1 | /*
|
---|
2 | * jcarith.c
|
---|
3 | *
|
---|
4 | * Developed 1997-2009 by Guido Vollbeding.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains portable arithmetic entropy encoding routines for JPEG
|
---|
9 | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
---|
10 | *
|
---|
11 | * Both sequential and progressive modes are supported in this single module.
|
---|
12 | *
|
---|
13 | * Suspension is not currently supported in this module.
|
---|
14 | */
|
---|
15 |
|
---|
16 | #define JPEG_INTERNALS
|
---|
17 | #include "jinclude.h"
|
---|
18 | #include "jpeglib.h"
|
---|
19 |
|
---|
20 |
|
---|
21 | /* Expanded entropy encoder object for arithmetic encoding. */
|
---|
22 |
|
---|
23 | typedef struct {
|
---|
24 | struct jpeg_entropy_encoder pub; /* public fields */
|
---|
25 |
|
---|
26 | INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
|
---|
27 | INT32 a; /* A register, normalized size of coding interval */
|
---|
28 | INT32 sc; /* counter for stacked 0xFF values which might overflow */
|
---|
29 | INT32 zc; /* counter for pending 0x00 output values which might *
|
---|
30 | * be discarded at the end ("Pacman" termination) */
|
---|
31 | int ct; /* bit shift counter, determines when next byte will be written */
|
---|
32 | int buffer; /* buffer for most recent output byte != 0xFF */
|
---|
33 |
|
---|
34 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
35 | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
---|
36 |
|
---|
37 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
38 | int next_restart_num; /* next restart number to write (0-7) */
|
---|
39 |
|
---|
40 | /* Pointers to statistics areas (these workspaces have image lifespan) */
|
---|
41 | unsigned char * dc_stats[NUM_ARITH_TBLS];
|
---|
42 | unsigned char * ac_stats[NUM_ARITH_TBLS];
|
---|
43 |
|
---|
44 | /* Statistics bin for coding with fixed probability 0.5 */
|
---|
45 | unsigned char fixed_bin[4];
|
---|
46 | } arith_entropy_encoder;
|
---|
47 |
|
---|
48 | typedef arith_entropy_encoder * arith_entropy_ptr;
|
---|
49 |
|
---|
50 | /* The following two definitions specify the allocation chunk size
|
---|
51 | * for the statistics area.
|
---|
52 | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
---|
53 | * 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
---|
54 | *
|
---|
55 | * We use a compact representation with 1 byte per statistics bin,
|
---|
56 | * thus the numbers directly represent byte sizes.
|
---|
57 | * This 1 byte per statistics bin contains the meaning of the MPS
|
---|
58 | * (more probable symbol) in the highest bit (mask 0x80), and the
|
---|
59 | * index into the probability estimation state machine table
|
---|
60 | * in the lower bits (mask 0x7F).
|
---|
61 | */
|
---|
62 |
|
---|
63 | #define DC_STAT_BINS 64
|
---|
64 | #define AC_STAT_BINS 256
|
---|
65 |
|
---|
66 | /* NOTE: Uncomment the following #define if you want to use the
|
---|
67 | * given formula for calculating the AC conditioning parameter Kx
|
---|
68 | * for spectral selection progressive coding in section G.1.3.2
|
---|
69 | * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
|
---|
70 | * Although the spec and P&M authors claim that this "has proven
|
---|
71 | * to give good results for 8 bit precision samples", I'm not
|
---|
72 | * convinced yet that this is really beneficial.
|
---|
73 | * Early tests gave only very marginal compression enhancements
|
---|
74 | * (a few - around 5 or so - bytes even for very large files),
|
---|
75 | * which would turn out rather negative if we'd suppress the
|
---|
76 | * DAC (Define Arithmetic Conditioning) marker segments for
|
---|
77 | * the default parameters in the future.
|
---|
78 | * Note that currently the marker writing module emits 12-byte
|
---|
79 | * DAC segments for a full-component scan in a color image.
|
---|
80 | * This is not worth worrying about IMHO. However, since the
|
---|
81 | * spec defines the default values to be used if the tables
|
---|
82 | * are omitted (unlike Huffman tables, which are required
|
---|
83 | * anyway), one might optimize this behaviour in the future,
|
---|
84 | * and then it would be disadvantageous to use custom tables if
|
---|
85 | * they don't provide sufficient gain to exceed the DAC size.
|
---|
86 | *
|
---|
87 | * On the other hand, I'd consider it as a reasonable result
|
---|
88 | * that the conditioning has no significant influence on the
|
---|
89 | * compression performance. This means that the basic
|
---|
90 | * statistical model is already rather stable.
|
---|
91 | *
|
---|
92 | * Thus, at the moment, we use the default conditioning values
|
---|
93 | * anyway, and do not use the custom formula.
|
---|
94 | *
|
---|
95 | #define CALCULATE_SPECTRAL_CONDITIONING
|
---|
96 | */
|
---|
97 |
|
---|
98 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
---|
99 | * We assume that int right shift is unsigned if INT32 right shift is,
|
---|
100 | * which should be safe.
