | /* initialize coefficient loop counter to start of band */
|
---|
951 | k = cinfo->Ss;
|
---|
952 |
|
---|
953 | if (EOBRUN == 0) {
|
---|
954 | for (; k <= Se; k++) {
|
---|
955 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
|
---|
956 | r = s >> 4;
|
---|
957 | s &= 15;
|
---|
958 | if (s) {
|
---|
959 | if (s != 1) /* size of new coef should always be 1 */
|
---|
960 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
|
---|
961 | CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
---|
962 | if (GET_BITS(1))
|
---|
963 | s = p1; /* newly nonzero coef is positive */
|
---|
964 | else
|
---|
965 | s = m1; /* newly nonzero coef is negative */
|
---|
966 | } else {
|
---|
967 | if (r != 15) {
|
---|
968 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
|
---|
969 | if (r) {
|
---|
970 | CHECK_BIT_BUFFER(br_state, r, goto undoit);
|
---|
971 | r = GET_BITS(r);
|
---|
972 | EOBRUN += r;
|
---|
973 | }
|
---|
974 | break; /* rest of block is handled by EOB logic */
|
---|
975 | }
|
---|
976 | /* note s = 0 for processing ZRL */
|
---|
977 | }
|
---|
978 | /* Advance over already-nonzero coefs and r still-zero coefs,
|
---|
979 | * appending correction bits to the nonzeroes. A correction bit is 1
|
---|
980 | * if the absolute value of the coefficient must be increased.
|
---|
981 | */
|
---|
982 | do {
|
---|
983 | thiscoef = *block + natural_order[k];
|
---|
984 | if (*thiscoef != 0) {
|
---|
985 | CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
---|
986 | if (GET_BITS(1)) {
|
---|
987 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
|
---|
988 | if (*thiscoef >= 0)
|
---|
989 | *thiscoef += p1;
|
---|
990 | else
|
---|
991 | *thiscoef += m1;
|
---|
992 | }
|
---|
993 | }
|
---|
994 | } else {
|
---|
995 | if (--r < 0)
|
---|
996 | break; /* reached target zero coefficient */
|
---|
997 | }
|
---|
998 | k++;
|
---|
999 | } while (k <= Se);
|
---|
1000 | if (s) {
|
---|
1001 | int pos = natural_order[k];
|
---|
1002 | /* Output newly nonzero coefficient */
|
---|
1003 | (*block)[pos] = (JCOEF) s;
|
---|
1004 | /* Remember its position in case we have to suspend */
|
---|
1005 | newnz_pos[num_newnz++] = pos;
|
---|
1006 | }
|
---|
1007 | }
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 | if (EOBRUN > 0) {
|
---|
1011 | /* Scan any remaining coefficient positions after the end-of-band
|
---|
1012 | * (the last newly nonzero coefficient, if any). Append a correction
|
---|
1013 | * bit to each already-nonzero coefficient. A correction bit is 1
|
---|
1014 | * if the absolute value of the coefficient must be increased.
|
---|
1015 | */
|
---|
1016 | for (; k <= Se; k++) {
|
---|
1017 | thiscoef = *block + natural_order[k];
|
---|
1018 | if (*thiscoef != 0) {
|
---|
1019 | CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
---|
1020 | if (GET_BITS(1)) {
|
---|
1021 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
|
---|
1022 | if (*thiscoef >= 0)
|
---|
1023 | *thiscoef += p1;
|
---|
1024 | else
|
---|
1025 | *thiscoef += m1;
|
---|
1026 | }
|
---|
1027 | }
|
---|
1028 | }
|
---|
1029 | }
|
---|
1030 | /* Count one block completed in EOB run */
|
---|
1031 | EOBRUN--;
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 | /* Completed MCU, so update state */
|
---|
1035 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
1036 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
---|
1037 | }
|
---|
1038 |
|
---|
1039 | /* Account for restart interval (no-op if not using restarts) */
|
---|
1040 | entropy->restarts_to_go--;
|
---|
1041 |
|
---|
1042 | return TRUE;
|
---|
1043 |
|
---|
1044 | undoit:
|
---|
1045 | /* Re-zero any output coefficients that we made newly nonzero */
|
---|
1046 | while (num_newnz > 0)
|
---|
1047 | (*block)[newnz_pos[--num_newnz]] = 0;
|
---|
1048 |
|
---|
1049 | return FALSE;
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 |
|
---|
1053 | /*
|
---|
1054 | * Decode one MCU's worth of Huffman-compressed coefficients,
|
---|
1055 | * partial blocks.
