1 | /*
|
---|
2 | * jchuff.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
5 | * Modified 2006-2009 by Guido Vollbeding.
|
---|
6 | * This file is part of the Independent JPEG Group's software.
|
---|
7 | * For conditions of distribution and use, see the accompanying README file.
|
---|
8 | *
|
---|
9 | * This file contains Huffman entropy encoding routines.
|
---|
10 | * Both sequential and progressive modes are supported in this single module.
|
---|
11 | *
|
---|
12 | * Much of the complexity here has to do with supporting output suspension.
|
---|
13 | * If the data destination module demands suspension, we want to be able to
|
---|
14 | * back up to the start of the current MCU. To do this, we copy state
|
---|
15 | * variables into local working storage, and update them back to the
|
---|
16 | * permanent JPEG objects only upon successful completion of an MCU.
|
---|
17 | *
|
---|
18 | * We do not support output suspension for the progressive JPEG mode, since
|
---|
19 | * the library currently does not allow multiple-scan files to be written
|
---|
20 | * with output suspension.
|
---|
21 | */
|
---|
22 |
|
---|
23 | #define JPEG_INTERNALS
|
---|
24 | #include "jinclude.h"
|
---|
25 | #include "jpeglib.h"
|
---|
26 |
|
---|
27 |
|
---|
28 | /* The legal range of a DCT coefficient is
|
---|
29 | * -1024 .. +1023 for 8-bit data;
|
---|
30 | * -16384 .. +16383 for 12-bit data.
|
---|
31 | * Hence the magnitude should always fit in 10 or 14 bits respectively.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #if BITS_IN_JSAMPLE == 8
|
---|
35 | #define MAX_COEF_BITS 10
|
---|
36 | #else
|
---|
37 | #define MAX_COEF_BITS 14
|
---|
38 | #endif
|
---|
39 |
|
---|
40 | /* Derived data constructed for each Huffman table */
|
---|
41 |
|
---|
42 | typedef struct {
|
---|
43 | unsigned int ehufco[256]; /* code for each symbol */
|
---|
44 | char ehufsi[256]; /* length of code for each symbol */
|
---|
45 | /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
|
---|
46 | } c_derived_tbl;
|
---|
47 |
|
---|
48 |
|
---|
49 | /* Expanded entropy encoder object for Huffman encoding.
|
---|
50 | *
|
---|
51 | * The savable_state subrecord contains fields that change within an MCU,
|
---|
52 | * but must not be updated permanently until we complete the MCU.
|
---|
53 | */
|
---|
54 |
|
---|
55 | typedef struct {
|
---|
56 | INT32 put_buffer; /* current bit-accumulation buffer */
|
---|
57 | int put_bits; /* # of bits now in it */
|
---|
58 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
59 | } savable_state;
|
---|
60 |
|
---|
61 | /* This macro is to work around compilers with missing or broken
|
---|
62 | * structure assignment. You'll need to fix this code if you have
|
---|
63 | * such a compiler and you change MAX_COMPS_IN_SCAN.
|
---|
64 | */
|
---|
65 |
|
---|
66 | #ifndef NO_STRUCT_ASSIGN
|
---|
67 | #define ASSIGN_STATE(dest,src) ((dest) = (src))
|
---|
68 | #else
|
---|
69 | #if MAX_COMPS_IN_SCAN == 4
|
---|
70 | #define ASSIGN_STATE(dest,src) \
|
---|
71 | ((dest).put_buffer = (src).put_buffer, \
|
---|
72 | (dest).put_bits = (src).put_bits, \
|
---|
73 | (dest).last_dc_val[0] = (src).last_dc_val[0], \
|
---|
74 | (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
---|
75 | (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
---|
76 | (dest).last_dc_val[3] = (src).last_dc_val[3])
|
---|
77 | #endif
|
---|
78 | #endif
|
---|
79 |
|
---|
80 |
|
---|
81 | typedef struct {
|
---|
82 | struct jpeg_entropy_encoder pub; /* public fields */
|
---|
83 |
|
---|
84 | savable_state saved; /* Bit buffer & DC state at start of MCU */
|
---|
85 |
|
---|
86 | /* These fields are NOT loaded into local working state. */
|
---|
87 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
88 | int next_restart_num; /* next restart number to write (0-7) */
|
---|
89 |
|
---|
90 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
91 | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
---|
92 | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
---|
93 |
|
---|
94 | /* Statistics tables for optimization */
|
---|
95 | long * dc_count_ptrs[NUM_HUFF_TBLS];
|
---|
96 | long * ac_count_ptrs[NUM_HUFF_TBLS];
|
---|
97 |
|
---|
98 | /* Following fields used only in progressive mode */
|
---|
99 |
|
---|
100 | /* Mode flag: TRUE for optimization, FALSE for actual data output */
|
---|
101 | boolean gather_statistics;
|
---|
102 |
|
---|
103 | /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
---|
104 | */
|
---|
105 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
---|
106 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
---|
107 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
---|
108 |
|
---|
109 | /* Coding status for AC components */
|
---|
110 | int ac_tbl_no; /* the table number of the single component */
|
---|
111 | unsigned int EOBRUN; /* run length of EOBs */
|
---|
112 | unsigned int BE; /* # of buffered correction bits before MCU */
|
---|
113 | char * bit_buffer; /* buffer for correction bits (1 per char) */
|
---|
114 | /* packing correction bits tightly would save some space but cost time... */
|
---|
115 | } huff_entropy_encoder;
|
---|
116 |
|
---|
117 | typedef huff_entropy_encoder * huff_entropy_ptr;
|
---|
118 |
|
---|
119 | /* Working state while writing an MCU (sequential mode).
|
---|
120 | * This struct contains all the fields that are needed by subroutines.
|
---|
121 | */
|
---|
122 |
|
---|
123 | typedef struct {
|
---|
124 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
---|
125 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
---|
126 | savable_state cur; /* Current bit buffer & DC state */
|
---|
127 | j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
---|
128 | } working_state;
|
---|
129 |
|
---|
130 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
---|
131 | * buffer can hold. Larger sizes may slightly improve compression, but
|
---|
132 | * 1000 is already well into the realm of overkill.
|
---|
133 | * The minimum safe size is 64 bits.
|
---|
134 | */
|
---|
135 |
|
---|
136 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
---|
137 |
|
---|
138 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
---|
139 | * We assume that int right shift is unsigned if INT32 right shift is,
|
---|
140 | * which should be safe.
|
---|
141 | */
|
---|
142 |
|
---|
143 | #ifdef RIGHT_SHIFT_IS_UNSIGNED
|
---|
144 | #define ISHIFT_TEMPS int ishift_temp;
|
---|
145 | #define IRIGHT_SHIFT(x,shft) \
|
---|
146 | ((ishift_temp = (x)) < 0 ? \
|
---|
147 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
---|
148 | (ishift_temp >> (shft)))
|
---|
149 | #else
|
---|
150 | #define ISHIFT_TEMPS
|
---|
151 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
---|
152 | #endif
|
---|
153 |
|
---|
154 |
|
---|
155 | /*
|
---|
156 | * Compute the derived values for a Huffman table.
|
---|
157 | * This routine also performs some validation checks on the table.
|
---|
158 | */
|
---|
159 |
|
---|
160 | LOCAL(void)
|
---|
161 | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
---|
162 | c_derived_tbl ** pdtbl)
|
---|
163 | {
|
---|
164 | JHUFF_TBL *htbl;
|
---|
165 | c_derived_tbl *dtbl;
|
---|
166 | int p, i, l, lastp, si, maxsymbol;
|
---|
167 | char huffsize[257];
|
---|
168 | unsigned int huffcode[257];
|
---|
169 | unsigned int code;
|
---|
170 |
|
---|
171 | /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
---|
172 | * paralleling the order of the symbols themselves in htbl->huffval[].
