[2] | 1 | /*
|
---|
| 2 | * jdhuff.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
[846] | 5 | * Modified 2006-2009 by Guido Vollbeding.
|
---|
[2] | 6 | * This file is part of the Independent JPEG Group's software.
|
---|
| 7 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 8 | *
|
---|
| 9 | * This file contains Huffman entropy decoding routines.
|
---|
[846] | 10 | * Both sequential and progressive modes are supported in this single module.
|
---|
[2] | 11 | *
|
---|
| 12 | * Much of the complexity here has to do with supporting input suspension.
|
---|
| 13 | * If the data source module demands suspension, we want to be able to back
|
---|
| 14 | * up to the start of the current MCU. To do this, we copy state variables
|
---|
| 15 | * into local working storage, and update them back to the permanent
|
---|
| 16 | * storage only upon successful completion of an MCU.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 | #define JPEG_INTERNALS
|
---|
| 20 | #include "jinclude.h"
|
---|
| 21 | #include "jpeglib.h"
|
---|
| 22 |
|
---|
| 23 |
|
---|
[846] | 24 | /* Derived data constructed for each Huffman table */
|
---|
| 25 |
|
---|
| 26 | #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
|
---|
| 27 |
|
---|
| 28 | typedef struct {
|
---|
| 29 | /* Basic tables: (element [0] of each array is unused) */
|
---|
| 30 | INT32 maxcode[18]; /* largest code of length k (-1 if none) */
|
---|
| 31 | /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
|
---|
| 32 | INT32 valoffset[17]; /* huffval[] offset for codes of length k */
|
---|
| 33 | /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
|
---|
| 34 | * the smallest code of length k; so given a code of length k, the
|
---|
| 35 | * corresponding symbol is huffval[code + valoffset[k]]
|
---|
| 36 | */
|
---|
| 37 |
|
---|
| 38 | /* Link to public Huffman table (needed only in jpeg_huff_decode) */
|
---|
| 39 | JHUFF_TBL *pub;
|
---|
| 40 |
|
---|
| 41 | /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
|
---|
| 42 | * the input data stream. If the next Huffman code is no more
|
---|
| 43 | * than HUFF_LOOKAHEAD bits long, we can obtain its length and
|
---|
| 44 | * the corresponding symbol directly from these tables.
|
---|
| 45 | */
|
---|
| 46 | int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
|
---|
| 47 | UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
|
---|
| 48 | } d_derived_tbl;
|
---|
| 49 |
|
---|
| 50 |
|
---|
[2] | 51 | /*
|
---|
[846] | 52 | * Fetching the next N bits from the input stream is a time-critical operation
|
---|
| 53 | * for the Huffman decoders. We implement it with a combination of inline
|
---|
| 54 | * macros and out-of-line subroutines. Note that N (the number of bits
|
---|
| 55 | * demanded at one time) never exceeds 15 for JPEG use.
|
---|
| 56 | *
|
---|
| 57 | * We read source bytes into get_buffer and dole out bits as needed.
|
---|
| 58 | * If get_buffer already contains enough bits, they are fetched in-line
|
---|
| 59 | * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
|
---|
| 60 | * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
|
---|
| 61 | * as full as possible (not just to the number of bits needed; this
|
---|
| 62 | * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
|
---|
| 63 | * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
|
---|
| 64 | * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
|
---|
| 65 | * at least the requested number of bits --- dummy zeroes are inserted if
|
---|
| 66 | * necessary.
|
---|
| 67 | */
|
---|
| 68 |
|
---|
| 69 | typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
|
---|
| 70 | #define BIT_BUF_SIZE 32 /* size of buffer in bits */
|
---|
| 71 |
|
---|
| 72 | /* If long is > 32 bits on your machine, and shifting/masking longs is
|
---|
| 73 | * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
|
---|
| 74 | * appropriately should be a win. Unfortunately we can't define the size
|
---|
| 75 | * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
|
---|
| 76 | * because not all machines measure sizeof in 8-bit bytes.
|
---|
| 77 | */
|
---|
| 78 |
|
---|
| 79 | typedef struct { /* Bitreading state saved across MCUs */
|
---|
| 80 | bit_buf_type get_buffer; /* current bit-extraction buffer */
|
---|
| 81 | int bits_left; /* # of unused bits in it */
|
---|
| 82 | } bitread_perm_state;
|
---|
| 83 |
|
---|
| 84 | typedef struct { /* Bitreading working state within an MCU */
|
---|
| 85 | /* Current data source location */
|
---|
| 86 | /* We need a copy, rather than munging the original, in case of suspension */
|
---|
| 87 | const JOCTET * next_input_byte; /* => next byte to read from source */
|
---|
| 88 | size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
|
---|
| 89 | /* Bit input buffer --- note these values are kept in register variables,
|
---|
| 90 | * not in this struct, inside the inner loops.
|
---|
| 91 | */
|
---|
| 92 | bit_buf_type get_buffer; /* current bit-extraction buffer */
|
---|
| 93 | int bits_left; /* # of unused bits in it */
|
---|
| 94 | /* Pointer needed by jpeg_fill_bit_buffer. */
|
---|
| 95 | j_decompress_ptr cinfo; /* back link to decompress master record */
|
---|
| 96 | } bitread_working_state;
|
---|
| 97 |
|
---|
| 98 | /* Macros to declare and load/save bitread local variables. */
|
---|
| 99 | #define BITREAD_STATE_VARS \
|
---|
| 100 | register bit_buf_type get_buffer; \
|
---|
| 101 | register int bits_left; \
|
---|
| 102 | bitread_working_state br_state
|
---|
| 103 |
|
---|
| 104 | #define BITREAD_LOAD_STATE(cinfop,permstate) \
|
---|
| 105 | br_state.cinfo = cinfop; \
|
---|
| 106 | br_state.next_input_byte = cinfop->src->next_input_byte; \
|
---|
| 107 | br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
|
---|
| 108 | get_buffer = permstate.get_buffer; \
|
---|
| 109 | bits_left = permstate.bits_left;
|
---|
| 110 |
|
---|
| 111 | #define BITREAD_SAVE_STATE(cinfop,permstate) \
|
---|
| 112 | cinfop->src->next_input_byte = br_state.next_input_byte; \
|
---|
| 113 | cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
|
---|
| 114 | permstate.get_buffer = get_buffer; \
|
---|
| 115 | permstate.bits_left = bits_left
|
---|
| 116 |
|
---|
| 117 | /*
|
---|
| 118 | * These macros provide the in-line portion of bit fetching.
|
---|
| 119 | * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
|
---|
| 120 | * before using GET_BITS, PEEK_BITS, or DROP_BITS.
|
---|
| 121 | * The variables get_buffer and bits_left are assumed to be locals,
|
---|
| 122 | * but the state struct might not be (jpeg_huff_decode needs this).
|
---|
| 123 | * CHECK_BIT_BUFFER(state,n,action);
|
---|
| 124 | * Ensure there are N bits in get_buffer; if suspend, take action.
|
---|
| 125 | * val = GET_BITS(n);
|
---|
| 126 | * Fetch next N bits.
|
---|
| 127 | * val = PEEK_BITS(n);
|
---|
| 128 | * Fetch next N bits without removing them from the buffer.
|
---|
| 129 | * DROP_BITS(n);
|
---|
| 130 | * Discard next N bits.
|
---|
| 131 | * The value N should be a simple variable, not an expression, because it
|
---|
| 132 | * is evaluated multiple times.
|
---|
| 133 | */
|
---|
| 134 |
|
---|
| 135 | #define CHECK_BIT_BUFFER(state,nbits,action) \
|
---|
| 136 | { if (bits_left < (nbits)) { \
|
---|
| 137 | if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
|
---|
| 138 | { action; } \
|
---|
| 139 | get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
|
---|
| 140 |
|
---|
| 141 | #define GET_BITS(nbits) \
|
---|
| 142 | (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
|
---|
| 143 |
|
---|
| 144 | #define PEEK_BITS(nbits) \
|
---|
| 145 | (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
|
---|
| 146 |
|
---|
| 147 | #define DROP_BITS(nbits) \
|
---|
| 148 | (bits_left -= (nbits))
|
---|
| 149 |
|
---|
| 150 |
|
---|
| 151 | /*
|
---|
| 152 | * Code for extracting next Huffman-coded symbol from input bit stream.
|
---|
| 153 | * Again, this is time-critical and we make the main paths be macros.
|
---|
| 154 | *
|
---|
| 155 | * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
|
---|
| 156 | * without looping. Usually, more than 95% of the Huffman codes will be 8
|
---|
| 157 | * or fewer bits long. The few overlength codes are handled with a loop,
|
---|
| 158 | * which need not be inline code.
|
---|
| 159 | *
|
---|
| 160 | * Notes about the HUFF_DECODE macro:
|
---|
| 161 | * 1. Near the end of the data segment, we may fail to get enough bits
|
---|
| 162 | * for a lookahead. In that case, we do it the hard way.
|
---|
| 163 | * 2. If the lookahead table contains no entry, the next code must be
|
---|
| 164 | * more than HUFF_LOOKAHEAD bits long.
|
---|
| 165 | * 3. jpeg_huff_decode returns -1 if forced to suspend.