|
---|
1056 | */
|
---|
1057 |
|
---|
1058 | METHODDEF(boolean)
|
---|
1059 | decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
1060 | {
|
---|
1061 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1062 | const int * natural_order;
|
---|
1063 | int Se, blkn;
|
---|
1064 | BITREAD_STATE_VARS;
|
---|
1065 | savable_state state;
|
---|
1066 |
|
---|
1067 | /* Process restart marker if needed; may have to suspend */
|
---|
1068 | if (cinfo->restart_interval) {
|
---|
1069 | if (entropy->restarts_to_go == 0)
|
---|
1070 | if (! process_restart(cinfo))
|
---|
1071 | return FALSE;
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
1075 | * This way, we return uniform gray for the remainder of the segment.
|
---|
1076 | */
|
---|
1077 | if (! entropy->insufficient_data) {
|
---|
1078 |
|
---|
1079 | natural_order = cinfo->natural_order;
|
---|
1080 | Se = cinfo->lim_Se;
|
---|
1081 |
|
---|
1082 | /* Load up working state */
|
---|
1083 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
1084 | ASSIGN_STATE(state, entropy->saved);
|
---|
1085 |
|
---|
1086 | /* Outer loop handles each block in the MCU */
|
---|
1087 |
|
---|
1088 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
1089 | JBLOCKROW block = MCU_data[blkn];
|
---|
1090 | d_derived_tbl * htbl;
|
---|
1091 | register int s, k, r;
|
---|
1092 | int coef_limit, ci;
|
---|
1093 |
|
---|
1094 | /* Decode a single block's worth of coefficients */
|
---|
1095 |
|
---|
1096 | /* Section F.2.2.1: decode the DC coefficient difference */
|
---|
1097 | htbl = entropy->dc_cur_tbls[blkn];
|
---|
1098 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
|
---|
1099 |
|
---|
1100 | htbl = entropy->ac_cur_tbls[blkn];
|
---|
1101 | k = 1;
|
---|
1102 | coef_limit = entropy->coef_limit[blkn];
|
---|
1103 | if (coef_limit) {
|
---|
1104 | /* Convert DC difference to actual value, update last_dc_val */
|
---|
1105 | if (s) {
|
---|
1106 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1107 | r = GET_BITS(s);
|
---|
1108 | s = HUFF_EXTEND(r, s);
|
---|
1109 | }
|
---|
1110 | ci = cinfo->MCU_membership[blkn];
|
---|
1111 | s += state.last_dc_val[ci];
|
---|
1112 | state.last_dc_val[ci] = s;
|
---|
1113 | /* Output the DC coefficient */
|
---|
1114 | (*block)[0] = (JCOEF) s;
|
---|
1115 |
|
---|
1116 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
1117 | /* Since zeroes are skipped, output area must be cleared beforehand */
|
---|
1118 | for (; k < coef_limit; k++) {
|
---|
1119 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
|
---|
1120 |
|
---|
1121 | r = s >> 4;
|
---|
1122 | s &= 15;
|
---|
1123 |
|
---|
1124 | if (s) {
|
---|
1125 | k += r;
|
---|
1126 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1127 | r = GET_BITS(s);
|
---|
1128 | s = HUFF_EXTEND(r, s);
|
---|
1129 | /* Output coefficient in natural (dezigzagged) order.
|
---|
1130 | * Note: the extra entries in natural_order[] will save us
|
---|
1131 | * if k > Se, which could happen if the data is corrupted.