|
---|
173 | */
|
---|
174 |
|
---|
175 | /* Find the input Huffman table */
|
---|
176 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
---|
177 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
178 | htbl =
|
---|
179 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
---|
180 | if (htbl == NULL)
|
---|
181 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
182 |
|
---|
183 | /* Allocate a workspace if we haven't already done so. */
|
---|
184 | if (*pdtbl == NULL)
|
---|
185 | *pdtbl = (c_derived_tbl *)
|
---|
186 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
187 | SIZEOF(c_derived_tbl));
|
---|
188 | dtbl = *pdtbl;
|
---|
189 |
|
---|
190 | /* Figure C.1: make table of Huffman code length for each symbol */
|
---|
191 |
|
---|
192 | p = 0;
|
---|
193 | for (l = 1; l <= 16; l++) {
|
---|
194 | i = (int) htbl->bits[l];
|
---|
195 | if (i < 0 || p + i > 256) /* protect against table overrun */
|
---|
196 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
197 | while (i--)
|
---|
198 | huffsize[p++] = (char) l;
|
---|
199 | }
|
---|
200 | huffsize[p] = 0;
|
---|
201 | lastp = p;
|
---|
202 |
|
---|
203 | /* Figure C.2: generate the codes themselves */
|
---|
204 | /* We also validate that the counts represent a legal Huffman code tree. */
|
---|
205 |
|
---|
206 | code = 0;
|
---|
207 | si = huffsize[0];
|
---|
208 | p = 0;
|
---|
209 | while (huffsize[p]) {
|
---|
210 | while (((int) huffsize[p]) == si) {
|
---|
211 | huffcode[p++] = code;
|
---|
212 | code++;
|
---|
213 | }
|
---|
214 | /* code is now 1 more than the last code used for codelength si; but
|
---|
215 | * it must still fit in si bits, since no code is allowed to be all ones.
|
---|
216 | */
|
---|
217 | if (((INT32) code) >= (((INT32) 1) << si))
|
---|
218 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
219 | code <<= 1;
|
---|
220 | si++;
|
---|
221 | }
|
---|
222 |
|
---|
223 | /* Figure C.3: generate encoding tables */
|
---|
224 | /* These are code and size indexed by symbol value */
|
---|
225 |
|
---|
226 | /* Set all codeless symbols to have code length 0;
|
---|
227 | * this lets us detect duplicate VAL entries here, and later
|
---|
228 | * allows emit_bits to detect any attempt to emit such symbols.
|
---|
229 | */
|
---|
230 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
---|
231 |
|
---|
232 | /* This is also a convenient place to check for out-of-range
|
---|
233 | * and duplicated VAL entries. We allow 0..255 for AC symbols
|
---|
234 | * but only 0..15 for DC. (We could constrain them further
|
---|
235 | * based on data depth and mode, but this seems enough.)
|
---|
236 | */
|
---|
237 | maxsymbol = isDC ? 15 : 255;
|
---|
238 |
|
---|
239 | for (p = 0; p < lastp; p++) {
|
---|
240 | i = htbl->huffval[p];
|
---|
241 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
---|
242 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
243 | dtbl->ehufco[i] = huffcode[p];
|
---|
244 | dtbl->ehufsi[i] = huffsize[p];
|
---|
245 | }
|
---|
246 | }
|
---|
247 |
|
---|
248 |
|
---|
249 | /* Outputting bytes to the file.
|
---|
250 | * NB: these must be called only when actually outputting,
|
---|
251 | * that is, entropy->gather_statistics == FALSE.
|
---|
252 | */
|
---|
253 |
|
---|
254 | /* Emit a byte, taking 'action' if must suspend. */
|
---|
255 | #define emit_byte_s(state,val,action) \
|
---|
256 | { *(state)->next_output_byte++ = (JOCTET) (val); \
|
---|
257 | if (--(state)->free_in_buffer == 0) \
|
---|
258 | if (! dump_buffer_s(state)) \
|
---|
259 | { action; } }
|
---|
260 |
|
---|
261 | /* Emit a byte */
|
---|
262 | #define emit_byte_e(entropy,val) \
|
---|
263 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
---|
264 | if (--(entropy)->free_in_buffer == 0) \
|
---|
265 | dump_buffer_e(entropy); }
|
---|
266 |
|
---|
267 |
|
---|
268 | LOCAL(boolean)
|
---|
269 | dump_buffer_s (working_state * state)
|
---|
270 | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
---|
271 | {
|
---|
272 | struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
---|
273 |
|
---|
274 | if (! (*dest->empty_output_buffer) (state->cinfo))
|
---|
275 | return FALSE;
|
---|
276 | /* After a successful buffer dump, must reset buffer pointers */
|
---|
277 | state->next_output_byte = dest->next_output_byte;
|
---|
278 | state->free_in_buffer = dest->free_in_buffer;
|
---|
279 | return TRUE;
|
---|
280 | }
|
---|
281 |
|
---|
282 |
|
---|
283 | LOCAL(void)
|
---|
284 | dump_buffer_e (huff_entropy_ptr entropy)
|
---|
285 | /* Empty the output buffer; we do not support suspension in this case. */
|
---|
286 | {
|
---|
287 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
|
---|
288 |
|
---|
289 | if (! (*dest->empty_output_buffer) (entropy->cinfo))
|
---|
290 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
---|
291 | /* After a successful buffer dump, must reset buffer pointers */
|
---|
292 | entropy->next_output_byte = dest->next_output_byte;
|
---|
293 | entropy->free_in_buffer = dest->free_in_buffer;
|
---|
294 | }
|
---|
295 |
|
---|
296 |
|
---|
297 | /* Outputting bits to the file */
|
---|
298 |
|
---|
299 | /* Only the right 24 bits of put_buffer are used; the valid bits are
|
---|
300 | * left-justified in this part. At most 16 bits can be passed to emit_bits
|
---|
301 | * in one call, and we never retain more than 7 bits in put_buffer
|
---|
302 | * between calls, so 24 bits are sufficient.
|
---|
303 | */
|
---|
304 |
|
---|
305 | INLINE
|
---|
306 | LOCAL(boolean)
|
---|
307 | emit_bits_s (working_state * state, unsigned int code, int size)
|
---|
308 | /* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
---|
309 | {
|
---|
310 | /* This routine is heavily used, so it's worth coding tightly. */
|
---|
311 | register INT32 put_buffer = (INT32) code;
|
---|
312 | register int put_bits = state->cur.put_bits;
|
---|
313 |
|
---|
314 | /* if size is 0, caller used an invalid Huffman table entry */
|
---|
315 | if (size == 0)
|
---|
316 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
317 |
|
---|
318 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
---|
319 |
|
---|
320 | put_bits += size; /* new number of bits in buffer */
|
---|
321 |
|
---|
322 | put_buffer <<= 24 - put_bits; /* align incoming bits */
|
---|
323 |
|
---|
324 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
|
---|
325 |
|
---|
326 | while (put_bits >= 8) {
|
---|
327 | int c = (int) ((put_buffer >> 16) & 0xFF);
|
---|
328 |
|
---|
329 | emit_byte_s(state, c, return FALSE);
|
---|
330 | if (c == 0xFF) { /* need to stuff a zero byte? */
|
---|
331 | emit_byte_s(state, 0, return FALSE);
|
---|
332 | }
|
---|
333 | put_buffer <<= 8;
|
---|
334 | put_bits -= 8;
|
---|
335 | }
|
---|
336 |
|
---|
337 | state->cur.put_buffer = put_buffer; /* update state variables */
|
---|
338 | state->cur.put_bits = put_bits;
|
---|
339 |
|
---|
340 | return TRUE;
|
---|
341 | }
|
---|
342 |
|
---|
343 |
|
---|
344 | INLINE
|
---|
345 | LOCAL(void)
|
---|
346 | emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
|
---|
347 | /* Emit some bits, unless we are in gather mode */
|
---|
348 | {
|
---|
349 | /* This routine is heavily used, so it's worth coding tightly. */
|
---|
350 | register INT32 put_buffer = (INT32) code;
|
---|
351 | register int put_bits = entropy->saved.put_bits;
|
---|
352 |
|
---|
353 | /* if size is 0, caller used an invalid Huffman table entry */
|
---|
354 | if (size == 0)
|
---|
355 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
356 |
|
---|
357 | if (entropy->gather_statistics)
|
---|
358 | return; /* do nothing if we're only getting stats */
|
---|
359 |
|
---|
360 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
---|
361 |
|
---|
362 | put_bits += size; /* new number of bits in buffer */
|
---|
363 |
|
---|
364 | put_buffer <<= 24 - put_bits; /* align incoming bits */
|
---|
365 |
|
---|
366 | /* and merge with old buffer contents */
|
---|
367 | put_buffer |= entropy->saved.put_buffer;
|
---|
368 |
|
---|
369 | while (put_bits >= 8) {
|
---|
370 | int c = (int) ((put_buffer >> 16) & 0xFF);
|
---|
371 |
|
---|
372 | emit_byte_e(entropy, c);
|
---|
373 | if (c == 0xFF) { /* need to stuff a zero byte? */
|
---|
374 | emit_byte_e(entropy, 0);
|
---|
375 | }
|
---|
376 | put_buffer <<= 8;
|
---|
377 | put_bits -= 8;
|
---|
378 | }
|
---|
379 |
|
---|
380 | entropy->saved.put_buffer = put_buffer; /* update variables */
|
---|
381 | entropy->saved.put_bits = put_bits;
|
---|
382 | }
|
---|
383 |
|
---|
384 |
|
---|
385 | LOCAL(boolean)
|
---|
386 | flush_bits_s (working_state * state)
|
---|
387 | {
|
---|
388 | if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
|
---|
389 | return FALSE;
|
---|
390 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
---|
391 | state->cur.put_bits = 0;
|
---|
392 | return TRUE;
|
---|
393 | }
|
---|
394 |
|
---|
395 |
|
---|
396 | LOCAL(void)
|
---|
397 | flush_bits_e (huff_entropy_ptr entropy)
|
---|
398 | {
|
---|
399 | emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
---|
400 | entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
|
---|
401 | entropy->saved.put_bits = 0;
|
---|
402 | }
|
---|
403 |
|
---|
404 |
|
---|
405 | /*
|
---|
406 | * Emit (or just count) a Huffman symbol.
