[844] | 1 | /*
|
---|
| 2 | * jcarith.c
|
---|
| 3 | *
|
---|
| 4 | * Developed 1997-2009 by Guido Vollbeding.
|
---|
| 5 | * This file is part of the Independent JPEG Group's software.
|
---|
| 6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
| 7 | *
|
---|
| 8 | * This file contains portable arithmetic entropy encoding routines for JPEG
|
---|
| 9 | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
---|
| 10 | *
|
---|
| 11 | * Both sequential and progressive modes are supported in this single module.
|
---|
| 12 | *
|
---|
| 13 | * Suspension is not currently supported in this module.
|
---|
| 14 | */
|
---|
| 15 |
|
---|
| 16 | #define JPEG_INTERNALS
|
---|
| 17 | #include "jinclude.h"
|
---|
| 18 | #include "jpeglib.h"
|
---|
| 19 |
|
---|
| 20 |
|
---|
| 21 | /* Expanded entropy encoder object for arithmetic encoding. */
|
---|
| 22 |
|
---|
| 23 | typedef struct {
|
---|
| 24 | struct jpeg_entropy_encoder pub; /* public fields */
|
---|
| 25 |
|
---|
| 26 | INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
|
---|
| 27 | INT32 a; /* A register, normalized size of coding interval */
|
---|
| 28 | INT32 sc; /* counter for stacked 0xFF values which might overflow */
|
---|
| 29 | INT32 zc; /* counter for pending 0x00 output values which might *
|
---|
| 30 | * be discarded at the end ("Pacman" termination) */
|
---|
| 31 | int ct; /* bit shift counter, determines when next byte will be written */
|
---|
| 32 | int buffer; /* buffer for most recent output byte != 0xFF */
|
---|
| 33 |
|
---|
| 34 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
---|
| 35 | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
---|
| 36 |
|
---|
| 37 | unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
---|
| 38 | int next_restart_num; /* next restart number to write (0-7) */
|
---|
| 39 |
|
---|
| 40 | /* Pointers to statistics areas (these workspaces have image lifespan) */
|
---|
| 41 | unsigned char * dc_stats[NUM_ARITH_TBLS];
|
---|
| 42 | unsigned char * ac_stats[NUM_ARITH_TBLS];
|
---|
| 43 |
|
---|
| 44 | /* Statistics bin for coding with fixed probability 0.5 */
|
---|
| 45 | unsigned char fixed_bin[4];
|
---|
| 46 | } arith_entropy_encoder;
|
---|
| 47 |
|
---|
| 48 | typedef arith_entropy_encoder * arith_entropy_ptr;
|
---|
| 49 |
|
---|
| 50 | /* The following two definitions specify the allocation chunk size
|
---|
| 51 | * for the statistics area.
|
---|
| 52 | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
---|
| 53 | * 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
---|
| 54 | *
|
---|
| 55 | * We use a compact representation with 1 byte per statistics bin,
|
---|
| 56 | * thus the numbers directly represent byte sizes.
|
---|
| 57 | * This 1 byte per statistics bin contains the meaning of the MPS
|
---|
| 58 | * (more probable symbol) in the highest bit (mask 0x80), and the
|
---|
| 59 | * index into the probability estimation state machine table
|
---|
| 60 | * in the lower bits (mask 0x7F).
|
---|
| 61 | */
|
---|
| 62 |
|
---|
| 63 | #define DC_STAT_BINS 64
|
---|
| 64 | #define AC_STAT_BINS 256
|
---|
| 65 |
|
---|
| 66 | /* NOTE: Uncomment the following #define if you want to use the
|
---|
| 67 | * given formula for calculating the AC conditioning parameter Kx
|
---|
| 68 | * for spectral selection progressive coding in section G.1.3.2
|
---|
| 69 | * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
|
---|
| 70 | * Although the spec and P&M authors claim that this "has proven
|
---|
| 71 | * to give good results for 8 bit precision samples", I'm not
|
---|
| 72 | * convinced yet that this is really beneficial.
|
---|
| 73 | * Early tests gave only very marginal compression enhancements
|
---|
| 74 | * (a few - around 5 or so - bytes even for very large files),
|
---|
| 75 | * which would turn out rather negative if we'd suppress the
|
---|
| 76 | * DAC (Define Arithmetic Conditioning) marker segments for
|
---|
| 77 | * the default parameters in the future.
|
---|
| 78 | * Note that currently the marker writing module emits 12-byte
|
---|
| 79 | * DAC segments for a full-component scan in a color image.
|
---|
| 80 | * This is not worth worrying about IMHO. However, since the
|
---|
| 81 | * spec defines the default values to be used if the tables
|
---|
| 82 | * are omitted (unlike Huffman tables, which are required
|
---|
| 83 | * anyway), one might optimize this behaviour in the future,
|
---|
| 84 | * and then it would be disadvantageous to use custom tables if
|
---|
| 85 | * they don't provide sufficient gain to exceed the DAC size.
|
---|
| 86 | *
|
---|
| 87 | * On the other hand, I'd consider it as a reasonable result
|
---|
| 88 | * that the conditioning has no significant influence on the
|
---|
| 89 | * compression performance. This means that the basic
|
---|
| 90 | * statistical model is already rather stable.
|
---|
| 91 | *
|
---|
| 92 | * Thus, at the moment, we use the default conditioning values
|
---|
| 93 | * anyway, and do not use the custom formula.
|
---|
| 94 | *
|
---|
| 95 | #define CALCULATE_SPECTRAL_CONDITIONING
|
---|
| 96 | */
|
---|
| 97 |
|
---|
| 98 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
---|
| 99 | * We assume that int right shift is unsigned if INT32 right shift is,
|
---|
| 100 | * which should be safe.
