[2] | 1 | /*
|
---|
| 2 | * jchuff.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1991-1997, Thomas G. Lane.
|
---|
[846] | 5 | * Modified 2006-2009 by Guido Vollbeding.
|
---|
[2] | 6 | * This file is part of the Independent JPEG Group's software.
|
---|
| 7 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 8 | *
|
---|
| 9 | * This file contains Huffman entropy encoding routines.
|
---|
[846] | 10 | * Both sequential and progressive modes are supported in this single module.
|
---|
[2] | 11 | *
|
---|
| 12 | * Much of the complexity here has to do with supporting output suspension.
|
---|
| 13 | * If the data destination module demands suspension, we want to be able to
|
---|
| 14 | * back up to the start of the current MCU. To do this, we copy state
|
---|
| 15 | * variables into local working storage, and update them back to the
|
---|
| 16 | * permanent JPEG objects only upon successful completion of an MCU.
|
---|
[846] | 17 | *
|
---|
| 18 | * We do not support output suspension for the progressive JPEG mode, since
|
---|
| 19 | * the library currently does not allow multiple-scan files to be written
|
---|
| 20 | * with output suspension.
|
---|
[2] | 21 | */
|
---|
| 22 |
|
---|
| 23 | #define JPEG_INTERNALS
|
---|
| 24 | #include "jinclude.h"
|
---|
| 25 | #include "jpeglib.h"
|
---|
| 26 |
|
---|
| 27 |
|
---|
[846] | 28 | /* The legal range of a DCT coefficient is
|
---|
| 29 | * -1024 .. +1023 for 8-bit data;
|
---|
| 30 | * -16384 .. +16383 for 12-bit data.
|
---|
| 31 | * Hence the magnitude should always fit in 10 or 14 bits respectively.
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 | #if BITS_IN_JSAMPLE == 8
|
---|
| 35 | #define MAX_COEF_BITS 10
|
---|
| 36 | #else
|
---|
| 37 | #define MAX_COEF_BITS 14
|
---|
| 38 | #endif
|
---|
| 39 |
|
---|
| 40 | /* Derived data constructed for each Huffman table */
|
---|
| 41 |
|
---|
| 42 | typedef struct {
|
---|
| 43 | unsigned int ehufco[256]; /* code for each symbol */
|
---|
| 44 | char ehufsi[256]; /* length of code for each symbol */
|
---|
| 45 | /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
|
---|
| 46 | } c_derived_tbl;
|
---|
| 47 |
|
---|
| 48 |
|
---|
[2] | 49 | /* Expanded entropy encoder object for Huffman encoding.
|
---|
| 50 | *
|
---|
| 51 | * The savable_state subrecord contains fields that change within an MCU,
|
---|
| 52 | * but must not be updated permanently until we complete the MCU.
|
---|
| 53 | */
|
---|
| 54 |
|
---|
| 55 | typedef struct {
|
---|
| 56 | INT32 put_buffer; /* current bit-accumulation buffer */
|
---|
| 57 | int put_bits; /* # of bits now in it */
|
---|
| 58 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
| 59 | } savable_state;
|
---|
| 60 |
|
---|
| 61 | /* This macro is to work around compilers with missing or broken
|
---|
| 62 | * structure assignment. You'll need to fix this code if you have
|
---|
| 63 | * such a compiler and you change MAX_COMPS_IN_SCAN.
|
---|
| 64 | */
|
---|
| 65 |
|
---|
| 66 | #ifndef NO_STRUCT_ASSIGN
|
---|
| 67 | #define ASSIGN_STATE(dest,src) ((dest) = (src))
|
---|
| 68 | #else
|
---|
| 69 | #if MAX_COMPS_IN_SCAN == 4
|
---|
| 70 | #define ASSIGN_STATE(dest,src) \
|
---|
| 71 | ((dest).put_buffer = (src).put_buffer, \
|
---|
| 72 | (dest).put_bits = (src).put_bits, \
|
---|
| 73 | (dest).last_dc_val[0] = (src).last_dc_val[0], \
|
---|
| 74 | (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
---|
| 75 | (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
---|
| 76 | (dest).last_dc_val[3] = (src).last_dc_val[3])
|
---|
| 77 | #endif
|
---|
| 78 | #endif
|
---|
| 79 |
|
---|
| 80 |
|
---|
| 81 | typedef struct {
|
---|
| 82 | struct jpeg_entropy_encoder pub; /* public fields */
|
---|
| 83 |
|
---|
| 84 | savable_state saved; /* Bit buffer & DC state at start of MCU */
|
---|
| 85 |
|
---|
| 86 | /* These fields are NOT loaded into local working state. */
|
---|
| 87 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
| 88 | int next_restart_num; /* next restart number to write (0-7) */
|
---|
| 89 |
|
---|
| 90 | /* Pointers to derived tables (these workspaces have image lifespan) */
|
---|
| 91 | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 92 | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
---|
| 93 |
|
---|
[846] | 94 | /* Statistics tables for optimization */
|
---|
[2] | 95 | long * dc_count_ptrs[NUM_HUFF_TBLS];
|
---|
| 96 | long * ac_count_ptrs[NUM_HUFF_TBLS];
|
---|
[846] | 97 |
|
---|
| 98 | /* Following fields used only in progressive mode */
|
---|
| 99 |
|
---|
| 100 | /* Mode flag: TRUE for optimization, FALSE for actual data output */
|
---|
| 101 | boolean gather_statistics;
|
---|
| 102 |
|
---|
| 103 | /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
---|
| 104 | */
|
---|
| 105 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
---|
| 106 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
---|
| 107 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
---|
| 108 |
|
---|
| 109 | /* Coding status for AC components */
|
---|
| 110 | int ac_tbl_no; /* the table number of the single component */
|
---|
| 111 | unsigned int EOBRUN; /* run length of EOBs */
|
---|
| 112 | unsigned int BE; /* # of buffered correction bits before MCU */
|
---|
| 113 | char * bit_buffer; /* buffer for correction bits (1 per char) */
|
---|
| 114 | /* packing correction bits tightly would save some space but cost time... */
|
---|
[2] | 115 | } huff_entropy_encoder;
|
---|
| 116 |
|
---|
| 117 | typedef huff_entropy_encoder * huff_entropy_ptr;
|
---|
| 118 |
|
---|
[846] | 119 | /* Working state while writing an MCU (sequential mode).
|
---|
[2] | 120 | * This struct contains all the fields that are needed by subroutines.
|
---|
| 121 | */
|
---|
| 122 |
|
---|
| 123 | typedef struct {
|
---|
| 124 | JOCTET * next_output_byte; /* => next byte to write in buffer */
|
---|
| 125 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
---|
| 126 | savable_state cur; /* Current bit buffer & DC state */
|
---|
| 127 | j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
---|
| 128 | } working_state;
|
---|
| 129 |
|
---|
[846] | 130 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
---|
| 131 | * buffer can hold. Larger sizes may slightly improve compression, but
|
---|
| 132 | * 1000 is already well into the realm of overkill.
|
---|
| 133 | * The minimum safe size is 64 bits.
|
---|
| 134 | */
|
---|
[2] | 135 |
|
---|
[846] | 136 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
---|
[2] | 137 |
|
---|
[846] | 138 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
---|
| 139 | * We assume that int right shift is unsigned if INT32 right shift is,
|
---|
| 140 | * which should be safe.
|
---|
[2] | 141 | */
|
---|
| 142 |
|
---|
[846] | 143 | #ifdef RIGHT_SHIFT_IS_UNSIGNED
|
---|
| 144 | #define ISHIFT_TEMPS int ishift_temp;
|
---|
| 145 | #define IRIGHT_SHIFT(x,shft) \
|
---|
| 146 | ((ishift_temp = (x)) < 0 ? \
|
---|
| 147 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
---|
| 148 | (ishift_temp >> (shft)))
|
---|
[2] | 149 | #else
|
---|
[846] | 150 | #define ISHIFT_TEMPS
|
---|
| 151 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
---|
[2] | 152 | #endif
|
---|
| 153 |
|
---|
| 154 |
|
---|
| 155 | /*
|
---|
| 156 | * Compute the derived values for a Huffman table.
|
---|
| 157 | * This routine also performs some validation checks on the table.
|
---|
| 158 | */
|
---|
| 159 |
|
---|
[846] | 160 | LOCAL(void)
|
---|
[2] | 161 | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
---|
| 162 | c_derived_tbl ** pdtbl)
|
---|
| 163 | {
|
---|
| 164 | JHUFF_TBL *htbl;
|
---|
| 165 | c_derived_tbl *dtbl;
|
---|
| 166 | int p, i, l, lastp, si, maxsymbol;
|
---|
| 167 | char huffsize[257];
|
---|
| 168 | unsigned int huffcode[257];
|
---|
| 169 | unsigned int code;
|
---|
| 170 |
|
---|
| 171 | /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
---|
| 172 | * paralleling the order of the symbols themselves in htbl->huffval[].