|
---|
407 | */
|
---|
408 |
|
---|
409 | INLINE
|
---|
410 | LOCAL(void)
|
---|
411 | emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
|
---|
412 | {
|
---|
413 | if (entropy->gather_statistics)
|
---|
414 | entropy->dc_count_ptrs[tbl_no][symbol]++;
|
---|
415 | else {
|
---|
416 | c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
|
---|
417 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
---|
418 | }
|
---|
419 | }
|
---|
420 |
|
---|
421 |
|
---|
422 | INLINE
|
---|
423 | LOCAL(void)
|
---|
424 | emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
|
---|
425 | {
|
---|
426 | if (entropy->gather_statistics)
|
---|
427 | entropy->ac_count_ptrs[tbl_no][symbol]++;
|
---|
428 | else {
|
---|
429 | c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
|
---|
430 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 |
|
---|
435 | /*
|
---|
436 | * Emit bits from a correction bit buffer.
|
---|
437 | */
|
---|
438 |
|
---|
439 | LOCAL(void)
|
---|
440 | emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
|
---|
441 | unsigned int nbits)
|
---|
442 | {
|
---|
443 | if (entropy->gather_statistics)
|
---|
444 | return; /* no real work */
|
---|
445 |
|
---|
446 | while (nbits > 0) {
|
---|
447 | emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
|
---|
448 | bufstart++;
|
---|
449 | nbits--;
|
---|
450 | }
|
---|
451 | }
|
---|
452 |
|
---|
453 |
|
---|
454 | /*
|
---|
455 | * Emit any pending EOBRUN symbol.
|
---|
456 | */
|
---|
457 |
|
---|
458 | LOCAL(void)
|
---|
459 | emit_eobrun (huff_entropy_ptr entropy)
|
---|
460 | {
|
---|
461 | register int temp, nbits;
|
---|
462 |
|
---|
463 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
---|
464 | temp = entropy->EOBRUN;
|
---|
465 | nbits = 0;
|
---|
466 | while ((temp >>= 1))
|
---|
467 | nbits++;
|
---|
468 | /* safety check: shouldn't happen given limited correction-bit buffer */
|
---|
469 | if (nbits > 14)
|
---|
470 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
471 |
|
---|
472 | emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
---|
473 | if (nbits)
|
---|
474 | emit_bits_e(entropy, entropy->EOBRUN, nbits);
|
---|
475 |
|
---|
476 | entropy->EOBRUN = 0;
|
---|
477 |
|
---|
478 | /* Emit any buffered correction bits */
|
---|
479 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
---|
480 | entropy->BE = 0;
|
---|
481 | }
|
---|
482 | }
|
---|
483 |
|
---|
484 |
|
---|
485 | /*
|
---|
486 | * Emit a restart marker & resynchronize predictions.
|
---|
487 | */
|
---|
488 |
|
---|
489 | LOCAL(boolean)
|
---|
490 | emit_restart_s (working_state * state, int restart_num)
|
---|
491 | {
|
---|
492 | int ci;
|
---|
493 |
|
---|
494 | if (! flush_bits_s(state))
|
---|
495 | return FALSE;
|
---|
496 |
|
---|
497 | emit_byte_s(state, 0xFF, return FALSE);
|
---|
498 | emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
|
---|
499 |
|
---|
500 | /* Re-initialize DC predictions to 0 */
|
---|
501 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
---|
502 | state->cur.last_dc_val[ci] = 0;
|
---|
503 |
|
---|
504 | /* The restart counter is not updated until we successfully write the MCU. */
|
---|
505 |
|
---|
506 | return TRUE;
|
---|
507 | }
|
---|
508 |
|
---|
509 |
|
---|
510 | LOCAL(void)
|
---|
511 | emit_restart_e (huff_entropy_ptr entropy, int restart_num)
|
---|
512 | {
|
---|
513 | int ci;
|
---|
514 |
|
---|
515 | emit_eobrun(entropy);
|
---|
516 |
|
---|
517 | if (! entropy->gather_statistics) {
|
---|
518 | flush_bits_e(entropy);
|
---|
519 | emit_byte_e(entropy, 0xFF);
|
---|
520 | emit_byte_e(entropy, JPEG_RST0 + restart_num);
|
---|
521 | }
|
---|
522 |
|
---|
523 | if (entropy->cinfo->Ss == 0) {
|
---|
524 | /* Re-initialize DC predictions to 0 */
|
---|
525 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
---|
526 | entropy->saved.last_dc_val[ci] = 0;
|
---|
527 | } else {
|
---|
528 | /* Re-initialize all AC-related fields to 0 */
|
---|
529 | entropy->EOBRUN = 0;
|
---|
530 | entropy->BE = 0;
|
---|
531 | }
|
---|
532 | }
|
---|
533 |
|
---|
534 |
|
---|
535 | /*
|
---|
536 | * MCU encoding for DC initial scan (either spectral selection,
|
---|
537 | * or first pass of successive approximation).
|
---|
538 | */
|
---|
539 |
|
---|
540 | METHODDEF(boolean)
|
---|
541 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
542 | {
|
---|
543 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
544 | register int temp, temp2;
|
---|
545 | register int nbits;
|
---|
546 | int blkn, ci;
|
---|
547 | int Al = cinfo->Al;
|
---|
548 | JBLOCKROW block;
|
---|
549 | jpeg_component_info * compptr;
|
---|
550 | ISHIFT_TEMPS
|
---|
551 |
|
---|
552 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
553 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
554 |
|
---|
555 | /* Emit restart marker if needed */
|
---|
556 | if (cinfo->restart_interval)
|
---|
557 | if (entropy->restarts_to_go == 0)
|
---|
558 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
559 |
|
---|
560 | /* Encode the MCU data blocks */
|
---|
561 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
562 | block = MCU_data[blkn];
|
---|
563 | ci = cinfo->MCU_membership[blkn];
|
---|
564 | compptr = cinfo->cur_comp_info[ci];
|
---|
565 |
|
---|
566 | /* Compute the DC value after the required point transform by Al.
|
---|
567 | * This is simply an arithmetic right shift.
|
---|
568 | */
|
---|
569 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
|
---|
570 |
|
---|
571 | /* DC differences are figured on the point-transformed values. */
|
---|
572 | temp = temp2 - entropy->saved.last_dc_val[ci];
|
---|
573 | entropy->saved.last_dc_val[ci] = temp2;
|
---|
574 |
|
---|
575 | /* Encode the DC coefficient difference per section G.1.2.1 */
|
---|
576 | temp2 = temp;
|
---|
577 | if (temp < 0) {
|
---|
578 | temp = -temp; /* temp is abs value of input */
|
---|
579 | /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
---|
580 | /* This code assumes we are on a two's complement machine */
|
---|
581 | temp2--;
|
---|
582 | }
|
---|
583 |
|
---|
584 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
585 | nbits = 0;
|
---|
586 | while (temp) {
|
---|
587 | nbits++;
|
---|
588 | temp >>= 1;
|
---|
589 | }
|
---|
590 | /* Check for out-of-range coefficient values.