|
---|
| 101 | */
|
---|
| 102 |
|
---|
| 103 | #ifdef RIGHT_SHIFT_IS_UNSIGNED
|
---|
| 104 | #define ISHIFT_TEMPS int ishift_temp;
|
---|
| 105 | #define IRIGHT_SHIFT(x,shft) \
|
---|
| 106 | ((ishift_temp = (x)) < 0 ? \
|
---|
| 107 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
---|
| 108 | (ishift_temp >> (shft)))
|
---|
| 109 | #else
|
---|
| 110 | #define ISHIFT_TEMPS
|
---|
| 111 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
---|
| 112 | #endif
|
---|
| 113 |
|
---|
| 114 |
|
---|
| 115 | LOCAL(void)
|
---|
| 116 | emit_byte (int val, j_compress_ptr cinfo)
|
---|
| 117 | /* Write next output byte; we do not support suspension in this module. */
|
---|
| 118 | {
|
---|
| 119 | struct jpeg_destination_mgr * dest = cinfo->dest;
|
---|
| 120 |
|
---|
| 121 | *dest->next_output_byte++ = (JOCTET) val;
|
---|
| 122 | if (--dest->free_in_buffer == 0)
|
---|
| 123 | if (! (*dest->empty_output_buffer) (cinfo))
|
---|
| 124 | ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 |
|
---|
| 128 | /*
|
---|
| 129 | * Finish up at the end of an arithmetic-compressed scan.
|
---|
| 130 | */
|
---|
| 131 |
|
---|
| 132 | METHODDEF(void)
|
---|
| 133 | finish_pass (j_compress_ptr cinfo)
|
---|
| 134 | {
|
---|
| 135 | arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 136 | INT32 temp;
|
---|
| 137 |
|
---|
| 138 | /* Section D.1.8: Termination of encoding */
|
---|
| 139 |
|
---|
| 140 | /* Find the e->c in the coding interval with the largest
|
---|
| 141 | * number of trailing zero bits */
|
---|
| 142 | if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
|
---|
| 143 | e->c = temp + 0x8000L;
|
---|
| 144 | else
|
---|
| 145 | e->c = temp;
|
---|
| 146 | /* Send remaining bytes to output */
|
---|
| 147 | e->c <<= e->ct;
|
---|
| 148 | if (e->c & 0xF8000000L) {
|
---|
| 149 | /* One final overflow has to be handled */
|
---|
| 150 | if (e->buffer >= 0) {
|
---|
| 151 | if (e->zc)
|
---|
| 152 | do emit_byte(0x00, cinfo);
|
---|
| 153 | while (--e->zc);
|
---|
| 154 | emit_byte(e->buffer + 1, cinfo);
|
---|
| 155 | if (e->buffer + 1 == 0xFF)
|
---|
| 156 | emit_byte(0x00, cinfo);
|
---|
| 157 | }
|
---|
| 158 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
---|
| 159 | e->sc = 0;
|
---|
| 160 | } else {
|
---|
| 161 | if (e->buffer == 0)
|
---|
| 162 | ++e->zc;
|
---|
| 163 | else if (e->buffer >= 0) {
|
---|
| 164 | if (e->zc)
|
---|
| 165 | do emit_byte(0x00, cinfo);
|
---|
| 166 | while (--e->zc);
|
---|
| 167 | emit_byte(e->buffer, cinfo);
|
---|
| 168 | }
|
---|
| 169 | if (e->sc) {
|
---|
| 170 | if (e->zc)
|
---|
| 171 | do emit_byte(0x00, cinfo);
|
---|
| 172 | while (--e->zc);
|
---|
| 173 | do {
|
---|
| 174 | emit_byte(0xFF, cinfo);
|
---|
| 175 | emit_byte(0x00, cinfo);
|
---|
| 176 | } while (--e->sc);
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | /* Output final bytes only if they are not 0x00 */
|
---|
| 180 | if (e->c & 0x7FFF800L) {
|
---|
| 181 | if (e->zc) /* output final pending zero bytes */
|
---|
| 182 | do emit_byte(0x00, cinfo);
|
---|
| 183 | while (--e->zc);
|
---|
| 184 | emit_byte((e->c >> 19) & 0xFF, cinfo);
|
---|
| 185 | if (((e->c >> 19) & 0xFF) == 0xFF)
|
---|
| 186 | emit_byte(0x00, cinfo);
|
---|
| 187 | if (e->c & 0x7F800L) {
|
---|
| 188 | emit_byte((e->c >> 11) & 0xFF, cinfo);
|
---|
| 189 | if (((e->c >> 11) & 0xFF) == 0xFF)
|
---|
| 190 | emit_byte(0x00, cinfo);
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 |
|
---|
| 196 | /*
|
---|
| 197 | * The core arithmetic encoding routine (common in JPEG and JBIG).
|
---|
| 198 | * This needs to go as fast as possible.
|
---|
| 199 | * Machine-dependent optimization facilities
|
---|
| 200 | * are not utilized in this portable implementation.
|
---|
| 201 | * However, this code should be fairly efficient and
|
---|
| 202 | * may be a good base for further optimizations anyway.
|
---|
| 203 | *
|
---|
| 204 | * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
|
---|
| 205 | *
|
---|
| 206 | * Note: I've added full "Pacman" termination support to the
|
---|
| 207 | * byte output routines, which is equivalent to the optional
|
---|
| 208 | * Discard_final_zeros procedure (Figure D.15) in the spec.
|
---|
| 209 | * Thus, we always produce the shortest possible output
|
---|
| 210 | * stream compliant to the spec (no trailing zero bytes,
|
---|
| 211 | * except for FF stuffing).