|
---|
1132 | */
|
---|
1133 | (*block)[natural_order[k]] = (JCOEF) s;
|
---|
1134 | } else {
|
---|
1135 | if (r != 15)
|
---|
1136 | goto EndOfBlock;
|
---|
1137 | k += 15;
|
---|
1138 | }
|
---|
1139 | }
|
---|
1140 | } else {
|
---|
1141 | if (s) {
|
---|
1142 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1143 | DROP_BITS(s);
|
---|
1144 | }
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
1148 | /* In this path we just discard the values */
|
---|
1149 | for (; k <= Se; k++) {
|
---|
1150 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
|
---|
1151 |
|
---|
1152 | r = s >> 4;
|
---|
1153 | s &= 15;
|
---|
1154 |
|
---|
1155 | if (s) {
|
---|
1156 | k += r;
|
---|
1157 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1158 | DROP_BITS(s);
|
---|
1159 | } else {
|
---|
1160 | if (r != 15)
|
---|
1161 | break;
|
---|
1162 | k += 15;
|
---|
1163 | }
|
---|
1164 | }
|
---|
1165 |
|
---|
1166 | EndOfBlock: ;
|
---|
1167 | }
|
---|
1168 |
|
---|
1169 | /* Completed MCU, so update state */
|
---|
1170 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
1171 | ASSIGN_STATE(entropy->saved, state);
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | /* Account for restart interval (no-op if not using restarts) */
|
---|
1175 | entropy->restarts_to_go--;
|
---|
1176 |
|
---|
1177 | return TRUE;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 |
|
---|
1181 | /*
|
---|
1182 | * Decode one MCU's worth of Huffman-compressed coefficients,
|
---|
1183 | * full-size blocks.
|
---|
1184 | */
|
---|
1185 |
|
---|
1186 | METHODDEF(boolean)
|
---|
1187 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
1188 | {
|
---|
1189 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1190 | int blkn;
|
---|
1191 | BITREAD_STATE_VARS;
|
---|
1192 | savable_state state;
|
---|
1193 |
|
---|
1194 | /* Process restart marker if needed; may have to suspend */
|
---|
1195 | if (cinfo->restart_interval) {
|
---|
1196 | if (entropy->restarts_to_go == 0)
|
---|
1197 | if (! process_restart(cinfo))
|
---|
1198 | return FALSE;
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
1202 | * This way, we return uniform gray for the remainder of the segment.
|
---|
1203 | */
|
---|
1204 | if (! entropy->insufficient_data) {
|
---|
1205 |
|
---|
1206 | /* Load up working state */
|
---|
1207 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
1208 | ASSIGN_STATE(state, entropy->saved);
|
---|
1209 |
|
---|
1210 | /* Outer loop handles each block in the MCU */
|
---|
1211 |
|
---|
1212 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
1213 | JBLOCKROW block = MCU_data[blkn];
|
---|
1214 | d_derived_tbl * htbl;
|
---|
1215 | register int s, k, r;
|
---|
1216 | int coef_limit, ci;
|
---|
1217 |
|
---|
1218 | /* Decode a single block's worth of coefficients */
|
---|
1219 |
|
---|
1220 | /* Section F.2.2.1: decode the DC coefficient difference */
|
---|
1221 | htbl = entropy->dc_cur_tbls[blkn];
|
---|
1222 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
|
---|
1223 |
|
---|
1224 | htbl = entropy->ac_cur_tbls[blkn];
|
---|
1225 | k = 1;
|
---|
1226 | coef_limit = entropy->coef_limit[blkn];
|
---|
1227 | if (coef_limit) {
|
---|
1228 | /* Convert DC difference to actual value, update last_dc_val */
|
---|
1229 | if (s) {
|
---|
1230 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1231 | r = GET_BITS(s);
|
---|
1232 | s = HUFF_EXTEND(r, s);
|
---|
1233 | }
|
---|
1234 | ci = cinfo->MCU_membership[blkn];
|
---|
1235 | s += state.last_dc_val[ci];
|
---|
1236 | state.last_dc_val[ci] = s;
|
---|
1237 | /* Output the DC coefficient */
|
---|
1238 | (*block)[0] = (JCOEF) s;
|
---|
1239 |
|
---|
1240 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
1241 | /* Since zeroes are skipped, output area must be cleared beforehand */
|
---|
1242 | for (; k < coef_limit; k++) {
|
---|
1243 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
|
---|
1244 |
|
---|
1245 | r = s >> 4;
|
---|
1246 | s &= 15;
|
---|
1247 |
|
---|
1248 | if (s) {
|
---|
1249 | k += r;
|
---|
1250 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1251 | r = GET_BITS(s);
|
---|
1252 | s = HUFF_EXTEND(r, s);
|
---|
1253 | /* Output coefficient in natural (dezigzagged) order.
|
---|
1254 | * Note: the extra entries in jpeg_natural_order[] will save us
|
---|
1255 | * if k >= DCTSIZE2, which could happen if the data is corrupted.
