| 1 | /* | 
|---|
| 2 | * Implementation of DES encryption for NTLM | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright 1997-2005 Simon Tatham. | 
|---|
| 5 | * | 
|---|
| 6 | * This software is released under the MIT license. | 
|---|
| 7 | */ | 
|---|
| 8 |  | 
|---|
| 9 | /* | 
|---|
| 10 | * Description of DES | 
|---|
| 11 | * ------------------ | 
|---|
| 12 | * | 
|---|
| 13 | * Unlike the description in FIPS 46, I'm going to use _sensible_ indices: | 
|---|
| 14 | * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB. | 
|---|
| 15 | * And S-boxes are indexed by six consecutive bits, not by the outer two | 
|---|
| 16 | * followed by the middle four. | 
|---|
| 17 | * | 
|---|
| 18 | * The DES encryption routine requires a 64-bit input, and a key schedule K | 
|---|
| 19 | * containing 16 48-bit elements. | 
|---|
| 20 | * | 
|---|
| 21 | *   First the input is permuted by the initial permutation IP. | 
|---|
| 22 | *   Then the input is split into 32-bit words L and R. (L is the MSW.) | 
|---|
| 23 | *   Next, 16 rounds. In each round: | 
|---|
| 24 | *     (L, R) <- (R, L xor f(R, K[i])) | 
|---|
| 25 | *   Then the pre-output words L and R are swapped. | 
|---|
| 26 | *   Then L and R are glued back together into a 64-bit word. (L is the MSW, | 
|---|
| 27 | *     again, but since we just swapped them, the MSW is the R that came out | 
|---|
| 28 | *     of the last round.) | 
|---|
| 29 | *   The 64-bit output block is permuted by the inverse of IP and returned. | 
|---|
| 30 | * | 
|---|
| 31 | * Decryption is identical except that the elements of K are used in the | 
|---|
| 32 | * opposite order. (This wouldn't work if that word swap didn't happen.) | 
|---|
| 33 | * | 
|---|
| 34 | * The function f, used in each round, accepts a 32-bit word R and a | 
|---|
| 35 | * 48-bit key block K. It produces a 32-bit output. | 
|---|
| 36 | * | 
|---|
| 37 | *   First R is expanded to 48 bits using the bit-selection function E. | 
|---|
| 38 | *   The resulting 48-bit block is XORed with the key block K to produce | 
|---|
| 39 | *     a 48-bit block X. | 
|---|
| 40 | *   This block X is split into eight groups of 6 bits. Each group of 6 | 
|---|
| 41 | *     bits is then looked up in one of the eight S-boxes to convert | 
|---|
| 42 | *     it to 4 bits. These eight groups of 4 bits are glued back | 
|---|
| 43 | *     together to produce a 32-bit preoutput block. | 
|---|
| 44 | *   The preoutput block is permuted using the permutation P and returned. | 
|---|
| 45 | * | 
|---|
| 46 | * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although | 
|---|
| 47 | * the approved input format for the key is a 64-bit word, eight of the | 
|---|
| 48 | * bits are discarded, so the actual quantity of key used is 56 bits. | 
|---|
| 49 | * | 
|---|
| 50 | *   First the input key is converted to two 28-bit words C and D using | 
|---|
| 51 | *     the bit-selection function PC1. | 
|---|
| 52 | *   Then 16 rounds of key setup occur. In each round, C and D are each | 
|---|
| 53 | *     rotated left by either 1 or 2 bits (depending on which round), and | 
|---|
| 54 | *     then converted into a key schedule element using the bit-selection | 
|---|
| 55 | *     function PC2. | 
|---|
| 56 | * | 
|---|
| 57 | * That's the actual algorithm. Now for the tedious details: all those | 
|---|
| 58 | * painful permutations and lookup tables. | 
|---|
| 59 | * | 
|---|
| 60 | * IP is a 64-to-64 bit permutation. Its output contains the following | 
|---|
| 61 | * bits of its input (listed in order MSB to LSB of output). | 