|
---|
101 | */
|
---|
102 |
|
---|
103 | #ifdef RIGHT_SHIFT_IS_UNSIGNED
|
---|
104 | #define ISHIFT_TEMPS int ishift_temp;
|
---|
105 | #define IRIGHT_SHIFT(x,shft) \
|
---|
106 | ((ishift_temp = (x)) < 0 ? \
|
---|
107 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
---|
108 | (ishift_temp >> (shft)))
|
---|
109 | #else
|
---|
110 | #define ISHIFT_TEMPS
|
---|
111 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
---|
112 | #endif
|
---|
113 |
|
---|
114 |
|
---|
115 | LOCAL(void)
|
---|
116 | emit_byte (int val, j_compress_ptr cinfo)
|
---|
117 | /* Write next output byte; we do not support suspension in this module. */
|
---|
118 | {
|
---|
119 | struct jpeg_destination_mgr * dest = cinfo->dest;
|
---|
120 |
|
---|
121 | *dest->next_output_byte++ = (JOCTET) val;
|
---|
122 | if (--dest->free_in_buffer == 0)
|
---|
123 | if (! (*dest->empty_output_buffer) (cinfo))
|
---|
124 | ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
---|
125 | }
|
---|
126 |
|
---|
127 |
|
---|
128 | /*
|
---|
129 | * Finish up at the end of an arithmetic-compressed scan.
|
---|
130 | */
|
---|
131 |
|
---|
132 | METHODDEF(void)
|
---|
133 | finish_pass (j_compress_ptr cinfo)
|
---|
134 | {
|
---|
135 | arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
---|
136 | INT32 temp;
|
---|
137 |
|
---|
138 | /* Section D.1.8: Termination of encoding */
|
---|
139 |
|
---|
140 | /* Find the e->c in the coding interval with the largest
|
---|
141 | * number of trailing zero bits */
|
---|
142 | if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
|
---|
143 | e->c = temp + 0x8000L;
|
---|
144 | else
|
---|
145 | e->c = temp;
|
---|
146 | /* Send remaining bytes to output */
|
---|
147 | e->c <<= e->ct;
|
---|
148 | if (e->c & 0xF8000000L) {
|
---|
149 | /* One final overflow has to be handled */
|
---|
150 | if (e->buffer >= 0) {
|
---|
151 | if (e->zc)
|
---|
152 | do emit_byte(0x00, cinfo);
|
---|
153 | while (--e->zc);
|
---|
154 | emit_byte(e->buffer + 1, cinfo);
|
---|
155 | if (e->buffer + 1 == 0xFF)
|
---|
156 | emit_byte(0x00, cinfo);
|
---|
157 | }
|
---|
158 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
---|
159 | e->sc = 0;
|
---|
160 | } else {
|
---|
161 | if (e->buffer == 0)
|
---|
162 | ++e->zc;
|
---|
163 | else if (e->buffer >= 0) {
|
---|
164 | if (e->zc)
|
---|
165 | do emit_byte(0x00, cinfo);
|
---|
166 | while (--e->zc);
|
---|
167 | emit_byte(e->buffer, cinfo);
|
---|
168 | }
|
---|
169 | if (e->sc) {
|
---|
170 | if (e->zc)
|
---|
171 | do emit_byte(0x00, cinfo);
|
---|
172 | while (--e->zc);
|
---|
173 | do {
|
---|
174 | emit_byte(0xFF, cinfo);
|
---|
175 | emit_byte(0x00, cinfo);
|
---|
176 | } while (--e->sc);
|
---|
177 | }
|
---|
178 | }
|
---|
179 | /* Output final bytes only if they are not 0x00 */
|
---|
180 | if (e->c & 0x7FFF800L) {
|
---|
181 | if (e->zc) /* output final pending zero bytes */
|
---|
182 | do emit_byte(0x00, cinfo);
|
---|
183 | while (--e->zc);
|
---|
184 | emit_byte((e->c >> 19) & 0xFF, cinfo);
|
---|
185 | if (((e->c >> 19) & 0xFF) == 0xFF)
|
---|
186 | emit_byte(0x00, cinfo);
|
---|
187 | if (e->c & 0x7F800L) {
|
---|
188 | emit_byte((e->c >> 11) & 0xFF, cinfo);
|
---|
189 | if (((e->c >> 11) & 0xFF) == 0xFF)
|
---|
190 | emit_byte(0x00, cinfo);
|
---|
191 | }
|
---|
192 | }
|
---|
193 | }
|
---|
194 |
|
---|
195 |
|
---|
196 | /*
|
---|
197 | * The core arithmetic encoding routine (common in JPEG and JBIG).
|
---|
198 | * This needs to go as fast as possible.
|
---|
199 | * Machine-dependent optimization facilities
|
---|
200 | * are not utilized in this portable implementation.
|
---|
201 | * However, this code should be fairly efficient and
|
---|
202 | * may be a good base for further optimizations anyway.
|
---|
203 | *
|
---|
204 | * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
|
---|
205 | *
|
---|
206 | * Note: I've added full "Pacman" termination support to the
|
---|
207 | * byte output routines, which is equivalent to the optional
|
---|
208 | * Discard_final_zeros procedure (Figure D.15) in the spec.