|
---|
| 173 | */
|
---|
| 174 |
|
---|
| 175 | /* Find the input Huffman table */
|
---|
| 176 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
---|
| 177 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 178 | htbl =
|
---|
| 179 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
---|
| 180 | if (htbl == NULL)
|
---|
| 181 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
---|
| 182 |
|
---|
| 183 | /* Allocate a workspace if we haven't already done so. */
|
---|
| 184 | if (*pdtbl == NULL)
|
---|
| 185 | *pdtbl = (c_derived_tbl *)
|
---|
| 186 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 187 | SIZEOF(c_derived_tbl));
|
---|
| 188 | dtbl = *pdtbl;
|
---|
| 189 |
|
---|
| 190 | /* Figure C.1: make table of Huffman code length for each symbol */
|
---|
| 191 |
|
---|
| 192 | p = 0;
|
---|
| 193 | for (l = 1; l <= 16; l++) {
|
---|
| 194 | i = (int) htbl->bits[l];
|
---|
| 195 | if (i < 0 || p + i > 256) /* protect against table overrun */
|
---|
| 196 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 197 | while (i--)
|
---|
| 198 | huffsize[p++] = (char) l;
|
---|
| 199 | }
|
---|
| 200 | huffsize[p] = 0;
|
---|
| 201 | lastp = p;
|
---|
| 202 |
|
---|
| 203 | /* Figure C.2: generate the codes themselves */
|
---|
| 204 | /* We also validate that the counts represent a legal Huffman code tree. */
|
---|
| 205 |
|
---|
| 206 | code = 0;
|
---|
| 207 | si = huffsize[0];
|
---|
| 208 | p = 0;
|
---|
| 209 | while (huffsize[p]) {
|
---|
| 210 | while (((int) huffsize[p]) == si) {
|
---|
| 211 | huffcode[p++] = code;
|
---|
| 212 | code++;
|
---|
| 213 | }
|
---|
| 214 | /* code is now 1 more than the last code used for codelength si; but
|
---|
| 215 | * it must still fit in si bits, since no code is allowed to be all ones.
|
---|
| 216 | */
|
---|
| 217 | if (((INT32) code) >= (((INT32) 1) << si))
|
---|
| 218 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 219 | code <<= 1;
|
---|
| 220 | si++;
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | /* Figure C.3: generate encoding tables */
|
---|
| 224 | /* These are code and size indexed by symbol value */
|
---|
| 225 |
|
---|
| 226 | /* Set all codeless symbols to have code length 0;
|
---|
| 227 | * this lets us detect duplicate VAL entries here, and later
|
---|
| 228 | * allows emit_bits to detect any attempt to emit such symbols.
|
---|
| 229 | */
|
---|
| 230 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
---|
| 231 |
|
---|
| 232 | /* This is also a convenient place to check for out-of-range
|
---|
| 233 | * and duplicated VAL entries. We allow 0..255 for AC symbols
|
---|
| 234 | * but only 0..15 for DC. (We could constrain them further
|
---|
| 235 | * based on data depth and mode, but this seems enough.)
|
---|
| 236 | */
|
---|
| 237 | maxsymbol = isDC ? 15 : 255;
|
---|
| 238 |
|
---|
| 239 | for (p = 0; p < lastp; p++) {
|
---|
| 240 | i = htbl->huffval[p];
|
---|
| 241 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
---|
| 242 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
---|
| 243 | dtbl->ehufco[i] = huffcode[p];
|
---|
| 244 | dtbl->ehufsi[i] = huffsize[p];
|
---|
| 245 | }
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 |
|
---|
[846] | 249 | /* Outputting bytes to the file.
|
---|
| 250 | * NB: these must be called only when actually outputting,
|
---|
| 251 | * that is, entropy->gather_statistics == FALSE.
|
---|
| 252 | */
|
---|
[2] | 253 |
|
---|
| 254 | /* Emit a byte, taking 'action' if must suspend. */
|
---|
[846] | 255 | #define emit_byte_s(state,val,action) \
|
---|
[2] | 256 | { *(state)->next_output_byte++ = (JOCTET) (val); \
|
---|
| 257 | if (--(state)->free_in_buffer == 0) \
|
---|
[846] | 258 | if (! dump_buffer_s(state)) \
|
---|
[2] | 259 | { action; } }
|
---|
| 260 |
|
---|
[846] | 261 | /* Emit a byte */
|
---|
| 262 | #define emit_byte_e(entropy,val) \
|
---|
| 263 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
---|
| 264 | if (--(entropy)->free_in_buffer == 0) \
|
---|
| 265 | dump_buffer_e(entropy); }
|
---|
[2] | 266 |
|
---|
[846] | 267 |
|
---|
[2] | 268 | LOCAL(boolean)
|
---|
[846] | 269 | dump_buffer_s (working_state * state)
|
---|
[2] | 270 | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
---|
| 271 | {
|
---|
| 272 | struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
---|
| 273 |
|
---|
| 274 | if (! (*dest->empty_output_buffer) (state->cinfo))
|
---|
| 275 | return FALSE;
|
---|
| 276 | /* After a successful buffer dump, must reset buffer pointers */
|
---|
| 277 | state->next_output_byte = dest->next_output_byte;
|
---|
| 278 | state->free_in_buffer = dest->free_in_buffer;
|
---|
| 279 | return TRUE;
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 |
|
---|
[846] | 283 | LOCAL(void)
|
---|
| 284 | dump_buffer_e (huff_entropy_ptr entropy)
|
---|
| 285 | /* Empty the output buffer; we do not support suspension in this case. */
|
---|
| 286 | {
|
---|
| 287 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
|
---|
| 288 |
|
---|
| 289 | if (! (*dest->empty_output_buffer) (entropy->cinfo))
|
---|
| 290 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
---|
| 291 | /* After a successful buffer dump, must reset buffer pointers */
|
---|
| 292 | entropy->next_output_byte = dest->next_output_byte;
|
---|
| 293 | entropy->free_in_buffer = dest->free_in_buffer;
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 |
|
---|
[2] | 297 | /* Outputting bits to the file */
|
---|
| 298 |
|
---|
| 299 | /* Only the right 24 bits of put_buffer are used; the valid bits are
|
---|
| 300 | * left-justified in this part. At most 16 bits can be passed to emit_bits
|
---|
| 301 | * in one call, and we never retain more than 7 bits in put_buffer
|
---|
| 302 | * between calls, so 24 bits are sufficient.
|
---|
| 303 | */
|
---|
| 304 |
|
---|
| 305 | INLINE
|
---|
| 306 | LOCAL(boolean)
|
---|
[846] | 307 | emit_bits_s (working_state * state, unsigned int code, int size)
|
---|
[2] | 308 | /* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
---|
| 309 | {
|
---|
| 310 | /* This routine is heavily used, so it's worth coding tightly. */
|
---|
| 311 | register INT32 put_buffer = (INT32) code;
|
---|
| 312 | register int put_bits = state->cur.put_bits;
|
---|
| 313 |
|
---|
| 314 | /* if size is 0, caller used an invalid Huffman table entry */
|
---|
| 315 | if (size == 0)
|
---|
| 316 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
| 317 |
|
---|
| 318 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
---|
| 319 |
|
---|
| 320 | put_bits += size; /* new number of bits in buffer */
|
---|
| 321 |
|
---|
| 322 | put_buffer <<= 24 - put_bits; /* align incoming bits */
|
---|
| 323 |
|
---|
| 324 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
|
---|
| 325 |
|
---|
| 326 | while (put_bits >= 8) {
|
---|
| 327 | int c = (int) ((put_buffer >> 16) & 0xFF);
|
---|
| 328 |
|
---|
[846] | 329 | emit_byte_s(state, c, return FALSE);
|
---|
[2] | 330 | if (c == 0xFF) { /* need to stuff a zero byte? */
|
---|
[846] | 331 | emit_byte_s(state, 0, return FALSE);
|
---|
[2] | 332 | }
|
---|
| 333 | put_buffer <<= 8;
|
---|
| 334 | put_bits -= 8;
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | state->cur.put_buffer = put_buffer; /* update state variables */
|
---|
| 338 | state->cur.put_bits = put_bits;
|
---|
| 339 |
|
---|
| 340 | return TRUE;
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 |
|
---|
[846] | 344 | INLINE
|
---|
| 345 | LOCAL(void)
|
---|
| 346 | emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
|
---|
| 347 | /* Emit some bits, unless we are in gather mode */
|
---|
| 348 | {
|
---|
| 349 | /* This routine is heavily used, so it's worth coding tightly. */
|
---|
| 350 | register INT32 put_buffer = (INT32) code;
|
---|
| 351 | register int put_bits = entropy->saved.put_bits;
|
---|
| 352 |
|
---|
| 353 | /* if size is 0, caller used an invalid Huffman table entry */
|
---|
| 354 | if (size == 0)
|
---|
| 355 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
| 356 |
|
---|
| 357 | if (entropy->gather_statistics)
|
---|
| 358 | return; /* do nothing if we're only getting stats */
|
---|
| 359 |
|
---|
| 360 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
---|
| 361 |
|
---|
| 362 | put_bits += size; /* new number of bits in buffer */
|
---|
| 363 |
|
---|
| 364 | put_buffer <<= 24 - put_bits; /* align incoming bits */
|
---|
| 365 |
|
---|
| 366 | /* and merge with old buffer contents */
|
---|
| 367 | put_buffer |= entropy->saved.put_buffer;
|
---|
| 368 |
|
---|
| 369 | while (put_bits >= 8) {
|
---|
| 370 | int c = (int) ((put_buffer >> 16) & 0xFF);
|
---|
| 371 |
|
---|
| 372 | emit_byte_e(entropy, c);
|
---|
| 373 | if (c == 0xFF) { /* need to stuff a zero byte? */
|
---|
| 374 | emit_byte_e(entropy, 0);
|
---|
| 375 | }
|
---|
| 376 | put_buffer <<= 8;
|
---|
| 377 | put_bits -= 8;
|
---|
| 378 | }
|
---|
| 379 |
|
---|
| 380 | entropy->saved.put_buffer = put_buffer; /* update variables */
|
---|
| 381 | entropy->saved.put_bits = put_bits;
|
---|
| 382 | }
|
---|
| 383 |
|
---|
| 384 |
|
---|
[2] | 385 | LOCAL(boolean)
|
---|
[846] | 386 | flush_bits_s (working_state * state)
|
---|
[2] | 387 | {
|
---|
[846] | 388 | if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
|
---|
[2] | 389 | return FALSE;
|
---|
[846] | 390 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
---|
[2] | 391 | state->cur.put_bits = 0;
|
---|
| 392 | return TRUE;
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 |
|
---|
[846] | 396 | LOCAL(void)
|
---|
| 397 | flush_bits_e (huff_entropy_ptr entropy)
|
---|
| 398 | {
|
---|
| 399 | emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
---|
| 400 | entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
|
---|
| 401 | entropy->saved.put_bits = 0;
|
---|
| 402 | }
|
---|
| 403 |
|
---|
| 404 |
|
---|
| 405 | /*
|
---|
| 406 | * Emit (or just count) a Huffman symbol.