|
---|
| 212 | *
|
---|
| 213 | * I've also introduced a new scheme for accessing
|
---|
| 214 | * the probability estimation state machine table,
|
---|
| 215 | * derived from Markus Kuhn's JBIG implementation.
|
---|
| 216 | */
|
---|
| 217 |
|
---|
| 218 | LOCAL(void)
|
---|
| 219 | arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
|
---|
| 220 | {
|
---|
| 221 | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 222 | register unsigned char nl, nm;
|
---|
| 223 | register INT32 qe, temp;
|
---|
| 224 | register int sv;
|
---|
| 225 |
|
---|
| 226 | /* Fetch values from our compact representation of Table D.2:
|
---|
| 227 | * Qe values and probability estimation state machine
|
---|
| 228 | */
|
---|
| 229 | sv = *st;
|
---|
| 230 | qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
|
---|
| 231 | nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
---|
| 232 | nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
---|
| 233 |
|
---|
| 234 | /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
|
---|
| 235 | e->a -= qe;
|
---|
| 236 | if (val != (sv >> 7)) {
|
---|
| 237 | /* Encode the less probable symbol */
|
---|
| 238 | if (e->a >= qe) {
|
---|
| 239 | /* If the interval size (qe) for the less probable symbol (LPS)
|
---|
| 240 | * is larger than the interval size for the MPS, then exchange
|
---|
| 241 | * the two symbols for coding efficiency, otherwise code the LPS
|
---|
| 242 | * as usual: */
|
---|
| 243 | e->c += e->a;
|
---|
| 244 | e->a = qe;
|
---|
| 245 | }
|
---|
| 246 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
---|
| 247 | } else {
|
---|
| 248 | /* Encode the more probable symbol */
|
---|
| 249 | if (e->a >= 0x8000L)
|
---|
| 250 | return; /* A >= 0x8000 -> ready, no renormalization required */
|
---|
| 251 | if (e->a < qe) {
|
---|
| 252 | /* If the interval size (qe) for the less probable symbol (LPS)
|
---|
| 253 | * is larger than the interval size for the MPS, then exchange
|
---|
| 254 | * the two symbols for coding efficiency: */
|
---|
| 255 | e->c += e->a;
|
---|
| 256 | e->a = qe;
|
---|
| 257 | }
|
---|
| 258 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | /* Renormalization & data output per section D.1.6 */
|
---|
| 262 | do {
|
---|
| 263 | e->a <<= 1;
|
---|
| 264 | e->c <<= 1;
|
---|
| 265 | if (--e->ct == 0) {
|
---|
| 266 | /* Another byte is ready for output */
|
---|
| 267 | temp = e->c >> 19;
|
---|
| 268 | if (temp > 0xFF) {
|
---|
| 269 | /* Handle overflow over all stacked 0xFF bytes */
|
---|
| 270 | if (e->buffer >= 0) {
|
---|
| 271 | if (e->zc)
|
---|
| 272 | do emit_byte(0x00, cinfo);
|
---|
| 273 | while (--e->zc);
|
---|
| 274 | emit_byte(e->buffer + 1, cinfo);
|
---|
| 275 | if (e->buffer + 1 == 0xFF)
|
---|
| 276 | emit_byte(0x00, cinfo);
|
---|
| 277 | }
|
---|
| 278 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
---|
| 279 | e->sc = 0;
|
---|
| 280 | /* Note: The 3 spacer bits in the C register guarantee
|
---|
| 281 | * that the new buffer byte can't be 0xFF here
|
---|
| 282 | * (see page 160 in the P&M JPEG book). */
|
---|
| 283 | e->buffer = temp & 0xFF; /* new output byte, might overflow later */
|
---|
| 284 | } else if (temp == 0xFF) {
|
---|
| 285 | ++e->sc; /* stack 0xFF byte (which might overflow later) */
|
---|
| 286 | } else {
|
---|
| 287 | /* Output all stacked 0xFF bytes, they will not overflow any more */
|
---|
| 288 | if (e->buffer == 0)
|
---|
| 289 | ++e->zc;
|
---|
| 290 | else if (e->buffer >= 0) {
|
---|
| 291 | if (e->zc)
|
---|
| 292 | do emit_byte(0x00, cinfo);
|
---|
| 293 | while (--e->zc);
|
---|
| 294 | emit_byte(e->buffer, cinfo);
|
---|
| 295 | }
|
---|
| 296 | if (e->sc) {
|
---|
| 297 | if (e->zc)
|
---|
| 298 | do emit_byte(0x00, cinfo);
|
---|
| 299 | while (--e->zc);
|
---|
| 300 | do {
|
---|
| 301 | emit_byte(0xFF, cinfo);
|
---|
| 302 | emit_byte(0x00, cinfo);
|
---|
| 303 | } while (--e->sc);
|
---|
| 304 | }
|
---|
| 305 | e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
|
---|
| 306 | }
|
---|
| 307 | e->c &= 0x7FFFFL;
|
---|
| 308 | e->ct += 8;
|
---|
| 309 | }
|
---|
| 310 | } while (e->a < 0x8000L);
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 |
|
---|
| 314 | /*
|
---|
| 315 | * Emit a restart marker & resynchronize predictions.