|
---|
209 | * Thus, we always produce the shortest possible output
|
---|
210 | * stream compliant to the spec (no trailing zero bytes,
|
---|
211 | * except for FF stuffing).
|
---|
212 | *
|
---|
213 | * I've also introduced a new scheme for accessing
|
---|
214 | * the probability estimation state machine table,
|
---|
215 | * derived from Markus Kuhn's JBIG implementation.
|
---|
216 | */
|
---|
217 |
|
---|
218 | LOCAL(void)
|
---|
219 | arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
|
---|
220 | {
|
---|
221 | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
---|
222 | register unsigned char nl, nm;
|
---|
223 | register INT32 qe, temp;
|
---|
224 | register int sv;
|
---|
225 |
|
---|
226 | /* Fetch values from our compact representation of Table D.2:
|
---|
227 | * Qe values and probability estimation state machine
|
---|
228 | */
|
---|
229 | sv = *st;
|
---|
230 | qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
|
---|
231 | nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
---|
232 | nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
---|
233 |
|
---|
234 | /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
|
---|
235 | e->a -= qe;
|
---|
236 | if (val != (sv >> 7)) {
|
---|
237 | /* Encode the less probable symbol */
|
---|
238 | if (e->a >= qe) {
|
---|
239 | /* If the interval size (qe) for the less probable symbol (LPS)
|
---|
240 | * is larger than the interval size for the MPS, then exchange
|
---|
241 | * the two symbols for coding efficiency, otherwise code the LPS
|
---|
242 | * as usual: */
|
---|
243 | e->c += e->a;
|
---|
244 | e->a = qe;
|
---|
245 | }
|
---|
246 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
---|
247 | } else {
|
---|
248 | /* Encode the more probable symbol */
|
---|
249 | if (e->a >= 0x8000L)
|
---|
250 | return; /* A >= 0x8000 -> ready, no renormalization required */
|
---|
251 | if (e->a < qe) {
|
---|
252 | /* If the interval size (qe) for the less probable symbol (LPS)
|
---|
253 | * is larger than the interval size for the MPS, then exchange
|
---|
254 | * the two symbols for coding efficiency: */
|
---|
255 | e->c += e->a;
|
---|
256 | e->a = qe;
|
---|
257 | }
|
---|
258 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
---|
259 | }
|
---|
260 |
|
---|
261 | /* Renormalization & data output per section D.1.6 */
|
---|
262 | do {
|
---|
263 | e->a <<= 1;
|
---|
264 | e->c <<= 1;
|
---|
265 | if (--e->ct == 0) {
|
---|
266 | /* Another byte is ready for output */
|
---|
267 | temp = e->c >> 19;
|
---|
268 | if (temp > 0xFF) {
|
---|
269 | /* Handle overflow over all stacked 0xFF bytes */
|
---|
270 | if (e->buffer >= 0) {
|
---|
271 | if (e->zc)
|
---|
272 | do emit_byte(0x00, cinfo);
|
---|
273 | while (--e->zc);
|
---|
274 | emit_byte(e->buffer + 1, cinfo);
|
---|
275 | if (e->buffer + 1 == 0xFF)
|
---|
276 | emit_byte(0x00, cinfo);
|
---|
277 | }
|
---|
278 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
---|
279 | e->sc = 0;
|
---|
280 | /* Note: The 3 spacer bits in the C register guarantee
|
---|
281 | * that the new buffer byte can't be 0xFF here
|
---|
282 | * (see page 160 in the P&M JPEG book). */
|
---|
283 | e->buffer = temp & 0xFF; /* new output byte, might overflow later */
|
---|
284 | } else if (temp == 0xFF) {
|
---|
285 | ++e->sc; /* stack 0xFF byte (which might overflow later) */
|
---|
286 | } else {
|
---|
287 | /* Output all stacked 0xFF bytes, they will not overflow any more */
|
---|
288 | if (e->buffer == 0)
|
---|
289 | ++e->zc;
|
---|
290 | else if (e->buffer >= 0) {
|
---|
291 | if (e->zc)
|
---|
292 | do emit_byte(0x00, cinfo);
|
---|
293 | while (--e->zc);
|
---|
294 | emit_byte(e->buffer, cinfo);
|
---|
295 | }
|
---|
296 | if (e->sc) {
|
---|
297 | if (e->zc)
|
---|
298 | do emit_byte(0x00, cinfo);
|
---|
299 | while (--e->zc);
|
---|
300 | do {
|
---|
301 | emit_byte(0xFF, cinfo);
|
---|
302 | emit_byte(0x00, cinfo);
|
---|
303 | } while (--e->sc);
|
---|
304 | }
|
---|
305 | e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
|
---|
306 | }
|
---|
307 | e->c &= 0x7FFFFL;
|
---|
308 | e->ct += 8;
|
---|
309 | }
|
---|
310 | } while (e->a < 0x8000L);
|
---|
311 | }
|
---|
312 |
|
---|
313 |
|
---|
314 | /*
|
---|
315 | * Emit a restart marker & resynchronize predictions.