|
---|
591 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
592 | */
|
---|
593 | if (nbits > MAX_COEF_BITS+1)
|
---|
594 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
595 |
|
---|
596 | /* Count/emit the Huffman-coded symbol for the number of bits */
|
---|
597 | emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
|
---|
598 |
|
---|
599 | /* Emit that number of bits of the value, if positive, */
|
---|
600 | /* or the complement of its magnitude, if negative. */
|
---|
601 | if (nbits) /* emit_bits rejects calls with size 0 */
|
---|
602 | emit_bits_e(entropy, (unsigned int) temp2, nbits);
|
---|
603 | }
|
---|
604 |
|
---|
605 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
606 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
607 |
|
---|
608 | /* Update restart-interval state too */
|
---|
609 | if (cinfo->restart_interval) {
|
---|
610 | if (entropy->restarts_to_go == 0) {
|
---|
611 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
612 | entropy->next_restart_num++;
|
---|
613 | entropy->next_restart_num &= 7;
|
---|
614 | }
|
---|
615 | entropy->restarts_to_go--;
|
---|
616 | }
|
---|
617 |
|
---|
618 | return TRUE;
|
---|
619 | }
|
---|
620 |
|
---|
621 |
|
---|
622 | /*
|
---|
623 | * MCU encoding for AC initial scan (either spectral selection,
|
---|
624 | * or first pass of successive approximation).
|
---|
625 | */
|
---|
626 |
|
---|
627 | METHODDEF(boolean)
|
---|
628 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
629 | {
|
---|
630 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
631 | register int temp, temp2;
|
---|
632 | register int nbits;
|
---|
633 | register int r, k;
|
---|
634 | int Se, Al;
|
---|
635 | const int * natural_order;
|
---|
636 | JBLOCKROW block;
|
---|
637 |
|
---|
638 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
639 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
640 |
|
---|
641 | /* Emit restart marker if needed */
|
---|
642 | if (cinfo->restart_interval)
|
---|
643 | if (entropy->restarts_to_go == 0)
|
---|
644 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
645 |
|
---|
646 | Se = cinfo->Se;
|
---|
647 | Al = cinfo->Al;
|
---|
648 | natural_order = cinfo->natural_order;
|
---|
649 |
|
---|
650 | /* Encode the MCU data block */
|
---|
651 | block = MCU_data[0];
|
---|
652 |
|
---|
653 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
---|
654 |
|
---|
655 | r = 0; /* r = run length of zeros */
|
---|
656 |
|
---|
657 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
658 | if ((temp = (*block)[natural_order[k]]) == 0) {
|
---|
659 | r++;
|
---|
660 | continue;
|
---|
661 | }
|
---|
662 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
663 | * is an integer division with rounding towards 0. To do this portably
|
---|
664 | * in C, we shift after obtaining the absolute value; so the code is
|
---|
665 | * interwoven with finding the abs value (temp) and output bits (temp2).
|
---|
666 | */
|
---|
667 | if (temp < 0) {
|
---|
668 | temp = -temp; /* temp is abs value of input */
|
---|
669 | temp >>= Al; /* apply the point transform */
|
---|
670 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
---|
671 | temp2 = ~temp;
|
---|
672 | } else {
|
---|
673 | temp >>= Al; /* apply the point transform */
|
---|
674 | temp2 = temp;
|
---|
675 | }
|
---|
676 | /* Watch out for case that nonzero coef is zero after point transform */
|
---|
677 | if (temp == 0) {
|
---|
678 | r++;
|
---|
679 | continue;
|
---|
680 | }
|
---|
681 |
|
---|
682 | /* Emit any pending EOBRUN */
|
---|
683 | if (entropy->EOBRUN > 0)
|
---|
684 | emit_eobrun(entropy);
|
---|
685 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
686 | while (r > 15) {
|
---|
687 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
---|
688 | r -= 16;
|
---|
689 | }
|
---|
690 |
|
---|
691 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
692 | nbits = 1; /* there must be at least one 1 bit */
|
---|
693 | while ((temp >>= 1))
|
---|
694 | nbits++;
|
---|
695 | /* Check for out-of-range coefficient values */
|
---|
696 | if (nbits > MAX_COEF_BITS)
|
---|
697 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
698 |
|
---|
699 | /* Count/emit Huffman symbol for run length / number of bits */
|
---|
700 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
|
---|
701 |
|
---|
702 | /* Emit that number of bits of the value, if positive, */
|
---|
703 | /* or the complement of its magnitude, if negative. */
|
---|
704 | emit_bits_e(entropy, (unsigned int) temp2, nbits);
|
---|
705 |
|
---|
706 | r = 0; /* reset zero run length */
|
---|
707 | }
|
---|
708 |
|
---|
709 | if (r > 0) { /* If there are trailing zeroes, */
|
---|
710 | entropy->EOBRUN++; /* count an EOB */
|
---|
711 | if (entropy->EOBRUN == 0x7FFF)
|
---|
712 | emit_eobrun(entropy); /* force it out to avoid overflow */
|
---|
713 | }
|
---|
714 |
|
---|
715 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
716 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
717 |
|
---|
718 | /* Update restart-interval state too */
|
---|
719 | if (cinfo->restart_interval) {
|
---|
720 | if (entropy->restarts_to_go == 0) {
|
---|
721 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
722 | entropy->next_restart_num++;
|
---|
723 | entropy->next_restart_num &= 7;
|
---|
724 | }
|
---|
725 | entropy->restarts_to_go--;
|
---|
726 | }
|
---|
727 |
|
---|
728 | return TRUE;
|
---|
729 | }
|
---|
730 |
|
---|
731 |
|
---|
732 | /*
|
---|
733 | * MCU encoding for DC successive approximation refinement scan.
|
---|
734 | * Note: we assume such scans can be multi-component, although the spec
|
---|
735 | * is not very clear on the point.
|
---|
736 | */
|
---|
737 |
|
---|
738 | METHODDEF(boolean)
|
---|
739 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
740 | {
|
---|
741 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
742 | register int temp;
|
---|
743 | int blkn;
|
---|
744 | int Al = cinfo->Al;
|
---|
745 | JBLOCKROW block;
|
---|
746 |
|
---|
747 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
748 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
749 |
|
---|
750 | /* Emit restart marker if needed */
|
---|
751 | if (cinfo->restart_interval)
|
---|
752 | if (entropy->restarts_to_go == 0)
|
---|
753 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
754 |
|
---|
755 | /* Encode the MCU data blocks */
|
---|
756 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
757 | block = MCU_data[blkn];
|
---|
758 |
|
---|
759 | /* We simply emit the Al'th bit of the DC coefficient value. */
|
---|
760 | temp = (*block)[0];
|
---|
761 | emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
|
---|
762 | }
|
---|
763 |
|
---|
764 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
765 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
766 |
|
---|
767 | /* Update restart-interval state too */
|
---|
768 | if (cinfo->restart_interval) {
|
---|
769 | if (entropy->restarts_to_go == 0) {
|
---|
770 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
771 | entropy->next_restart_num++;
|
---|
772 | entropy->next_restart_num &= 7;
|
---|
773 | }
|
---|
774 | entropy->restarts_to_go--;
|
---|
775 | }
|
---|
776 |
|
---|
777 | return TRUE;
|
---|
778 | }
|
---|
779 |
|
---|
780 |
|
---|
781 | /*
|
---|
782 | * MCU encoding for AC successive approximation refinement scan.