|
---|
| 316 | */
|
---|
| 317 |
|
---|
| 318 | LOCAL(void)
|
---|
| 319 | emit_restart (j_compress_ptr cinfo, int restart_num)
|
---|
| 320 | {
|
---|
| 321 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 322 | int ci;
|
---|
| 323 | jpeg_component_info * compptr;
|
---|
| 324 |
|
---|
| 325 | finish_pass(cinfo);
|
---|
| 326 |
|
---|
| 327 | emit_byte(0xFF, cinfo);
|
---|
| 328 | emit_byte(JPEG_RST0 + restart_num, cinfo);
|
---|
| 329 |
|
---|
| 330 | /* Re-initialize statistics areas */
|
---|
| 331 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 332 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 333 | /* DC needs no table for refinement scan */
|
---|
| 334 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
| 335 | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
---|
| 336 | /* Reset DC predictions to 0 */
|
---|
| 337 | entropy->last_dc_val[ci] = 0;
|
---|
| 338 | entropy->dc_context[ci] = 0;
|
---|
| 339 | }
|
---|
| 340 | /* AC needs no table when not present */
|
---|
| 341 | if (cinfo->Se) {
|
---|
| 342 | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
---|
| 343 | }
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | /* Reset arithmetic encoding variables */
|
---|
| 347 | entropy->c = 0;
|
---|
| 348 | entropy->a = 0x10000L;
|
---|
| 349 | entropy->sc = 0;
|
---|
| 350 | entropy->zc = 0;
|
---|
| 351 | entropy->ct = 11;
|
---|
| 352 | entropy->buffer = -1; /* empty */
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 |
|
---|
| 356 | /*
|
---|
| 357 | * MCU encoding for DC initial scan (either spectral selection,
|
---|
| 358 | * or first pass of successive approximation).
|
---|
| 359 | */
|
---|
| 360 |
|
---|
| 361 | METHODDEF(boolean)
|
---|
| 362 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 363 | {
|
---|
| 364 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 365 | JBLOCKROW block;
|
---|
| 366 | unsigned char *st;
|
---|
| 367 | int blkn, ci, tbl;
|
---|
| 368 | int v, v2, m;
|
---|
| 369 | ISHIFT_TEMPS
|
---|
| 370 |
|
---|
| 371 | /* Emit restart marker if needed */
|
---|
| 372 | if (cinfo->restart_interval) {
|
---|
| 373 | if (entropy->restarts_to_go == 0) {
|
---|
| 374 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
| 375 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 376 | entropy->next_restart_num++;
|
---|
| 377 | entropy->next_restart_num &= 7;
|
---|
| 378 | }
|
---|
| 379 | entropy->restarts_to_go--;
|
---|
| 380 | }
|
---|
| 381 |
|
---|
| 382 | /* Encode the MCU data blocks */
|
---|
| 383 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 384 | block = MCU_data[blkn];
|
---|
| 385 | ci = cinfo->MCU_membership[blkn];
|
---|
| 386 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
---|
| 387 |
|
---|
| 388 | /* Compute the DC value after the required point transform by Al.
|
---|
| 389 | * This is simply an arithmetic right shift.
|
---|
| 390 | */
|
---|
| 391 | m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
|
---|
| 392 |
|
---|
| 393 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
---|
| 394 |
|
---|
| 395 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
---|
| 396 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
---|
| 397 |
|
---|
| 398 | /* Figure F.4: Encode_DC_DIFF */
|
---|
| 399 | if ((v = m - entropy->last_dc_val[ci]) == 0) {
|
---|
| 400 | arith_encode(cinfo, st, 0);
|
---|
| 401 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
| 402 | } else {
|
---|
| 403 | entropy->last_dc_val[ci] = m;
|
---|
| 404 | arith_encode(cinfo, st, 1);
|
---|
| 405 | /* Figure F.6: Encoding nonzero value v */
|
---|
| 406 | /* Figure F.7: Encoding the sign of v */
|
---|
| 407 | if (v > 0) {
|
---|
| 408 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
---|
| 409 | st += 2; /* Table F.4: SP = S0 + 2 */
|
---|
| 410 | entropy->dc_context[ci] = 4; /* small positive diff category */
|
---|
| 411 | } else {
|
---|
| 412 | v = -v;
|
---|
| 413 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
---|
| 414 | st += 3; /* Table F.4: SN = S0 + 3 */
|
---|
| 415 | entropy->dc_context[ci] = 8; /* small negative diff category */
|
---|
| 416 | }
|
---|
| 417 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
| 418 | m = 0;
|
---|
| 419 | if (v -= 1) {
|
---|
| 420 | arith_encode(cinfo, st, 1);
|
---|
| 421 | m = 1;
|
---|
| 422 | v2 = v;
|
---|
| 423 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
---|
| 424 | while (v2 >>= 1) {
|
---|
| 425 | arith_encode(cinfo, st, 1);
|
---|
| 426 | m <<= 1;
|
---|
| 427 | st += 1;
|
---|
| 428 | }
|
---|
| 429 | }
|
---|
| 430 | arith_encode(cinfo, st, 0);
|
---|
| 431 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
---|
| 432 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
---|
| 433 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
| 434 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
---|
| 435 | entropy->dc_context[ci] += 8; /* large diff category */
|
---|
| 436 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
| 437 | st += 14;
|
---|
| 438 | while (m >>= 1)
|
---|
| 439 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
| 440 | }
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | return TRUE;
|
---|
| 444 | }
|
---|
| 445 |
|
---|
| 446 |
|
---|
| 447 | /*
|
---|
| 448 | * MCU encoding for AC initial scan (either spectral selection,
|
---|
| 449 | * or first pass of successive approximation).