|
---|
| 166 | */
|
---|
| 167 |
|
---|
| 168 | #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
|
---|
| 169 | { register int nb, look; \
|
---|
| 170 | if (bits_left < HUFF_LOOKAHEAD) { \
|
---|
| 171 | if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
|
---|
| 172 | get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
---|
| 173 | if (bits_left < HUFF_LOOKAHEAD) { \
|
---|
| 174 | nb = 1; goto slowlabel; \
|
---|
| 175 | } \
|
---|
| 176 | } \
|
---|
| 177 | look = PEEK_BITS(HUFF_LOOKAHEAD); \
|
---|
| 178 | if ((nb = htbl->look_nbits[look]) != 0) { \
|
---|
| 179 | DROP_BITS(nb); \
|
---|
| 180 | result = htbl->look_sym[look]; \
|
---|
| 181 | } else { \
|
---|
| 182 | nb = HUFF_LOOKAHEAD+1; \
|
---|
| 183 | slowlabel: \
|
---|
| 184 | if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
|
---|
| 185 | { failaction; } \
|
---|
| 186 | get_buffer = state.get_buffer; bits_left = state.bits_left; \
|
---|
| 187 | } \
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 |
|
---|
| 191 | /*
|
---|
[2] | 192 | * Expanded entropy decoder object for Huffman decoding.
|
---|
| 193 | *
|
---|
| 194 | * The savable_state subrecord contains fields that change within an MCU,
|
---|
| 195 | * but must not be updated permanently until we complete the MCU.
|
---|
| 196 | */
|
---|
| 197 |
|
---|
| 198 | typedef struct {
|
---|
[846] | 199 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
|
---|
| 200 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
[2] | 201 | } savable_state;
|
---|
| 202 |
|
---|
| 203 | /* This macro is to work around compilers with missing or broken
|
---|
| 204 | * structure assignment. You'll need to fix this code if you have
|
---|
| 205 | * such a compiler and you change MAX_COMPS_IN_SCAN.
|
---|
| 206 | */
|
---|
| 207 |
|
---|
| 208 | #ifndef NO_STRUCT_ASSIGN
|
---|
| 209 | #define ASSIGN_STATE(dest,src) ((dest) = (src))
|
---|
| 210 | #else
|
---|
| 211 | #if MAX_COMPS_IN_SCAN == 4
|
---|
| 212 | #define ASSIGN_STATE(dest,src) \
|
---|
[846] | 213 | ((dest).EOBRUN = (src).EOBRUN, \
|
---|
| 214 | (dest).last_dc_val[0] = (src).last_dc_val[0], \
|
---|
[2] | 215 | (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
---|
| 216 | (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
---|
| 217 | (dest).last_dc_val[3] = (src).last_dc_val[3])
|
---|
| 218 | #endif
|
---|
| 219 | #endif
|
---|
| 220 |
|
---|
| 221 |
|
---|
| 222 | typedef struct {
|
---|
| 223 | struct jpeg_entropy_decoder pub; /* public fields */
|
---|
| 224 |
|
---|
| 225 | /* These fields are loaded into local variables at start of each MCU.
|
---|
| 226 | * In case of suspension, we exit WITHOUT updating them.
|
---|
| 227 | */
|
---|
| 228 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
---|
| 229 | savable_state saved; /* Other state at start of MCU */
|
---|
| 230 |
|
---|
| 231 | /* These fields are NOT loaded into local working state. */
|
---|
[846] | 232 | boolean insufficient_data; /* set TRUE after emitting warning */
|
---|
[2] | 233 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
| 234 |
|
---|
[846] | 235 | /* Following two fields used only in progressive mode */
|
---|
| 236 |
|
---|
[2] | 237 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
[846] | 238 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
---|
| 239 |
|
---|
| 240 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
|
---|
| 241 |
|
---|
| 242 | /* Following fields used only in sequential mode */
|
---|
| 243 |
|
---|
| 244 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
[2] | 245 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 246 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 247 |
|
---|
| 248 | /* Precalculated info set up by start_pass for use in decode_mcu: */
|
---|
| 249 |
|
---|
| 250 | /* Pointers to derived tables to be used for each block within an MCU */
|
---|
| 251 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
---|
| 252 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
|
---|
| 253 | /* Whether we care about the DC and AC coefficient values for each block */
|
---|
[846] | 254 | int coef_limit[D_MAX_BLOCKS_IN_MCU];
|
---|
[2] | 255 | } huff_entropy_decoder;
|
---|
| 256 |
|
---|
| 257 | typedef huff_entropy_decoder * huff_entropy_ptr;
|
---|
| 258 |
|
---|
| 259 |
|
---|
[846] | 260 | static const int jpeg_zigzag_order[8][8] = {
|
---|
| 261 | { 0, 1, 5, 6, 14, 15, 27, 28 },
|
---|
| 262 | { 2, 4, 7, 13, 16, 26, 29, 42 },
|
---|
| 263 | { 3, 8, 12, 17, 25, 30, 41, 43 },
|
---|
| 264 | { 9, 11, 18, 24, 31, 40, 44, 53 },
|
---|
| 265 | { 10, 19, 23, 32, 39, 45, 52, 54 },
|
---|
| 266 | { 20, 22, 33, 38, 46, 51, 55, 60 },
|
---|
| 267 | { 21, 34, 37, 47, 50, 56, 59, 61 },
|
---|
| 268 | { 35, 36, 48, 49, 57, 58, 62, 63 }
|
---|
| 269 | };
|
---|
[2] | 270 |
|
---|
[846] | 271 | static const int jpeg_zigzag_order7[7][7] = {
|
---|
| 272 | { 0, 1, 5, 6, 14, 15, 27 },
|
---|
| 273 | { 2, 4, 7, 13, 16, 26, 28 },
|
---|
| 274 | { 3, 8, 12, 17, 25, 29, 38 },
|
---|
| 275 | { 9, 11, 18, 24, 30, 37, 39 },
|
---|
| 276 | { 10, 19, 23, 31, 36, 40, 45 },
|
---|
| 277 | { 20, 22, 32, 35, 41, 44, 46 },
|
---|
| 278 | { 21, 33, 34, 42, 43, 47, 48 }
|
---|
| 279 | };
|
---|
[2] | 280 |
|
---|
[846] | 281 | static const int jpeg_zigzag_order6[6][6] = {
|
---|
| 282 | { 0, 1, 5, 6, 14, 15 },
|
---|
| 283 | { 2, 4, 7, 13, 16, 25 },
|
---|
| 284 | { 3, 8, 12, 17, 24, 26 },
|
---|
| 285 | { 9, 11, 18, 23, 27, 32 },
|
---|
| 286 | { 10, 19, 22, 28, 31, 33 },
|
---|
| 287 | { 20, 21, 29, 30, 34, 35 }
|
---|
| 288 | };
|
---|
[2] | 289 |
|
---|
[846] | 290 | static const int jpeg_zigzag_order5[5][5] = {
|
---|
| 291 | { 0, 1, 5, 6, 14 },
|
---|
| 292 | { 2, 4, 7, 13, 15 },
|
---|
| 293 | { 3, 8, 12, 16, 21 },
|
---|
| 294 | { 9, 11, 17, 20, 22 },
|
---|
| 295 | { 10, 18, 19, 23, 24 }
|
---|
| 296 | };
|
---|
[2] | 297 |
|
---|
[846] | 298 | static const int jpeg_zigzag_order4[4][4] = {
|
---|
| 299 | { 0, 1, 5, 6 },
|
---|
| 300 | { 2, 4, 7, 12 },
|
---|
| 301 | { 3, 8, 11, 13 },
|
---|
| 302 | { 9, 10, 14, 15 }
|
---|
| 303 | };
|
---|
[2] | 304 |
|
---|
[846] | 305 | static const int jpeg_zigzag_order3[3][3] = {
|
---|
| 306 | { 0, 1, 5 },
|
---|
| 307 | { 2, 4, 6 },
|
---|
| 308 | { 3, 7, 8 }
|
---|
| 309 | };
|
---|
[2] | 310 |
|
---|
[846] | 311 | static const int jpeg_zigzag_order2[2][2] = {
|
---|
| 312 | { 0, 1 },
|
---|
| 313 | { 2, 3 }
|
---|
| 314 | };
|
---|
[2] | 315 |
|
---|
| 316 |
|
---|
| 317 | /*
|
---|
| 318 | * Compute the derived values for a Huffman table.
|
---|
| 319 | * This routine also performs some validation checks on the table.
|
---|
| 320 | */
|
---|
| 321 |
|
---|
[846] | 322 | LOCAL(void)
|
---|
[2] | 323 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
|
---|
| 324 | d_derived_tbl ** pdtbl)
|
---|
| 325 | {
|
---|
| 326 | JHUFF_TBL *htbl;
|
---|
| 327 | d_derived_tbl *dtbl;
|
---|
| 328 | int p, i, l, si, numsymbols;
|
---|
| 329 | int lookbits, ctr;
|
---|
| 330 | char huffsize[257];
|
---|
| 331 | unsigned int huffcode[257];
|
---|
| 332 | unsigned int code;
|
---|
| 333 |
|
---|
| 334 | /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
---|
| 335 | * paralleling the order of the symbols themselves in htbl->huffval[].