|
---|
1256 | */
|
---|
1257 | (*block)[jpeg_natural_order[k]] = (JCOEF) s;
|
---|
1258 | } else {
|
---|
1259 | if (r != 15)
|
---|
1260 | goto EndOfBlock;
|
---|
1261 | k += 15;
|
---|
1262 | }
|
---|
1263 | }
|
---|
1264 | } else {
|
---|
1265 | if (s) {
|
---|
1266 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1267 | DROP_BITS(s);
|
---|
1268 | }
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
1272 | /* In this path we just discard the values */
|
---|
1273 | for (; k < DCTSIZE2; k++) {
|
---|
1274 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
|
---|
1275 |
|
---|
1276 | r = s >> 4;
|
---|
1277 | s &= 15;
|
---|
1278 |
|
---|
1279 | if (s) {
|
---|
1280 | k += r;
|
---|
1281 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
1282 | DROP_BITS(s);
|
---|
1283 | } else {
|
---|
1284 | if (r != 15)
|
---|
1285 | break;
|
---|
1286 | k += 15;
|
---|
1287 | }
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 | EndOfBlock: ;
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | /* Completed MCU, so update state */
|
---|
1294 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
1295 | ASSIGN_STATE(entropy->saved, state);
|
---|
1296 | }
|
---|
1297 |
|
---|
1298 | /* Account for restart interval (no-op if not using restarts) */
|
---|
1299 | entropy->restarts_to_go--;
|
---|
1300 |
|
---|
1301 | return TRUE;
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 |
|
---|
1305 | /*
|
---|
1306 | * Initialize for a Huffman-compressed scan.
|
---|
1307 | */
|
---|
1308 |
|
---|
1309 | METHODDEF(void)
|
---|
1310 | start_pass_huff_decoder (j_decompress_ptr cinfo)
|
---|
1311 | {
|
---|
1312 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1313 | int ci, blkn, tbl, i;
|
---|
1314 | jpeg_component_info * compptr;
|
---|
1315 |
|
---|
1316 | if (cinfo->progressive_mode) {
|
---|
1317 | /* Validate progressive scan parameters */
|
---|
1318 | if (cinfo->Ss == 0) {
|
---|
1319 | if (cinfo->Se != 0)
|
---|
1320 | goto bad;
|
---|
1321 | } else {
|
---|
1322 | /* need not check Ss/Se < 0 since they came from unsigned bytes */
|
---|
1323 | if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
|
---|
1324 | goto bad;
|
---|
1325 | /* AC scans may have only one component */
|
---|
1326 | if (cinfo->comps_in_scan != 1)
|
---|
1327 | goto bad;
|
---|
1328 | }
|
---|
1329 | if (cinfo->Ah != 0) {
|
---|
1330 | /* Successive approximation refinement scan: must have Al = Ah-1. */
|
---|
1331 | if (cinfo->Ah-1 != cinfo->Al)
|
---|
1332 | goto bad;
|
---|
1333 | }
|
---|
1334 | if (cinfo->Al > 13) { /* need not check for < 0 */
|
---|
1335 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
|
---|
1336 | * but the spec doesn't say so, and we try to be liberal about what we
|
---|
1337 | * accept. Note: large Al values could result in out-of-range DC
|
---|
1338 | * coefficients during early scans, leading to bizarre displays due to
|
---|
1339 | * overflows in the IDCT math. But we won't crash.
|
---|
1340 | */
|
---|
1341 | bad:
|
---|
1342 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
---|
1343 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
---|
1344 | }
|
---|
1345 | /* Update progression status, and verify that scan order is legal.
|
---|
1346 | * Note that inter-scan inconsistencies are treated as warnings
|
---|
1347 | * not fatal errors ... not clear if this is right way to behave.