|
---|
| 450 | */
|
---|
| 451 |
|
---|
| 452 | METHODDEF(boolean)
|
---|
| 453 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 454 | {
|
---|
| 455 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 456 | JBLOCKROW block;
|
---|
| 457 | unsigned char *st;
|
---|
| 458 | int tbl, k, ke;
|
---|
| 459 | int v, v2, m;
|
---|
| 460 | const int * natural_order;
|
---|
| 461 |
|
---|
| 462 | /* Emit restart marker if needed */
|
---|
| 463 | if (cinfo->restart_interval) {
|
---|
| 464 | if (entropy->restarts_to_go == 0) {
|
---|
| 465 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
| 466 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 467 | entropy->next_restart_num++;
|
---|
| 468 | entropy->next_restart_num &= 7;
|
---|
| 469 | }
|
---|
| 470 | entropy->restarts_to_go--;
|
---|
| 471 | }
|
---|
| 472 |
|
---|
| 473 | natural_order = cinfo->natural_order;
|
---|
| 474 |
|
---|
| 475 | /* Encode the MCU data block */
|
---|
| 476 | block = MCU_data[0];
|
---|
| 477 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
---|
| 478 |
|
---|
| 479 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
---|
| 480 |
|
---|
| 481 | /* Establish EOB (end-of-block) index */
|
---|
| 482 | for (ke = cinfo->Se; ke > 0; ke--)
|
---|
| 483 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
| 484 | * is an integer division with rounding towards 0. To do this portably
|
---|
| 485 | * in C, we shift after obtaining the absolute value.
|
---|
| 486 | */
|
---|
| 487 | if ((v = (*block)[natural_order[ke]]) >= 0) {
|
---|
| 488 | if (v >>= cinfo->Al) break;
|
---|
| 489 | } else {
|
---|
| 490 | v = -v;
|
---|
| 491 | if (v >>= cinfo->Al) break;
|
---|
| 492 | }
|
---|
| 493 |
|
---|
| 494 | /* Figure F.5: Encode_AC_Coefficients */
|
---|
| 495 | for (k = cinfo->Ss; k <= ke; k++) {
|
---|
| 496 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
| 497 | arith_encode(cinfo, st, 0); /* EOB decision */
|
---|
| 498 | for (;;) {
|
---|
| 499 | if ((v = (*block)[natural_order[k]]) >= 0) {
|
---|
| 500 | if (v >>= cinfo->Al) {
|
---|
| 501 | arith_encode(cinfo, st + 1, 1);
|
---|
| 502 | arith_encode(cinfo, entropy->fixed_bin, 0);
|
---|
| 503 | break;
|
---|
| 504 | }
|
---|
| 505 | } else {
|
---|
| 506 | v = -v;
|
---|
| 507 | if (v >>= cinfo->Al) {
|
---|
| 508 | arith_encode(cinfo, st + 1, 1);
|
---|
| 509 | arith_encode(cinfo, entropy->fixed_bin, 1);
|
---|
| 510 | break;
|
---|
| 511 | }
|
---|
| 512 | }
|
---|
| 513 | arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
---|
| 514 | }
|
---|
| 515 | st += 2;
|
---|
| 516 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
| 517 | m = 0;
|
---|
| 518 | if (v -= 1) {
|
---|
| 519 | arith_encode(cinfo, st, 1);
|
---|
| 520 | m = 1;
|
---|
| 521 | v2 = v;
|
---|
| 522 | if (v2 >>= 1) {
|
---|
| 523 | arith_encode(cinfo, st, 1);
|
---|
| 524 | m <<= 1;
|
---|
| 525 | st = entropy->ac_stats[tbl] +
|
---|
| 526 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
---|
| 527 | while (v2 >>= 1) {
|
---|
| 528 | arith_encode(cinfo, st, 1);
|
---|
| 529 | m <<= 1;
|
---|
| 530 | st += 1;
|
---|
| 531 | }
|
---|
| 532 | }
|
---|
| 533 | }
|
---|
| 534 | arith_encode(cinfo, st, 0);
|
---|
| 535 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
| 536 | st += 14;
|
---|
| 537 | while (m >>= 1)
|
---|
| 538 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
| 539 | }
|
---|
| 540 | /* Encode EOB decision only if k <= cinfo->Se */
|
---|
| 541 | if (k <= cinfo->Se) {
|
---|
| 542 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
| 543 | arith_encode(cinfo, st, 1);
|
---|
| 544 | }
|
---|
| 545 |
|
---|
| 546 | return TRUE;
|
---|
| 547 | }
|
---|
| 548 |
|
---|
| 549 |
|
---|
| 550 | /*
|
---|
| 551 | * MCU encoding for DC successive approximation refinement scan.
|
---|
| 552 | */
|
---|
| 553 |
|
---|
| 554 | METHODDEF(boolean)
|
---|
| 555 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 556 | {
|
---|
| 557 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 558 | unsigned char *st;
|
---|
| 559 | int Al, blkn;
|
---|
| 560 |
|
---|
| 561 | /* Emit restart marker if needed */
|
---|
| 562 | if (cinfo->restart_interval) {
|
---|
| 563 | if (entropy->restarts_to_go == 0) {
|
---|
| 564 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
| 565 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 566 | entropy->next_restart_num++;
|
---|
| 567 | entropy->next_restart_num &= 7;
|
---|
| 568 | }
|
---|
| 569 | entropy->restarts_to_go--;
|
---|
| 570 | }
|
---|
| 571 |
|
---|
| 572 | st = entropy->fixed_bin; /* use fixed probability estimation */
|
---|
| 573 | Al = cinfo->Al;
|
---|
| 574 |
|
---|
| 575 | /* Encode the MCU data blocks */
|
---|
| 576 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 577 | /* We simply emit the Al'th bit of the DC coefficient value. */
|
---|
| 578 | arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
|
---|
| 579 | }
|
---|
| 580 |
|
---|
| 581 | return TRUE;
|
---|
| 582 | }
|
---|
| 583 |
|
---|
| 584 |
|
---|
| 585 | /*
|
---|
| 586 | * MCU encoding for AC successive approximation refinement scan.