|---|
| 62 | * | 
|---|
| 63 | *    6 14 22 30 38 46 54 62  4 12 20 28 36 44 52 60 | 
|---|
| 64 | *    2 10 18 26 34 42 50 58  0  8 16 24 32 40 48 56 | 
|---|
| 65 | *    7 15 23 31 39 47 55 63  5 13 21 29 37 45 53 61 | 
|---|
| 66 | *    3 11 19 27 35 43 51 59  1  9 17 25 33 41 49 57 | 
|---|
| 67 | * | 
|---|
| 68 | * E is a 32-to-48 bit selection function. Its output contains the following | 
|---|
| 69 | * bits of its input (listed in order MSB to LSB of output). | 
|---|
| 70 | * | 
|---|
| 71 | *    0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15 | 
|---|
| 72 | *   16 15 14 13 12 11 12 11 10  9  8  7  8  7  6  5  4  3  4  3  2  1  0 31 | 
|---|
| 73 | * | 
|---|
| 74 | * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a | 
|---|
| 75 | * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers. | 
|---|
| 76 | * The S-boxes are listed below. The first S-box listed is applied to the | 
|---|
| 77 | * most significant six bits of the block X; the last one is applied to the | 
|---|
| 78 | * least significant. | 
|---|
| 79 | * | 
|---|
| 80 | *   14  0  4 15 13  7  1  4  2 14 15  2 11 13  8  1 | 
|---|
| 81 | *    3 10 10  6  6 12 12 11  5  9  9  5  0  3  7  8 | 
|---|
| 82 | *    4 15  1 12 14  8  8  2 13  4  6  9  2  1 11  7 | 
|---|
| 83 | *   15  5 12 11  9  3  7 14  3 10 10  0  5  6  0 13 | 
|---|
| 84 | * | 
|---|
| 85 | *   15  3  1 13  8  4 14  7  6 15 11  2  3  8  4 14 | 
|---|
| 86 | *    9 12  7  0  2  1 13 10 12  6  0  9  5 11 10  5 | 
|---|
| 87 | *    0 13 14  8  7 10 11  1 10  3  4 15 13  4  1  2 | 
|---|
| 88 | *    5 11  8  6 12  7  6 12  9  0  3  5  2 14 15  9 | 
|---|
| 89 | * | 
|---|
| 90 | *   10 13  0  7  9  0 14  9  6  3  3  4 15  6  5 10 | 
|---|
| 91 | *    1  2 13  8 12  5  7 14 11 12  4 11  2 15  8  1 | 
|---|
| 92 | *   13  1  6 10  4 13  9  0  8  6 15  9  3  8  0  7 | 
|---|
| 93 | *   11  4  1 15  2 14 12  3  5 11 10  5 14  2  7 12 | 
|---|
| 94 | * | 
|---|
| 95 | *    7 13 13  8 14 11  3  5  0  6  6 15  9  0 10  3 | 
|---|
| 96 | *    1  4  2  7  8  2  5 12 11  1 12 10  4 14 15  9 | 
|---|
| 97 | *   10  3  6 15  9  0  0  6 12 10 11  1  7 13 13  8 | 
|---|
| 98 | *   15  9  1  4  3  5 14 11  5 12  2  7  8  2  4 14 | 
|---|
| 99 | * | 
|---|
| 100 | *    2 14 12 11  4  2  1 12  7  4 10  7 11 13  6  1 | 
|---|
| 101 | *    8  5  5  0  3 15 15 10 13  3  0  9 14  8  9  6 | 
|---|
| 102 | *    4 11  2  8  1 12 11  7 10  1 13 14  7  2  8 13 | 
|---|
| 103 | *   15  6  9 15 12  0  5  9  6 10  3  4  0  5 14  3 | 
|---|
| 104 | * | 
|---|
| 105 | *   12 10  1 15 10  4 15  2  9  7  2 12  6  9  8  5 | 
|---|
| 106 | *    0  6 13  1  3 13  4 14 14  0  7 11  5  3 11  8 | 
|---|
| 107 | *    9  4 14  3 15  2  5 12  2  9  8  5 12 15  3 10 | 
|---|
| 108 | *    7 11  0 14  4  1 10  7  1  6 13  0 11  8  6 13 | 
|---|
| 109 | * | 
|---|
| 110 | *    4 13 11  0  2 11 14  7 15  4  0  9  8  1 13 10 | 
|---|
| 111 | *    3 14 12  3  9  5  7 12  5  2 10 15  6  8  1  6 | 
|---|
| 112 | *    1  6  4 11 11 13 13  8 12  1  3  4  7 10 14  7 | 
|---|
| 113 | *   10  9 15  5  6  0  8 15  0 14  5  2  9  3  2 12 | 
|---|
| 114 | * | 
|---|
| 115 | *   13  1  2 15  8 13  4  8  6 10 15  3 11  7  1  4 | 
|---|
| 116 | *   10 12  9  5  3  6 14 11  5  0  0 14 12  9  7  2 | 
|---|
| 117 | *    7  2 11  1  4 14  1  7  9  4 12 10 14  8  2 13 | 
|---|
| 118 | *    0 15  6 12 10  9 13  0 15  3  3  5  5  6  8 11 | 
|---|
| 119 | * | 
|---|
| 120 | * P is a 32-to-32 bit permutation. Its output contains the following | 
|---|
| 121 | * bits of its input (listed in order MSB to LSB of output). | 