|
---|
| 407 | */
|
---|
| 408 |
|
---|
| 409 | INLINE
|
---|
| 410 | LOCAL(void)
|
---|
| 411 | emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
|
---|
| 412 | {
|
---|
| 413 | if (entropy->gather_statistics)
|
---|
| 414 | entropy->dc_count_ptrs[tbl_no][symbol]++;
|
---|
| 415 | else {
|
---|
| 416 | c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
|
---|
| 417 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
---|
| 418 | }
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 |
|
---|
| 422 | INLINE
|
---|
| 423 | LOCAL(void)
|
---|
| 424 | emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
|
---|
| 425 | {
|
---|
| 426 | if (entropy->gather_statistics)
|
---|
| 427 | entropy->ac_count_ptrs[tbl_no][symbol]++;
|
---|
| 428 | else {
|
---|
| 429 | c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
|
---|
| 430 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
---|
| 431 | }
|
---|
| 432 | }
|
---|
| 433 |
|
---|
| 434 |
|
---|
| 435 | /*
|
---|
| 436 | * Emit bits from a correction bit buffer.
|
---|
| 437 | */
|
---|
| 438 |
|
---|
| 439 | LOCAL(void)
|
---|
| 440 | emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
|
---|
| 441 | unsigned int nbits)
|
---|
| 442 | {
|
---|
| 443 | if (entropy->gather_statistics)
|
---|
| 444 | return; /* no real work */
|
---|
| 445 |
|
---|
| 446 | while (nbits > 0) {
|
---|
| 447 | emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
|
---|
| 448 | bufstart++;
|
---|
| 449 | nbits--;
|
---|
| 450 | }
|
---|
| 451 | }
|
---|
| 452 |
|
---|
| 453 |
|
---|
| 454 | /*
|
---|
| 455 | * Emit any pending EOBRUN symbol.
|
---|
| 456 | */
|
---|
| 457 |
|
---|
| 458 | LOCAL(void)
|
---|
| 459 | emit_eobrun (huff_entropy_ptr entropy)
|
---|
| 460 | {
|
---|
| 461 | register int temp, nbits;
|
---|
| 462 |
|
---|
| 463 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
---|
| 464 | temp = entropy->EOBRUN;
|
---|
| 465 | nbits = 0;
|
---|
| 466 | while ((temp >>= 1))
|
---|
| 467 | nbits++;
|
---|
| 468 | /* safety check: shouldn't happen given limited correction-bit buffer */
|
---|
| 469 | if (nbits > 14)
|
---|
| 470 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
---|
| 471 |
|
---|
| 472 | emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
---|
| 473 | if (nbits)
|
---|
| 474 | emit_bits_e(entropy, entropy->EOBRUN, nbits);
|
---|
| 475 |
|
---|
| 476 | entropy->EOBRUN = 0;
|
---|
| 477 |
|
---|
| 478 | /* Emit any buffered correction bits */
|
---|
| 479 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
---|
| 480 | entropy->BE = 0;
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 |
|
---|
| 484 |
|
---|
| 485 | /*
|
---|
| 486 | * Emit a restart marker & resynchronize predictions.
|
---|
| 487 | */
|
---|
| 488 |
|
---|
| 489 | LOCAL(boolean)
|
---|
| 490 | emit_restart_s (working_state * state, int restart_num)
|
---|
| 491 | {
|
---|
| 492 | int ci;
|
---|
| 493 |
|
---|
| 494 | if (! flush_bits_s(state))
|
---|
| 495 | return FALSE;
|
---|
| 496 |
|
---|
| 497 | emit_byte_s(state, 0xFF, return FALSE);
|
---|
| 498 | emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
|
---|
| 499 |
|
---|
| 500 | /* Re-initialize DC predictions to 0 */
|
---|
| 501 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
---|
| 502 | state->cur.last_dc_val[ci] = 0;
|
---|
| 503 |
|
---|
| 504 | /* The restart counter is not updated until we successfully write the MCU. */
|
---|
| 505 |
|
---|
| 506 | return TRUE;
|
---|
| 507 | }
|
---|
| 508 |
|
---|
| 509 |
|
---|
| 510 | LOCAL(void)
|
---|
| 511 | emit_restart_e (huff_entropy_ptr entropy, int restart_num)
|
---|
| 512 | {
|
---|
| 513 | int ci;
|
---|
| 514 |
|
---|
| 515 | emit_eobrun(entropy);
|
---|
| 516 |
|
---|
| 517 | if (! entropy->gather_statistics) {
|
---|
| 518 | flush_bits_e(entropy);
|
---|
| 519 | emit_byte_e(entropy, 0xFF);
|
---|
| 520 | emit_byte_e(entropy, JPEG_RST0 + restart_num);
|
---|
| 521 | }
|
---|
| 522 |
|
---|
| 523 | if (entropy->cinfo->Ss == 0) {
|
---|
| 524 | /* Re-initialize DC predictions to 0 */
|
---|
| 525 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
---|
| 526 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 527 | } else {
|
---|
| 528 | /* Re-initialize all AC-related fields to 0 */
|
---|
| 529 | entropy->EOBRUN = 0;
|
---|
| 530 | entropy->BE = 0;
|
---|
| 531 | }
|
---|
| 532 | }
|
---|
| 533 |
|
---|
| 534 |
|
---|
| 535 | /*
|
---|
| 536 | * MCU encoding for DC initial scan (either spectral selection,
|
---|
| 537 | * or first pass of successive approximation).
|
---|
| 538 | */
|
---|
| 539 |
|
---|
| 540 | METHODDEF(boolean)
|
---|
| 541 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 542 | {
|
---|
| 543 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 544 | register int temp, temp2;
|
---|
| 545 | register int nbits;
|
---|
| 546 | int blkn, ci;
|
---|
| 547 | int Al = cinfo->Al;
|
---|
| 548 | JBLOCKROW block;
|
---|
| 549 | jpeg_component_info * compptr;
|
---|
| 550 | ISHIFT_TEMPS
|
---|
| 551 |
|
---|
| 552 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 553 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 554 |
|
---|
| 555 | /* Emit restart marker if needed */
|
---|
| 556 | if (cinfo->restart_interval)
|
---|
| 557 | if (entropy->restarts_to_go == 0)
|
---|
| 558 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
| 559 |
|
---|
| 560 | /* Encode the MCU data blocks */
|
---|
| 561 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 562 | block = MCU_data[blkn];
|
---|
| 563 | ci = cinfo->MCU_membership[blkn];
|
---|
| 564 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 565 |
|
---|
| 566 | /* Compute the DC value after the required point transform by Al.
|
---|
| 567 | * This is simply an arithmetic right shift.
|
---|
| 568 | */
|
---|
| 569 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
|
---|
| 570 |
|
---|
| 571 | /* DC differences are figured on the point-transformed values. */
|
---|
| 572 | temp = temp2 - entropy->saved.last_dc_val[ci];
|
---|
| 573 | entropy->saved.last_dc_val[ci] = temp2;
|
---|
| 574 |
|
---|
| 575 | /* Encode the DC coefficient difference per section G.1.2.1 */
|
---|
| 576 | temp2 = temp;
|
---|
| 577 | if (temp < 0) {
|
---|
| 578 | temp = -temp; /* temp is abs value of input */
|
---|
| 579 | /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
---|
| 580 | /* This code assumes we are on a two's complement machine */
|
---|
| 581 | temp2--;
|
---|
| 582 | }
|
---|
| 583 |
|
---|
| 584 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 585 | nbits = 0;
|
---|
| 586 | while (temp) {
|
---|
| 587 | nbits++;
|
---|
| 588 | temp >>= 1;
|
---|
| 589 | }
|
---|
| 590 | /* Check for out-of-range coefficient values.