|
---|
| 336 | */
|
---|
| 337 |
|
---|
| 338 | /* Find the input Huffman table */
|
---|
| 339 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
---|
| 340 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 341 | htbl =
|
---|
| 342 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
---|
| 343 | if (htbl == NULL)
|
---|
| 344 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 345 |
|
---|
| 346 | /* Allocate a workspace if we haven't already done so. */
|
---|
| 347 | if (*pdtbl == NULL)
|
---|
| 348 | *pdtbl = (d_derived_tbl *)
|
---|
| 349 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 350 | SIZEOF(d_derived_tbl));
|
---|
| 351 | dtbl = *pdtbl;
|
---|
| 352 | dtbl->pub = htbl; /* fill in back link */
|
---|
| 353 |
|
---|
| 354 | /* Figure C.1: make table of Huffman code length for each symbol */
|
---|
| 355 |
|
---|
| 356 | p = 0;
|
---|
| 357 | for (l = 1; l <= 16; l++) {
|
---|
| 358 | i = (int) htbl->bits[l];
|
---|
| 359 | if (i < 0 || p + i > 256) /* protect against table overrun */
|
---|
| 360 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 361 | while (i--)
|
---|
| 362 | huffsize[p++] = (char) l;
|
---|
| 363 | }
|
---|
| 364 | huffsize[p] = 0;
|
---|
| 365 | numsymbols = p;
|
---|
| 366 |
|
---|
| 367 | /* Figure C.2: generate the codes themselves */
|
---|
| 368 | /* We also validate that the counts represent a legal Huffman code tree. */
|
---|
| 369 |
|
---|
| 370 | code = 0;
|
---|
| 371 | si = huffsize[0];
|
---|
| 372 | p = 0;
|
---|
| 373 | while (huffsize[p]) {
|
---|
| 374 | while (((int) huffsize[p]) == si) {
|
---|
| 375 | huffcode[p++] = code;
|
---|
| 376 | code++;
|
---|
| 377 | }
|
---|
| 378 | /* code is now 1 more than the last code used for codelength si; but
|
---|
| 379 | * it must still fit in si bits, since no code is allowed to be all ones.
|
---|
| 380 | */
|
---|
| 381 | if (((INT32) code) >= (((INT32) 1) << si))
|
---|
| 382 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 383 | code <<= 1;
|
---|
| 384 | si++;
|
---|
| 385 | }
|
---|
| 386 |
|
---|
| 387 | /* Figure F.15: generate decoding tables for bit-sequential decoding */
|
---|
| 388 |
|
---|
| 389 | p = 0;
|
---|
| 390 | for (l = 1; l <= 16; l++) {
|
---|
| 391 | if (htbl->bits[l]) {
|
---|
| 392 | /* valoffset[l] = huffval[] index of 1st symbol of code length l,
|
---|
| 393 | * minus the minimum code of length l
|
---|
| 394 | */
|
---|
| 395 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
|
---|
| 396 | p += htbl->bits[l];
|
---|
| 397 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
|
---|
| 398 | } else {
|
---|
| 399 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
|
---|
| 400 | }
|
---|
| 401 | }
|
---|
| 402 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
|
---|
| 403 |
|
---|
| 404 | /* Compute lookahead tables to speed up decoding.
|
---|
| 405 | * First we set all the table entries to 0, indicating "too long";
|
---|
| 406 | * then we iterate through the Huffman codes that are short enough and
|
---|
| 407 | * fill in all the entries that correspond to bit sequences starting
|
---|
| 408 | * with that code.
|
---|
| 409 | */
|
---|
| 410 |
|
---|
| 411 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
|
---|
| 412 |
|
---|
| 413 | p = 0;
|
---|
| 414 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
|
---|
| 415 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
|
---|
| 416 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */
|
---|
| 417 | /* Generate left-justified code followed by all possible bit sequences */
|
---|
| 418 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
|
---|
| 419 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
|
---|
| 420 | dtbl->look_nbits[lookbits] = l;
|
---|
| 421 | dtbl->look_sym[lookbits] = htbl->huffval[p];
|
---|
| 422 | lookbits++;
|
---|
| 423 | }
|
---|
| 424 | }
|
---|
| 425 | }
|
---|
| 426 |
|
---|
| 427 | /* Validate symbols as being reasonable.
|
---|
| 428 | * For AC tables, we make no check, but accept all byte values 0..255.
|
---|
| 429 | * For DC tables, we require the symbols to be in range 0..15.
|
---|
| 430 | * (Tighter bounds could be applied depending on the data depth and mode,
|
---|
| 431 | * but this is sufficient to ensure safe decoding.)
|
---|
| 432 | */
|
---|
| 433 | if (isDC) {
|
---|
| 434 | for (i = 0; i < numsymbols; i++) {
|
---|
| 435 | int sym = htbl->huffval[i];
|
---|
| 436 | if (sym < 0 || sym > 15)
|
---|
| 437 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 438 | }
|
---|
| 439 | }
|
---|
| 440 | }
|
---|
| 441 |
|
---|
| 442 |
|
---|
| 443 | /*
|
---|
[846] | 444 | * Out-of-line code for bit fetching.
|
---|
[2] | 445 | * Note: current values of get_buffer and bits_left are passed as parameters,
|
---|
| 446 | * but are returned in the corresponding fields of the state struct.
|
---|
| 447 | *
|
---|
| 448 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
|
---|
| 449 | * of get_buffer to be used. (On machines with wider words, an even larger
|
---|
| 450 | * buffer could be used.) However, on some machines 32-bit shifts are
|
---|
| 451 | * quite slow and take time proportional to the number of places shifted.
|
---|
| 452 | * (This is true with most PC compilers, for instance.) In this case it may
|
---|
| 453 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
|
---|
| 454 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
|
---|
| 455 | */
|
---|
| 456 |
|
---|
| 457 | #ifdef SLOW_SHIFT_32
|
---|
| 458 | #define MIN_GET_BITS 15 /* minimum allowable value */
|
---|
| 459 | #else
|
---|
| 460 | #define MIN_GET_BITS (BIT_BUF_SIZE-7)
|
---|
| 461 | #endif
|
---|
| 462 |
|
---|
| 463 |
|
---|
[846] | 464 | LOCAL(boolean)
|
---|
[2] | 465 | jpeg_fill_bit_buffer (bitread_working_state * state,
|
---|
| 466 | register bit_buf_type get_buffer, register int bits_left,
|
---|
| 467 | int nbits)
|
---|
| 468 | /* Load up the bit buffer to a depth of at least nbits */
|
---|
| 469 | {
|
---|
| 470 | /* Copy heavily used state fields into locals (hopefully registers) */
|
---|
| 471 | register const JOCTET * next_input_byte = state->next_input_byte;
|
---|
| 472 | register size_t bytes_in_buffer = state->bytes_in_buffer;
|
---|
| 473 | j_decompress_ptr cinfo = state->cinfo;
|
---|
| 474 |
|
---|
| 475 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
|
---|
| 476 | /* (It is assumed that no request will be for more than that many bits.) */
|
---|
| 477 | /* We fail to do so only if we hit a marker or are forced to suspend. */
|
---|
| 478 |
|
---|
| 479 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
|
---|
| 480 | while (bits_left < MIN_GET_BITS) {
|
---|
| 481 | register int c;
|
---|
| 482 |
|
---|
| 483 | /* Attempt to read a byte */
|
---|
| 484 | if (bytes_in_buffer == 0) {
|
---|
| 485 | if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
---|
| 486 | return FALSE;
|
---|
| 487 | next_input_byte = cinfo->src->next_input_byte;
|
---|
| 488 | bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
---|
| 489 | }
|
---|
| 490 | bytes_in_buffer--;
|
---|
| 491 | c = GETJOCTET(*next_input_byte++);
|
---|
| 492 |
|
---|
| 493 | /* If it's 0xFF, check and discard stuffed zero byte */
|
---|
| 494 | if (c == 0xFF) {
|
---|
| 495 | /* Loop here to discard any padding FF's on terminating marker,
|
---|
| 496 | * so that we can save a valid unread_marker value. NOTE: we will
|
---|
| 497 | * accept multiple FF's followed by a 0 as meaning a single FF data
|
---|
| 498 | * byte. This data pattern is not valid according to the standard.
|
---|
| 499 | */
|
---|
| 500 | do {
|
---|
| 501 | if (bytes_in_buffer == 0) {
|
---|
| 502 | if (! (*cinfo->src->fill_input_buffer) (cinfo))
|
---|
| 503 | return FALSE;
|
---|
| 504 | next_input_byte = cinfo->src->next_input_byte;
|
---|
| 505 | bytes_in_buffer = cinfo->src->bytes_in_buffer;
|
---|
| 506 | }
|
---|
| 507 | bytes_in_buffer--;
|
---|
| 508 | c = GETJOCTET(*next_input_byte++);
|
---|
| 509 | } while (c == 0xFF);
|
---|
| 510 |
|
---|
| 511 | if (c == 0) {
|
---|
| 512 | /* Found FF/00, which represents an FF data byte */
|
---|
| 513 | c = 0xFF;
|
---|
| 514 | } else {
|
---|
| 515 | /* Oops, it's actually a marker indicating end of compressed data.
|
---|
| 516 | * Save the marker code for later use.
|
---|
| 517 | * Fine point: it might appear that we should save the marker into
|
---|
| 518 | * bitread working state, not straight into permanent state. But
|
---|
| 519 | * once we have hit a marker, we cannot need to suspend within the
|
---|
| 520 | * current MCU, because we will read no more bytes from the data
|
---|
| 521 | * source. So it is OK to update permanent state right away.
|
---|
| 522 | */
|
---|
| 523 | cinfo->unread_marker = c;
|
---|
| 524 | /* See if we need to insert some fake zero bits. */
|
---|
| 525 | goto no_more_bytes;
|
---|
| 526 | }
|
---|
| 527 | }
|
---|
| 528 |
|
---|
| 529 | /* OK, load c into get_buffer */
|
---|
| 530 | get_buffer = (get_buffer << 8) | c;
|
---|
| 531 | bits_left += 8;
|
---|
| 532 | } /* end while */
|
---|
| 533 | } else {
|
---|
| 534 | no_more_bytes:
|
---|
| 535 | /* We get here if we've read the marker that terminates the compressed
|
---|
| 536 | * data segment. There should be enough bits in the buffer register
|
---|
| 537 | * to satisfy the request; if so, no problem.
|
---|
| 538 | */
|
---|
| 539 | if (nbits > bits_left) {
|
---|
| 540 | /* Uh-oh. Report corrupted data to user and stuff zeroes into
|
---|
| 541 | * the data stream, so that we can produce some kind of image.