|
---|
| 587 | */
|
---|
| 588 |
|
---|
| 589 | METHODDEF(boolean)
|
---|
| 590 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 591 | {
|
---|
| 592 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 593 | JBLOCKROW block;
|
---|
| 594 | unsigned char *st;
|
---|
| 595 | int tbl, k, ke, kex;
|
---|
| 596 | int v;
|
---|
| 597 | const int * natural_order;
|
---|
| 598 |
|
---|
| 599 | /* Emit restart marker if needed */
|
---|
| 600 | if (cinfo->restart_interval) {
|
---|
| 601 | if (entropy->restarts_to_go == 0) {
|
---|
| 602 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
| 603 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 604 | entropy->next_restart_num++;
|
---|
| 605 | entropy->next_restart_num &= 7;
|
---|
| 606 | }
|
---|
| 607 | entropy->restarts_to_go--;
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 | natural_order = cinfo->natural_order;
|
---|
| 611 |
|
---|
| 612 | /* Encode the MCU data block */
|
---|
| 613 | block = MCU_data[0];
|
---|
| 614 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
---|
| 615 |
|
---|
| 616 | /* Section G.1.3.3: Encoding of AC coefficients */
|
---|
| 617 |
|
---|
| 618 | /* Establish EOB (end-of-block) index */
|
---|
| 619 | for (ke = cinfo->Se; ke > 0; ke--)
|
---|
| 620 | /* We must apply the point transform by Al. For AC coefficients this
|
---|
| 621 | * is an integer division with rounding towards 0. To do this portably
|
---|
| 622 | * in C, we shift after obtaining the absolute value.
|
---|
| 623 | */
|
---|
| 624 | if ((v = (*block)[natural_order[ke]]) >= 0) {
|
---|
| 625 | if (v >>= cinfo->Al) break;
|
---|
| 626 | } else {
|
---|
| 627 | v = -v;
|
---|
| 628 | if (v >>= cinfo->Al) break;
|
---|
| 629 | }
|
---|
| 630 |
|
---|
| 631 | /* Establish EOBx (previous stage end-of-block) index */
|
---|
| 632 | for (kex = ke; kex > 0; kex--)
|
---|
| 633 | if ((v = (*block)[natural_order[kex]]) >= 0) {
|
---|
| 634 | if (v >>= cinfo->Ah) break;
|
---|
| 635 | } else {
|
---|
| 636 | v = -v;
|
---|
| 637 | if (v >>= cinfo->Ah) break;
|
---|
| 638 | }
|
---|
| 639 |
|
---|
| 640 | /* Figure G.10: Encode_AC_Coefficients_SA */
|
---|
| 641 | for (k = cinfo->Ss; k <= ke; k++) {
|
---|
| 642 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
| 643 | if (k > kex)
|
---|
| 644 | arith_encode(cinfo, st, 0); /* EOB decision */
|
---|
| 645 | for (;;) {
|
---|
| 646 | if ((v = (*block)[natural_order[k]]) >= 0) {
|
---|
| 647 | if (v >>= cinfo->Al) {
|
---|
| 648 | if (v >> 1) /* previously nonzero coef */
|
---|
| 649 | arith_encode(cinfo, st + 2, (v & 1));
|
---|
| 650 | else { /* newly nonzero coef */
|
---|
| 651 | arith_encode(cinfo, st + 1, 1);
|
---|
| 652 | arith_encode(cinfo, entropy->fixed_bin, 0);
|
---|
| 653 | }
|
---|
| 654 | break;
|
---|
| 655 | }
|
---|
| 656 | } else {
|
---|
| 657 | v = -v;
|
---|
| 658 | if (v >>= cinfo->Al) {
|
---|
| 659 | if (v >> 1) /* previously nonzero coef */
|
---|
| 660 | arith_encode(cinfo, st + 2, (v & 1));
|
---|
| 661 | else { /* newly nonzero coef */
|
---|
| 662 | arith_encode(cinfo, st + 1, 1);
|
---|
| 663 | arith_encode(cinfo, entropy->fixed_bin, 1);
|
---|
| 664 | }
|
---|
| 665 | break;
|
---|
| 666 | }
|
---|
| 667 | }
|
---|
| 668 | arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
---|
| 669 | }
|
---|
| 670 | }
|
---|
| 671 | /* Encode EOB decision only if k <= cinfo->Se */
|
---|
| 672 | if (k <= cinfo->Se) {
|
---|
| 673 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
| 674 | arith_encode(cinfo, st, 1);
|
---|
| 675 | }
|
---|
| 676 |
|
---|
| 677 | return TRUE;
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 |
|
---|
| 681 | /*
|
---|
| 682 | * Encode and output one MCU's worth of arithmetic-compressed coefficients.