|
---|
| 591 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
| 592 | */
|
---|
| 593 | if (nbits > MAX_COEF_BITS+1)
|
---|
| 594 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
| 595 |
|
---|
| 596 | /* Count/emit the Huffman-coded symbol for the number of bits */
|
---|
| 597 | emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
|
---|
| 598 |
|
---|
| 599 | /* Emit that number of bits of the value, if positive, */
|
---|
| 600 | /* or the complement of its magnitude, if negative. */
|
---|
| 601 | if (nbits) /* emit_bits rejects calls with size 0 */
|
---|
| 602 | emit_bits_e(entropy, (unsigned int) temp2, nbits);
|
---|
| 603 | }
|
---|
| 604 |
|
---|
| 605 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
| 606 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
| 607 |
|
---|
| 608 | /* Update restart-interval state too */
|
---|
| 609 | if (cinfo->restart_interval) {
|
---|
| 610 | if (entropy->restarts_to_go == 0) {
|
---|
| 611 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 612 | entropy->next_restart_num++;
|
---|
| 613 | entropy->next_restart_num &= 7;
|
---|
| 614 | }
|
---|
| 615 | entropy->restarts_to_go--;
|
---|
| 616 | }
|
---|
| 617 |
|
---|
| 618 | return TRUE;
|
---|
| 619 | }
|
---|
| 620 |
|
---|
| 621 |
|
---|
| 622 | /*
|
---|
| 623 | * MCU encoding for AC initial scan (either spectral selection,
|
---|
| 624 | * or first pass of successive approximation).
|
---|
| 625 | */
|
---|
| 626 |
|
---|
| 627 | METHODDEF(boolean)
|
---|
| 628 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 629 | {
|
---|
| 630 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 631 | register int temp, temp2;
|
---|
| 632 | register int nbits;
|
---|
| 633 | register int r, k;
|
---|
| 634 | int Se, Al;
|
---|
| 635 | const int * natural_order;
|
---|
| 636 | JBLOCKROW block;
|
---|
| 637 |
|
---|
| 638 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 639 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 640 |
|
---|
| 641 | /* Emit restart marker if needed */
|
---|
| 642 | if (cinfo->restart_interval)
|
---|
| 643 | if (entropy->restarts_to_go == 0)
|
---|
| 644 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
| 645 |
|
---|
| 646 | Se = cinfo->Se;
|
---|
| 647 | Al = cinfo->Al;
|
---|
| 648 | natural_order = cinfo->natural_order;
|
---|
| 649 |
|
---|
| 650 | /* Encode the MCU data block */
|
---|
| 651 | block = MCU_data[0];
|
---|
| 652 |
|
---|
| 653 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
---|
| 654 |
|
---|
| 655 | r = 0; /* r = run length of zeros */
|
---|
| 656 |
|
---|
| 657 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
| 658 | if ((temp = (*block)[natural_order[k]]) == 0) {
|
---|
| 659 | r++;
|
---|
| 660 | continue;
|
---|
| 661 | }
|
---|
| 662 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
| 663 | * is an integer division with rounding towards 0. To do this portably
|
---|
| 664 | * in C, we shift after obtaining the absolute value; so the code is
|
---|
| 665 | * interwoven with finding the abs value (temp) and output bits (temp2).
|
---|
| 666 | */
|
---|
| 667 | if (temp < 0) {
|
---|
| 668 | temp = -temp; /* temp is abs value of input */
|
---|
| 669 | temp >>= Al; /* apply the point transform */
|
---|
| 670 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
---|
| 671 | temp2 = ~temp;
|
---|
| 672 | } else {
|
---|
| 673 | temp >>= Al; /* apply the point transform */
|
---|
| 674 | temp2 = temp;
|
---|
| 675 | }
|
---|
| 676 | /* Watch out for case that nonzero coef is zero after point transform */
|
---|
| 677 | if (temp == 0) {
|
---|
| 678 | r++;
|
---|
| 679 | continue;
|
---|
| 680 | }
|
---|
| 681 |
|
---|
| 682 | /* Emit any pending EOBRUN */
|
---|
| 683 | if (entropy->EOBRUN > 0)
|
---|
| 684 | emit_eobrun(entropy);
|
---|
| 685 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
| 686 | while (r > 15) {
|
---|
| 687 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
---|
| 688 | r -= 16;
|
---|
| 689 | }
|
---|
| 690 |
|
---|
| 691 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 692 | nbits = 1; /* there must be at least one 1 bit */
|
---|
| 693 | while ((temp >>= 1))
|
---|
| 694 | nbits++;
|
---|
| 695 | /* Check for out-of-range coefficient values */
|
---|
| 696 | if (nbits > MAX_COEF_BITS)
|
---|
| 697 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
| 698 |
|
---|
| 699 | /* Count/emit Huffman symbol for run length / number of bits */
|
---|
| 700 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
|
---|
| 701 |
|
---|
| 702 | /* Emit that number of bits of the value, if positive, */
|
---|
| 703 | /* or the complement of its magnitude, if negative. */
|
---|
| 704 | emit_bits_e(entropy, (unsigned int) temp2, nbits);
|
---|
| 705 |
|
---|
| 706 | r = 0; /* reset zero run length */
|
---|
| 707 | }
|
---|
| 708 |
|
---|
| 709 | if (r > 0) { /* If there are trailing zeroes, */
|
---|
| 710 | entropy->EOBRUN++; /* count an EOB */
|
---|
| 711 | if (entropy->EOBRUN == 0x7FFF)
|
---|
| 712 | emit_eobrun(entropy); /* force it out to avoid overflow */
|
---|
| 713 | }
|
---|
| 714 |
|
---|
| 715 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
| 716 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
| 717 |
|
---|
| 718 | /* Update restart-interval state too */
|
---|
| 719 | if (cinfo->restart_interval) {
|
---|
| 720 | if (entropy->restarts_to_go == 0) {
|
---|
| 721 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 722 | entropy->next_restart_num++;
|
---|
| 723 | entropy->next_restart_num &= 7;
|
---|
| 724 | }
|
---|
| 725 | entropy->restarts_to_go--;
|
---|
| 726 | }
|
---|
| 727 |
|
---|
| 728 | return TRUE;
|
---|
| 729 | }
|
---|
| 730 |
|
---|
| 731 |
|
---|
| 732 | /*
|
---|
| 733 | * MCU encoding for DC successive approximation refinement scan.
|
---|
| 734 | * Note: we assume such scans can be multi-component, although the spec
|
---|
| 735 | * is not very clear on the point.
|
---|
| 736 | */
|
---|
| 737 |
|
---|
| 738 | METHODDEF(boolean)
|
---|
| 739 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 740 | {
|
---|
| 741 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 742 | register int temp;
|
---|
| 743 | int blkn;
|
---|
| 744 | int Al = cinfo->Al;
|
---|
| 745 | JBLOCKROW block;
|
---|
| 746 |
|
---|
| 747 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 748 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 749 |
|
---|
| 750 | /* Emit restart marker if needed */
|
---|
| 751 | if (cinfo->restart_interval)
|
---|
| 752 | if (entropy->restarts_to_go == 0)
|
---|
| 753 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
| 754 |
|
---|
| 755 | /* Encode the MCU data blocks */
|
---|
| 756 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 757 | block = MCU_data[blkn];
|
---|
| 758 |
|
---|
| 759 | /* We simply emit the Al'th bit of the DC coefficient value. */
|
---|
| 760 | temp = (*block)[0];
|
---|
| 761 | emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
|
---|
| 762 | }
|
---|
| 763 |
|
---|
| 764 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
| 765 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
| 766 |
|
---|
| 767 | /* Update restart-interval state too */
|
---|
| 768 | if (cinfo->restart_interval) {
|
---|
| 769 | if (entropy->restarts_to_go == 0) {
|
---|
| 770 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 771 | entropy->next_restart_num++;
|
---|
| 772 | entropy->next_restart_num &= 7;
|
---|
| 773 | }
|
---|
| 774 | entropy->restarts_to_go--;
|
---|
| 775 | }
|
---|
| 776 |
|
---|
| 777 | return TRUE;
|
---|
| 778 | }
|
---|
| 779 |
|
---|
| 780 |
|
---|
| 781 | /*
|
---|
| 782 | * MCU encoding for AC successive approximation refinement scan.
|
---|
| 783 | */
|
---|
| 784 |
|
---|
| 785 | METHODDEF(boolean)
|
---|
| 786 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 787 | {
|
---|
| 788 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 789 | register int temp;
|
---|
| 790 | register int r, k;
|
---|
| 791 | int EOB;
|
---|
| 792 | char *BR_buffer;
|
---|
| 793 | unsigned int BR;
|
---|
| 794 | int Se, Al;
|
---|
| 795 | const int * natural_order;
|
---|
| 796 | JBLOCKROW block;
|
---|
| 797 | int absvalues[DCTSIZE2];
|
---|
| 798 |
|
---|
| 799 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 800 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 801 |
|
---|
| 802 | /* Emit restart marker if needed */
|
---|
| 803 | if (cinfo->restart_interval)
|
---|
| 804 | if (entropy->restarts_to_go == 0)
|
---|
| 805 | emit_restart_e(entropy, entropy->next_restart_num);
|
---|
| 806 |
|
---|
| 807 | Se = cinfo->Se;
|
---|
| 808 | Al = cinfo->Al;
|
---|
| 809 | natural_order = cinfo->natural_order;
|
---|
| 810 |
|
---|
| 811 | /* Encode the MCU data block */
|
---|
| 812 | block = MCU_data[0];
|
---|
| 813 |
|
---|
| 814 | /* It is convenient to make a pre-pass to determine the transformed
|
---|
| 815 | * coefficients' absolute values and the EOB position.
|
---|
| 816 | */
|
---|
| 817 | EOB = 0;
|
---|
| 818 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
| 819 | temp = (*block)[natural_order[k]];
|
---|
| 820 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
| 821 | * is an integer division with rounding towards 0. To do this portably
|
---|
| 822 | * in C, we shift after obtaining the absolute value.