|
---|
| 542 | * We use a nonvolatile flag to ensure that only one warning message
|
---|
| 543 | * appears per data segment.
|
---|
| 544 | */
|
---|
[846] | 545 | if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
|
---|
[2] | 546 | WARNMS(cinfo, JWRN_HIT_MARKER);
|
---|
[846] | 547 | ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
|
---|
[2] | 548 | }
|
---|
| 549 | /* Fill the buffer with zero bits */
|
---|
| 550 | get_buffer <<= MIN_GET_BITS - bits_left;
|
---|
| 551 | bits_left = MIN_GET_BITS;
|
---|
| 552 | }
|
---|
| 553 | }
|
---|
| 554 |
|
---|
| 555 | /* Unload the local registers */
|
---|
| 556 | state->next_input_byte = next_input_byte;
|
---|
| 557 | state->bytes_in_buffer = bytes_in_buffer;
|
---|
| 558 | state->get_buffer = get_buffer;
|
---|
| 559 | state->bits_left = bits_left;
|
---|
| 560 |
|
---|
| 561 | return TRUE;
|
---|
| 562 | }
|
---|
| 563 |
|
---|
| 564 |
|
---|
| 565 | /*
|
---|
[846] | 566 | * Figure F.12: extend sign bit.
|
---|
| 567 | * On some machines, a shift and sub will be faster than a table lookup.
|
---|
| 568 | */
|
---|
| 569 |
|
---|
| 570 | #ifdef AVOID_TABLES
|
---|
| 571 |
|
---|
| 572 | #define BIT_MASK(nbits) ((1<<(nbits))-1)
|
---|
| 573 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
|
---|
| 574 |
|
---|
| 575 | #else
|
---|
| 576 |
|
---|
| 577 | #define BIT_MASK(nbits) bmask[nbits]
|
---|
| 578 | #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
|
---|
| 579 |
|
---|
| 580 | static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
|
---|
| 581 | { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
|
---|
| 582 | 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
|
---|
| 583 |
|
---|
| 584 | #endif /* AVOID_TABLES */
|
---|
| 585 |
|
---|
| 586 |
|
---|
| 587 | /*
|
---|
[2] | 588 | * Out-of-line code for Huffman code decoding.
|
---|
| 589 | */
|
---|
| 590 |
|
---|
[846] | 591 | LOCAL(int)
|
---|
[2] | 592 | jpeg_huff_decode (bitread_working_state * state,
|
---|
| 593 | register bit_buf_type get_buffer, register int bits_left,
|
---|
| 594 | d_derived_tbl * htbl, int min_bits)
|
---|
| 595 | {
|
---|
| 596 | register int l = min_bits;
|
---|
| 597 | register INT32 code;
|
---|
| 598 |
|
---|
| 599 | /* HUFF_DECODE has determined that the code is at least min_bits */
|
---|
| 600 | /* bits long, so fetch that many bits in one swoop. */
|
---|
| 601 |
|
---|
| 602 | CHECK_BIT_BUFFER(*state, l, return -1);
|
---|
| 603 | code = GET_BITS(l);
|
---|
| 604 |
|
---|
| 605 | /* Collect the rest of the Huffman code one bit at a time. */
|
---|
| 606 | /* This is per Figure F.16 in the JPEG spec. */
|
---|
| 607 |
|
---|
| 608 | while (code > htbl->maxcode[l]) {
|
---|
| 609 | code <<= 1;
|
---|
| 610 | CHECK_BIT_BUFFER(*state, 1, return -1);
|
---|
| 611 | code |= GET_BITS(1);
|
---|
| 612 | l++;
|
---|
| 613 | }
|
---|
| 614 |
|
---|
| 615 | /* Unload the local registers */
|
---|
| 616 | state->get_buffer = get_buffer;
|
---|
| 617 | state->bits_left = bits_left;
|
---|
| 618 |
|
---|
| 619 | /* With garbage input we may reach the sentinel value l = 17. */
|
---|
| 620 |
|
---|
| 621 | if (l > 16) {
|
---|
| 622 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
|
---|
| 623 | return 0; /* fake a zero as the safest result */
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
|
---|
| 627 | }
|
---|
| 628 |
|
---|
| 629 |
|
---|
| 630 | /*
|
---|
| 631 | * Check for a restart marker & resynchronize decoder.
|
---|
| 632 | * Returns FALSE if must suspend.
|
---|
| 633 | */
|
---|
| 634 |
|
---|
| 635 | LOCAL(boolean)
|
---|
| 636 | process_restart (j_decompress_ptr cinfo)
|
---|
| 637 | {
|
---|
| 638 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 639 | int ci;
|
---|
| 640 |
|
---|
| 641 | /* Throw away any unused bits remaining in bit buffer; */
|
---|
| 642 | /* include any full bytes in next_marker's count of discarded bytes */
|
---|
| 643 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
---|
| 644 | entropy->bitstate.bits_left = 0;
|
---|
| 645 |
|
---|
| 646 | /* Advance past the RSTn marker */
|
---|
| 647 | if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
---|
| 648 | return FALSE;
|
---|
| 649 |
|
---|
| 650 | /* Re-initialize DC predictions to 0 */
|
---|
| 651 | for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
---|
| 652 | entropy->saved.last_dc_val[ci] = 0;
|
---|
[846] | 653 | /* Re-init EOB run count, too */
|
---|
| 654 | entropy->saved.EOBRUN = 0;
|
---|
[2] | 655 |
|
---|
| 656 | /* Reset restart counter */
|
---|
| 657 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 658 |
|
---|
| 659 | /* Reset out-of-data flag, unless read_restart_marker left us smack up
|
---|
| 660 | * against a marker. In that case we will end up treating the next data
|
---|
| 661 | * segment as empty, and we can avoid producing bogus output pixels by
|
---|
| 662 | * leaving the flag set.
|
---|
| 663 | */
|
---|
| 664 | if (cinfo->unread_marker == 0)
|
---|
[846] | 665 | entropy->insufficient_data = FALSE;
|
---|
[2] | 666 |
|
---|
| 667 | return TRUE;
|
---|
| 668 | }
|
---|
| 669 |
|
---|
| 670 |
|
---|
| 671 | /*
|
---|
[846] | 672 | * Huffman MCU decoding.
|
---|
| 673 | * Each of these routines decodes and returns one MCU's worth of
|
---|
| 674 | * Huffman-compressed coefficients.
|
---|
[2] | 675 | * The coefficients are reordered from zigzag order into natural array order,
|
---|
| 676 | * but are not dequantized.
|
---|
| 677 | *
|
---|
| 678 | * The i'th block of the MCU is stored into the block pointed to by
|
---|
[846] | 679 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
---|
[2] | 680 | * (Wholesale zeroing is usually a little faster than retail...)
|
---|
| 681 | *
|
---|
[846] | 682 | * We return FALSE if data source requested suspension. In that case no
|
---|
[2] | 683 | * changes have been made to permanent state. (Exception: some output
|
---|
| 684 | * coefficients may already have been assigned. This is harmless for
|
---|
[846] | 685 | * spectral selection, since we'll just re-assign them on the next call.
|
---|
| 686 | * Successive approximation AC refinement has to be more careful, however.)
|
---|
[2] | 687 | */
|
---|
| 688 |
|
---|
[846] | 689 | /*
|
---|
| 690 | * MCU decoding for DC initial scan (either spectral selection,
|
---|
| 691 | * or first pass of successive approximation).
|
---|
| 692 | */
|
---|
| 693 |
|
---|
[2] | 694 | METHODDEF(boolean)
|
---|
[846] | 695 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 696 | {
|
---|
[2] | 697 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
[846] | 698 | int Al = cinfo->Al;
|
---|
| 699 | register int s, r;
|
---|
| 700 | int blkn, ci;
|
---|
| 701 | JBLOCKROW block;
|
---|
[2] | 702 | BITREAD_STATE_VARS;
|
---|
| 703 | savable_state state;
|
---|
[846] | 704 | d_derived_tbl * tbl;
|
---|
| 705 | jpeg_component_info * compptr;
|
---|
[2] | 706 |
|
---|
| 707 | /* Process restart marker if needed; may have to suspend */
|
---|
| 708 | if (cinfo->restart_interval) {
|
---|
| 709 | if (entropy->restarts_to_go == 0)
|
---|
| 710 | if (! process_restart(cinfo))
|
---|
| 711 | return FALSE;
|
---|
| 712 | }
|
---|
| 713 |
|
---|
| 714 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
| 715 | * This way, we return uniform gray for the remainder of the segment.
|
---|
| 716 | */
|
---|
[846] | 717 | if (! entropy->insufficient_data) {
|
---|
[2] | 718 |
|
---|
| 719 | /* Load up working state */
|
---|
| 720 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
| 721 | ASSIGN_STATE(state, entropy->saved);
|
---|
| 722 |
|
---|
| 723 | /* Outer loop handles each block in the MCU */
|
---|
| 724 |
|
---|
| 725 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
[846] | 726 | block = MCU_data[blkn];
|
---|
| 727 | ci = cinfo->MCU_membership[blkn];
|
---|
| 728 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 729 | tbl = entropy->derived_tbls[compptr->dc_tbl_no];
|
---|
[2] | 730 |
|
---|
| 731 | /* Decode a single block's worth of coefficients */
|
---|
| 732 |
|
---|
| 733 | /* Section F.2.2.1: decode the DC coefficient difference */
|
---|
[846] | 734 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
|
---|
[2] | 735 | if (s) {
|
---|
| 736 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 737 | r = GET_BITS(s);
|
---|
| 738 | s = HUFF_EXTEND(r, s);
|
---|
| 739 | }
|
---|
| 740 |
|
---|
[846] | 741 | /* Convert DC difference to actual value, update last_dc_val */
|
---|
| 742 | s += state.last_dc_val[ci];
|
---|
| 743 | state.last_dc_val[ci] = s;
|
---|
| 744 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
|
---|
| 745 | (*block)[0] = (JCOEF) (s << Al);
|
---|
| 746 | }
|
---|
| 747 |
|
---|
| 748 | /* Completed MCU, so update state */
|
---|
| 749 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
| 750 | ASSIGN_STATE(entropy->saved, state);
|
---|
| 751 | }
|
---|
| 752 |
|
---|
| 753 | /* Account for restart interval (no-op if not using restarts) */
|
---|
| 754 | entropy->restarts_to_go--;
|
---|
| 755 |
|
---|
| 756 | return TRUE;
|
---|
| 757 | }
|
---|
| 758 |
|
---|
| 759 |
|
---|
| 760 | /*
|
---|
| 761 | * MCU decoding for AC initial scan (either spectral selection,
|
---|
| 762 | * or first pass of successive approximation).