|
---|
| 683 | */
|
---|
| 684 |
|
---|
| 685 | METHODDEF(boolean)
|
---|
| 686 | encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
---|
| 687 | {
|
---|
| 688 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 689 | jpeg_component_info * compptr;
|
---|
| 690 | JBLOCKROW block;
|
---|
| 691 | unsigned char *st;
|
---|
| 692 | int blkn, ci, tbl, k, ke;
|
---|
| 693 | int v, v2, m;
|
---|
| 694 | const int * natural_order;
|
---|
| 695 |
|
---|
| 696 | /* Emit restart marker if needed */
|
---|
| 697 | if (cinfo->restart_interval) {
|
---|
| 698 | if (entropy->restarts_to_go == 0) {
|
---|
| 699 | emit_restart(cinfo, entropy->next_restart_num);
|
---|
| 700 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 701 | entropy->next_restart_num++;
|
---|
| 702 | entropy->next_restart_num &= 7;
|
---|
| 703 | }
|
---|
| 704 | entropy->restarts_to_go--;
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | natural_order = cinfo->natural_order;
|
---|
| 708 |
|
---|
| 709 | /* Encode the MCU data blocks */
|
---|
| 710 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
---|
| 711 | block = MCU_data[blkn];
|
---|
| 712 | ci = cinfo->MCU_membership[blkn];
|
---|
| 713 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 714 |
|
---|
| 715 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
---|
| 716 |
|
---|
| 717 | tbl = compptr->dc_tbl_no;
|
---|
| 718 |
|
---|
| 719 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
---|
| 720 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
---|
| 721 |
|
---|
| 722 | /* Figure F.4: Encode_DC_DIFF */
|
---|
| 723 | if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
|
---|
| 724 | arith_encode(cinfo, st, 0);
|
---|
| 725 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
| 726 | } else {
|
---|
| 727 | entropy->last_dc_val[ci] = (*block)[0];
|
---|
| 728 | arith_encode(cinfo, st, 1);
|
---|
| 729 | /* Figure F.6: Encoding nonzero value v */
|
---|
| 730 | /* Figure F.7: Encoding the sign of v */
|
---|
| 731 | if (v > 0) {
|
---|
| 732 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
---|
| 733 | st += 2; /* Table F.4: SP = S0 + 2 */
|
---|
| 734 | entropy->dc_context[ci] = 4; /* small positive diff category */
|
---|
| 735 | } else {
|
---|
| 736 | v = -v;
|
---|
| 737 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
---|
| 738 | st += 3; /* Table F.4: SN = S0 + 3 */
|
---|
| 739 | entropy->dc_context[ci] = 8; /* small negative diff category */
|
---|
| 740 | }
|
---|
| 741 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
| 742 | m = 0;
|
---|
| 743 | if (v -= 1) {
|
---|
| 744 | arith_encode(cinfo, st, 1);
|
---|
| 745 | m = 1;
|
---|
| 746 | v2 = v;
|
---|
| 747 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
---|
| 748 | while (v2 >>= 1) {
|
---|
| 749 | arith_encode(cinfo, st, 1);
|
---|
| 750 | m <<= 1;
|
---|
| 751 | st += 1;
|
---|
| 752 | }
|
---|
| 753 | }
|
---|
| 754 | arith_encode(cinfo, st, 0);
|
---|
| 755 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
---|
| 756 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
|
---|
| 757 | entropy->dc_context[ci] = 0; /* zero diff category */
|
---|
| 758 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
|
---|
| 759 | entropy->dc_context[ci] += 8; /* large diff category */
|
---|
| 760 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
| 761 | st += 14;
|
---|
| 762 | while (m >>= 1)
|
---|
| 763 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
| 764 | }
|
---|
| 765 |
|
---|
| 766 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
---|
| 767 |
|
---|
| 768 | tbl = compptr->ac_tbl_no;
|
---|
| 769 |
|
---|
| 770 | /* Establish EOB (end-of-block) index */
|
---|
| 771 | for (ke = cinfo->lim_Se; ke > 0; ke--)
|
---|
| 772 | if ((*block)[natural_order[ke]]) break;
|
---|
| 773 |
|
---|
| 774 | /* Figure F.5: Encode_AC_Coefficients */
|
---|
| 775 | for (k = 1; k <= ke; k++) {
|
---|
| 776 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
| 777 | arith_encode(cinfo, st, 0); /* EOB decision */
|
---|
| 778 | while ((v = (*block)[natural_order[k]]) == 0) {
|
---|
| 779 | arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
---|
| 780 | }
|
---|
| 781 | arith_encode(cinfo, st + 1, 1);
|
---|
| 782 | /* Figure F.6: Encoding nonzero value v */
|
---|
| 783 | /* Figure F.7: Encoding the sign of v */
|
---|
| 784 | if (v > 0) {
|
---|
| 785 | arith_encode(cinfo, entropy->fixed_bin, 0);
|
---|
| 786 | } else {
|
---|
| 787 | v = -v;
|
---|
| 788 | arith_encode(cinfo, entropy->fixed_bin, 1);
|
---|
| 789 | }
|
---|
| 790 | st += 2;
|
---|
| 791 | /* Figure F.8: Encoding the magnitude category of v */
|
---|
| 792 | m = 0;
|
---|
| 793 | if (v -= 1) {
|
---|
| 794 | arith_encode(cinfo, st, 1);
|
---|
| 795 | m = 1;
|
---|
| 796 | v2 = v;
|
---|
| 797 | if (v2 >>= 1) {
|
---|
| 798 | arith_encode(cinfo, st, 1);
|
---|
| 799 | m <<= 1;
|
---|
| 800 | st = entropy->ac_stats[tbl] +
|
---|
| 801 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
---|
| 802 | while (v2 >>= 1) {
|
---|
| 803 | arith_encode(cinfo, st, 1);
|
---|
| 804 | m <<= 1;
|
---|
| 805 | st += 1;
|
---|
| 806 | }
|
---|
| 807 | }
|
---|
| 808 | }
|
---|
| 809 | arith_encode(cinfo, st, 0);
|
---|
| 810 | /* Figure F.9: Encoding the magnitude bit pattern of v */
|
---|
| 811 | st += 14;
|
---|
| 812 | while (m >>= 1)
|
---|
| 813 | arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
---|
| 814 | }
|
---|
| 815 | /* Encode EOB decision only if k <= cinfo->lim_Se */
|
---|
| 816 | if (k <= cinfo->lim_Se) {
|
---|
| 817 | st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
---|
| 818 | arith_encode(cinfo, st, 1);
|
---|
| 819 | }
|
---|
| 820 | }
|
---|
| 821 |
|
---|
| 822 | return TRUE;
|
---|
| 823 | }
|
---|
| 824 |
|
---|
| 825 |
|
---|
| 826 | /*
|
---|
| 827 | * Initialize for an arithmetic-compressed scan.