|---|
| 122 | * | 
|---|
| 123 | *   16 25 12 11  3 20  4 15 31 17  9  6 27 14  1 22 | 
|---|
| 124 | *   30 24  8 18  0  5 29 23 13 19  2 26 10 21 28  7 | 
|---|
| 125 | * | 
|---|
| 126 | * PC1 is a 64-to-56 bit selection function. Its output is in two words, | 
|---|
| 127 | * C and D. The word C contains the following bits of its input (listed | 
|---|
| 128 | * in order MSB to LSB of output). | 
|---|
| 129 | * | 
|---|
| 130 | *    7 15 23 31 39 47 55 63  6 14 22 30 38 46 | 
|---|
| 131 | *   54 62  5 13 21 29 37 45 53 61  4 12 20 28 | 
|---|
| 132 | * | 
|---|
| 133 | * And the word D contains these bits. | 
|---|
| 134 | * | 
|---|
| 135 | *    1  9 17 25 33 41 49 57  2 10 18 26 34 42 | 
|---|
| 136 | *   50 58  3 11 19 27 35 43 51 59 36 44 52 60 | 
|---|
| 137 | * | 
|---|
| 138 | * PC2 is a 56-to-48 bit selection function. Its input is in two words, | 
|---|
| 139 | * C and D. These are treated as one 56-bit word (with C more significant, | 
|---|
| 140 | * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to | 
|---|
| 141 | * 0 of the word are bits 27 to 0 of D). The output contains the following | 
|---|
| 142 | * bits of this 56-bit input word (listed in order MSB to LSB of output). | 
|---|
| 143 | * | 
|---|
| 144 | *   42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54 | 
|---|
| 145 | *   15  4 25 19  9  1 26 16  5 11 23  8 12  7 17  0 22  3 10 14  6 20 27 24 | 
|---|
| 146 | */ | 
|---|
| 147 |  | 
|---|
| 148 | /* | 
|---|
| 149 | * Implementation details | 
|---|
| 150 | * ---------------------- | 
|---|
| 151 | * | 
|---|
| 152 | * If you look at the code in this module, you'll find it looks | 
|---|
| 153 | * nothing _like_ the above algorithm. Here I explain the | 
|---|
| 154 | * differences... | 
|---|
| 155 | * | 
|---|
| 156 | * Key setup has not been heavily optimised here. We are not | 
|---|
| 157 | * concerned with key agility: we aren't codebreakers. We don't | 
|---|
| 158 | * mind a little delay (and it really is a little one; it may be a | 
|---|
| 159 | * factor of five or so slower than it could be but it's still not | 
|---|
| 160 | * an appreciable length of time) while setting up. The only tweaks | 
|---|
| 161 | * in the key setup are ones which change the format of the key | 
|---|
| 162 | * schedule to speed up the actual encryption. I'll describe those | 
|---|
| 163 | * below. | 
|---|
| 164 | * | 
|---|
| 165 | * The first and most obvious optimisation is the S-boxes. Since | 
|---|
| 166 | * each S-box always targets the same four bits in the final 32-bit | 
|---|
| 167 | * word, so the output from (for example) S-box 0 must always be | 
|---|
| 168 | * shifted left 28 bits, we can store the already-shifted outputs | 
|---|
| 169 | * in the lookup tables. This reduces lookup-and-shift to lookup, | 
|---|
| 170 | * so the S-box step is now just a question of ORing together eight | 
|---|
| 171 | * table lookups. | 
|---|
| 172 | * | 
|---|
| 173 | * The permutation P is just a bit order change; it's invariant | 
|---|
| 174 | * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we | 
|---|
| 175 | * can apply P to every entry of the S-box tables and then we don't | 
|---|
| 176 | * have to do it in the code of f(). This yields a set of tables | 
|---|
| 177 | * which might be called SP-boxes. | 
|---|
| 178 | * | 
|---|
| 179 | * The bit-selection function E is our next target. Note that E is | 
|---|
| 180 | * immediately followed by the operation of splitting into 6-bit | 
|---|
| 181 | * chunks. Examining the 6-bit chunks coming out of E we notice | 
