[2] | 1 | /*
|
---|
| 2 | * jcdctmgr.c
|
---|
| 3 | *
|
---|
| 4 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains the forward-DCT management logic.
|
---|
| 9 | * This code selects a particular DCT implementation to be used,
|
---|
| 10 | * and it performs related housekeeping chores including coefficient
|
---|
| 11 | * quantization.
|
---|
| 12 | */
|
---|
| 13 |
|
---|
| 14 | #define JPEG_INTERNALS
|
---|
| 15 | #include "jinclude.h"
|
---|
| 16 | #include "jpeglib.h"
|
---|
| 17 | #include "jdct.h" /* Private declarations for DCT subsystem */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | /* Private subobject for this module */
|
---|
| 21 |
|
---|
| 22 | typedef struct {
|
---|
| 23 | struct jpeg_forward_dct pub; /* public fields */
|
---|
| 24 |
|
---|
| 25 | /* Pointer to the DCT routine actually in use */
|
---|
[846] | 26 | forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
|
---|
[2] | 27 |
|
---|
| 28 | /* The actual post-DCT divisors --- not identical to the quant table
|
---|
| 29 | * entries, because of scaling (especially for an unnormalized DCT).
|
---|
| 30 | * Each table is given in normal array order.
|
---|
| 31 | */
|
---|
| 32 | DCTELEM * divisors[NUM_QUANT_TBLS];
|
---|
| 33 |
|
---|
| 34 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 35 | /* Same as above for the floating-point case. */
|
---|
[846] | 36 | float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
|
---|
[2] | 37 | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
---|
| 38 | #endif
|
---|
| 39 | } my_fdct_controller;
|
---|
| 40 |
|
---|
| 41 | typedef my_fdct_controller * my_fdct_ptr;
|
---|
| 42 |
|
---|
| 43 |
|
---|
[846] | 44 | /* The current scaled-DCT routines require ISLOW-style divisor tables,
|
---|
| 45 | * so be sure to compile that code if either ISLOW or SCALING is requested.
|
---|
| 46 | */
|
---|
| 47 | #ifdef DCT_ISLOW_SUPPORTED
|
---|
| 48 | #define PROVIDE_ISLOW_TABLES
|
---|
| 49 | #else
|
---|
| 50 | #ifdef DCT_SCALING_SUPPORTED
|
---|
| 51 | #define PROVIDE_ISLOW_TABLES
|
---|
| 52 | #endif
|
---|
| 53 | #endif
|
---|
| 54 |
|
---|
| 55 |
|
---|
[2] | 56 | /*
|
---|
[846] | 57 | * Perform forward DCT on one or more blocks of a component.
|
---|
| 58 | *
|
---|
| 59 | * The input samples are taken from the sample_data[] array starting at
|
---|
| 60 | * position start_row/start_col, and moving to the right for any additional
|
---|
| 61 | * blocks. The quantized coefficients are returned in coef_blocks[].
|
---|
| 62 | */
|
---|
| 63 |
|
---|
| 64 | METHODDEF(void)
|
---|
| 65 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
---|
| 66 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
---|
| 67 | JDIMENSION start_row, JDIMENSION start_col,
|
---|
| 68 | JDIMENSION num_blocks)
|
---|
| 69 | /* This version is used for integer DCT implementations. */
|
---|
| 70 | {
|
---|
| 71 | /* This routine is heavily used, so it's worth coding it tightly. */
|
---|
| 72 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
| 73 | forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
|
---|
| 74 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
---|
| 75 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
---|
| 76 | JDIMENSION bi;
|
---|
| 77 |
|
---|
| 78 | sample_data += start_row; /* fold in the vertical offset once */
|
---|
| 79 |
|
---|
| 80 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
---|
| 81 | /* Perform the DCT */
|
---|
| 82 | (*do_dct) (workspace, sample_data, start_col);
|
---|
| 83 |
|
---|
| 84 | /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
---|
| 85 | { register DCTELEM temp, qval;
|
---|
| 86 | register int i;
|
---|
| 87 | register JCOEFPTR output_ptr = coef_blocks[bi];
|
---|
| 88 |
|
---|
| 89 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 90 | qval = divisors[i];
|
---|
| 91 | temp = workspace[i];
|
---|
| 92 | /* Divide the coefficient value by qval, ensuring proper rounding.
|
---|
| 93 | * Since C does not specify the direction of rounding for negative
|
---|
| 94 | * quotients, we have to force the dividend positive for portability.
|
---|
| 95 | *
|
---|
| 96 | * In most files, at least half of the output values will be zero
|
---|
| 97 | * (at default quantization settings, more like three-quarters...)