|
---|
| 823 | */
|
---|
| 824 | if (temp < 0)
|
---|
| 825 | temp = -temp; /* temp is abs value of input */
|
---|
| 826 | temp >>= Al; /* apply the point transform */
|
---|
| 827 | absvalues[k] = temp; /* save abs value for main pass */
|
---|
| 828 | if (temp == 1)
|
---|
| 829 | EOB = k; /* EOB = index of last newly-nonzero coef */
|
---|
| 830 | }
|
---|
| 831 |
|
---|
| 832 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
---|
| 833 |
|
---|
| 834 | r = 0; /* r = run length of zeros */
|
---|
| 835 | BR = 0; /* BR = count of buffered bits added now */
|
---|
| 836 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
---|
| 837 |
|
---|
| 838 | for (k = cinfo->Ss; k <= Se; k++) {
|
---|
| 839 | if ((temp = absvalues[k]) == 0) {
|
---|
| 840 | r++;
|
---|
| 841 | continue;
|
---|
| 842 | }
|
---|
| 843 |
|
---|
| 844 | /* Emit any required ZRLs, but not if they can be folded into EOB */
|
---|
| 845 | while (r > 15 && k <= EOB) {
|
---|
| 846 | /* emit any pending EOBRUN and the BE correction bits */
|
---|
| 847 | emit_eobrun(entropy);
|
---|
| 848 | /* Emit ZRL */
|
---|
| 849 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
---|
| 850 | r -= 16;
|
---|
| 851 | /* Emit buffered correction bits that must be associated with ZRL */
|
---|
| 852 | emit_buffered_bits(entropy, BR_buffer, BR);
|
---|
| 853 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
---|
| 854 | BR = 0;
|
---|
| 855 | }
|
---|
| 856 |
|
---|
| 857 | /* If the coef was previously nonzero, it only needs a correction bit.
|
---|
| 858 | * NOTE: a straight translation of the spec's figure G.7 would suggest
|
---|
| 859 | * that we also need to test r > 15. But if r > 15, we can only get here
|
---|
| 860 | * if k > EOB, which implies that this coefficient is not 1.
|
---|
| 861 | */
|
---|
| 862 | if (temp > 1) {
|
---|
| 863 | /* The correction bit is the next bit of the absolute value. */
|
---|
| 864 | BR_buffer[BR++] = (char) (temp & 1);
|
---|
| 865 | continue;
|
---|
| 866 | }
|
---|
| 867 |
|
---|
| 868 | /* Emit any pending EOBRUN and the BE correction bits */
|
---|
| 869 | emit_eobrun(entropy);
|
---|
| 870 |
|
---|
| 871 | /* Count/emit Huffman symbol for run length / number of bits */
|
---|
| 872 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
|
---|
| 873 |
|
---|
| 874 | /* Emit output bit for newly-nonzero coef */
|
---|
| 875 | temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
|
---|
| 876 | emit_bits_e(entropy, (unsigned int) temp, 1);
|
---|
| 877 |
|
---|
| 878 | /* Emit buffered correction bits that must be associated with this code */
|
---|
| 879 | emit_buffered_bits(entropy, BR_buffer, BR);
|
---|
| 880 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
---|
| 881 | BR = 0;
|
---|
| 882 | r = 0; /* reset zero run length */
|
---|
| 883 | }
|
---|
| 884 |
|
---|
| 885 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
---|
| 886 | entropy->EOBRUN++; /* count an EOB */
|
---|
| 887 | entropy->BE += BR; /* concat my correction bits to older ones */
|
---|
| 888 | /* We force out the EOB if we risk either:
|
---|
| 889 | * 1. overflow of the EOB counter;
|
---|
| 890 | * 2. overflow of the correction bit buffer during the next MCU.
|
---|
| 891 | */
|
---|
| 892 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
|
---|
| 893 | emit_eobrun(entropy);
|
---|
| 894 | }
|
---|
| 895 |
|
---|
| 896 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
| 897 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
| 898 |
|
---|
| 899 | /* Update restart-interval state too */
|
---|
| 900 | if (cinfo->restart_interval) {
|
---|
| 901 | if (entropy->restarts_to_go == 0) {
|
---|
| 902 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 903 | entropy->next_restart_num++;
|
---|
| 904 | entropy->next_restart_num &= 7;
|
---|
| 905 | }
|
---|
| 906 | entropy->restarts_to_go--;
|
---|
| 907 | }
|
---|
| 908 |
|
---|
| 909 | return TRUE;
|
---|
| 910 | }
|
---|
| 911 |
|
---|
| 912 |
|
---|
[2] | 913 | /* Encode a single block's worth of coefficients */
|
---|
| 914 |
|
---|
| 915 | LOCAL(boolean)
|
---|
| 916 | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
---|
| 917 | c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
---|
| 918 | {
|
---|
| 919 | register int temp, temp2;
|
---|
| 920 | register int nbits;
|
---|
| 921 | register int k, r, i;
|
---|
[846] | 922 | int Se = state->cinfo->lim_Se;
|
---|
| 923 | const int * natural_order = state->cinfo->natural_order;
|
---|
| 924 |
|
---|
[2] | 925 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
[846] | 926 |
|
---|
[2] | 927 | temp = temp2 = block[0] - last_dc_val;
|
---|
| 928 |
|
---|
| 929 | if (temp < 0) {
|
---|
| 930 | temp = -temp; /* temp is abs value of input */
|
---|
| 931 | /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
---|
| 932 | /* This code assumes we are on a two's complement machine */
|
---|
| 933 | temp2--;
|
---|
| 934 | }
|
---|
[846] | 935 |
|
---|
[2] | 936 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 937 | nbits = 0;
|
---|
| 938 | while (temp) {
|
---|
| 939 | nbits++;
|
---|
| 940 | temp >>= 1;
|
---|
| 941 | }
|
---|
| 942 | /* Check for out-of-range coefficient values.
|
---|
| 943 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
| 944 | */
|
---|
| 945 | if (nbits > MAX_COEF_BITS+1)
|
---|
| 946 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
[846] | 947 |
|
---|
[2] | 948 | /* Emit the Huffman-coded symbol for the number of bits */
|
---|
[846] | 949 | if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
---|
[2] | 950 | return FALSE;
|
---|
| 951 |
|
---|
| 952 | /* Emit that number of bits of the value, if positive, */
|
---|
| 953 | /* or the complement of its magnitude, if negative. */
|
---|
| 954 | if (nbits) /* emit_bits rejects calls with size 0 */
|
---|
[846] | 955 | if (! emit_bits_s(state, (unsigned int) temp2, nbits))
|
---|
[2] | 956 | return FALSE;
|
---|
| 957 |
|
---|
| 958 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
[846] | 959 |
|
---|
[2] | 960 | r = 0; /* r = run length of zeros */
|
---|
[846] | 961 |
|
---|
| 962 | for (k = 1; k <= Se; k++) {
|
---|
| 963 | if ((temp = block[natural_order[k]]) == 0) {
|
---|
[2] | 964 | r++;
|
---|
| 965 | } else {
|
---|
| 966 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
| 967 | while (r > 15) {
|
---|
[846] | 968 | if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
---|
[2] | 969 | return FALSE;
|
---|
| 970 | r -= 16;
|
---|
| 971 | }
|
---|
| 972 |
|
---|
| 973 | temp2 = temp;
|
---|
| 974 | if (temp < 0) {
|
---|
| 975 | temp = -temp; /* temp is abs value of input */
|
---|
| 976 | /* This code assumes we are on a two's complement machine */
|
---|
| 977 | temp2--;
|
---|
| 978 | }
|
---|
[846] | 979 |
|
---|
[2] | 980 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 981 | nbits = 1; /* there must be at least one 1 bit */
|
---|
| 982 | while ((temp >>= 1))
|
---|
| 983 | nbits++;
|
---|
| 984 | /* Check for out-of-range coefficient values */
|
---|
| 985 | if (nbits > MAX_COEF_BITS)
|
---|
| 986 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
---|
[846] | 987 |
|
---|
[2] | 988 | /* Emit Huffman symbol for run length / number of bits */
|
---|
| 989 | i = (r << 4) + nbits;
|
---|
[846] | 990 | if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
|
---|
[2] | 991 | return FALSE;
|
---|
| 992 |
|
---|
| 993 | /* Emit that number of bits of the value, if positive, */
|
---|
| 994 | /* or the complement of its magnitude, if negative. */
|
---|
[846] | 995 | if (! emit_bits_s(state, (unsigned int) temp2, nbits))
|
---|
[2] | 996 | return FALSE;
|
---|
[846] | 997 |
|
---|
[2] | 998 | r = 0;
|
---|
| 999 | }
|
---|
| 1000 | }
|
---|
| 1001 |
|
---|
| 1002 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
| 1003 | if (r > 0)
|
---|
[846] | 1004 | if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
---|
[2] | 1005 | return FALSE;
|
---|
| 1006 |
|
---|
| 1007 | return TRUE;
|
---|
| 1008 | }
|
---|
| 1009 |
|
---|
| 1010 |
|
---|
| 1011 | /*
|
---|
| 1012 | * Encode and output one MCU's worth of Huffman-compressed coefficients.