|
---|
1348 | */
|
---|
1349 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
1350 | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
|
---|
1351 | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
---|
1352 | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
---|
1353 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
---|
1354 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
---|
1355 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
---|
1356 | if (cinfo->Ah != expected)
|
---|
1357 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
---|
1358 | coef_bit_ptr[coefi] = cinfo->Al;
|
---|
1359 | }
|
---|
1360 | }
|
---|
1361 |
|
---|
1362 | /* Select MCU decoding routine */
|
---|
1363 | if (cinfo->Ah == 0) {
|
---|
1364 | if (cinfo->Ss == 0)
|
---|
1365 | entropy->pub.decode_mcu = decode_mcu_DC_first;
|
---|
1366 | else
|
---|
1367 | entropy->pub.decode_mcu = decode_mcu_AC_first;
|
---|
1368 | } else {
|
---|
1369 | if (cinfo->Ss == 0)
|
---|
1370 | entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
---|
1371 | else
|
---|
1372 | entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
1376 | compptr = cinfo->cur_comp_info[ci];
|
---|
1377 | /* Make sure requested tables are present, and compute derived tables.
|
---|
1378 | * We may build same derived table more than once, but it's not expensive.
|
---|
1379 | */
|
---|
1380 | if (cinfo->Ss == 0) {
|
---|
1381 | if (cinfo->Ah == 0) { /* DC refinement needs no table */
|
---|
1382 | tbl = compptr->dc_tbl_no;
|
---|
1383 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
|
---|
1384 | & entropy->derived_tbls[tbl]);
|
---|
1385 | }
|
---|
1386 | } else {
|
---|
1387 | tbl = compptr->ac_tbl_no;
|
---|
1388 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
|
---|
1389 | & entropy->derived_tbls[tbl]);
|
---|
1390 | /* remember the single active table */
|
---|
1391 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
|
---|
1392 | }
|
---|
1393 | /* Initialize DC predictions to 0 */
|
---|
1394 | entropy->saved.last_dc_val[ci] = 0;
|
---|
1395 | }
|
---|
1396 |
|
---|
1397 | /* Initialize private state variables */
|
---|
1398 | entropy->saved.EOBRUN = 0;
|
---|
1399 | } else {
|
---|
1400 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
---|
1401 | * This ought to be an error condition, but we make it a warning because
|
---|
1402 | * there are some baseline files out there with all zeroes in these bytes.
|
---|
1403 | */
|
---|
1404 | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
|
---|
1405 | ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
|
---|
1406 | cinfo->Se != cinfo->lim_Se))
|
---|
1407 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
---|
1408 |
|
---|
1409 | /* Select MCU decoding routine */
|
---|
1410 | /* We retain the hard-coded case for full-size blocks.
|
---|
1411 | * This is not necessary, but it appears that this version is slightly
|
---|
1412 | * more performant in the given implementation.
|
---|
1413 | * With an improved implementation we would prefer a single optimized
|
---|
1414 | * function.
|
---|
1415 | */
|
---|
1416 | if (cinfo->lim_Se != DCTSIZE2-1)
|
---|
1417 | entropy->pub.decode_mcu = decode_mcu_sub;
|
---|
1418 | else
|
---|
1419 | entropy->pub.decode_mcu = decode_mcu;
|
---|
1420 |
|
---|
1421 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
1422 | compptr = cinfo->cur_comp_info[ci];
|
---|
1423 | /* Compute derived values for Huffman tables */
|
---|
1424 | /* We may do this more than once for a table, but it's not expensive */
|
---|
1425 | tbl = compptr->dc_tbl_no;
|
---|
1426 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
|
---|
1427 | & entropy->dc_derived_tbls[tbl]);
|
---|
1428 | if (cinfo->lim_Se) { /* AC needs no table when not present */
|
---|
1429 | tbl = compptr->ac_tbl_no;
|
---|
1430 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
|
---|
1431 | & entropy->ac_derived_tbls[tbl]);
|
---|
1432 | }
|
---|
1433 | /* Initialize DC predictions to 0 */
|
---|
1434 | entropy->saved.last_dc_val[ci] = 0;
|
---|
1435 | }
|
---|
1436 |
|
---|
1437 | /* Precalculate decoding info for each block in an MCU of this scan */
|
---|