|---|
| 182 | * they're all contiguous within the word (speaking cyclically - | 
|---|
| 183 | * the end two wrap round); so we can extract those bit strings | 
|---|
| 184 | * individually rather than explicitly running E. This would yield | 
|---|
| 185 | * code such as | 
|---|
| 186 | * | 
|---|
| 187 | *     y |= SPboxes[0][ (rotl(R, 5) ^  top6bitsofK) & 0x3F ]; | 
|---|
| 188 | *     t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ]; | 
|---|
| 189 | * | 
|---|
| 190 | * and so on; and the key schedule preparation would have to | 
|---|
| 191 | * provide each 6-bit chunk separately. | 
|---|
| 192 | * | 
|---|
| 193 | * Really we'd like to XOR in the key schedule element before | 
|---|
| 194 | * looking up bit strings in R. This we can't do, naively, because | 
|---|
| 195 | * the 6-bit strings we want overlap. But look at the strings: | 
|---|
| 196 | * | 
|---|
| 197 | *       3322222222221111111111 | 
|---|
| 198 | * bit   10987654321098765432109876543210 | 
|---|
| 199 | * | 
|---|
| 200 | * box0  XXXXX                          X | 
|---|
| 201 | * box1     XXXXXX | 
|---|
| 202 | * box2         XXXXXX | 
|---|
| 203 | * box3             XXXXXX | 
|---|
| 204 | * box4                 XXXXXX | 
|---|
| 205 | * box5                     XXXXXX | 
|---|
| 206 | * box6                         XXXXXX | 
|---|
| 207 | * box7  X                          XXXXX | 
|---|
| 208 | * | 
|---|
| 209 | * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't | 
|---|
| 210 | * overlap with each other. Neither do the ones for boxes 1, 3, 5 | 
|---|
| 211 | * and 7. So we could provide the key schedule in the form of two | 
|---|
| 212 | * words that we can separately XOR into R, and then every S-box | 
|---|
| 213 | * index is available as a (cyclically) contiguous 6-bit substring | 
|---|
| 214 | * of one or the other of the results. | 
|---|
| 215 | * | 
|---|
| 216 | * The comments in Eric Young's libdes implementation point out | 
|---|
| 217 | * that two of these bit strings require a rotation (rather than a | 
|---|
| 218 | * simple shift) to extract. It's unavoidable that at least _one_ | 
|---|
| 219 | * must do; but we can actually run the whole inner algorithm (all | 
|---|
| 220 | * 16 rounds) rotated one bit to the left, so that what the `real' | 
|---|
| 221 | * DES description sees as L=0x80000001 we see as L=0x00000003. | 
|---|
| 222 | * This requires rotating all our SP-box entries one bit to the | 
|---|
| 223 | * left, and rotating each word of the key schedule elements one to | 
|---|
| 224 | * the left, and rotating L and R one bit left just after IP and | 
|---|
| 225 | * one bit right again just before FP. And in each round we convert | 
|---|
| 226 | * a rotate into a shift, so we've saved a few per cent. | 
|---|
| 227 | * | 
|---|
| 228 | * That's about it for the inner loop; the SP-box tables as listed | 
|---|
| 229 | * below are what I've described here (the original S value, | 
|---|
| 230 | * shifted to its final place in the input to P, run through P, and | 
|---|
| 231 | * then rotated one bit left). All that remains is to optimise the | 
|---|
| 232 | * initial permutation IP. | 
|---|
| 233 | * | 
|---|
| 234 | * IP is not an arbitrary permutation. It has the nice property | 
|---|
| 235 | * that if you take any bit number, write it in binary (6 bits), | 
|---|
| 236 | * permute those 6 bits and invert some of them, you get the final | 
|---|
| 237 | * position of that bit. Specifically, the bit whose initial | 
|---|
| 238 | * position is given (in binary) as fedcba ends up in position | 