|
---|
| 828 | */
|
---|
| 829 |
|
---|
| 830 | METHODDEF(void)
|
---|
| 831 | start_pass (j_compress_ptr cinfo, boolean gather_statistics)
|
---|
| 832 | {
|
---|
| 833 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
---|
| 834 | int ci, tbl;
|
---|
| 835 | jpeg_component_info * compptr;
|
---|
| 836 |
|
---|
| 837 | if (gather_statistics)
|
---|
| 838 | /* Make sure to avoid that in the master control logic!
|
---|
| 839 | * We are fully adaptive here and need no extra
|
---|
| 840 | * statistics gathering pass!
|
---|
| 841 | */
|
---|
| 842 | ERREXIT(cinfo, JERR_NOT_COMPILED);
|
---|
| 843 |
|
---|
| 844 | /* We assume jcmaster.c already validated the progressive scan parameters. */
|
---|
| 845 |
|
---|
| 846 | /* Select execution routines */
|
---|
| 847 | if (cinfo->progressive_mode) {
|
---|
| 848 | if (cinfo->Ah == 0) {
|
---|
| 849 | if (cinfo->Ss == 0)
|
---|
| 850 | entropy->pub.encode_mcu = encode_mcu_DC_first;
|
---|
| 851 | else
|
---|
| 852 | entropy->pub.encode_mcu = encode_mcu_AC_first;
|
---|
| 853 | } else {
|
---|
| 854 | if (cinfo->Ss == 0)
|
---|
| 855 | entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
---|
| 856 | else
|
---|
| 857 | entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
---|
| 858 | }
|
---|
| 859 | } else
|
---|
| 860 | entropy->pub.encode_mcu = encode_mcu;
|
---|
| 861 |
|
---|
| 862 | /* Allocate & initialize requested statistics areas */
|
---|
| 863 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
| 864 | compptr = cinfo->cur_comp_info[ci];
|
---|
| 865 | /* DC needs no table for refinement scan */
|
---|
| 866 | if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
---|
| 867 | tbl = compptr->dc_tbl_no;
|
---|
| 868 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
---|
| 869 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
---|
| 870 | if (entropy->dc_stats[tbl] == NULL)
|
---|
| 871 | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
---|
| 872 | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
---|
| 873 | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
---|
| 874 | /* Initialize DC predictions to 0 */
|
---|
| 875 | entropy->last_dc_val[ci] = 0;
|
---|
| 876 | entropy->dc_context[ci] = 0;
|
---|
| 877 | }
|
---|
| 878 | /* AC needs no table when not present */
|
---|
| 879 | if (cinfo->Se) {
|
---|
| 880 | tbl = compptr->ac_tbl_no;
|
---|
| 881 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
---|
| 882 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
---|
| 883 | if (entropy->ac_stats[tbl] == NULL)
|
---|
| 884 | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
---|
| 885 | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
---|
| 886 | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
---|
| 887 | #ifdef CALCULATE_SPECTRAL_CONDITIONING
|
---|
| 888 | if (cinfo->progressive_mode)
|
---|
| 889 | /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
|
---|
| 890 | cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
|
---|
| 891 | #endif
|
---|
| 892 | }
|
---|
| 893 | }
|
---|
| 894 |
|
---|
| 895 | /* Initialize arithmetic encoding variables */
|
---|
| 896 | entropy->c = 0;
|
---|
| 897 | entropy->a = 0x10000L;
|
---|
| 898 | entropy->sc = 0;
|
---|
| 899 | entropy->zc = 0;
|
---|
| 900 | entropy->ct = 11;
|
---|
| 901 | entropy->buffer = -1; /* empty */
|
---|
| 902 |
|
---|
| 903 | /* Initialize restart stuff */
|
---|
| 904 | entropy->restarts_to_go = cinfo->restart_interval;
|
---|
| 905 | entropy->next_restart_num = 0;
|
---|
| 906 | }
|
---|
| 907 |
|
---|
| 908 |
|
---|
| 909 | /*
|
---|
| 910 | * Module initialization routine for arithmetic entropy encoding.
|
---|
| 911 | */
|
---|
| 912 |
|
---|
| 913 | GLOBAL(void)
|
---|
| 914 | jinit_arith_encoder (j_compress_ptr cinfo)
|
---|
| 915 | {
|
---|
| 916 | arith_entropy_ptr entropy;
|
---|
| 917 | int i;
|
---|
| 918 |
|
---|
| 919 | entropy = (arith_entropy_ptr)
|
---|
| 920 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
| 921 | SIZEOF(arith_entropy_encoder));
|
---|
| 922 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
---|
| 923 | entropy->pub.start_pass = start_pass;
|
---|
| 924 | entropy->pub.finish_pass = finish_pass;
|
---|
| 925 |
|
---|
| 926 | /* Mark tables unallocated */
|
---|
| 927 | for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
---|
| 928 | entropy->dc_stats[i] = NULL;
|
---|
| 929 | entropy->ac_stats[i] = NULL;
|
---|
| 930 | }
|
---|
| 931 |
|
---|
| 932 | /* Initialize index for fixed probability estimation */
|
---|
| 933 | entropy->fixed_bin[0] = 113;
|
---|
| 934 | }
|
---|