|
---|
316 | */
|
---|
317 |
|
---|
318 | LOCAL(void)
|
---|
319 | emit_restart (j_compress_ptr cinfo, int restart_num)
|
---|
320 | {
|
---|
321 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
322 | int ci;
|
---|
323 | jpeg_component_info * compptr;
|
---|
324 |
|
---|
325 | finish_pass(cinfo);
|
---|
326 |
|
---|
327 | emit_byte(0xFF, cinfo);
|
---|
328 | emit_byte(JPEG_RST0 + restart_num, cinfo);
|
---|
329 |
|
---|
330 | /* Re-initialize statistics areas */
|
---|
331 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
332 | compptr = cinfo->cur_comp_info[ci];
|
---|
333 | /* DC needs no table for refinement scan */
|
---|
334 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
335 | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
---|
336 | /* Reset DC predictions to 0 */
|
---|
337 | entropy->last_dc_val[ci] = 0;
|
---|
338 | entropy->dc_context[ci] = 0;
|
---|
339 | }
|
---|
340 | /* AC needs no table when not present */
|
---|
341 | if (cinfo->Se) {
|
---|
342 | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | /* Reset arithmetic encoding variables */
|
---|
347 | entropy->c = 0;
|
---|
348 | entropy->a = 0x10000L;
|
---|
349 | entropy->sc = 0;
|
---|
350 | entropy->zc = 0;
|
---|
351 | entropy->ct = 11;
|
---|
352 | entropy->buffer = -1; /* empty */
|
---|
353 | }
|
---|
354 |
|
---|
355 |
|
---|
356 | /*
|
---|
357 | * MCU encoding for DC initial scan (either spectral selection,
|
---|
358 | * or first pass of successive approximation).
|
---|
359 | */
|
---|
360 |
|
---|
361 | METHODDEF(boolean)
|
---|
362 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
363 | {
|
---|
364 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
365 | JBLOCKROW block;
|
---|
366 | unsigned char *st;
|
---|
367 | int blkn, ci, tbl;
|
---|
368 | int v, v2, m;
|
---|
369 | ISHIFT_TEMPS
|
---|
370 |
|
---|
371 | /* Emit restart marker if needed */
|
---|
372 | if (cinfo->restart_interval) {
|
---|
373 | if (entropy->restarts_to_go == 0) {
|
---|
374 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
375 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
376 | entropy->next_restart_num++;
|
---|
377 | entropy->next_restart_num &= 7;
|
---|
378 | }
|
---|
379 | entropy->restarts_to_go--;
|
---|
380 | }
|
---|
381 |
|
---|
382 | /* Encode the MCU data blocks */
|
---|
383 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
384 | block = MCU_data[blkn];
|
---|
385 | ci = cinfo->MCU_membership[blkn];
|
---|
386 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
---|
387 |
|
---|
388 | /* Compute the DC value after the required point transform by Al.
|
---|
389 | * This is simply an arithmetic right shift.
|
---|
390 | */
|
---|
391 | m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
|
---|
392 |
|
---|
393 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
---|
394 |
|
---|
395 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
---|
396 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
---|
397 |
|
---|
398 | /* Figure F.4: Encode_DC_DIFF */
|
---|
399 | if ((v = m - entropy->last_dc_val[ci]) == 0) {
|
---|
400 | arith_encode(cinfo, st, 0);
|
---|
401 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
402 | } else {
|
---|
403 | entropy->last_dc_val[ci] = m;
|
---|
404 | arith_encode(cinfo, st, 1);
|
---|
405 | /* Figure F.6: Encoding nonzero value v */
|
---|
406 | /* Figure F.7: Encoding the sign of v */
|
---|
407 | if (v > 0) {
|
---|
408 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
---|
409 | st += 2; /* Table F.4: SP = S0 + 2 */
|
---|
410 | entropy->dc_context[ci] = 4; /* small positive diff category */
|
---|
411 | } else {
|
---|
412 | v = -v;
|
---|
413 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
---|
414 | st += 3; /* Table F.4: SN = S0 + 3 */
|
---|
415 | entropy->dc_context[ci] = 8; /* small negative diff category */
|
---|
416 | }
|
---|
417 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
418 | m = 0;
|
---|
419 | if (v -= 1) {
|
---|
420 | arith_encode(cinfo, st, 1);
|
---|
421 | m = 1;
|
---|
422 | v2 = v;
|
---|
423 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
---|
424 | while (v2 >>= 1) {
|
---|
425 | arith_encode(cinfo, st, 1);
|
---|
426 | m <<= 1;
|
---|
427 | st += 1;
|
---|
428 | }
|
---|
429 | }
|
---|
430 | arith_encode(cinfo, st, 0);
|
---|
431 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
---|
432 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
---|
433 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
434 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
---|
435 | entropy->dc_context[ci] += 8; /* large diff category */
|
---|
436 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
437 | st += 14;
|
---|
438 | while (m >>= 1)
|
---|
439 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
440 | }
|
---|
441 | }
|
---|
442 |
|
---|
443 | return TRUE;
|
---|
444 | }
|
---|
445 |
|
---|
446 |
|
---|
447 | /*
|
---|
448 | * MCU encoding for AC initial scan (either spectral selection,
|
---|
449 | * or first pass of successive approximation).