|
---|
| 98 | * so we should ensure that this case is fast. On many machines,
|
---|
| 99 | * a comparison is enough cheaper than a divide to make a special test
|
---|
| 100 | * a win. Since both inputs will be nonnegative, we need only test
|
---|
| 101 | * for a < b to discover whether a/b is 0.
|
---|
| 102 | * If your machine's division is fast enough, define FAST_DIVIDE.
|
---|
| 103 | */
|
---|
| 104 | #ifdef FAST_DIVIDE
|
---|
| 105 | #define DIVIDE_BY(a,b) a /= b
|
---|
| 106 | #else
|
---|
| 107 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
---|
| 108 | #endif
|
---|
| 109 | if (temp < 0) {
|
---|
| 110 | temp = -temp;
|
---|
| 111 | temp += qval>>1; /* for rounding */
|
---|
| 112 | DIVIDE_BY(temp, qval);
|
---|
| 113 | temp = -temp;
|
---|
| 114 | } else {
|
---|
| 115 | temp += qval>>1; /* for rounding */
|
---|
| 116 | DIVIDE_BY(temp, qval);
|
---|
| 117 | }
|
---|
| 118 | output_ptr[i] = (JCOEF) temp;
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 |
|
---|
| 125 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 126 |
|
---|
| 127 | METHODDEF(void)
|
---|
| 128 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
---|
| 129 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
---|
| 130 | JDIMENSION start_row, JDIMENSION start_col,
|
---|
| 131 | JDIMENSION num_blocks)
|
---|
| 132 | /* This version is used for floating-point DCT implementations. */
|
---|
| 133 | {
|
---|
| 134 | /* This routine is heavily used, so it's worth coding it tightly. */
|
---|
| 135 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
| 136 | float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
|
---|
| 137 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
---|
| 138 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
---|
| 139 | JDIMENSION bi;
|
---|
| 140 |
|
---|
| 141 | sample_data += start_row; /* fold in the vertical offset once */
|
---|
| 142 |
|
---|
| 143 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
---|
| 144 | /* Perform the DCT */
|
---|
| 145 | (*do_dct) (workspace, sample_data, start_col);
|
---|
| 146 |
|
---|
| 147 | /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
---|
| 148 | { register FAST_FLOAT temp;
|
---|
| 149 | register int i;
|
---|
| 150 | register JCOEFPTR output_ptr = coef_blocks[bi];
|
---|
| 151 |
|
---|
| 152 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 153 | /* Apply the quantization and scaling factor */
|
---|
| 154 | temp = workspace[i] * divisors[i];
|
---|
| 155 | /* Round to nearest integer.
|
---|
| 156 | * Since C does not specify the direction of rounding for negative
|
---|
| 157 | * quotients, we have to force the dividend positive for portability.
|
---|
| 158 | * The maximum coefficient size is +-16K (for 12-bit data), so this
|
---|
| 159 | * code should work for either 16-bit or 32-bit ints.
|
---|
| 160 | */
|
---|
| 161 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | #endif /* DCT_FLOAT_SUPPORTED */
|
---|
| 168 |
|
---|
| 169 |
|
---|
| 170 | /*
|
---|
[2] | 171 | * Initialize for a processing pass.
|
---|
| 172 | * Verify that all referenced Q-tables are present, and set up
|
---|
| 173 | * the divisor table for each one.
|
---|
| 174 | * In the current implementation, DCT of all components is done during
|
---|
| 175 | * the first pass, even if only some components will be output in the
|
---|
| 176 | * first scan. Hence all components should be examined here.