|
---|
| 1013 | */
|
---|
| 1014 |
|
---|
| 1015 | METHODDEF(boolean)
|
---|
| 1016 | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 1017 | {
|
---|
| 1018 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 1019 | working_state state;
|
---|
| 1020 | int blkn, ci;
|
---|
| 1021 | jpeg_component_info * compptr;
|
---|
| 1022 |
|
---|
| 1023 | /* Load up working state */
|
---|
| 1024 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 1025 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 1026 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
| 1027 | state.cinfo = cinfo;
|
---|
| 1028 |
|
---|
| 1029 | /* Emit restart marker if needed */
|
---|
| 1030 | if (cinfo->restart_interval) {
|
---|
| 1031 | if (entropy->restarts_to_go == 0)
|
---|
[846] | 1032 | if (! emit_restart_s(&state, entropy->next_restart_num))
|
---|
[2] | 1033 | return FALSE;
|
---|
| 1034 | }
|
---|
| 1035 |
|
---|
| 1036 | /* Encode the MCU data blocks */
|
---|
| 1037 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 1038 | ci = cinfo->MCU_membership[blkn];
|
---|
| 1039 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 1040 | if (! encode_one_block(&state,
|
---|
| 1041 | MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
---|
| 1042 | entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
---|
| 1043 | entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
---|
| 1044 | return FALSE;
|
---|
| 1045 | /* Update last_dc_val */
|
---|
| 1046 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
| 1047 | }
|
---|
| 1048 |
|
---|
| 1049 | /* Completed MCU, so update state */
|
---|
| 1050 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
| 1051 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
| 1052 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
| 1053 |
|
---|
| 1054 | /* Update restart-interval state too */
|
---|
| 1055 | if (cinfo->restart_interval) {
|
---|
| 1056 | if (entropy->restarts_to_go == 0) {
|
---|
| 1057 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 1058 | entropy->next_restart_num++;
|
---|
| 1059 | entropy->next_restart_num &= 7;
|
---|
| 1060 | }
|
---|
| 1061 | entropy->restarts_to_go--;
|
---|
| 1062 | }
|
---|
| 1063 |
|
---|
| 1064 | return TRUE;
|
---|
| 1065 | }
|
---|
| 1066 |
|
---|
| 1067 |
|
---|
| 1068 | /*
|
---|
| 1069 | * Finish up at the end of a Huffman-compressed scan.
|
---|
| 1070 | */
|
---|
| 1071 |
|
---|
| 1072 | METHODDEF(void)
|
---|
| 1073 | finish_pass_huff (j_compress_ptr cinfo)
|
---|
| 1074 | {
|
---|
| 1075 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 1076 | working_state state;
|
---|
| 1077 |
|
---|
[846] | 1078 | if (cinfo->progressive_mode) {
|
---|
| 1079 | entropy->next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 1080 | entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
[2] | 1081 |
|
---|
[846] | 1082 | /* Flush out any buffered data */
|
---|
| 1083 | emit_eobrun(entropy);
|
---|
| 1084 | flush_bits_e(entropy);
|
---|
[2] | 1085 |
|
---|
[846] | 1086 | cinfo->dest->next_output_byte = entropy->next_output_byte;
|
---|
| 1087 | cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
---|
| 1088 | } else {
|
---|
| 1089 | /* Load up working state ... flush_bits needs it */
|
---|
| 1090 | state.next_output_byte = cinfo->dest->next_output_byte;
|
---|
| 1091 | state.free_in_buffer = cinfo->dest->free_in_buffer;
|
---|
| 1092 | ASSIGN_STATE(state.cur, entropy->saved);
|
---|
| 1093 | state.cinfo = cinfo;
|
---|
| 1094 |
|
---|
| 1095 | /* Flush out the last data */
|
---|
| 1096 | if (! flush_bits_s(&state))
|
---|
| 1097 | ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
---|
| 1098 |
|
---|
| 1099 | /* Update state */
|
---|
| 1100 | cinfo->dest->next_output_byte = state.next_output_byte;
|
---|
| 1101 | cinfo->dest->free_in_buffer = state.free_in_buffer;
|
---|
| 1102 | ASSIGN_STATE(entropy->saved, state.cur);
|
---|
| 1103 | }
|
---|
[2] | 1104 | }
|
---|
| 1105 |
|
---|
| 1106 |
|
---|
| 1107 | /*
|
---|
| 1108 | * Huffman coding optimization.
|
---|
| 1109 | *
|
---|
| 1110 | * We first scan the supplied data and count the number of uses of each symbol
|
---|
| 1111 | * that is to be Huffman-coded. (This process MUST agree with the code above.)
|
---|
| 1112 | * Then we build a Huffman coding tree for the observed counts.
|
---|
| 1113 | * Symbols which are not needed at all for the particular image are not
|
---|
| 1114 | * assigned any code, which saves space in the DHT marker as well as in
|
---|
| 1115 | * the compressed data.
|
---|
| 1116 | */
|
---|
| 1117 |
|
---|
| 1118 |
|
---|
| 1119 | /* Process a single block's worth of coefficients */
|
---|
| 1120 |
|
---|
| 1121 | LOCAL(void)
|
---|
| 1122 | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
---|
| 1123 | long dc_counts[], long ac_counts[])
|
---|
| 1124 | {
|
---|
| 1125 | register int temp;
|
---|
| 1126 | register int nbits;
|
---|
| 1127 | register int k, r;
|
---|
[846] | 1128 | int Se = cinfo->lim_Se;
|
---|
| 1129 | const int * natural_order = cinfo->natural_order;
|
---|
[2] | 1130 |
|
---|
| 1131 | /* Encode the DC coefficient difference per section F.1.2.1 */
|
---|
| 1132 |
|
---|
| 1133 | temp = block[0] - last_dc_val;
|
---|
| 1134 | if (temp < 0)
|
---|
| 1135 | temp = -temp;
|
---|
| 1136 |
|
---|
| 1137 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 1138 | nbits = 0;
|
---|
| 1139 | while (temp) {
|
---|
| 1140 | nbits++;
|
---|
| 1141 | temp >>= 1;
|
---|
| 1142 | }
|
---|
| 1143 | /* Check for out-of-range coefficient values.
|
---|
| 1144 | * Since we're encoding a difference, the range limit is twice as much.
|
---|
| 1145 | */
|
---|
| 1146 | if (nbits > MAX_COEF_BITS+1)
|
---|
| 1147 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
| 1148 |
|
---|
| 1149 | /* Count the Huffman symbol for the number of bits */
|
---|
| 1150 | dc_counts[nbits]++;
|
---|
| 1151 |
|
---|
| 1152 | /* Encode the AC coefficients per section F.1.2.2 */
|
---|
| 1153 |
|
---|
| 1154 | r = 0; /* r = run length of zeros */
|
---|
| 1155 |
|
---|
[846] | 1156 | for (k = 1; k <= Se; k++) {
|
---|
| 1157 | if ((temp = block[natural_order[k]]) == 0) {
|
---|
[2] | 1158 | r++;
|
---|
| 1159 | } else {
|
---|
| 1160 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
---|
| 1161 | while (r > 15) {
|
---|
| 1162 | ac_counts[0xF0]++;
|
---|
| 1163 | r -= 16;
|
---|
| 1164 | }
|
---|
| 1165 |
|
---|
| 1166 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 1167 | if (temp < 0)
|
---|
| 1168 | temp = -temp;
|
---|
| 1169 |
|
---|
| 1170 | /* Find the number of bits needed for the magnitude of the coefficient */
|
---|
| 1171 | nbits = 1; /* there must be at least one 1 bit */
|
---|
| 1172 | while ((temp >>= 1))
|
---|
| 1173 | nbits++;
|
---|
| 1174 | /* Check for out-of-range coefficient values */
|
---|
| 1175 | if (nbits > MAX_COEF_BITS)
|
---|
| 1176 | ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
---|
| 1177 |
|
---|
| 1178 | /* Count Huffman symbol for run length / number of bits */
|
---|
| 1179 | ac_counts[(r << 4) + nbits]++;
|
---|
| 1180 |
|
---|
| 1181 | r = 0;
|
---|
| 1182 | }
|
---|
| 1183 | }
|
---|
| 1184 |
|
---|
| 1185 | /* If the last coef(s) were zero, emit an end-of-block code */
|
---|
| 1186 | if (r > 0)
|
---|
| 1187 | ac_counts[0]++;
|
---|
| 1188 | }
|
---|
| 1189 |
|
---|
| 1190 |
|
---|
| 1191 | /*
|
---|
| 1192 | * Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
---|
| 1193 | * No data is actually output, so no suspension return is possible.
|
---|
| 1194 | */
|
---|
| 1195 |
|
---|
| 1196 | METHODDEF(boolean)
|
---|
| 1197 | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 1198 | {
|
---|
| 1199 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 1200 | int blkn, ci;
|
---|
| 1201 | jpeg_component_info * compptr;
|
---|
| 1202 |
|
---|
| 1203 | /* Take care of restart intervals if needed */
|
---|
| 1204 | if (cinfo->restart_interval) {
|
---|
| 1205 | if (entropy->restarts_to_go == 0) {
|
---|
| 1206 | /* Re-initialize DC predictions to 0 */
|
---|
| 1207 | for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
---|
| 1208 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 1209 | /* Update restart state */
|
---|
| 1210 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 1211 | }
|
---|
| 1212 | entropy->restarts_to_go--;
|
---|
| 1213 | }
|
---|
| 1214 |
|
---|
| 1215 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 1216 | ci = cinfo->MCU_membership[blkn];
|
---|
| 1217 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 1218 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
---|
| 1219 | entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
---|
| 1220 | entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
---|
| 1221 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
---|
| 1222 | }
|
---|
| 1223 |
|
---|
| 1224 | return TRUE;
|
---|
| 1225 | }
|
---|
| 1226 |
|
---|
| 1227 |
|
---|
| 1228 | /*
|
---|
| 1229 | * Generate the best Huffman code table for the given counts, fill htbl.