|
---|
450 | */
|
---|
451 |
|
---|
452 | METHODDEF(boolean)
|
---|
453 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
454 | {
|
---|
455 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
456 | JBLOCKROW block;
|
---|
457 | unsigned char *st;
|
---|
458 | int tbl, k, ke;
|
---|
459 | int v, v2, m;
|
---|
460 | const int * natural_order;
|
---|
461 |
|
---|
462 | /* Emit restart marker if needed */
|
---|
463 | if (cinfo->restart_interval) {
|
---|
464 | if (entropy->restarts_to_go == 0) {
|
---|
465 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
466 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
467 | entropy->next_restart_num++;
|
---|
468 | entropy->next_restart_num &= 7;
|
---|
469 | }
|
---|
470 | entropy->restarts_to_go--;
|
---|
471 | }
|
---|
472 |
|
---|
473 | natural_order = cinfo->natural_order;
|
---|
474 |
|
---|
475 | /* Encode the MCU data block */
|
---|
476 | block = MCU_data[0];
|
---|
477 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
---|
478 |
|
---|
479 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
---|
480 |
|
---|
481 | /* Establish EOB (end-of-block) index */
|
---|
482 | for (ke = cinfo->Se; ke > 0; ke--)
|
---|
483 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
484 | * is an integer division with rounding towards 0. To do this portably
|
---|
485 | * in C, we shift after obtaining the absolute value.
|
---|
486 | */
|
---|
487 | if ((v = (*block)[natural_order[ke]]) >= 0) {
|
---|
488 | if (v >>= cinfo->Al) break;
|
---|
489 | } else {
|
---|
490 | v = -v;
|
---|
491 | if (v >>= cinfo->Al) break;
|
---|
492 | }
|
---|
493 |
|
---|
494 | /* Figure F.5: Encode_AC_Coefficients */
|
---|
495 | for (k = cinfo->Ss; k <= ke; k++) {
|
---|
496 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
497 | arith_encode(cinfo, st, 0); /* EOB decision */
|
---|
498 | for (;;) {
|
---|
499 | if ((v = (*block)[natural_order[k]]) >= 0) {
|
---|
500 | if (v >>= cinfo->Al) {
|
---|
501 | arith_encode(cinfo, st + 1, 1);
|
---|
502 | arith_encode(cinfo, entropy->fixed_bin, 0);
|
---|
503 | break;
|
---|
504 | }
|
---|
505 | } else {
|
---|
506 | v = -v;
|
---|
507 | if (v >>= cinfo->Al) {
|
---|
508 | arith_encode(cinfo, st + 1, 1);
|
---|
509 | arith_encode(cinfo, entropy->fixed_bin, 1);
|
---|
510 | break;
|
---|
511 | }
|
---|
512 | }
|
---|
513 | arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
---|
514 | }
|
---|
515 | st += 2;
|
---|
516 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
517 | m = 0;
|
---|
518 | if (v -= 1) {
|
---|
519 | arith_encode(cinfo, st, 1);
|
---|
520 | m = 1;
|
---|
521 | v2 = v;
|
---|
522 | if (v2 >>= 1) {
|
---|
523 | arith_encode(cinfo, st, 1);
|
---|
524 | m <<= 1;
|
---|
525 | st = entropy->ac_stats[tbl] +
|
---|
526 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
---|
527 | while (v2 >>= 1) {
|
---|
528 | arith_encode(cinfo, st, 1);
|
---|
529 | m <<= 1;
|
---|
530 | st += 1;
|
---|
531 | }
|
---|
532 | }
|
---|
533 | }
|
---|
534 | arith_encode(cinfo, st, 0);
|
---|
535 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
536 | st += 14;
|
---|
537 | while (m >>= 1)
|
---|
538 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
539 | }
|
---|
540 | /* Encode EOB decision only if k <= cinfo->Se */
|
---|
541 | if (k <= cinfo->Se) {
|
---|
542 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
543 | arith_encode(cinfo, st, 1);
|
---|
544 | }
|
---|
545 |
|
---|
546 | return TRUE;
|
---|
547 | }
|
---|
548 |
|
---|
549 |
|
---|
550 | /*
|
---|
551 | * MCU encoding for DC successive approximation refinement scan.
|
---|
552 | */
|
---|
553 |
|
---|
554 | METHODDEF(boolean)
|
---|
555 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
556 | {
|
---|
557 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
558 | unsigned char *st;
|
---|
559 | int Al, blkn;
|
---|
560 |
|
---|
561 | /* Emit restart marker if needed */
|
---|
562 | if (cinfo->restart_interval) {
|
---|
563 | if (entropy->restarts_to_go == 0) {
|
---|
564 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
565 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
566 | entropy->next_restart_num++;
|
---|
567 | entropy->next_restart_num &= 7;
|
---|
568 | }
|
---|
569 | entropy->restarts_to_go--;
|
---|
570 | }
|
---|
571 |
|
---|
572 | st = entropy->fixed_bin; /* use fixed probability estimation */
|
---|
573 | Al = cinfo->Al;
|
---|
574 |
|
---|
575 | /* Encode the MCU data blocks */
|
---|
576 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
577 | /* We simply emit the Al'th bit of the DC coefficient value. */
|
---|
578 | arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
|
---|
579 | }
|
---|
580 |
|
---|
581 | return TRUE;
|
---|
582 | }
|
---|
583 |
|
---|
584 |
|
---|
585 | /*
|
---|
586 | * MCU encoding for AC successive approximation refinement scan.