|
---|
783 | */
|
---|
784 |
|
---|
785 | METHODDEF(boolean)
|
---|
786 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
787 | {
|
---|
788 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
789 | register int temp;
|
---|
790 | register int r, k;
|
---|
791 | int EOB;
|
---|
792 | char *BR_buffer;
|
---|
793 | unsigned int BR;
|
---|
794 | int Se, Al;
|
---|
795 | const int * natural_order;
|
---|
796 | JBLOCKROW block;
|
---|
797 | int absvalues[DCTSIZE2];
|
---|
798 |
|
---|
799 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
800 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
801 |
|
---|
802 | /* Emit restart marker if needed */
|
---|
803 | if (cinfo->restart_interval)
|
---|
804 | if (entropy->restarts_to_go == 0)
|
---|
805 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
806 |
|
---|
807 | Se = cinfo->Se;
|
---|
808 | Al = cinfo->Al;
|
---|
809 | natural_order = cinfo->natural_order;
|
---|
810 |
|
---|
811 | /* Encode the MCU data block */
|
---|
812 | block = MCU_data[0];
|
---|
813 |
|
---|
814 | /* It is convenient to make a pre-pass to determine the transformed
|
---|
815 | * coefficients' absolute values and the EOB position.
|
---|
816 | */
|
---|
817 | EOB = 0;
|
---|
818 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
819 | temp = (*block)[natural_order[k]];
|
---|
820 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
821 | * is an integer division with rounding towards 0. To do this portably
|
---|
822 | * in C, we shift after obtaining the absolute value.
|
---|
823 | */
|
---|
824 | if (temp < 0)
|
---|
825 | temp = -temp; /* temp is abs value of input */
|
---|
826 | temp >>= Al; /* apply the point transform */
|
---|
827 | absvalues[k] = temp; /* save abs value for main pass */
|
---|
828 | if (temp == 1)
|
---|
829 | EOB = k; /* EOB = index of last newly-nonzero coef */
|
---|
830 | }
|
---|
831 |
|
---|
832 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
---|
833 |
|
---|
834 | r = 0; /* r = run length of zeros */
|
---|
835 | BR = 0; /* BR = count of buffered bits added now */
|
---|
836 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
---|
837 |
|
---|
838 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
839 | if ((temp = absvalues[k]) == 0) {
|
---|
840 | r++;
|
---|
841 | continue;
|
---|
842 | }
|
---|
843 |
|
---|
844 | /* Emit any required ZRLs, but not if they can be folded into EOB */
|
---|
845 | while (r > 15 && k <= EOB) {
|
---|
846 | /* emit any pending EOBRUN and the BE correction bits */
|
---|
847 | emit_eobrun(entropy);
|
---|
848 | /* Emit ZRL */
|
---|
849 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
---|
850 | r -= 16;
|
---|
851 | /* Emit buffered correction bits that must be associated with ZRL */
|
---|
852 | emit_buffered_bits(entropy, BR_buffer, BR);
|
---|
853 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
---|
854 | BR = 0;
|
---|
855 | }
|
---|
856 |
|
---|
857 | /* If the coef was previously nonzero, it only needs a correction bit.
|
---|
858 | * NOTE: a straight translation of the spec's figure G.7 would suggest
|
---|
859 | * that we also need to test r > 15. But if r > 15, we can only get here
|
---|
860 | * if k > EOB, which implies that this coefficient is not 1.
|
---|
861 | */
|
---|
862 | if (temp > 1) {
|
---|
863 | /* The correction bit is the next bit of the absolute value. */
|
---|
864 | BR_buffer[BR++] = (char) (temp & 1);
|
---|
865 | continue;
|
---|
866 | }
|
---|
867 |
|
---|
868 | /* Emit any pending EOBRUN and the BE correction bits */
|
---|
869 | emit_eobrun(entropy);
|
---|
870 |
|
---|
871 | /* Count/emit Huffman symbol for run length / number of bits */
|
---|
872 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
|
---|
873 |
|
---|
874 | /* Emit output bit for newly-nonzero coef */
|
---|
875 | temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
|
---|
876 | emit_bits_e(entropy, (unsigned int) temp, 1);
|
---|
877 |
|
---|
878 | /* Emit buffered correction bits that must be associated with this code */
|
---|
879 | emit_buffered_bits(entropy, BR_buffer, BR);
|
---|
880 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
---|
881 | BR = 0;
|
---|
882 | r = 0; /* reset zero run length */
|
---|
883 | }
|
---|
884 |
|
---|
885 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
---|
886 | entropy->EOBRUN++; /* count an EOB */
|
---|
887 | entropy->BE += BR; /* concat my correction bits to older ones */
|
---|
888 | /* We force out the EOB if we risk either:
|
---|
889 | * 1. overflow of the EOB counter;
|
---|
890 | * 2. overflow of the correction bit buffer during the next MCU.
|
---|
891 | */
|
---|
892 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
|
---|
893 | emit_eobrun(entropy);
|
---|
894 | }
|
---|
895 |
|
---|
896 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
897 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
898 |
|
---|
899 | /* Update restart-interval state too */
|
---|
900 | if (cinfo->restart_interval) {
|
---|
901 | if (entropy->restarts_to_go == 0) {
|
---|
902 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
903 | entropy->next_restart_num++;
|
---|
904 | entropy->next_restart_num &= 7;
|
---|
905 | }
|
---|
906 | entropy->restarts_to_go--;
|
---|
907 | }
|
---|
908 |
|
---|
909 | return TRUE;
|
---|
910 | }
|
---|
911 |
|
---|
912 |
|
---|
913 | /* Encode a single block's worth of coefficients */
|
---|
914 |
|
---|
915 | LOCAL(boolean)
|
---|
916 | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
---|
917 | c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
---|
918 | {
|
---|
919 | register int temp, temp2;
|
---|
920 | register int nbits;
|
---|
921 | register int k, r, i;
|
---|
922 | int Se = state->cinfo->lim_Se;
|
---|
923 | const int * natural_order = state->cinfo->natural_order;
|
---|
924 |
|
---|
925 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
926 |
|
---|
927 | temp = temp2 = block[0] - last_dc_val;
|
---|
928 |
|
---|
929 | if (temp < 0) {
|
---|
930 | temp = -temp; /* temp is abs value of input */
|
---|
931 | /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
---|
932 | /* This code assumes we are on a two's complement machine */
|
---|
933 | temp2--;
|
---|
934 | }
|
---|
935 |
|
---|
936 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
937 | nbits = 0;
|
---|
938 | while (temp) {
|
---|
939 | nbits++;
|
---|
940 | temp >>= 1;
|
---|
941 | }
|
---|
942 | /* Check for out-of-range coefficient values.
|
---|
943 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
944 | */
|
---|
945 | if (nbits > MAX_COEF_BITS+1)
|
---|
946 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
947 |
|
---|
948 | /* Emit the Huffman-coded symbol for the number of bits */
|
---|
949 | if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
---|
950 | return FALSE;
|
---|
951 |
|
---|
952 | /* Emit that number of bits of the value, if positive, */
|
---|
953 | /* or the complement of its magnitude, if negative. */
|
---|
954 | if (nbits) /* emit_bits rejects calls with size 0 */
|
---|
955 | if (! emit_bits_s(state, (unsigned int) temp2, nbits))
|
---|
956 | return FALSE;
|
---|
957 |
|
---|
958 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
959 |
|
---|
960 | r = 0; /* r = run length of zeros */
|
---|
961 |
|
---|
962 | for (k = 1; k <= Se; k++) {
|
---|
963 | if ((temp = block[natural_order[k]]) == 0) {
|
---|
964 | r++;
|
---|
965 | } else {
|
---|
966 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
967 | while (r > 15) {
|
---|
968 | if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
---|
969 | return FALSE;
|
---|
970 | r -= 16;
|
---|
971 | }
|
---|
972 |
|
---|
973 | temp2 = temp;
|
---|
974 | if (temp < 0) {
|
---|
975 | temp = -temp; /* temp is abs value of input */
|
---|
976 | /* This code assumes we are on a two's complement machine */
|
---|
977 | temp2--;
|
---|
978 | }
|
---|
979 |
|
---|
980 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
981 | nbits = 1; /* there must be at least one 1 bit */
|
---|
982 | while ((temp >>= 1))
|
---|
983 | nbits++;
|
---|
984 | /* Check for out-of-range coefficient values */
|
---|
985 | if (nbits > MAX_COEF_BITS)
|
---|
986 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
987 |
|
---|
988 | /* Emit Huffman symbol for run length / number of bits */
|
---|
989 | i = (r << 4) + nbits;
|
---|
990 | if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
|
---|
991 | return FALSE;
|
---|
992 |
|
---|
993 | /* Emit that number of bits of the value, if positive, */
|
---|
994 | /* or the complement of its magnitude, if negative. */
|
---|
995 | if (! emit_bits_s(state, (unsigned int) temp2, nbits))
|
---|
996 | return FALSE;
|
---|
997 |
|
---|
998 | r = 0;
|
---|
999 | }
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
1003 | if (r > 0)
|
---|
1004 | if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
---|
1005 | return FALSE;
|
---|
1006 |
|
---|
1007 | return TRUE;
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 |
|
---|
1011 | /*
|
---|
1012 | * Encode and output one MCU's worth of Huffman-compressed coefficients.