|
---|
| 177 | */
|
---|
| 178 |
|
---|
| 179 | METHODDEF(void)
|
---|
| 180 | start_pass_fdctmgr (j_compress_ptr cinfo)
|
---|
| 181 | {
|
---|
| 182 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
---|
| 183 | int ci, qtblno, i;
|
---|
| 184 | jpeg_component_info *compptr;
|
---|
[846] | 185 | int method = 0;
|
---|
[2] | 186 | JQUANT_TBL * qtbl;
|
---|
| 187 | DCTELEM * dtbl;
|
---|
| 188 |
|
---|
| 189 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
| 190 | ci++, compptr++) {
|
---|
[846] | 191 | /* Select the proper DCT routine for this component's scaling */
|
---|
| 192 | switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
|
---|
| 193 | #ifdef DCT_SCALING_SUPPORTED
|
---|
| 194 | case ((1 << 8) + 1):
|
---|
| 195 | fdct->do_dct[ci] = jpeg_fdct_1x1;
|
---|
| 196 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 197 | break;
|
---|
| 198 | case ((2 << 8) + 2):
|
---|
| 199 | fdct->do_dct[ci] = jpeg_fdct_2x2;
|
---|
| 200 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 201 | break;
|
---|
| 202 | case ((3 << 8) + 3):
|
---|
| 203 | fdct->do_dct[ci] = jpeg_fdct_3x3;
|
---|
| 204 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 205 | break;
|
---|
| 206 | case ((4 << 8) + 4):
|
---|
| 207 | fdct->do_dct[ci] = jpeg_fdct_4x4;
|
---|
| 208 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 209 | break;
|
---|
| 210 | case ((5 << 8) + 5):
|
---|
| 211 | fdct->do_dct[ci] = jpeg_fdct_5x5;
|
---|
| 212 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 213 | break;
|
---|
| 214 | case ((6 << 8) + 6):
|
---|
| 215 | fdct->do_dct[ci] = jpeg_fdct_6x6;
|
---|
| 216 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 217 | break;
|
---|
| 218 | case ((7 << 8) + 7):
|
---|
| 219 | fdct->do_dct[ci] = jpeg_fdct_7x7;
|
---|
| 220 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 221 | break;
|
---|
| 222 | case ((9 << 8) + 9):
|
---|
| 223 | fdct->do_dct[ci] = jpeg_fdct_9x9;
|
---|
| 224 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 225 | break;
|
---|
| 226 | case ((10 << 8) + 10):
|
---|
| 227 | fdct->do_dct[ci] = jpeg_fdct_10x10;
|
---|
| 228 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 229 | break;
|
---|
| 230 | case ((11 << 8) + 11):
|
---|
| 231 | fdct->do_dct[ci] = jpeg_fdct_11x11;
|
---|
| 232 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 233 | break;
|
---|
| 234 | case ((12 << 8) + 12):
|
---|
| 235 | fdct->do_dct[ci] = jpeg_fdct_12x12;
|
---|
| 236 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 237 | break;
|
---|
| 238 | case ((13 << 8) + 13):
|
---|
| 239 | fdct->do_dct[ci] = jpeg_fdct_13x13;
|
---|
| 240 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 241 | break;
|
---|
| 242 | case ((14 << 8) + 14):
|
---|
| 243 | fdct->do_dct[ci] = jpeg_fdct_14x14;
|
---|
| 244 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 245 | break;
|
---|
| 246 | case ((15 << 8) + 15):
|
---|
| 247 | fdct->do_dct[ci] = jpeg_fdct_15x15;
|
---|
| 248 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 249 | break;
|
---|
| 250 | case ((16 << 8) + 16):
|
---|
| 251 | fdct->do_dct[ci] = jpeg_fdct_16x16;
|
---|
| 252 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 253 | break;
|
---|
| 254 | case ((16 << 8) + 8):
|
---|
| 255 | fdct->do_dct[ci] = jpeg_fdct_16x8;
|
---|
| 256 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 257 | break;
|
---|
| 258 | case ((14 << 8) + 7):
|
---|
| 259 | fdct->do_dct[ci] = jpeg_fdct_14x7;
|
---|
| 260 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 261 | break;
|
---|
| 262 | case ((12 << 8) + 6):
|
---|
| 263 | fdct->do_dct[ci] = jpeg_fdct_12x6;
|
---|
| 264 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 265 | break;
|
---|
| 266 | case ((10 << 8) + 5):
|
---|
| 267 | fdct->do_dct[ci] = jpeg_fdct_10x5;
|
---|
| 268 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 269 | break;
|
---|
| 270 | case ((8 << 8) + 4):
|
---|
| 271 | fdct->do_dct[ci] = jpeg_fdct_8x4;
|
---|
| 272 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 273 | break;
|
---|
| 274 | case ((6 << 8) + 3):
|
---|
| 275 | fdct->do_dct[ci] = jpeg_fdct_6x3;
|
---|
| 276 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 277 | break;
|
---|
| 278 | case ((4 << 8) + 2):
|
---|
| 279 | fdct->do_dct[ci] = jpeg_fdct_4x2;
|
---|
| 280 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 281 | break;