|
---|
587 | */
|
---|
588 |
|
---|
589 | METHODDEF(boolean)
|
---|
590 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
591 | {
|
---|
592 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
593 | JBLOCKROW block;
|
---|
594 | unsigned char *st;
|
---|
595 | int tbl, k, ke, kex;
|
---|
596 | int v;
|
---|
597 | const int * natural_order;
|
---|
598 |
|
---|
599 | /* Emit restart marker if needed */
|
---|
600 | if (cinfo->restart_interval) {
|
---|
601 | if (entropy->restarts_to_go == 0) {
|
---|
602 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
603 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
604 | entropy->next_restart_num++;
|
---|
605 | entropy->next_restart_num &= 7;
|
---|
606 | }
|
---|
607 | entropy->restarts_to_go--;
|
---|
608 | }
|
---|
609 |
|
---|
610 | natural_order = cinfo->natural_order;
|
---|
611 |
|
---|
612 | /* Encode the MCU data block */
|
---|
613 | block = MCU_data[0];
|
---|
614 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
---|
615 |
|
---|
616 | /* Section G.1.3.3: Encoding of AC coefficients */
|
---|
617 |
|
---|
618 | /* Establish EOB (end-of-block) index */
|
---|
619 | for (ke = cinfo->Se; ke > 0; ke--)
|
---|
620 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
621 | * is an integer division with rounding towards 0. To do this portably
|
---|
622 | * in C, we shift after obtaining the absolute value.
|
---|
623 | */
|
---|
624 | if ((v = (*block)[natural_order[ke]]) >= 0) {
|
---|
625 | if (v >>= cinfo->Al) break;
|
---|
626 | } else {
|
---|
627 | v = -v;
|
---|
628 | if (v >>= cinfo->Al) break;
|
---|
629 | }
|
---|
630 |
|
---|
631 | /* Establish EOBx (previous stage end-of-block) index */
|
---|
632 | for (kex = ke; kex > 0; kex--)
|
---|
633 | if ((v = (*block)[natural_order[kex]]) >= 0) {
|
---|
634 | if (v >>= cinfo->Ah) break;
|
---|
635 | } else {
|
---|
636 | v = -v;
|
---|
637 | if (v >>= cinfo->Ah) break;
|
---|
638 | }
|
---|
639 |
|
---|
640 | /* Figure G.10: Encode_AC_Coefficients_SA */
|
---|
641 | for (k = cinfo->Ss; k <= ke; k++) {
|
---|
642 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
643 | if (k > kex)
|
---|
644 | arith_encode(cinfo, st, 0); /* EOB decision */
|
---|
645 | for (;;) {
|
---|
646 | if ((v = (*block)[natural_order[k]]) >= 0) {
|
---|
647 | if (v >>= cinfo->Al) {
|
---|
648 | if (v >> 1) /* previously nonzero coef */
|
---|
649 | arith_encode(cinfo, st + 2, (v & 1));
|
---|
650 | else { /* newly nonzero coef */
|
---|
651 | arith_encode(cinfo, st + 1, 1);
|
---|
652 | arith_encode(cinfo, entropy->fixed_bin, 0);
|
---|
653 | }
|
---|
654 | break;
|
---|
655 | }
|
---|
656 | } else {
|
---|
657 | v = -v;
|
---|
658 | if (v >>= cinfo->Al) {
|
---|
659 | if (v >> 1) /* previously nonzero coef */
|
---|
660 | arith_encode(cinfo, st + 2, (v & 1));
|
---|
661 | else { /* newly nonzero coef */
|
---|
662 | arith_encode(cinfo, st + 1, 1);
|
---|
663 | arith_encode(cinfo, entropy->fixed_bin, 1);
|
---|
664 | }
|
---|
665 | break;
|
---|
666 | }
|
---|
667 | }
|
---|
668 | arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
---|
669 | }
|
---|
670 | }
|
---|
671 | /* Encode EOB decision only if k <= cinfo->Se */
|
---|
672 | if (k <= cinfo->Se) {
|
---|
673 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
674 | arith_encode(cinfo, st, 1);
|
---|
675 | }
|
---|
676 |
|
---|
677 | return TRUE;
|
---|
678 | }
|
---|
679 |
|
---|
680 |
|
---|
681 | /*
|
---|
682 | * Encode and output one MCU's worth of arithmetic-compressed coefficients.