|---|
| 239 | * AcbFED (where a capital letter denotes the inverse of a bit). | 
|---|
| 240 | * | 
|---|
| 241 | * We have the 64-bit data in two 32-bit words L and R, where bits | 
|---|
| 242 | * in L are those with f=1 and bits in R are those with f=0. We | 
|---|
| 243 | * note that we can do a simple transformation: suppose we exchange | 
|---|
| 244 | * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause | 
|---|
| 245 | * the bit fedcba to be in position cedfba - we've `swapped' bits c | 
|---|
| 246 | * and f in the position of each bit! | 
|---|
| 247 | * | 
|---|
| 248 | * Better still, this transformation is easy. In the example above, | 
|---|
| 249 | * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1 | 
|---|
| 250 | * are 0xF0F0F0F0. So we can do | 
|---|
| 251 | * | 
|---|
| 252 | *     difference = ((R >> 4) ^ L) & 0x0F0F0F0F | 
|---|
| 253 | *     R ^= (difference << 4) | 
|---|
| 254 | *     L ^= difference | 
|---|
| 255 | * | 
|---|
| 256 | * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F). | 
|---|
| 257 | * Also, we can invert the bit at the top just by exchanging L and | 
|---|
| 258 | * R. So in a few swaps and a few of these bit operations we can | 
|---|
| 259 | * do: | 
|---|
| 260 | * | 
|---|
| 261 | * Initially the position of bit fedcba is     fedcba | 
|---|
| 262 | * Swap L with R to make it                    Fedcba | 
|---|
| 263 | * Perform bitswap( 4,0x0F0F0F0F) to make it   cedFba | 
|---|
| 264 | * Perform bitswap(16,0x0000FFFF) to make it   ecdFba | 
|---|
| 265 | * Swap L with R to make it                    EcdFba | 
|---|
| 266 | * Perform bitswap( 2,0x33333333) to make it   bcdFEa | 
|---|
| 267 | * Perform bitswap( 8,0x00FF00FF) to make it   dcbFEa | 
|---|
| 268 | * Swap L with R to make it                    DcbFEa | 
|---|
| 269 | * Perform bitswap( 1,0x55555555) to make it   acbFED | 
|---|
| 270 | * Swap L with R to make it                    AcbFED | 
|---|
| 271 | * | 
|---|
| 272 | * (In the actual code the four swaps are implicit: R and L are | 
|---|
| 273 | * simply used the other way round in the first, second and last | 
|---|
| 274 | * bitswap operations.) | 
|---|
| 275 | * | 
|---|
| 276 | * The final permutation is just the inverse of IP, so it can be | 
|---|
| 277 | * performed by a similar set of operations. | 
|---|
| 278 | */ | 
|---|
| 279 |  | 
|---|
| 280 | struct des_context { | 
|---|
| 281 | quint32 k0246[16], k1357[16]; | 
|---|
| 282 | }; | 
|---|
| 283 |  | 
|---|
| 284 | #define rotl(x, c) ( (x << c) | (x >> (32-c)) ) | 
|---|
| 285 | #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF) | 
|---|
| 286 |  | 
|---|
| 287 | static quint32 bitsel(quint32 * input, const int *bitnums, int size) | 
|---|
| 288 | { | 
|---|
| 289 | quint32 ret = 0; | 
|---|
| 290 | while (size--) { | 
|---|
| 291 | int bitpos = *bitnums++; | 
|---|
| 292 | ret <<= 1; | 
|---|
| 293 | if (bitpos >= 0) | 
|---|
| 294 | ret |= 1 & (input[bitpos / 32] >> (bitpos % 32)); | 
|---|
| 295 | } | 
|---|
| 296 | return ret; | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | static inline void des_key_setup(quint32 key_msw, quint32 key_lsw, | 
|---|
| 300 | struct des_context *sched) | 
|---|
| 301 | { | 
|---|
| 302 | /* Tables are modified to work with 56-bit key */ | 
|---|
| 303 | static const int PC1_Cbits[] = { | 
|---|
| 304 | 6, 13, 20, 27, 34, 41, 48, 55, 5, 12, 19, 26, 33, 40, | 
|---|
| 305 | 47, 54, 4, 11, 18, 25, 32, 39, 46, 53, 3, 10, 17, 24 | 
|---|
| 306 | }; | 
|---|
| 307 | static const int PC1_Dbits[] = { | 