|
---|
1013 | */
|
---|
1014 |
|
---|
1015 | METHODDEF(boolean)
|
---|
1016 | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
1017 | {
|
---|
1018 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1019 | working_state state;
|
---|
1020 | int blkn, ci;
|
---|
1021 | jpeg_component_info * compptr;
|
---|
1022 |
|
---|
1023 | /* Load up working state */
|
---|
1024 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
1025 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
1026 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
1027 | state.cinfo = cinfo;
|
---|
1028 |
|
---|
1029 | /* Emit restart marker if needed */
|
---|
1030 | if (cinfo->restart_interval) {
|
---|
1031 | if (entropy->restarts_to_go == 0)
|
---|
1032 | if (! emit_restart_s(&state, entropy->next_restart_num))
|
---|
1033 | return FALSE;
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | /* Encode the MCU data blocks */
|
---|
1037 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
1038 | ci = cinfo->MCU_membership[blkn];
|
---|
1039 | compptr = cinfo->cur_comp_info[ci];
|
---|
1040 | if (! encode_one_block(&state,
|
---|
1041 | MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
---|
1042 | entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
---|
1043 | entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
---|
1044 | return FALSE;
|
---|
1045 | /* Update last_dc_val */
|
---|
1046 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
1047 | }
|
---|
1048 |
|
---|
1049 | /* Completed MCU, so update state */
|
---|
1050 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
1051 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
1052 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
1053 |
|
---|
1054 | /* Update restart-interval state too */
|
---|
1055 | if (cinfo->restart_interval) {
|
---|
1056 | if (entropy->restarts_to_go == 0) {
|
---|
1057 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
1058 | entropy->next_restart_num++;
|
---|
1059 | entropy->next_restart_num &= 7;
|
---|
1060 | }
|
---|
1061 | entropy->restarts_to_go--;
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 | return TRUE;
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 |
|
---|
1068 | /*
|
---|
1069 | * Finish up at the end of a Huffman-compressed scan.
|
---|
1070 | */
|
---|
1071 |
|
---|
1072 | METHODDEF(void)
|
---|
1073 | finish_pass_huff (j_compress_ptr cinfo)
|
---|
1074 | {
|
---|
1075 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1076 | working_state state;
|
---|
1077 |
|
---|
1078 | if (cinfo->progressive_mode) {
|
---|
1079 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
1080 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
1081 |
|
---|
1082 | /* Flush out any buffered data */
|
---|
1083 | emit_eobrun(entropy);
|
---|
1084 | flush_bits_e(entropy);
|
---|
1085 |
|
---|
1086 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
1087 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
1088 | } else {
|
---|
1089 | /* Load up working state ... flush_bits needs it */
|
---|
1090 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
1091 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
1092 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
1093 | state.cinfo = cinfo;
|
---|
1094 |
|
---|
1095 | /* Flush out the last data */
|
---|
1096 | if (! flush_bits_s(&state))
|
---|
1097 | ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
---|
1098 |
|
---|
1099 | /* Update state */
|
---|
1100 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
1101 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
1102 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /*
|
---|
1108 | * Huffman coding optimization.
|
---|
1109 | *
|
---|
1110 | * We first scan the supplied data and count the number of uses of each symbol
|
---|
1111 | * that is to be Huffman-coded. (This process MUST agree with the code above.)
|
---|
1112 | * Then we build a Huffman coding tree for the observed counts.
|
---|
1113 | * Symbols which are not needed at all for the particular image are not
|
---|
1114 | * assigned any code, which saves space in the DHT marker as well as in
|
---|
1115 | * the compressed data.
|
---|
1116 | */
|
---|
1117 |
|
---|
1118 |
|
---|
1119 | /* Process a single block's worth of coefficients */
|
---|
1120 |
|
---|
1121 | LOCAL(void)
|
---|
1122 | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
---|
1123 | long dc_counts[], long ac_counts[])
|
---|
1124 | {
|
---|
1125 | register int temp;
|
---|
1126 | register int nbits;
|
---|
1127 | register int k, r;
|
---|
1128 | int Se = cinfo->lim_Se;
|
---|
1129 | const int * natural_order = cinfo->natural_order;
|
---|
1130 |
|
---|
1131 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
1132 |
|
---|
1133 | temp = block[0] - last_dc_val;
|
---|
1134 | if (temp < 0)
|
---|
1135 | temp = -temp;
|
---|
1136 |
|
---|
1137 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
1138 | nbits = 0;
|
---|
1139 | while (temp) {
|
---|
1140 | nbits++;
|
---|
1141 | temp >>= 1;
|
---|
1142 | }
|
---|
1143 | /* Check for out-of-range coefficient values.
|
---|
1144 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
1145 | */
|
---|
1146 | if (nbits > MAX_COEF_BITS+1)
|
---|
1147 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
1148 |
|
---|
1149 | /* Count the Huffman symbol for the number of bits */
|
---|
1150 | dc_counts[nbits]++;
|
---|
1151 |
|
---|
1152 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
1153 |
|
---|
1154 | r = 0; /* r = run length of zeros */
|
---|
1155 |
|
---|
1156 | for (k = 1; k <= Se; k++) {
|
---|
1157 | if ((temp = block[natural_order[k]]) == 0) {
|
---|
1158 | r++;
|
---|
1159 | } else {
|
---|
1160 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
1161 | while (r > 15) {
|
---|
1162 | ac_counts[0xF0]++;
|
---|
1163 | r -= 16;
|
---|
1164 | }
|
---|
1165 |
|
---|
1166 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
1167 | if (temp < 0)
|
---|
1168 | temp = -temp;
|
---|
1169 |
|
---|
1170 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
1171 | nbits = 1; /* there must be at least one 1 bit */
|
---|
1172 | while ((temp >>= 1))
|
---|
1173 | nbits++;
|
---|
1174 | /* Check for out-of-range coefficient values */
|
---|
1175 | if (nbits > MAX_COEF_BITS)
|
---|
1176 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
1177 |
|
---|
1178 | /* Count Huffman symbol for run length / number of bits */
|
---|
1179 | ac_counts[(r << 4) + nbits]++;
|
---|
1180 |
|
---|
1181 | r = 0;
|
---|
1182 | }
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
1186 | if (r > 0)
|
---|
1187 | ac_counts[0]++;
|
---|
1188 | }
|
---|
1189 |
|
---|
1190 |
|
---|
1191 | /*
|
---|
1192 | * Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
---|
1193 | * No data is actually output, so no suspension return is possible.
|
---|
1194 | */
|
---|
1195 |
|
---|
1196 | METHODDEF(boolean)
|
---|
1197 | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
1198 | {
|
---|
1199 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1200 | int blkn, ci;
|
---|
1201 | jpeg_component_info * compptr;
|
---|
1202 |
|
---|
1203 | /* Take care of restart intervals if needed */
|
---|
1204 | if (cinfo->restart_interval) {
|
---|
1205 | if (entropy->restarts_to_go == 0) {
|
---|
1206 | /* Re-initialize DC predictions to 0 */
|
---|
1207 | for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
---|
1208 | entropy->saved.last_dc_val[ci] = 0;
|
---|
1209 | /* Update restart state */
|
---|
1210 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
1211 | }
|
---|
1212 | entropy->restarts_to_go--;
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
1216 | ci = cinfo->MCU_membership[blkn];
|
---|
1217 | compptr = cinfo->cur_comp_info[ci];
|
---|
1218 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
---|
1219 | entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
---|
1220 | entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
---|
1221 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
1222 | }
|
---|
1223 |
|
---|
1224 | return TRUE;
|
---|
1225 | }
|
---|
1226 |
|
---|
1227 |
|
---|
1228 | /*
|
---|
1229 | * Generate the best Huffman code table for the given counts, fill htbl.