|
---|
683 | */
|
---|
684 |
|
---|
685 | METHODDEF(boolean)
|
---|
686 | encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
687 | {
|
---|
688 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
689 | jpeg_component_info * compptr;
|
---|
690 | JBLOCKROW block;
|
---|
691 | unsigned char *st;
|
---|
692 | int blkn, ci, tbl, k, ke;
|
---|
693 | int v, v2, m;
|
---|
694 | const int * natural_order;
|
---|
695 |
|
---|
696 | /* Emit restart marker if needed */
|
---|
697 | if (cinfo->restart_interval) {
|
---|
698 | if (entropy->restarts_to_go == 0) {
|
---|
699 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
700 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
701 | entropy->next_restart_num++;
|
---|
702 | entropy->next_restart_num &= 7;
|
---|
703 | }
|
---|
704 | entropy->restarts_to_go--;
|
---|
705 | }
|
---|
706 |
|
---|
707 | natural_order = cinfo->natural_order;
|
---|
708 |
|
---|
709 | /* Encode the MCU data blocks */
|
---|
710 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
711 | block = MCU_data[blkn];
|
---|
712 | ci = cinfo->MCU_membership[blkn];
|
---|
713 | compptr = cinfo->cur_comp_info[ci];
|
---|
714 |
|
---|
715 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
---|
716 |
|
---|
717 | tbl = compptr->dc_tbl_no;
|
---|
718 |
|
---|
719 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
---|
720 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
---|
721 |
|
---|
722 | /* Figure F.4: Encode_DC_DIFF */
|
---|
723 | if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
|
---|
724 | arith_encode(cinfo, st, 0);
|
---|
725 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
726 | } else {
|
---|
727 | entropy->last_dc_val[ci] = (*block)[0];
|
---|
728 | arith_encode(cinfo, st, 1);
|
---|
729 | /* Figure F.6: Encoding nonzero value v */
|
---|
730 | /* Figure F.7: Encoding the sign of v */
|
---|
731 | if (v > 0) {
|
---|
732 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
---|
733 | st += 2; /* Table F.4: SP = S0 + 2 */
|
---|
734 | entropy->dc_context[ci] = 4; /* small positive diff category */
|
---|
735 | } else {
|
---|
736 | v = -v;
|
---|
737 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
---|
738 | st += 3; /* Table F.4: SN = S0 + 3 */
|
---|
739 | entropy->dc_context[ci] = 8; /* small negative diff category */
|
---|
740 | }
|
---|
741 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
742 | m = 0;
|
---|
743 | if (v -= 1) {
|
---|
744 | arith_encode(cinfo, st, 1);
|
---|
745 | m = 1;
|
---|
746 | v2 = v;
|
---|
747 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
---|
748 | while (v2 >>= 1) {
|
---|
749 | arith_encode(cinfo, st, 1);
|
---|
750 | m <<= 1;
|
---|
751 | st += 1;
|
---|
752 | }
|
---|
753 | }
|
---|
754 | arith_encode(cinfo, st, 0);
|
---|
755 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
---|
756 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
---|
757 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
758 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
---|
759 | entropy->dc_context[ci] += 8; /* large diff category */
|
---|
760 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
761 | st += 14;
|
---|
762 | while (m >>= 1)
|
---|
763 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
764 | }
|
---|
765 |
|
---|
766 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
---|
767 |
|
---|
768 | tbl = compptr->ac_tbl_no;
|
---|
769 |
|
---|
770 | /* Establish EOB (end-of-block) index */
|
---|
771 | for (ke = cinfo->lim_Se; ke > 0; ke--)
|
---|
772 | if ((*block)[natural_order[ke]]) break;
|
---|
773 |
|
---|
774 | /* Figure F.5: Encode_AC_Coefficients */
|
---|
775 | for (k = 1; k <= ke; k++) {
|
---|
776 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
777 | arith_encode(cinfo, st, 0); /* EOB decision */
|
---|
778 | while ((v = (*block)[natural_order[k]]) == 0) {
|
---|
779 | arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
---|
780 | }
|
---|
781 | arith_encode(cinfo, st + 1, 1);
|
---|
782 | /* Figure F.6: Encoding nonzero value v */
|
---|
783 | /* Figure F.7: Encoding the sign of v */
|
---|
784 | if (v > 0) {
|
---|
785 | arith_encode(cinfo, entropy->fixed_bin, 0);
|
---|
786 | } else {
|
---|
787 | v = -v;
|
---|
788 | arith_encode(cinfo, entropy->fixed_bin, 1);
|
---|
789 | }
|
---|
790 | st += 2;
|
---|
791 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
792 | m = 0;
|
---|
793 | if (v -= 1) {
|
---|
794 | arith_encode(cinfo, st, 1);
|
---|
795 | m = 1;
|
---|
796 | v2 = v;
|
---|
797 | if (v2 >>= 1) {
|
---|
798 | arith_encode(cinfo, st, 1);
|
---|
799 | m <<= 1;
|
---|
800 | st = entropy->ac_stats[tbl] +
|
---|
801 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
---|
802 | while (v2 >>= 1) {
|
---|
803 | arith_encode(cinfo, st, 1);
|
---|
804 | m <<= 1;
|
---|
805 | st += 1;
|
---|
806 | }
|
---|
807 | }
|
---|
808 | }
|
---|
809 | arith_encode(cinfo, st, 0);
|
---|
810 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
811 | st += 14;
|
---|
812 | while (m >>= 1)
|
---|
813 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
814 | }
|
---|
815 | /* Encode EOB decision only if k <= cinfo->lim_Se */
|
---|
816 | if (k <= cinfo->lim_Se) {
|
---|
817 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
818 | arith_encode(cinfo, st, 1);
|
---|
819 | }
|
---|
820 | }
|
---|
821 |
|
---|
822 | return TRUE;
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | /*
|
---|
827 | * Initialize for an arithmetic-compressed scan.