|
---|
| 1230 | *
|
---|
| 1231 | * The JPEG standard requires that no symbol be assigned a codeword of all
|
---|
| 1232 | * one bits (so that padding bits added at the end of a compressed segment
|
---|
| 1233 | * can't look like a valid code). Because of the canonical ordering of
|
---|
| 1234 | * codewords, this just means that there must be an unused slot in the
|
---|
| 1235 | * longest codeword length category. Section K.2 of the JPEG spec suggests
|
---|
| 1236 | * reserving such a slot by pretending that symbol 256 is a valid symbol
|
---|
| 1237 | * with count 1. In theory that's not optimal; giving it count zero but
|
---|
| 1238 | * including it in the symbol set anyway should give a better Huffman code.
|
---|
| 1239 | * But the theoretically better code actually seems to come out worse in
|
---|
| 1240 | * practice, because it produces more all-ones bytes (which incur stuffed
|
---|
| 1241 | * zero bytes in the final file). In any case the difference is tiny.
|
---|
| 1242 | *
|
---|
| 1243 | * The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
---|
| 1244 | * If some symbols have a very small but nonzero probability, the Huffman tree
|
---|
| 1245 | * must be adjusted to meet the code length restriction. We currently use
|
---|
| 1246 | * the adjustment method suggested in JPEG section K.2. This method is *not*
|
---|
| 1247 | * optimal; it may not choose the best possible limited-length code. But
|
---|
| 1248 | * typically only very-low-frequency symbols will be given less-than-optimal
|
---|
| 1249 | * lengths, so the code is almost optimal. Experimental comparisons against
|
---|
| 1250 | * an optimal limited-length-code algorithm indicate that the difference is
|
---|
| 1251 | * microscopic --- usually less than a hundredth of a percent of total size.
|
---|
| 1252 | * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
---|
| 1253 | */
|
---|
| 1254 |
|
---|
[846] | 1255 | LOCAL(void)
|
---|
[2] | 1256 | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
---|
| 1257 | {
|
---|
| 1258 | #define MAX_CLEN 32 /* assumed maximum initial code length */
|
---|
| 1259 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
---|
| 1260 | int codesize[257]; /* codesize[k] = code length of symbol k */
|
---|
| 1261 | int others[257]; /* next symbol in current branch of tree */
|
---|
| 1262 | int c1, c2;
|
---|
| 1263 | int p, i, j;
|
---|
| 1264 | long v;
|
---|
| 1265 |
|
---|
| 1266 | /* This algorithm is explained in section K.2 of the JPEG standard */
|
---|
| 1267 |
|
---|
| 1268 | MEMZERO(bits, SIZEOF(bits));
|
---|
| 1269 | MEMZERO(codesize, SIZEOF(codesize));
|
---|
| 1270 | for (i = 0; i < 257; i++)
|
---|
| 1271 | others[i] = -1; /* init links to empty */
|
---|
| 1272 |
|
---|
| 1273 | freq[256] = 1; /* make sure 256 has a nonzero count */
|
---|
| 1274 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
---|
| 1275 | * that no real symbol is given code-value of all ones, because 256
|
---|
| 1276 | * will be placed last in the largest codeword category.
|
---|
| 1277 | */
|
---|
| 1278 |
|
---|
| 1279 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
---|
| 1280 |
|
---|
| 1281 | for (;;) {
|
---|
| 1282 | /* Find the smallest nonzero frequency, set c1 = its symbol */
|
---|
| 1283 | /* In case of ties, take the larger symbol number */
|
---|
| 1284 | c1 = -1;
|
---|
| 1285 | v = 1000000000L;
|
---|
| 1286 | for (i = 0; i <= 256; i++) {
|
---|
| 1287 | if (freq[i] && freq[i] <= v) {
|
---|
| 1288 | v = freq[i];
|
---|
| 1289 | c1 = i;
|
---|
| 1290 | }
|
---|
| 1291 | }
|
---|
| 1292 |
|
---|
| 1293 | /* Find the next smallest nonzero frequency, set c2 = its symbol */
|
---|
| 1294 | /* In case of ties, take the larger symbol number */
|
---|
| 1295 | c2 = -1;
|
---|
| 1296 | v = 1000000000L;
|
---|
| 1297 | for (i = 0; i <= 256; i++) {
|
---|
| 1298 | if (freq[i] && freq[i] <= v && i != c1) {
|
---|
| 1299 | v = freq[i];
|
---|
| 1300 | c2 = i;
|
---|
| 1301 | }
|
---|
| 1302 | }
|
---|
| 1303 |
|
---|
| 1304 | /* Done if we've merged everything into one frequency */
|
---|
| 1305 | if (c2 < 0)
|
---|
| 1306 | break;
|
---|
| 1307 |
|
---|
| 1308 | /* Else merge the two counts/trees */
|
---|
| 1309 | freq[c1] += freq[c2];
|
---|
| 1310 | freq[c2] = 0;
|
---|
| 1311 |
|
---|
| 1312 | /* Increment the codesize of everything in c1's tree branch */
|
---|
| 1313 | codesize[c1]++;
|
---|
| 1314 | while (others[c1] >= 0) {
|
---|
| 1315 | c1 = others[c1];
|
---|
| 1316 | codesize[c1]++;
|
---|
| 1317 | }
|
---|
| 1318 |
|
---|
| 1319 | others[c1] = c2; /* chain c2 onto c1's tree branch */
|
---|
| 1320 |
|
---|
| 1321 | /* Increment the codesize of everything in c2's tree branch */
|
---|
| 1322 | codesize[c2]++;
|
---|
| 1323 | while (others[c2] >= 0) {
|
---|
| 1324 | c2 = others[c2];
|
---|
| 1325 | codesize[c2]++;
|
---|
| 1326 | }
|
---|
| 1327 | }
|
---|
| 1328 |
|
---|
| 1329 | /* Now count the number of symbols of each code length */
|
---|
| 1330 | for (i = 0; i <= 256; i++) {
|
---|
| 1331 | if (codesize[i]) {
|
---|
| 1332 | /* The JPEG standard seems to think that this can't happen, */
|
---|
| 1333 | /* but I'm paranoid... */
|
---|
| 1334 | if (codesize[i] > MAX_CLEN)
|
---|
| 1335 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
---|
| 1336 |
|
---|
| 1337 | bits[codesize[i]]++;
|
---|
| 1338 | }
|
---|
| 1339 | }
|
---|
| 1340 |
|
---|
| 1341 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
---|
| 1342 | * Huffman procedure assigned any such lengths, we must adjust the coding.
|
---|
| 1343 | * Here is what the JPEG spec says about how this next bit works:
|
---|
| 1344 | * Since symbols are paired for the longest Huffman code, the symbols are
|
---|
| 1345 | * removed from this length category two at a time. The prefix for the pair
|
---|
| 1346 | * (which is one bit shorter) is allocated to one of the pair; then,
|
---|
| 1347 | * skipping the BITS entry for that prefix length, a code word from the next
|
---|
| 1348 | * shortest nonzero BITS entry is converted into a prefix for two code words
|
---|
| 1349 | * one bit longer.
|
---|
| 1350 | */
|
---|
| 1351 |
|
---|
| 1352 | for (i = MAX_CLEN; i > 16; i--) {
|
---|
| 1353 | while (bits[i] > 0) {
|
---|
| 1354 | j = i - 2; /* find length of new prefix to be used */
|
---|
| 1355 | while (bits[j] == 0)
|
---|
| 1356 | j--;
|
---|
| 1357 |
|
---|
| 1358 | bits[i] -= 2; /* remove two symbols */
|
---|
| 1359 | bits[i-1]++; /* one goes in this length */
|
---|
| 1360 | bits[j+1] += 2; /* two new symbols in this length */
|
---|
| 1361 | bits[j]--; /* symbol of this length is now a prefix */
|
---|
| 1362 | }
|
---|
| 1363 | }
|
---|
| 1364 |
|
---|
| 1365 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
---|
| 1366 | while (bits[i] == 0) /* find largest codelength still in use */
|
---|
| 1367 | i--;
|
---|
| 1368 | bits[i]--;
|
---|
| 1369 |
|
---|
| 1370 | /* Return final symbol counts (only for lengths 0..16) */
|
---|
| 1371 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
---|
| 1372 |
|
---|
| 1373 | /* Return a list of the symbols sorted by code length */
|
---|
| 1374 | /* It's not real clear to me why we don't need to consider the codelength
|
---|
| 1375 | * changes made above, but the JPEG spec seems to think this works.
|
---|
| 1376 | */
|
---|
| 1377 | p = 0;
|
---|
| 1378 | for (i = 1; i <= MAX_CLEN; i++) {
|
---|
| 1379 | for (j = 0; j <= 255; j++) {
|
---|
| 1380 | if (codesize[j] == i) {
|
---|
| 1381 | htbl->huffval[p] = (UINT8) j;
|
---|
| 1382 | p++;
|
---|
| 1383 | }
|
---|
| 1384 | }
|
---|
| 1385 | }
|
---|
| 1386 |
|
---|
| 1387 | /* Set sent_table FALSE so updated table will be written to JPEG file. */
|
---|
| 1388 | htbl->sent_table = FALSE;
|
---|
| 1389 | }
|
---|
| 1390 |
|
---|
| 1391 |
|
---|
| 1392 | /*
|
---|
| 1393 | * Finish up a statistics-gathering pass and create the new Huffman tables.