|
---|
1230 | *
|
---|
1231 | * The JPEG standard requires that no symbol be assigned a codeword of all
|
---|
1232 | * one bits (so that padding bits added at the end of a compressed segment
|
---|
1233 | * can't look like a valid code). Because of the canonical ordering of
|
---|
1234 | * codewords, this just means that there must be an unused slot in the
|
---|
1235 | * longest codeword length category. Section K.2 of the JPEG spec suggests
|
---|
1236 | * reserving such a slot by pretending that symbol 256 is a valid symbol
|
---|
1237 | * with count 1. In theory that's not optimal; giving it count zero but
|
---|
1238 | * including it in the symbol set anyway should give a better Huffman code.
|
---|
1239 | * But the theoretically better code actually seems to come out worse in
|
---|
1240 | * practice, because it produces more all-ones bytes (which incur stuffed
|
---|
1241 | * zero bytes in the final file). In any case the difference is tiny.
|
---|
1242 | *
|
---|
1243 | * The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
---|
1244 | * If some symbols have a very small but nonzero probability, the Huffman tree
|
---|
1245 | * must be adjusted to meet the code length restriction. We currently use
|
---|
1246 | * the adjustment method suggested in JPEG section K.2. This method is *not*
|
---|
1247 | * optimal; it may not choose the best possible limited-length code. But
|
---|
1248 | * typically only very-low-frequency symbols will be given less-than-optimal
|
---|
1249 | * lengths, so the code is almost optimal. Experimental comparisons against
|
---|
1250 | * an optimal limited-length-code algorithm indicate that the difference is
|
---|
1251 | * microscopic --- usually less than a hundredth of a percent of total size.
|
---|
1252 | * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
---|
1253 | */
|
---|
1254 |
|
---|
1255 | LOCAL(void)
|
---|
1256 | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
---|
1257 | {
|
---|
1258 | #define MAX_CLEN 32 /* assumed maximum initial code length */
|
---|
1259 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
---|
1260 | int codesize[257]; /* codesize[k] = code length of symbol k */
|
---|
1261 | int others[257]; /* next symbol in current branch of tree */
|
---|
1262 | int c1, c2;
|
---|
1263 | int p, i, j;
|
---|
1264 | long v;
|
---|
1265 |
|
---|
1266 | /* This algorithm is explained in section K.2 of the JPEG standard */
|
---|
1267 |
|
---|
1268 | MEMZERO(bits, SIZEOF(bits));
|
---|
1269 | MEMZERO(codesize, SIZEOF(codesize));
|
---|
1270 | for (i = 0; i < 257; i++)
|
---|
1271 | others[i] = -1; /* init links to empty */
|
---|
1272 |
|
---|
1273 | freq[256] = 1; /* make sure 256 has a nonzero count */
|
---|
1274 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
---|
1275 | * that no real symbol is given code-value of all ones, because 256
|
---|
1276 | * will be placed last in the largest codeword category.
|
---|
1277 | */
|
---|
1278 |
|
---|
1279 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
---|
1280 |
|
---|
1281 | for (;;) {
|
---|
1282 | /* Find the smallest nonzero frequency, set c1 = its symbol */
|
---|
1283 | /* In case of ties, take the larger symbol number */
|
---|
1284 | c1 = -1;
|
---|
1285 | v = 1000000000L;
|
---|
1286 | for (i = 0; i <= 256; i++) {
|
---|
1287 | if (freq[i] && freq[i] <= v) {
|
---|
1288 | v = freq[i];
|
---|
1289 | c1 = i;
|
---|
1290 | }
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | /* Find the next smallest nonzero frequency, set c2 = its symbol */
|
---|
1294 | /* In case of ties, take the larger symbol number */
|
---|
1295 | c2 = -1;
|
---|
1296 | v = 1000000000L;
|
---|
1297 | for (i = 0; i <= 256; i++) {
|
---|
1298 | if (freq[i] && freq[i] <= v && i != c1) {
|
---|
1299 | v = freq[i];
|
---|
1300 | c2 = i;
|
---|
1301 | }
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 | /* Done if we've merged everything into one frequency */
|
---|
1305 | if (c2 < 0)
|
---|
1306 | break;
|
---|
1307 |
|
---|
1308 | /* Else merge the two counts/trees */
|
---|
1309 | freq[c1] += freq[c2];
|
---|
1310 | freq[c2] = 0;
|
---|
1311 |
|
---|
1312 | /* Increment the codesize of everything in c1's tree branch */
|
---|
1313 | codesize[c1]++;
|
---|
1314 | while (others[c1] >= 0) {
|
---|
1315 | c1 = others[c1];
|
---|
1316 | codesize[c1]++;
|
---|
1317 | }
|
---|
1318 |
|
---|
1319 | others[c1] = c2; /* chain c2 onto c1's tree branch */
|
---|
1320 |
|
---|
1321 | /* Increment the codesize of everything in c2's tree branch */
|
---|
1322 | codesize[c2]++;
|
---|
1323 | while (others[c2] >= 0) {
|
---|
1324 | c2 = others[c2];
|
---|
1325 | codesize[c2]++;
|
---|
1326 | }
|
---|
1327 | }
|
---|
1328 |
|
---|
1329 | /* Now count the number of symbols of each code length */
|
---|
1330 | for (i = 0; i <= 256; i++) {
|
---|
1331 | if (codesize[i]) {
|
---|
1332 | /* The JPEG standard seems to think that this can't happen, */
|
---|
1333 | /* but I'm paranoid... */
|
---|
1334 | if (codesize[i] > MAX_CLEN)
|
---|
1335 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
---|
1336 |
|
---|
1337 | bits[codesize[i]]++;
|
---|
1338 | }
|
---|
1339 | }
|
---|
1340 |
|
---|
1341 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
---|
1342 | * Huffman procedure assigned any such lengths, we must adjust the coding.
|
---|
1343 | * Here is what the JPEG spec says about how this next bit works:
|
---|
1344 | * Since symbols are paired for the longest Huffman code, the symbols are
|
---|
1345 | * removed from this length category two at a time. The prefix for the pair
|
---|
1346 | * (which is one bit shorter) is allocated to one of the pair; then,
|
---|
1347 | * skipping the BITS entry for that prefix length, a code word from the next
|
---|
1348 | * shortest nonzero BITS entry is converted into a prefix for two code words
|
---|
1349 | * one bit longer.
|
---|
1350 | */
|
---|
1351 |
|
---|
1352 | for (i = MAX_CLEN; i > 16; i--) {
|
---|
1353 | while (bits[i] > 0) {
|
---|
1354 | j = i - 2; /* find length of new prefix to be used */
|
---|
1355 | while (bits[j] == 0)
|
---|
1356 | j--;
|
---|
1357 |
|
---|
1358 | bits[i] -= 2; /* remove two symbols */
|
---|
1359 | bits[i-1]++; /* one goes in this length */
|
---|
1360 | bits[j+1] += 2; /* two new symbols in this length */
|
---|
1361 | bits[j]--; /* symbol of this length is now a prefix */
|
---|
1362 | }
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
---|
1366 | while (bits[i] == 0) /* find largest codelength still in use */
|
---|
1367 | i--;
|
---|
1368 | bits[i]--;
|
---|
1369 |
|
---|
1370 | /* Return final symbol counts (only for lengths 0..16) */
|
---|
1371 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
---|
1372 |
|
---|
1373 | /* Return a list of the symbols sorted by code length */
|
---|
1374 | /* It's not real clear to me why we don't need to consider the codelength
|
---|
1375 | * changes made above, but the JPEG spec seems to think this works.
|
---|
1376 | */
|
---|
1377 | p = 0;
|
---|
1378 | for (i = 1; i <= MAX_CLEN; i++) {
|
---|
1379 | for (j = 0; j <= 255; j++) {
|
---|
1380 | if (codesize[j] == i) {
|
---|
1381 | htbl->huffval[p] = (UINT8) j;
|
---|
1382 | p++;
|
---|
1383 | }
|
---|
1384 | }
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | /* Set sent_table FALSE so updated table will be written to JPEG file. */
|
---|
1388 | htbl->sent_table = FALSE;
|
---|
1389 | }
|
---|
1390 |
|
---|
1391 |
|
---|
1392 | /*
|
---|
1393 | * Finish up a statistics-gathering pass and create the new Huffman tables.