1438 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
1439 | ci = cinfo->MCU_membership[blkn];
|
---|
1440 | compptr = cinfo->cur_comp_info[ci];
|
---|
1441 | /* Precalculate which table to use for each block */
|
---|
1442 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
|
---|
1443 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
|
---|
1444 | /* Decide whether we really care about the coefficient values */
|
---|
1445 | if (compptr->component_needed) {
|
---|
1446 | ci = compptr->DCT_v_scaled_size;
|
---|
1447 | i = compptr->DCT_h_scaled_size;
|
---|
1448 | switch (cinfo->lim_Se) {
|
---|
1449 | case (1*1-1):
|
---|
1450 | entropy->coef_limit[blkn] = 1;
|
---|
1451 | break;
|
---|
1452 | case (2*2-1):
|
---|
1453 | if (ci <= 0 || ci > 2) ci = 2;
|
---|
1454 | if (i <= 0 || i > 2) i = 2;
|
---|
1455 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
|
---|
1456 | break;
|
---|
1457 | case (3*3-1):
|
---|
1458 | if (ci <= 0 || ci > 3) ci = 3;
|
---|
1459 | if (i <= 0 || i > 3) i = 3;
|
---|
1460 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
|
---|
1461 | break;
|
---|
1462 | case (4*4-1):
|
---|
1463 | if (ci <= 0 || ci > 4) ci = 4;
|
---|
1464 | if (i <= 0 || i > 4) i = 4;
|
---|
1465 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
|
---|
1466 | break;
|
---|
1467 | case (5*5-1):
|
---|
1468 | if (ci <= 0 || ci > 5) ci = 5;
|
---|
1469 | if (i <= 0 || i > 5) i = 5;
|
---|
1470 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
|
---|
1471 | break;
|
---|
1472 | case (6*6-1):
|
---|
1473 | if (ci <= 0 || ci > 6) ci = 6;
|
---|
1474 | if (i <= 0 || i > 6) i = 6;
|
---|
1475 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
|
---|
1476 | break;
|
---|
1477 | case (7*7-1):
|
---|
1478 | if (ci <= 0 || ci > 7) ci = 7;
|
---|
1479 | if (i <= 0 || i > 7) i = 7;
|
---|
1480 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
|
---|
1481 | break;
|
---|
1482 | default:
|
---|
1483 | if (ci <= 0 || ci > 8) ci = 8;
|
---|
1484 | if (i <= 0 || i > 8) i = 8;
|
---|
1485 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
|
---|
1486 | break;
|
---|
1487 | }
|
---|
1488 | } else {
|
---|
1489 | entropy->coef_limit[blkn] = 0;
|
---|
1490 | }
|
---|
1491 | }
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 | /* Initialize bitread state variables */
|
---|
1495 | entropy->bitstate.bits_left = 0;
|
---|
1496 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
---|
1497 | entropy->insufficient_data = FALSE;
|
---|
1498 |
|
---|
1499 | /* Initialize restart counter */
|
---|
1500 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
1501 | }
|
---|
1502 |
|
---|
1503 |
|
---|
1504 | /*
|
---|
1505 | * Module initialization routine for Huffman entropy decoding.
|
---|
1506 | */
|
---|
1507 |
|
---|
1508 | GLOBAL(void)
|
---|
1509 | jinit_huff_decoder (j_decompress_ptr cinfo)
|
---|
1510 | {
|
---|
1511 | huff_entropy_ptr entropy;
|
---|
1512 | int i;
|
---|
1513 |
|
---|
1514 | entropy = (huff_entropy_ptr)
|
---|
1515 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1516 | SIZEOF(huff_entropy_decoder));
|
---|
1517 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
---|
1518 | entropy->pub.start_pass = start_pass_huff_decoder;
|
---|
1519 |
|
---|
1520 | if (cinfo->progressive_mode) {
|
---|
1521 | /* Create progression status table */
|
---|
1522 | int *coef_bit_ptr, ci;
|
---|
1523 | cinfo->coef_bits = (int (*)[DCTSIZE2])
|
---|
1524 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1525 | cinfo->num_components*DCTSIZE2*SIZEOF(int));
|
---|
1526 | coef_bit_ptr = & cinfo->coef_bits[0][0];
|
---|
1527 | for (ci = 0; ci < cinfo->num_components; ci++)
|
---|
1528 | for (i = 0; i < DCTSIZE2; i++)
|
---|
1529 | *coef_bit_ptr++ = -1;
|
---|
1530 |
|
---|
1531 | /* Mark derived tables unallocated */
|
---|
1532 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
1533 | entropy->derived_tbls[i] = NULL;
|
---|
1534 | }
|
---|
1535 | } else {
|
---|
1536 | /* Mark tables unallocated */
|
---|
1537 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
1538 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
---|
1539 | }
|
---|
1540 | }
|
---|
1541 | }
|
---|