|
---|
| 763 | */
|
---|
| 764 |
|
---|
| 765 | METHODDEF(boolean)
|
---|
| 766 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 767 | {
|
---|
| 768 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 769 | register int s, k, r;
|
---|
| 770 | unsigned int EOBRUN;
|
---|
| 771 | int Se, Al;
|
---|
| 772 | const int * natural_order;
|
---|
| 773 | JBLOCKROW block;
|
---|
| 774 | BITREAD_STATE_VARS;
|
---|
| 775 | d_derived_tbl * tbl;
|
---|
| 776 |
|
---|
| 777 | /* Process restart marker if needed; may have to suspend */
|
---|
| 778 | if (cinfo->restart_interval) {
|
---|
| 779 | if (entropy->restarts_to_go == 0)
|
---|
| 780 | if (! process_restart(cinfo))
|
---|
| 781 | return FALSE;
|
---|
| 782 | }
|
---|
| 783 |
|
---|
| 784 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
| 785 | * This way, we return uniform gray for the remainder of the segment.
|
---|
| 786 | */
|
---|
| 787 | if (! entropy->insufficient_data) {
|
---|
| 788 |
|
---|
| 789 | Se = cinfo->Se;
|
---|
| 790 | Al = cinfo->Al;
|
---|
| 791 | natural_order = cinfo->natural_order;
|
---|
| 792 |
|
---|
| 793 | /* Load up working state.
|
---|
| 794 | * We can avoid loading/saving bitread state if in an EOB run.
|
---|
| 795 | */
|
---|
| 796 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
---|
| 797 |
|
---|
| 798 | /* There is always only one block per MCU */
|
---|
| 799 |
|
---|
| 800 | if (EOBRUN > 0) /* if it's a band of zeroes... */
|
---|
| 801 | EOBRUN--; /* ...process it now (we do nothing) */
|
---|
| 802 | else {
|
---|
| 803 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
| 804 | block = MCU_data[0];
|
---|
| 805 | tbl = entropy->ac_derived_tbl;
|
---|
| 806 |
|
---|
| 807 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
| 808 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
|
---|
| 809 | r = s >> 4;
|
---|
| 810 | s &= 15;
|
---|
| 811 | if (s) {
|
---|
| 812 | k += r;
|
---|
| 813 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 814 | r = GET_BITS(s);
|
---|
| 815 | s = HUFF_EXTEND(r, s);
|
---|
| 816 | /* Scale and output coefficient in natural (dezigzagged) order */
|
---|
| 817 | (*block)[natural_order[k]] = (JCOEF) (s << Al);
|
---|
| 818 | } else {
|
---|
| 819 | if (r == 15) { /* ZRL */
|
---|
| 820 | k += 15; /* skip 15 zeroes in band */
|
---|
| 821 | } else { /* EOBr, run length is 2^r + appended bits */
|
---|
| 822 | EOBRUN = 1 << r;
|
---|
| 823 | if (r) { /* EOBr, r > 0 */
|
---|
| 824 | CHECK_BIT_BUFFER(br_state, r, return FALSE);
|
---|
| 825 | r = GET_BITS(r);
|
---|
| 826 | EOBRUN += r;
|
---|
| 827 | }
|
---|
| 828 | EOBRUN--; /* this band is processed at this moment */
|
---|
| 829 | break; /* force end-of-band */
|
---|
| 830 | }
|
---|
| 831 | }
|
---|
| 832 | }
|
---|
| 833 |
|
---|
| 834 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
| 835 | }
|
---|
| 836 |
|
---|
| 837 | /* Completed MCU, so update state */
|
---|
| 838 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
---|
| 839 | }
|
---|
| 840 |
|
---|
| 841 | /* Account for restart interval (no-op if not using restarts) */
|
---|
| 842 | entropy->restarts_to_go--;
|
---|
| 843 |
|
---|
| 844 | return TRUE;
|
---|
| 845 | }
|
---|
| 846 |
|
---|
| 847 |
|
---|
| 848 | /*
|
---|
| 849 | * MCU decoding for DC successive approximation refinement scan.
|
---|
| 850 | * Note: we assume such scans can be multi-component, although the spec
|
---|
| 851 | * is not very clear on the point.
|
---|
| 852 | */
|
---|
| 853 |
|
---|
| 854 | METHODDEF(boolean)
|
---|
| 855 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 856 | {
|
---|
| 857 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 858 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
---|
| 859 | int blkn;
|
---|
| 860 | JBLOCKROW block;
|
---|
| 861 | BITREAD_STATE_VARS;
|
---|
| 862 |
|
---|
| 863 | /* Process restart marker if needed; may have to suspend */
|
---|
| 864 | if (cinfo->restart_interval) {
|
---|
| 865 | if (entropy->restarts_to_go == 0)
|
---|
| 866 | if (! process_restart(cinfo))
|
---|
| 867 | return FALSE;
|
---|
| 868 | }
|
---|
| 869 |
|
---|
| 870 | /* Not worth the cycles to check insufficient_data here,
|
---|
| 871 | * since we will not change the data anyway if we read zeroes.
|
---|
| 872 | */
|
---|
| 873 |
|
---|
| 874 | /* Load up working state */
|
---|
| 875 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
| 876 |
|
---|
| 877 | /* Outer loop handles each block in the MCU */
|
---|
| 878 |
|
---|
| 879 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 880 | block = MCU_data[blkn];
|
---|
| 881 |
|
---|
| 882 | /* Encoded data is simply the next bit of the two's-complement DC value */
|
---|
| 883 | CHECK_BIT_BUFFER(br_state, 1, return FALSE);
|
---|
| 884 | if (GET_BITS(1))
|
---|
| 885 | (*block)[0] |= p1;
|
---|
| 886 | /* Note: since we use |=, repeating the assignment later is safe */
|
---|
| 887 | }
|
---|
| 888 |
|
---|
| 889 | /* Completed MCU, so update state */
|
---|
| 890 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
| 891 |
|
---|
| 892 | /* Account for restart interval (no-op if not using restarts) */
|
---|
| 893 | entropy->restarts_to_go--;
|
---|
| 894 |
|
---|
| 895 | return TRUE;
|
---|
| 896 | }
|
---|
| 897 |
|
---|
| 898 |
|
---|
| 899 | /*
|
---|
| 900 | * MCU decoding for AC successive approximation refinement scan.
|
---|
| 901 | */
|
---|
| 902 |
|
---|
| 903 | METHODDEF(boolean)
|
---|
| 904 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 905 | {
|
---|
| 906 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 907 | register int s, k, r;
|
---|
| 908 | unsigned int EOBRUN;
|
---|
| 909 | int Se, p1, m1;
|
---|
| 910 | const int * natural_order;
|
---|
| 911 | JBLOCKROW block;
|
---|
| 912 | JCOEFPTR thiscoef;
|
---|
| 913 | BITREAD_STATE_VARS;
|
---|
| 914 | d_derived_tbl * tbl;
|
---|
| 915 | int num_newnz;
|
---|
| 916 | int newnz_pos[DCTSIZE2];
|
---|
| 917 |
|
---|
| 918 | /* Process restart marker if needed; may have to suspend */
|
---|
| 919 | if (cinfo->restart_interval) {
|
---|
| 920 | if (entropy->restarts_to_go == 0)
|
---|
| 921 | if (! process_restart(cinfo))
|
---|
| 922 | return FALSE;
|
---|
| 923 | }
|
---|
| 924 |
|
---|
| 925 | /* If we've run out of data, don't modify the MCU.
|
---|
| 926 | */
|
---|
| 927 | if (! entropy->insufficient_data) {
|
---|
| 928 |
|
---|
| 929 | Se = cinfo->Se;
|
---|
| 930 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
---|
| 931 | m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
|
---|
| 932 | natural_order = cinfo->natural_order;
|
---|
| 933 |
|
---|
| 934 | /* Load up working state */
|
---|
| 935 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
| 936 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
---|
| 937 |
|
---|
| 938 | /* There is always only one block per MCU */
|
---|
| 939 | block = MCU_data[0];
|
---|
| 940 | tbl = entropy->ac_derived_tbl;
|
---|
| 941 |
|
---|
| 942 | /* If we are forced to suspend, we must undo the assignments to any newly
|
---|
| 943 | * nonzero coefficients in the block, because otherwise we'd get confused
|
---|
| 944 | * next time about which coefficients were already nonzero.
|
---|
| 945 | * But we need not undo addition of bits to already-nonzero coefficients;
|
---|
| 946 | * instead, we can test the current bit to see if we already did it.