|
---|
828 | */
|
---|
829 |
|
---|
830 | METHODDEF(void)
|
---|
831 | start_pass (j_compress_ptr cinfo, boolean gather_statistics)
|
---|
832 | {
|
---|
833 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
834 | int ci, tbl;
|
---|
835 | jpeg_component_info * compptr;
|
---|
836 |
|
---|
837 | if (gather_statistics)
|
---|
838 | /* Make sure to avoid that in the master control logic!
|
---|
839 | * We are fully adaptive here and need no extra
|
---|
840 | * statistics gathering pass!
|
---|
841 | */
|
---|
842 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
843 |
|
---|
844 | /* We assume jcmaster.c already validated the progressive scan parameters. */
|
---|
845 |
|
---|
846 | /* Select execution routines */
|
---|
847 | if (cinfo->progressive_mode) {
|
---|
848 | if (cinfo->Ah == 0) {
|
---|
849 | if (cinfo->Ss == 0)
|
---|
850 | entropy->pub.encode_mcu = encode_mcu_DC_first;
|
---|
851 | else
|
---|
852 | entropy->pub.encode_mcu = encode_mcu_AC_first;
|
---|
853 | } else {
|
---|
854 | if (cinfo->Ss == 0)
|
---|
855 | entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
---|
856 | else
|
---|
857 | entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
---|
858 | }
|
---|
859 | } else
|
---|
860 | entropy->pub.encode_mcu = encode_mcu;
|
---|
861 |
|
---|
862 | /* Allocate & initialize requested statistics areas */
|
---|
863 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
864 | compptr = cinfo->cur_comp_info[ci];
|
---|
865 | /* DC needs no table for refinement scan */
|
---|
866 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
867 | tbl = compptr->dc_tbl_no;
|
---|
868 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
---|
869 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
---|
870 | if (entropy->dc_stats[tbl] == NULL)
|
---|
871 | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
---|
872 | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
---|
873 | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
---|
874 | /* Initialize DC predictions to 0 */
|
---|
875 | entropy->last_dc_val[ci] = 0;
|
---|
876 | entropy->dc_context[ci] = 0;
|
---|
877 | }
|
---|
878 | /* AC needs no table when not present */
|
---|
879 | if (cinfo->Se) {
|
---|
880 | tbl = compptr->ac_tbl_no;
|
---|
881 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
---|
882 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
---|
883 | if (entropy->ac_stats[tbl] == NULL)
|
---|
884 | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
---|
885 | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
---|
886 | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
---|
887 | #ifdef CALCULATE_SPECTRAL_CONDITIONING
|
---|
888 | if (cinfo->progressive_mode)
|
---|
889 | /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
|
---|
890 | cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
|
---|
891 | #endif
|
---|
892 | }
|
---|
893 | }
|
---|
894 |
|
---|
895 | /* Initialize arithmetic encoding variables */
|
---|
896 | entropy->c = 0;
|
---|
897 | entropy->a = 0x10000L;
|
---|
898 | entropy->sc = 0;
|
---|
899 | entropy->zc = 0;
|
---|
900 | entropy->ct = 11;
|
---|
901 | entropy->buffer = -1; /* empty */
|
---|
902 |
|
---|
903 | /* Initialize restart stuff */
|
---|
904 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
905 | entropy->next_restart_num = 0;
|
---|
906 | }
|
---|
907 |
|
---|
908 |
|
---|
909 | /*
|
---|
910 | * Module initialization routine for arithmetic entropy encoding.
|
---|
911 | */
|
---|
912 |
|
---|
913 | GLOBAL(void)
|
---|
914 | jinit_arith_encoder (j_compress_ptr cinfo)
|
---|
915 | {
|
---|
916 | arith_entropy_ptr entropy;
|
---|
917 | int i;
|
---|
918 |
|
---|
919 | entropy = (arith_entropy_ptr)
|
---|
920 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
921 | SIZEOF(arith_entropy_encoder));
|
---|
922 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
---|
923 | entropy->pub.start_pass = start_pass;
|
---|
924 | entropy->pub.finish_pass = finish_pass;
|
---|
925 |
|
---|
926 | /* Mark tables unallocated */
|
---|
927 | for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
---|
928 | entropy->dc_stats[i] = NULL;
|
---|
929 | entropy->ac_stats[i] = NULL;
|
---|
930 | }
|
---|
931 |
|
---|
932 | /* Initialize index for fixed probability estimation */
|
---|
933 | entropy->fixed_bin[0] = 113;
|
---|
934 | }
|
---|