|
---|
| 282 | case ((2 << 8) + 1):
|
---|
| 283 | fdct->do_dct[ci] = jpeg_fdct_2x1;
|
---|
| 284 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 285 | break;
|
---|
| 286 | case ((8 << 8) + 16):
|
---|
| 287 | fdct->do_dct[ci] = jpeg_fdct_8x16;
|
---|
| 288 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 289 | break;
|
---|
| 290 | case ((7 << 8) + 14):
|
---|
| 291 | fdct->do_dct[ci] = jpeg_fdct_7x14;
|
---|
| 292 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 293 | break;
|
---|
| 294 | case ((6 << 8) + 12):
|
---|
| 295 | fdct->do_dct[ci] = jpeg_fdct_6x12;
|
---|
| 296 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 297 | break;
|
---|
| 298 | case ((5 << 8) + 10):
|
---|
| 299 | fdct->do_dct[ci] = jpeg_fdct_5x10;
|
---|
| 300 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 301 | break;
|
---|
| 302 | case ((4 << 8) + 8):
|
---|
| 303 | fdct->do_dct[ci] = jpeg_fdct_4x8;
|
---|
| 304 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 305 | break;
|
---|
| 306 | case ((3 << 8) + 6):
|
---|
| 307 | fdct->do_dct[ci] = jpeg_fdct_3x6;
|
---|
| 308 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 309 | break;
|
---|
| 310 | case ((2 << 8) + 4):
|
---|
| 311 | fdct->do_dct[ci] = jpeg_fdct_2x4;
|
---|
| 312 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 313 | break;
|
---|
| 314 | case ((1 << 8) + 2):
|
---|
| 315 | fdct->do_dct[ci] = jpeg_fdct_1x2;
|
---|
| 316 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
---|
| 317 | break;
|
---|
| 318 | #endif
|
---|
| 319 | case ((DCTSIZE << 8) + DCTSIZE):
|
---|
| 320 | switch (cinfo->dct_method) {
|
---|
| 321 | #ifdef DCT_ISLOW_SUPPORTED
|
---|
| 322 | case JDCT_ISLOW:
|
---|
| 323 | fdct->do_dct[ci] = jpeg_fdct_islow;
|
---|
| 324 | method = JDCT_ISLOW;
|
---|
| 325 | break;
|
---|
| 326 | #endif
|
---|
| 327 | #ifdef DCT_IFAST_SUPPORTED
|
---|
| 328 | case JDCT_IFAST:
|
---|
| 329 | fdct->do_dct[ci] = jpeg_fdct_ifast;
|
---|
| 330 | method = JDCT_IFAST;
|
---|
| 331 | break;
|
---|
| 332 | #endif
|
---|
| 333 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 334 | case JDCT_FLOAT:
|
---|
| 335 | fdct->do_float_dct[ci] = jpeg_fdct_float;
|
---|
| 336 | method = JDCT_FLOAT;
|
---|
| 337 | break;
|
---|
| 338 | #endif
|
---|
| 339 | default:
|
---|
| 340 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
| 341 | break;
|
---|
| 342 | }
|
---|
| 343 | break;
|
---|
| 344 | default:
|
---|
| 345 | ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
---|
| 346 | compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
|
---|
| 347 | break;
|
---|
| 348 | }
|
---|
[2] | 349 | qtblno = compptr->quant_tbl_no;
|
---|
| 350 | /* Make sure specified quantization table is present */
|
---|
| 351 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
---|
| 352 | cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
---|
| 353 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
---|
| 354 | qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
---|
| 355 | /* Compute divisors for this quant table */
|
---|
| 356 | /* We may do this more than once for same table, but it's not a big deal */
|
---|
[846] | 357 | switch (method) {
|
---|
| 358 | #ifdef PROVIDE_ISLOW_TABLES
|
---|
[2] | 359 | case JDCT_ISLOW:
|
---|
| 360 | /* For LL&M IDCT method, divisors are equal to raw quantization
|
---|
| 361 | * coefficients multiplied by 8 (to counteract scaling).
|
---|
| 362 | */
|
---|
| 363 | if (fdct->divisors[qtblno] == NULL) {
|
---|
| 364 | fdct->divisors[qtblno] = (DCTELEM *)
|
---|
| 365 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 366 | DCTSIZE2 * SIZEOF(DCTELEM));
|
---|
| 367 | }
|
---|
| 368 | dtbl = fdct->divisors[qtblno];
|
---|
| 369 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 370 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
---|
| 371 | }
|
---|
[846] | 372 | fdct->pub.forward_DCT[ci] = forward_DCT;
|
---|
[2] | 373 | break;
|
---|
| 374 | #endif
|
---|
| 375 | #ifdef DCT_IFAST_SUPPORTED
|
---|
| 376 | case JDCT_IFAST:
|
---|
| 377 | {
|
---|
| 378 | /* For AA&N IDCT method, divisors are equal to quantization
|
---|
| 379 | * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
---|
| 380 | * scalefactor[0] = 1
|
---|
| 381 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
---|
| 382 | * We apply a further scale factor of 8.