|
---|
| 947 | */
|
---|
| 948 | num_newnz = 0;
|
---|
| 949 |
|
---|
| 950 | /* initialize coefficient loop counter to start of band */
|
---|
| 951 | k = cinfo->Ss;
|
---|
| 952 |
|
---|
| 953 | if (EOBRUN == 0) {
|
---|
| 954 | for (; k <= Se; k++) {
|
---|
| 955 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
|
---|
| 956 | r = s >> 4;
|
---|
| 957 | s &= 15;
|
---|
| 958 | if (s) {
|
---|
| 959 | if (s != 1) /* size of new coef should always be 1 */
|
---|
| 960 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
|
---|
| 961 | CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
---|
| 962 | if (GET_BITS(1))
|
---|
| 963 | s = p1; /* newly nonzero coef is positive */
|
---|
| 964 | else
|
---|
| 965 | s = m1; /* newly nonzero coef is negative */
|
---|
| 966 | } else {
|
---|
| 967 | if (r != 15) {
|
---|
| 968 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
|
---|
| 969 | if (r) {
|
---|
| 970 | CHECK_BIT_BUFFER(br_state, r, goto undoit);
|
---|
| 971 | r = GET_BITS(r);
|
---|
| 972 | EOBRUN += r;
|
---|
| 973 | }
|
---|
| 974 | break; /* rest of block is handled by EOB logic */
|
---|
| 975 | }
|
---|
| 976 | /* note s = 0 for processing ZRL */
|
---|
| 977 | }
|
---|
| 978 | /* Advance over already-nonzero coefs and r still-zero coefs,
|
---|
| 979 | * appending correction bits to the nonzeroes. A correction bit is 1
|
---|
| 980 | * if the absolute value of the coefficient must be increased.
|
---|
| 981 | */
|
---|
| 982 | do {
|
---|
| 983 | thiscoef = *block + natural_order[k];
|
---|
| 984 | if (*thiscoef != 0) {
|
---|
| 985 | CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
---|
| 986 | if (GET_BITS(1)) {
|
---|
| 987 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
|
---|
| 988 | if (*thiscoef >= 0)
|
---|
| 989 | *thiscoef += p1;
|
---|
| 990 | else
|
---|
| 991 | *thiscoef += m1;
|
---|
| 992 | }
|
---|
| 993 | }
|
---|
| 994 | } else {
|
---|
| 995 | if (--r < 0)
|
---|
| 996 | break; /* reached target zero coefficient */
|
---|
| 997 | }
|
---|
| 998 | k++;
|
---|
| 999 | } while (k <= Se);
|
---|
| 1000 | if (s) {
|
---|
| 1001 | int pos = natural_order[k];
|
---|
| 1002 | /* Output newly nonzero coefficient */
|
---|
| 1003 | (*block)[pos] = (JCOEF) s;
|
---|
| 1004 | /* Remember its position in case we have to suspend */
|
---|
| 1005 | newnz_pos[num_newnz++] = pos;
|
---|
| 1006 | }
|
---|
| 1007 | }
|
---|
| 1008 | }
|
---|
| 1009 |
|
---|
| 1010 | if (EOBRUN > 0) {
|
---|
| 1011 | /* Scan any remaining coefficient positions after the end-of-band
|
---|
| 1012 | * (the last newly nonzero coefficient, if any). Append a correction
|
---|
| 1013 | * bit to each already-nonzero coefficient. A correction bit is 1
|
---|
| 1014 | * if the absolute value of the coefficient must be increased.
|
---|
| 1015 | */
|
---|
| 1016 | for (; k <= Se; k++) {
|
---|
| 1017 | thiscoef = *block + natural_order[k];
|
---|
| 1018 | if (*thiscoef != 0) {
|
---|
| 1019 | CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
---|
| 1020 | if (GET_BITS(1)) {
|
---|
| 1021 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
|
---|
| 1022 | if (*thiscoef >= 0)
|
---|
| 1023 | *thiscoef += p1;
|
---|
| 1024 | else
|
---|
| 1025 | *thiscoef += m1;
|
---|
| 1026 | }
|
---|
| 1027 | }
|
---|
| 1028 | }
|
---|
| 1029 | }
|
---|
| 1030 | /* Count one block completed in EOB run */
|
---|
| 1031 | EOBRUN--;
|
---|
| 1032 | }
|
---|
| 1033 |
|
---|
| 1034 | /* Completed MCU, so update state */
|
---|
| 1035 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
| 1036 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
---|
| 1037 | }
|
---|
| 1038 |
|
---|
| 1039 | /* Account for restart interval (no-op if not using restarts) */
|
---|
| 1040 | entropy->restarts_to_go--;
|
---|
| 1041 |
|
---|
| 1042 | return TRUE;
|
---|
| 1043 |
|
---|
| 1044 | undoit:
|
---|
| 1045 | /* Re-zero any output coefficients that we made newly nonzero */
|
---|
| 1046 | while (num_newnz > 0)
|
---|
| 1047 | (*block)[newnz_pos[--num_newnz]] = 0;
|
---|
| 1048 |
|
---|
| 1049 | return FALSE;
|
---|
| 1050 | }
|
---|
| 1051 |
|
---|
| 1052 |
|
---|
| 1053 | /*
|
---|
| 1054 | * Decode one MCU's worth of Huffman-compressed coefficients,
|
---|
| 1055 | * partial blocks.
|
---|
| 1056 | */
|
---|
| 1057 |
|
---|
| 1058 | METHODDEF(boolean)
|
---|
| 1059 | decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 1060 | {
|
---|
| 1061 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 1062 | const int * natural_order;
|
---|
| 1063 | int Se, blkn;
|
---|
| 1064 | BITREAD_STATE_VARS;
|
---|
| 1065 | savable_state state;
|
---|
| 1066 |
|
---|
| 1067 | /* Process restart marker if needed; may have to suspend */
|
---|
| 1068 | if (cinfo->restart_interval) {
|
---|
| 1069 | if (entropy->restarts_to_go == 0)
|
---|
| 1070 | if (! process_restart(cinfo))
|
---|
| 1071 | return FALSE;
|
---|
| 1072 | }
|
---|
| 1073 |
|
---|
| 1074 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
| 1075 | * This way, we return uniform gray for the remainder of the segment.
|
---|
| 1076 | */
|
---|
| 1077 | if (! entropy->insufficient_data) {
|
---|
| 1078 |
|
---|
| 1079 | natural_order = cinfo->natural_order;
|
---|
| 1080 | Se = cinfo->lim_Se;
|
---|
| 1081 |
|
---|
| 1082 | /* Load up working state */
|
---|
| 1083 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
| 1084 | ASSIGN_STATE(state, entropy->saved);
|
---|
| 1085 |
|
---|
| 1086 | /* Outer loop handles each block in the MCU */
|
---|
| 1087 |
|
---|
| 1088 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 1089 | JBLOCKROW block = MCU_data[blkn];
|
---|
| 1090 | d_derived_tbl * htbl;
|
---|
| 1091 | register int s, k, r;
|
---|
| 1092 | int coef_limit, ci;
|
---|
| 1093 |
|
---|
| 1094 | /* Decode a single block's worth of coefficients */
|
---|
| 1095 |
|
---|
| 1096 | /* Section F.2.2.1: decode the DC coefficient difference */
|
---|
| 1097 | htbl = entropy->dc_cur_tbls[blkn];
|
---|
| 1098 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
|
---|
| 1099 |
|
---|
| 1100 | htbl = entropy->ac_cur_tbls[blkn];
|
---|
| 1101 | k = 1;
|
---|
| 1102 | coef_limit = entropy->coef_limit[blkn];
|
---|
| 1103 | if (coef_limit) {
|
---|
[2] | 1104 | /* Convert DC difference to actual value, update last_dc_val */
|
---|
[846] | 1105 | if (s) {
|
---|
| 1106 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 1107 | r = GET_BITS(s);
|
---|
| 1108 | s = HUFF_EXTEND(r, s);
|
---|
| 1109 | }
|
---|
| 1110 | ci = cinfo->MCU_membership[blkn];
|
---|
[2] | 1111 | s += state.last_dc_val[ci];
|
---|
| 1112 | state.last_dc_val[ci] = s;
|
---|
[846] | 1113 | /* Output the DC coefficient */
|
---|
[2] | 1114 | (*block)[0] = (JCOEF) s;
|
---|
| 1115 |
|
---|
| 1116 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
| 1117 | /* Since zeroes are skipped, output area must be cleared beforehand */
|
---|
[846] | 1118 | for (; k < coef_limit; k++) {
|
---|
| 1119 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
|
---|
| 1120 |
|
---|
[2] | 1121 | r = s >> 4;
|
---|
| 1122 | s &= 15;
|
---|
[846] | 1123 |
|
---|
[2] | 1124 | if (s) {
|
---|
| 1125 | k += r;
|
---|
| 1126 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 1127 | r = GET_BITS(s);
|
---|
| 1128 | s = HUFF_EXTEND(r, s);
|
---|
| 1129 | /* Output coefficient in natural (dezigzagged) order.
|
---|
[846] | 1130 | * Note: the extra entries in natural_order[] will save us
|
---|
| 1131 | * if k > Se, which could happen if the data is corrupted.