|
---|
| 1394 | */
|
---|
| 1395 |
|
---|
| 1396 | METHODDEF(void)
|
---|
| 1397 | finish_pass_gather (j_compress_ptr cinfo)
|
---|
| 1398 | {
|
---|
| 1399 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
[846] | 1400 | int ci, tbl;
|
---|
[2] | 1401 | jpeg_component_info * compptr;
|
---|
| 1402 | JHUFF_TBL **htblptr;
|
---|
| 1403 | boolean did_dc[NUM_HUFF_TBLS];
|
---|
| 1404 | boolean did_ac[NUM_HUFF_TBLS];
|
---|
| 1405 |
|
---|
| 1406 | /* It's important not to apply jpeg_gen_optimal_table more than once
|
---|
| 1407 | * per table, because it clobbers the input frequency counts!
|
---|
| 1408 | */
|
---|
[846] | 1409 | if (cinfo->progressive_mode)
|
---|
| 1410 | /* Flush out buffered data (all we care about is counting the EOB symbol) */
|
---|
| 1411 | emit_eobrun(entropy);
|
---|
| 1412 |
|
---|
[2] | 1413 | MEMZERO(did_dc, SIZEOF(did_dc));
|
---|
| 1414 | MEMZERO(did_ac, SIZEOF(did_ac));
|
---|
| 1415 |
|
---|
| 1416 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 1417 | compptr = cinfo->cur_comp_info[ci];
|
---|
[846] | 1418 | /* DC needs no table for refinement scan */
|
---|
| 1419 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
| 1420 | tbl = compptr->dc_tbl_no;
|
---|
| 1421 | if (! did_dc[tbl]) {
|
---|
| 1422 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
|
---|
| 1423 | if (*htblptr == NULL)
|
---|
| 1424 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
| 1425 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
|
---|
| 1426 | did_dc[tbl] = TRUE;
|
---|
| 1427 | }
|
---|
[2] | 1428 | }
|
---|
[846] | 1429 | /* AC needs no table when not present */
|
---|
| 1430 | if (cinfo->Se) {
|
---|
| 1431 | tbl = compptr->ac_tbl_no;
|
---|
| 1432 | if (! did_ac[tbl]) {
|
---|
| 1433 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
|
---|
| 1434 | if (*htblptr == NULL)
|
---|
| 1435 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
---|
| 1436 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
|
---|
| 1437 | did_ac[tbl] = TRUE;
|
---|
| 1438 | }
|
---|
[2] | 1439 | }
|
---|
| 1440 | }
|
---|
| 1441 | }
|
---|
| 1442 |
|
---|
| 1443 |
|
---|
[846] | 1444 | /*
|
---|
| 1445 | * Initialize for a Huffman-compressed scan.
|
---|
| 1446 | * If gather_statistics is TRUE, we do not output anything during the scan,
|
---|
| 1447 | * just count the Huffman symbols used and generate Huffman code tables.
|
---|
| 1448 | */
|
---|
[2] | 1449 |
|
---|
[846] | 1450 | METHODDEF(void)
|
---|
| 1451 | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
---|
| 1452 | {
|
---|
| 1453 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
---|
| 1454 | int ci, tbl;
|
---|
| 1455 | jpeg_component_info * compptr;
|
---|
[2] | 1456 |
|
---|
[846] | 1457 | if (gather_statistics)
|
---|
| 1458 | entropy->pub.finish_pass = finish_pass_gather;
|
---|
| 1459 | else
|
---|
| 1460 | entropy->pub.finish_pass = finish_pass_huff;
|
---|
| 1461 |
|
---|
| 1462 | if (cinfo->progressive_mode) {
|
---|
| 1463 | entropy->cinfo = cinfo;
|
---|
| 1464 | entropy->gather_statistics = gather_statistics;
|
---|
| 1465 |
|
---|
| 1466 | /* We assume jcmaster.c already validated the scan parameters. */
|
---|
| 1467 |
|
---|
| 1468 | /* Select execution routine */
|
---|
| 1469 | if (cinfo->Ah == 0) {
|
---|
| 1470 | if (cinfo->Ss == 0)
|
---|
| 1471 | entropy->pub.encode_mcu = encode_mcu_DC_first;
|
---|
| 1472 | else
|
---|
| 1473 | entropy->pub.encode_mcu = encode_mcu_AC_first;
|
---|
| 1474 | } else {
|
---|
| 1475 | if (cinfo->Ss == 0)
|
---|
| 1476 | entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
---|
| 1477 | else {
|
---|
| 1478 | entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
---|
| 1479 | /* AC refinement needs a correction bit buffer */
|
---|
| 1480 | if (entropy->bit_buffer == NULL)
|
---|
| 1481 | entropy->bit_buffer = (char *)
|
---|
| 1482 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 1483 | MAX_CORR_BITS * SIZEOF(char));
|
---|
| 1484 | }
|
---|
| 1485 | }
|
---|
| 1486 |
|
---|
| 1487 | /* Initialize AC stuff */
|
---|
| 1488 | entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
|
---|
| 1489 | entropy->EOBRUN = 0;
|
---|
| 1490 | entropy->BE = 0;
|
---|
| 1491 | } else {
|
---|
| 1492 | if (gather_statistics)
|
---|
| 1493 | entropy->pub.encode_mcu = encode_mcu_gather;
|
---|
| 1494 | else
|
---|
| 1495 | entropy->pub.encode_mcu = encode_mcu_huff;
|
---|
| 1496 | }
|
---|
| 1497 |
|
---|
| 1498 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 1499 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 1500 | /* DC needs no table for refinement scan */
|
---|
| 1501 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
| 1502 | tbl = compptr->dc_tbl_no;
|
---|
| 1503 | if (gather_statistics) {
|
---|
| 1504 | /* Check for invalid table index */
|
---|
| 1505 | /* (make_c_derived_tbl does this in the other path) */
|
---|
| 1506 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
---|
| 1507 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
---|
| 1508 | /* Allocate and zero the statistics tables */
|
---|
| 1509 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
---|
| 1510 | if (entropy->dc_count_ptrs[tbl] == NULL)
|
---|
| 1511 | entropy->dc_count_ptrs[tbl] = (long *)
|
---|
| 1512 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 1513 | 257 * SIZEOF(long));
|
---|
| 1514 | MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
|
---|
| 1515 | } else {
|
---|
| 1516 | /* Compute derived values for Huffman tables */
|
---|
| 1517 | /* We may do this more than once for a table, but it's not expensive */
|
---|
| 1518 | jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
|
---|
| 1519 | & entropy->dc_derived_tbls[tbl]);
|
---|
| 1520 | }
|
---|
| 1521 | /* Initialize DC predictions to 0 */
|
---|
| 1522 | entropy->saved.last_dc_val[ci] = 0;
|
---|
| 1523 | }
|
---|
| 1524 | /* AC needs no table when not present */
|
---|
| 1525 | if (cinfo->Se) {
|
---|
| 1526 | tbl = compptr->ac_tbl_no;
|
---|
| 1527 | if (gather_statistics) {
|
---|
| 1528 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
---|
| 1529 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
---|
| 1530 | if (entropy->ac_count_ptrs[tbl] == NULL)
|
---|
| 1531 | entropy->ac_count_ptrs[tbl] = (long *)
|
---|
| 1532 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 1533 | 257 * SIZEOF(long));
|
---|
| 1534 | MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
|
---|
| 1535 | } else {
|
---|
| 1536 | jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
|
---|
| 1537 | & entropy->ac_derived_tbls[tbl]);
|
---|
| 1538 | }
|
---|
| 1539 | }
|
---|
| 1540 | }
|
---|
| 1541 |
|
---|
| 1542 | /* Initialize bit buffer to empty */
|
---|
| 1543 | entropy->saved.put_buffer = 0;
|
---|
| 1544 | entropy->saved.put_bits = 0;
|
---|
| 1545 |
|
---|
| 1546 | /* Initialize restart stuff */
|
---|
| 1547 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 1548 | entropy->next_restart_num = 0;
|
---|
| 1549 | }
|
---|
| 1550 |
|
---|
| 1551 |
|
---|
[2] | 1552 | /*
|
---|
| 1553 | * Module initialization routine for Huffman entropy encoding.
|
---|
| 1554 | */
|
---|
| 1555 |
|
---|
| 1556 | GLOBAL(void)
|
---|
| 1557 | jinit_huff_encoder (j_compress_ptr cinfo)
|
---|
| 1558 | {
|
---|
| 1559 | huff_entropy_ptr entropy;
|
---|
| 1560 | int i;
|
---|
| 1561 |
|
---|
| 1562 | entropy = (huff_entropy_ptr)
|
---|
| 1563 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 1564 | SIZEOF(huff_entropy_encoder));
|
---|
| 1565 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
---|
| 1566 | entropy->pub.start_pass = start_pass_huff;
|
---|
| 1567 |
|
---|
| 1568 | /* Mark tables unallocated */
|
---|
| 1569 | for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
---|
| 1570 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
---|
| 1571 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
---|
| 1572 | }
|
---|
[846] | 1573 |
|
---|
| 1574 | if (cinfo->progressive_mode)
|
---|
| 1575 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
---|
[2] | 1576 | }
|
---|