|
---|
1394 | */
|
---|
1395 |
|
---|
1396 | METHODDEF(void)
|
---|
1397 | finish_pass_gather (j_compress_ptr cinfo)
|
---|
1398 | {
|
---|
1399 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1400 | int ci, tbl;
|
---|
1401 | jpeg_component_info * compptr;
|
---|
1402 | JHUFF_TBL **htblptr;
|
---|
1403 | boolean did_dc[NUM_HUFF_TBLS];
|
---|
1404 | boolean did_ac[NUM_HUFF_TBLS];
|
---|
1405 |
|
---|
1406 | /* It's important not to apply jpeg_gen_optimal_table more than once
|
---|
1407 | * per table, because it clobbers the input frequency counts!
|
---|
1408 | */
|
---|
1409 | if (cinfo->progressive_mode)
|
---|
1410 | /* Flush out buffered data (all we care about is counting the EOB symbol) */
|
---|
1411 | emit_eobrun(entropy);
|
---|
1412 |
|
---|
1413 | MEMZERO(did_dc, SIZEOF(did_dc));
|
---|
1414 | MEMZERO(did_ac, SIZEOF(did_ac));
|
---|
1415 |
|
---|
1416 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
1417 | compptr = cinfo->cur_comp_info[ci];
|
---|
1418 | /* DC needs no table for refinement scan */
|
---|
1419 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
1420 | tbl = compptr->dc_tbl_no;
|
---|
1421 | if (! did_dc[tbl]) {
|
---|
1422 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
|
---|
1423 | if (*htblptr == NULL)
|
---|
1424 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
1425 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
|
---|
1426 | did_dc[tbl] = TRUE;
|
---|
1427 | }
|
---|
1428 | }
|
---|
1429 | /* AC needs no table when not present */
|
---|
1430 | if (cinfo->Se) {
|
---|
1431 | tbl = compptr->ac_tbl_no;
|
---|
1432 | if (! did_ac[tbl]) {
|
---|
1433 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
|
---|
1434 | if (*htblptr == NULL)
|
---|
1435 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
1436 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
|
---|
1437 | did_ac[tbl] = TRUE;
|
---|
1438 | }
|
---|
1439 | }
|
---|
1440 | }
|
---|
1441 | }
|
---|
1442 |
|
---|
1443 |
|
---|
1444 | /*
|
---|
1445 | * Initialize for a Huffman-compressed scan.
|
---|
1446 | * If gather_statistics is TRUE, we do not output anything during the scan,
|
---|
1447 | * just count the Huffman symbols used and generate Huffman code tables.
|
---|
1448 | */
|
---|
1449 |
|
---|
1450 | METHODDEF(void)
|
---|
1451 | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
---|
1452 | {
|
---|
1453 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
1454 | int ci, tbl;
|
---|
1455 | jpeg_component_info * compptr;
|
---|
1456 |
|
---|
1457 | if (gather_statistics)
|
---|
1458 | entropy->pub.finish_pass = finish_pass_gather;
|
---|
1459 | else
|
---|
1460 | entropy->pub.finish_pass = finish_pass_huff;
|
---|
1461 |
|
---|
1462 | if (cinfo->progressive_mode) {
|
---|
1463 | entropy->cinfo = cinfo;
|
---|
1464 | entropy->gather_statistics = gather_statistics;
|
---|
1465 |
|
---|
1466 | /* We assume jcmaster.c already validated the scan parameters. */
|
---|
1467 |
|
---|
1468 | /* Select execution routine */
|
---|
1469 | if (cinfo->Ah == 0) {
|
---|
1470 | if (cinfo->Ss == 0)
|
---|
1471 | entropy->pub.encode_mcu = encode_mcu_DC_first;
|
---|
1472 | else
|
---|
1473 | entropy->pub.encode_mcu = encode_mcu_AC_first;
|
---|
1474 | } else {
|
---|
1475 | if (cinfo->Ss == 0)
|
---|
1476 | entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
---|
1477 | else {
|
---|
1478 | entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
---|
1479 | /* AC refinement needs a correction bit buffer */
|
---|
1480 | if (entropy->bit_buffer == NULL)
|
---|
1481 | entropy->bit_buffer = (char *)
|
---|
1482 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1483 | MAX_CORR_BITS * SIZEOF(char));
|
---|
1484 | }
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | /* Initialize AC stuff */
|
---|
1488 | entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
|
---|
1489 | entropy->EOBRUN = 0;
|
---|
1490 | entropy->BE = 0;
|
---|
1491 | } else {
|
---|
1492 | if (gather_statistics)
|
---|
1493 | entropy->pub.encode_mcu = encode_mcu_gather;
|
---|
1494 | else
|
---|
1495 | entropy->pub.encode_mcu = encode_mcu_huff;
|
---|
1496 | }
|
---|
1497 |
|
---|
1498 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
1499 | compptr = cinfo->cur_comp_info[ci];
|
---|
1500 | /* DC needs no table for refinement scan */
|
---|
1501 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
1502 | tbl = compptr->dc_tbl_no;
|
---|
1503 | if (gather_statistics) {
|
---|
1504 | /* Check for invalid table index */
|
---|
1505 | /* (make_c_derived_tbl does this in the other path) */
|
---|
1506 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
---|
1507 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
---|
1508 | /* Allocate and zero the statistics tables */
|
---|
1509 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
---|
1510 | if (entropy->dc_count_ptrs[tbl] == NULL)
|
---|
1511 | entropy->dc_count_ptrs[tbl] = (long *)
|
---|
1512 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1513 | 257 * SIZEOF(long));
|
---|
1514 | MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
|
---|
1515 | } else {
|
---|
1516 | /* Compute derived values for Huffman tables */
|
---|
1517 | /* We may do this more than once for a table, but it's not expensive */
|
---|
1518 | jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
|
---|
1519 | & entropy->dc_derived_tbls[tbl]);
|
---|
1520 | }
|
---|
1521 | /* Initialize DC predictions to 0 */
|
---|
1522 | entropy->saved.last_dc_val[ci] = 0;
|
---|
1523 | }
|
---|
1524 | /* AC needs no table when not present */
|
---|
1525 | if (cinfo->Se) {
|
---|
1526 | tbl = compptr->ac_tbl_no;
|
---|
1527 | if (gather_statistics) {
|
---|
1528 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
---|
1529 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
---|
1530 | if (entropy->ac_count_ptrs[tbl] == NULL)
|
---|
1531 | entropy->ac_count_ptrs[tbl] = (long *)
|
---|
1532 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1533 | 257 * SIZEOF(long));
|
---|
1534 | MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
|
---|
1535 | } else {
|
---|
1536 | jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
|
---|
1537 | & entropy->ac_derived_tbls[tbl]);
|
---|
1538 | }
|
---|
1539 | }
|
---|
1540 | }
|
---|
1541 |
|
---|
1542 | /* Initialize bit buffer to empty */
|
---|
1543 | entropy->saved.put_buffer = 0;
|
---|
1544 | entropy->saved.put_bits = 0;
|
---|
1545 |
|
---|
1546 | /* Initialize restart stuff */
|
---|
1547 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
1548 | entropy->next_restart_num = 0;
|
---|
1549 | }
|
---|
1550 |
|
---|
1551 |
|
---|
1552 | /*
|
---|
1553 | * Module initialization routine for Huffman entropy encoding.
|
---|
1554 | */
|
---|
1555 |
|
---|
1556 | GLOBAL(void)
|
---|
1557 | jinit_huff_encoder (j_compress_ptr cinfo)
|
---|
1558 | {
|
---|
1559 | huff_entropy_ptr entropy;
|
---|
1560 | int i;
|
---|
1561 |
|
---|
1562 | entropy = (huff_entropy_ptr)
|
---|
1563 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1564 | SIZEOF(huff_entropy_encoder));
|
---|
1565 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
---|
1566 | entropy->pub.start_pass = start_pass_huff;
|
---|
1567 |
|
---|
1568 | /* Mark tables unallocated */
|
---|
1569 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
1570 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
---|
1571 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
---|
1572 | }
|
---|
1573 |
|
---|
1574 | if (cinfo->progressive_mode)
|
---|
1575 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
---|
1576 | }
|
---|