|
---|
[2] | 1132 | */
|
---|
[846] | 1133 | (*block)[natural_order[k]] = (JCOEF) s;
|
---|
[2] | 1134 | } else {
|
---|
| 1135 | if (r != 15)
|
---|
[846] | 1136 | goto EndOfBlock;
|
---|
[2] | 1137 | k += 15;
|
---|
| 1138 | }
|
---|
| 1139 | }
|
---|
| 1140 | } else {
|
---|
[846] | 1141 | if (s) {
|
---|
| 1142 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 1143 | DROP_BITS(s);
|
---|
| 1144 | }
|
---|
| 1145 | }
|
---|
[2] | 1146 |
|
---|
[846] | 1147 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
| 1148 | /* In this path we just discard the values */
|
---|
| 1149 | for (; k <= Se; k++) {
|
---|
| 1150 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
|
---|
| 1151 |
|
---|
| 1152 | r = s >> 4;
|
---|
| 1153 | s &= 15;
|
---|
| 1154 |
|
---|
| 1155 | if (s) {
|
---|
| 1156 | k += r;
|
---|
| 1157 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 1158 | DROP_BITS(s);
|
---|
| 1159 | } else {
|
---|
| 1160 | if (r != 15)
|
---|
| 1161 | break;
|
---|
| 1162 | k += 15;
|
---|
| 1163 | }
|
---|
| 1164 | }
|
---|
| 1165 |
|
---|
| 1166 | EndOfBlock: ;
|
---|
| 1167 | }
|
---|
| 1168 |
|
---|
| 1169 | /* Completed MCU, so update state */
|
---|
| 1170 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
| 1171 | ASSIGN_STATE(entropy->saved, state);
|
---|
| 1172 | }
|
---|
| 1173 |
|
---|
| 1174 | /* Account for restart interval (no-op if not using restarts) */
|
---|
| 1175 | entropy->restarts_to_go--;
|
---|
| 1176 |
|
---|
| 1177 | return TRUE;
|
---|
| 1178 | }
|
---|
| 1179 |
|
---|
| 1180 |
|
---|
| 1181 | /*
|
---|
| 1182 | * Decode one MCU's worth of Huffman-compressed coefficients,
|
---|
| 1183 | * full-size blocks.
|
---|
| 1184 | */
|
---|
| 1185 |
|
---|
| 1186 | METHODDEF(boolean)
|
---|
| 1187 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 1188 | {
|
---|
| 1189 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 1190 | int blkn;
|
---|
| 1191 | BITREAD_STATE_VARS;
|
---|
| 1192 | savable_state state;
|
---|
| 1193 |
|
---|
| 1194 | /* Process restart marker if needed; may have to suspend */
|
---|
| 1195 | if (cinfo->restart_interval) {
|
---|
| 1196 | if (entropy->restarts_to_go == 0)
|
---|
| 1197 | if (! process_restart(cinfo))
|
---|
| 1198 | return FALSE;
|
---|
| 1199 | }
|
---|
| 1200 |
|
---|
| 1201 | /* If we've run out of data, just leave the MCU set to zeroes.
|
---|
| 1202 | * This way, we return uniform gray for the remainder of the segment.
|
---|
| 1203 | */
|
---|
| 1204 | if (! entropy->insufficient_data) {
|
---|
| 1205 |
|
---|
| 1206 | /* Load up working state */
|
---|
| 1207 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
---|
| 1208 | ASSIGN_STATE(state, entropy->saved);
|
---|
| 1209 |
|
---|
| 1210 | /* Outer loop handles each block in the MCU */
|
---|
| 1211 |
|
---|
| 1212 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 1213 | JBLOCKROW block = MCU_data[blkn];
|
---|
| 1214 | d_derived_tbl * htbl;
|
---|
| 1215 | register int s, k, r;
|
---|
| 1216 | int coef_limit, ci;
|
---|
| 1217 |
|
---|
| 1218 | /* Decode a single block's worth of coefficients */
|
---|
| 1219 |
|
---|
| 1220 | /* Section F.2.2.1: decode the DC coefficient difference */
|
---|
| 1221 | htbl = entropy->dc_cur_tbls[blkn];
|
---|
| 1222 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
|
---|
| 1223 |
|
---|
| 1224 | htbl = entropy->ac_cur_tbls[blkn];
|
---|
| 1225 | k = 1;
|
---|
| 1226 | coef_limit = entropy->coef_limit[blkn];
|
---|
| 1227 | if (coef_limit) {
|
---|
| 1228 | /* Convert DC difference to actual value, update last_dc_val */
|
---|
| 1229 | if (s) {
|
---|
| 1230 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 1231 | r = GET_BITS(s);
|
---|
| 1232 | s = HUFF_EXTEND(r, s);
|
---|
| 1233 | }
|
---|
| 1234 | ci = cinfo->MCU_membership[blkn];
|
---|
| 1235 | s += state.last_dc_val[ci];
|
---|
| 1236 | state.last_dc_val[ci] = s;
|
---|
| 1237 | /* Output the DC coefficient */
|
---|
| 1238 | (*block)[0] = (JCOEF) s;
|
---|
| 1239 |
|
---|
[2] | 1240 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
[846] | 1241 | /* Since zeroes are skipped, output area must be cleared beforehand */
|
---|
| 1242 | for (; k < coef_limit; k++) {
|
---|
| 1243 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
|
---|
| 1244 |
|
---|
[2] | 1245 | r = s >> 4;
|
---|
| 1246 | s &= 15;
|
---|
[846] | 1247 |
|
---|
[2] | 1248 | if (s) {
|
---|
| 1249 | k += r;
|
---|
| 1250 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
[846] | 1251 | r = GET_BITS(s);
|
---|
| 1252 | s = HUFF_EXTEND(r, s);
|
---|
| 1253 | /* Output coefficient in natural (dezigzagged) order.
|
---|
| 1254 | * Note: the extra entries in jpeg_natural_order[] will save us
|
---|
| 1255 | * if k >= DCTSIZE2, which could happen if the data is corrupted.
|
---|
| 1256 | */
|
---|
| 1257 | (*block)[jpeg_natural_order[k]] = (JCOEF) s;
|
---|
[2] | 1258 | } else {
|
---|
| 1259 | if (r != 15)
|
---|
[846] | 1260 | goto EndOfBlock;
|
---|
[2] | 1261 | k += 15;
|
---|
| 1262 | }
|
---|
| 1263 | }
|
---|
[846] | 1264 | } else {
|
---|
| 1265 | if (s) {
|
---|
| 1266 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 1267 | DROP_BITS(s);
|
---|
| 1268 | }
|
---|
| 1269 | }
|
---|
[2] | 1270 |
|
---|
[846] | 1271 | /* Section F.2.2.2: decode the AC coefficients */
|
---|
| 1272 | /* In this path we just discard the values */
|
---|
| 1273 | for (; k < DCTSIZE2; k++) {
|
---|
| 1274 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
|
---|
| 1275 |
|
---|
| 1276 | r = s >> 4;
|
---|
| 1277 | s &= 15;
|
---|
| 1278 |
|
---|
| 1279 | if (s) {
|
---|
| 1280 | k += r;
|
---|
| 1281 | CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
---|
| 1282 | DROP_BITS(s);
|
---|
| 1283 | } else {
|
---|
| 1284 | if (r != 15)
|
---|
| 1285 | break;
|
---|
| 1286 | k += 15;
|
---|
| 1287 | }
|
---|
[2] | 1288 | }
|
---|
[846] | 1289 |
|
---|
| 1290 | EndOfBlock: ;
|
---|
[2] | 1291 | }
|
---|
| 1292 |
|
---|
| 1293 | /* Completed MCU, so update state */
|
---|
| 1294 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
---|
| 1295 | ASSIGN_STATE(entropy->saved, state);
|
---|
| 1296 | }
|
---|
| 1297 |
|
---|
| 1298 | /* Account for restart interval (no-op if not using restarts) */
|
---|
| 1299 | entropy->restarts_to_go--;
|
---|
| 1300 |
|
---|
| 1301 | return TRUE;
|
---|
| 1302 | }
|
---|
| 1303 |
|
---|
| 1304 |
|
---|
| 1305 | /*
|
---|
[846] | 1306 | * Initialize for a Huffman-compressed scan.
|
---|
| 1307 | */
|
---|
| 1308 |
|
---|
| 1309 | METHODDEF(void)
|
---|
| 1310 | start_pass_huff_decoder (j_decompress_ptr cinfo)
|
---|
| 1311 | {
|
---|
| 1312 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 1313 | int ci, blkn, tbl, i;
|
---|
| 1314 | jpeg_component_info * compptr;
|
---|
| 1315 |
|
---|
| 1316 | if (cinfo->progressive_mode) {
|
---|
| 1317 | /* Validate progressive scan parameters */
|
---|
| 1318 | if (cinfo->Ss == 0) {
|
---|
| 1319 | if (cinfo->Se != 0)
|
---|
| 1320 | goto bad;
|
---|
| 1321 | } else {
|
---|
| 1322 | /* need not check Ss/Se < 0 since they came from unsigned bytes */
|
---|
| 1323 | if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
|
---|
| 1324 | goto bad;
|
---|
| 1325 | /* AC scans may have only one component */
|
---|
| 1326 | if (cinfo->comps_in_scan != 1)
|
---|
| 1327 | goto bad;
|
---|
| 1328 | }
|
---|
| 1329 | if (cinfo->Ah != 0) {
|
---|
| 1330 | /* Successive approximation refinement scan: must have Al = Ah-1. */
|
---|
| 1331 | if (cinfo->Ah-1 != cinfo->Al)
|
---|
| 1332 | goto bad;
|
---|
| 1333 | }
|
---|
| 1334 | if (cinfo->Al > 13) { /* need not check for < 0 */
|
---|
| 1335 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
|
---|
| 1336 | * but the spec doesn't say so, and we try to be liberal about what we
|
---|
| 1337 | * accept. Note: large Al values could result in out-of-range DC
|
---|
| 1338 | * coefficients during early scans, leading to bizarre displays due to
|
---|
| 1339 | * overflows in the IDCT math. But we won't crash.
|
---|
| 1340 | */
|
---|
| 1341 | bad:
|
---|
| 1342 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
---|
| 1343 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
---|
| 1344 | }
|
---|
| 1345 | /* Update progression status, and verify that scan order is legal.
|
---|
| 1346 | * Note that inter-scan inconsistencies are treated as warnings
|
---|
| 1347 | * not fatal errors ... not clear if this is right way to behave.