|
---|
| 383 | */
|
---|
| 384 | #define CONST_BITS 14
|
---|
| 385 | static const INT16 aanscales[DCTSIZE2] = {
|
---|
| 386 | /* precomputed values scaled up by 14 bits */
|
---|
| 387 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
---|
| 388 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
---|
| 389 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
---|
| 390 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
---|
| 391 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
---|
| 392 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
---|
| 393 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
---|
| 394 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
---|
| 395 | };
|
---|
| 396 | SHIFT_TEMPS
|
---|
| 397 |
|
---|
| 398 | if (fdct->divisors[qtblno] == NULL) {
|
---|
| 399 | fdct->divisors[qtblno] = (DCTELEM *)
|
---|
| 400 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 401 | DCTSIZE2 * SIZEOF(DCTELEM));
|
---|
| 402 | }
|
---|
| 403 | dtbl = fdct->divisors[qtblno];
|
---|
| 404 | for (i = 0; i < DCTSIZE2; i++) {
|
---|
| 405 | dtbl[i] = (DCTELEM)
|
---|
| 406 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
---|
| 407 | (INT32) aanscales[i]),
|
---|
| 408 | CONST_BITS-3);
|
---|
| 409 | }
|
---|
| 410 | }
|
---|
[846] | 411 | fdct->pub.forward_DCT[ci] = forward_DCT;
|
---|
[2] | 412 | break;
|
---|
| 413 | #endif
|
---|
| 414 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 415 | case JDCT_FLOAT:
|
---|
| 416 | {
|
---|
| 417 | /* For float AA&N IDCT method, divisors are equal to quantization
|
---|
| 418 | * coefficients scaled by scalefactor[row]*scalefactor[col], where
|
---|
| 419 | * scalefactor[0] = 1
|
---|
| 420 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
---|
| 421 | * We apply a further scale factor of 8.
|
---|
| 422 | * What's actually stored is 1/divisor so that the inner loop can
|
---|
| 423 | * use a multiplication rather than a division.
|
---|
| 424 | */
|
---|
| 425 | FAST_FLOAT * fdtbl;
|
---|
| 426 | int row, col;
|
---|
| 427 | static const double aanscalefactor[DCTSIZE] = {
|
---|
| 428 | 1.0, 1.387039845, 1.306562965, 1.175875602,
|
---|
| 429 | 1.0, 0.785694958, 0.541196100, 0.275899379
|
---|
| 430 | };
|
---|
| 431 |
|
---|
| 432 | if (fdct->float_divisors[qtblno] == NULL) {
|
---|
| 433 | fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
---|
| 434 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 435 | DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
---|
| 436 | }
|
---|
| 437 | fdtbl = fdct->float_divisors[qtblno];
|
---|
| 438 | i = 0;
|
---|
| 439 | for (row = 0; row < DCTSIZE; row++) {
|
---|
| 440 | for (col = 0; col < DCTSIZE; col++) {
|
---|
| 441 | fdtbl[i] = (FAST_FLOAT)
|
---|
| 442 | (1.0 / (((double) qtbl->quantval[i] *
|
---|
| 443 | aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
---|
| 444 | i++;
|
---|
| 445 | }
|
---|
| 446 | }
|
---|
| 447 | }
|
---|
[846] | 448 | fdct->pub.forward_DCT[ci] = forward_DCT_float;
|
---|
[2] | 449 | break;
|
---|
| 450 | #endif
|
---|
| 451 | default:
|
---|
| 452 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
| 453 | break;
|
---|
| 454 | }
|
---|
| 455 | }
|
---|
| 456 | }
|
---|
| 457 |
|
---|
| 458 |
|
---|
| 459 | /*
|
---|
| 460 | * Initialize FDCT manager.
|
---|
| 461 | */
|
---|
| 462 |
|
---|
| 463 | GLOBAL(void)
|
---|
| 464 | jinit_forward_dct (j_compress_ptr cinfo)
|
---|
| 465 | {
|
---|
| 466 | my_fdct_ptr fdct;
|
---|
| 467 | int i;
|
---|
| 468 |
|
---|
| 469 | fdct = (my_fdct_ptr)
|
---|
| 470 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 471 | SIZEOF(my_fdct_controller));
|
---|
| 472 | cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
---|
| 473 | fdct->pub.start_pass = start_pass_fdctmgr;
|
---|
| 474 |
|
---|
| 475 | /* Mark divisor tables unallocated */
|
---|
| 476 | for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
---|
| 477 | fdct->divisors[i] = NULL;
|
---|
| 478 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
| 479 | fdct->float_divisors[i] = NULL;
|
---|
| 480 | #endif
|
---|
| 481 | }
|
---|
| 482 | }
|
---|