|
---|
| 1348 | */
|
---|
| 1349 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 1350 | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
|
---|
| 1351 | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
---|
| 1352 | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
---|
| 1353 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
---|
| 1354 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
---|
| 1355 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
---|
| 1356 | if (cinfo->Ah != expected)
|
---|
| 1357 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
---|
| 1358 | coef_bit_ptr[coefi] = cinfo->Al;
|
---|
| 1359 | }
|
---|
| 1360 | }
|
---|
| 1361 |
|
---|
| 1362 | /* Select MCU decoding routine */
|
---|
| 1363 | if (cinfo->Ah == 0) {
|
---|
| 1364 | if (cinfo->Ss == 0)
|
---|
| 1365 | entropy->pub.decode_mcu = decode_mcu_DC_first;
|
---|
| 1366 | else
|
---|
| 1367 | entropy->pub.decode_mcu = decode_mcu_AC_first;
|
---|
| 1368 | } else {
|
---|
| 1369 | if (cinfo->Ss == 0)
|
---|
| 1370 | entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
---|
| 1371 | else
|
---|
| 1372 | entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
---|
| 1373 | }
|
---|
| 1374 |
|
---|
| 1375 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 1376 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 1377 | /* Make sure requested tables are present, and compute derived tables.
|
---|
| 1378 | * We may build same derived table more than once, but it's not expensive.
|
---|
| 1379 | */
|
---|
| 1380 | if (cinfo->Ss == 0) {
|
---|
| 1381 | if (cinfo->Ah == 0) { /* DC refinement needs no table */
|
---|
| 1382 | tbl = compptr->dc_tbl_no;
|
---|
| 1383 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
|
---|
| 1384 | & entropy->derived_tbls[tbl]);
|
---|
| 1385 | }
|
---|
| 1386 | } else {
|
---|
| 1387 | tbl = compptr->ac_tbl_no;
|
---|
| 1388 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
|
---|
| 1389 | & entropy->derived_tbls[tbl]);
|
---|
| 1390 | /* remember the single active table */
|
---|
| 1391 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
|
---|
| 1392 | }
|
---|
| 1393 | /* Initialize DC predictions to 0 */
|
---|
| 1394 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 1395 | }
|
---|
| 1396 |
|
---|
| 1397 | /* Initialize private state variables */
|
---|
| 1398 | entropy->saved.EOBRUN = 0;
|
---|
| 1399 | } else {
|
---|
| 1400 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
---|
| 1401 | * This ought to be an error condition, but we make it a warning because
|
---|
| 1402 | * there are some baseline files out there with all zeroes in these bytes.
|
---|
| 1403 | */
|
---|
| 1404 | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
|
---|
| 1405 | ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
|
---|
| 1406 | cinfo->Se != cinfo->lim_Se))
|
---|
| 1407 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
---|
| 1408 |
|
---|
| 1409 | /* Select MCU decoding routine */
|
---|
| 1410 | /* We retain the hard-coded case for full-size blocks.
|
---|
| 1411 | * This is not necessary, but it appears that this version is slightly
|
---|
| 1412 | * more performant in the given implementation.
|
---|
| 1413 | * With an improved implementation we would prefer a single optimized
|
---|
| 1414 | * function.
|
---|
| 1415 | */
|
---|
| 1416 | if (cinfo->lim_Se != DCTSIZE2-1)
|
---|
| 1417 | entropy->pub.decode_mcu = decode_mcu_sub;
|
---|
| 1418 | else
|
---|
| 1419 | entropy->pub.decode_mcu = decode_mcu;
|
---|
| 1420 |
|
---|
| 1421 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 1422 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 1423 | /* Compute derived values for Huffman tables */
|
---|
| 1424 | /* We may do this more than once for a table, but it's not expensive */
|
---|
| 1425 | tbl = compptr->dc_tbl_no;
|
---|
| 1426 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
|
---|
| 1427 | & entropy->dc_derived_tbls[tbl]);
|
---|
| 1428 | if (cinfo->lim_Se) { /* AC needs no table when not present */
|
---|
| 1429 | tbl = compptr->ac_tbl_no;
|
---|
| 1430 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
|
---|
| 1431 | & entropy->ac_derived_tbls[tbl]);
|
---|
| 1432 | }
|
---|
| 1433 | /* Initialize DC predictions to 0 */
|
---|
| 1434 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 1435 | }
|
---|
| 1436 |
|
---|
| 1437 | /* Precalculate decoding info for each block in an MCU of this scan */
|
---|
| 1438 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 1439 | ci = cinfo->MCU_membership[blkn];
|
---|
| 1440 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 1441 | /* Precalculate which table to use for each block */
|
---|
| 1442 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
|
---|
| 1443 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
|
---|
| 1444 | /* Decide whether we really care about the coefficient values */
|
---|
| 1445 | if (compptr->component_needed) {
|
---|
| 1446 | ci = compptr->DCT_v_scaled_size;
|
---|
| 1447 | i = compptr->DCT_h_scaled_size;
|
---|
| 1448 | switch (cinfo->lim_Se) {
|
---|
| 1449 | case (1*1-1):
|
---|
| 1450 | entropy->coef_limit[blkn] = 1;
|
---|
| 1451 | break;
|
---|
| 1452 | case (2*2-1):
|
---|
| 1453 | if (ci <= 0 || ci > 2) ci = 2;
|
---|
| 1454 | if (i <= 0 || i > 2) i = 2;
|
---|
| 1455 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
|
---|
| 1456 | break;
|
---|
| 1457 | case (3*3-1):
|
---|
| 1458 | if (ci <= 0 || ci > 3) ci = 3;
|
---|
| 1459 | if (i <= 0 || i > 3) i = 3;
|
---|
| 1460 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
|
---|
| 1461 | break;
|
---|
| 1462 | case (4*4-1):
|
---|
| 1463 | if (ci <= 0 || ci > 4) ci = 4;
|
---|
| 1464 | if (i <= 0 || i > 4) i = 4;
|
---|
| 1465 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
|
---|
| 1466 | break;
|
---|
| 1467 | case (5*5-1):
|
---|
| 1468 | if (ci <= 0 || ci > 5) ci = 5;
|
---|
| 1469 | if (i <= 0 || i > 5) i = 5;
|
---|
| 1470 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
|
---|
| 1471 | break;
|
---|
| 1472 | case (6*6-1):
|
---|
| 1473 | if (ci <= 0 || ci > 6) ci = 6;
|
---|
| 1474 | if (i <= 0 || i > 6) i = 6;
|
---|
| 1475 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
|
---|
| 1476 | break;
|
---|
| 1477 | case (7*7-1):
|
---|
| 1478 | if (ci <= 0 || ci > 7) ci = 7;
|
---|
| 1479 | if (i <= 0 || i > 7) i = 7;
|
---|
| 1480 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
|
---|
| 1481 | break;
|
---|
| 1482 | default:
|
---|
| 1483 | if (ci <= 0 || ci > 8) ci = 8;
|
---|
| 1484 | if (i <= 0 || i > 8) i = 8;
|
---|
| 1485 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
|
---|
| 1486 | break;
|
---|
| 1487 | }
|
---|
| 1488 | } else {
|
---|
| 1489 | entropy->coef_limit[blkn] = 0;
|
---|
| 1490 | }
|
---|
| 1491 | }
|
---|
| 1492 | }
|
---|
| 1493 |
|
---|
| 1494 | /* Initialize bitread state variables */
|
---|
| 1495 | entropy->bitstate.bits_left = 0;
|
---|
| 1496 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
---|
| 1497 | entropy->insufficient_data = FALSE;
|
---|
| 1498 |
|
---|
| 1499 | /* Initialize restart counter */
|
---|
| 1500 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 1501 | }
|
---|
| 1502 |
|
---|
| 1503 |
|
---|
| 1504 | /*
|
---|
[2] | 1505 | * Module initialization routine for Huffman entropy decoding.
|
---|
| 1506 | */
|
---|
| 1507 |
|
---|
| 1508 | GLOBAL(void)
|
---|
| 1509 | jinit_huff_decoder (j_decompress_ptr cinfo)
|
---|
| 1510 | {
|
---|
| 1511 | huff_entropy_ptr entropy;
|
---|
| 1512 | int i;
|
---|
| 1513 |
|
---|
| 1514 | entropy = (huff_entropy_ptr)
|
---|
| 1515 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 1516 | SIZEOF(huff_entropy_decoder));
|
---|
| 1517 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
---|
| 1518 | entropy->pub.start_pass = start_pass_huff_decoder;
|
---|
| 1519 |
|
---|
[846] | 1520 | if (cinfo->progressive_mode) {
|
---|
| 1521 | /* Create progression status table */
|
---|
| 1522 | int *coef_bit_ptr, ci;
|
---|
| 1523 | cinfo->coef_bits = (int (*)[DCTSIZE2])
|
---|
| 1524 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 1525 | cinfo->num_components*DCTSIZE2*SIZEOF(int));
|
---|
| 1526 | coef_bit_ptr = & cinfo->coef_bits[0][0];
|
---|
| 1527 | for (ci = 0; ci < cinfo->num_components; ci++)
|
---|
| 1528 | for (i = 0; i < DCTSIZE2; i++)
|
---|
| 1529 | *coef_bit_ptr++ = -1;
|
---|
| 1530 |
|
---|
| 1531 | /* Mark derived tables unallocated */
|
---|
| 1532 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
| 1533 | entropy->derived_tbls[i] = NULL;
|
---|
| 1534 | }
|
---|
| 1535 | } else {
|
---|
| 1536 | /* Mark tables unallocated */
|
---|
| 1537 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
| 1538 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
---|
| 1539 | }
|
---|
[2] | 1540 | }
|
---|
| 1541 | }
|
---|