|---|
| 308 | 0, 7, 14, 21, 28, 35, 42, 49, 1, 8, 15, 22, 29, 36, | 
|---|
| 309 | 43, 50, 2, 9, 16, 23, 30, 37, 44, 51, 31, 38, 45, 52 | 
|---|
| 310 | }; | 
|---|
| 311 | /* | 
|---|
| 312 | * The bit numbers in the two lists below don't correspond to | 
|---|
| 313 | * the ones in the above description of PC2, because in the | 
|---|
| 314 | * above description C and D are concatenated so `bit 28' means | 
|---|
| 315 | * bit 0 of C. In this implementation we're using the standard | 
|---|
| 316 | * `bitsel' function above and C is in the second word, so bit | 
|---|
| 317 | * 0 of C is addressed by writing `32' here. | 
|---|
| 318 | */ | 
|---|
| 319 | static const int PC2_0246[] = { | 
|---|
| 320 | 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4, | 
|---|
| 321 | 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43 | 
|---|
| 322 | }; | 
|---|
| 323 | static const int PC2_1357[] = { | 
|---|
| 324 | -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58, | 
|---|
| 325 | -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24 | 
|---|
| 326 | }; | 
|---|
| 327 | static const int leftshifts[] = { | 
|---|
| 328 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 | 
|---|
| 329 | }; | 
|---|
| 330 |  | 
|---|
| 331 | quint32 C, D; | 
|---|
| 332 | quint32 buf[2]; | 
|---|
| 333 | int i; | 
|---|
| 334 |  | 
|---|
| 335 | buf[0] = key_lsw; | 
|---|
| 336 | buf[1] = key_msw; | 
|---|
| 337 |  | 
|---|
| 338 | C = bitsel(buf, PC1_Cbits, 28); | 
|---|
| 339 | D = bitsel(buf, PC1_Dbits, 28); | 
|---|
| 340 |  | 
|---|
| 341 | for (i = 0; i < 16; i++) { | 
|---|
| 342 | C = rotl28(C, leftshifts[i]); | 
|---|
| 343 | D = rotl28(D, leftshifts[i]); | 
|---|
| 344 | buf[0] = D; | 
|---|
| 345 | buf[1] = C; | 
|---|
| 346 | sched->k0246[i] = bitsel(buf, PC2_0246, 32); | 
|---|
| 347 | sched->k1357[i] = bitsel(buf, PC2_1357, 32); | 
|---|
| 348 | } | 
|---|
| 349 | } | 
|---|
| 350 |  | 
|---|
| 351 | static const quint32 SPboxes[8][64] = { | 
|---|
| 352 | {0x01010400, 0x00000000, 0x00010000, 0x01010404, | 
|---|
| 353 | 0x01010004, 0x00010404, 0x00000004, 0x00010000, | 
|---|
| 354 | 0x00000400, 0x01010400, 0x01010404, 0x00000400, | 
|---|
| 355 | 0x01000404, 0x01010004, 0x01000000, 0x00000004, | 
|---|
| 356 | 0x00000404, 0x01000400, 0x01000400, 0x00010400, | 
|---|
| 357 | 0x00010400, 0x01010000, 0x01010000, 0x01000404, | 
|---|
| 358 | 0x00010004, 0x01000004, 0x01000004, 0x00010004, | 
|---|
| 359 | 0x00000000, 0x00000404, 0x00010404, 0x01000000, | 
|---|
| 360 | 0x00010000, 0x01010404, 0x00000004, 0x01010000, | 
|---|
| 361 | 0x01010400, 0x01000000, 0x01000000, 0x00000400, | 
|---|
| 362 | 0x01010004, 0x00010000, 0x00010400, 0x01000004, | 
|---|
| 363 | 0x00000400, 0x00000004, 0x01000404, 0x00010404, | 
|---|
| 364 | 0x01010404, 0x00010004, 0x01010000, 0x01000404, | 
|---|
| 365 | 0x01000004, 0x00000404, 0x00010404, 0x01010400, | 
|---|
| 366 | 0x00000404, 0x01000400, 0x01000400, 0x00000000, | 
|---|
| 367 | 0x00010004, 0x00010400, 0x00000000, 0x01010004}, | 
|---|
| 368 |  | 
|---|
| 369 | {0x80108020, 0x80008000, 0x00008000, 0x00108020, | 
|---|
| 370 | 0x00100000, 0x00000020, 0x80100020, 0x80008020, | 
|---|
| 371 | 0x80000020, 0x80108020, 0x80108000, 0x80000000, | 
|---|
| 372 | 0x80008000, 0x00100000, 0x00000020, 0x80100020, | 
|---|
| 373 | 0x00108000, 0x00100020, 0x80008020, 0x00000000, | 
|---|
| 374 | 0x80000000, 0x00008000, 0x00108020, 0x80100000, | 
|---|
| 375 | 0x00100020, 0x80000020, 0x00000000, 0x00108000, | 
|---|
| 376 | 0x00008020, 0x80108000, 0x80100000, 0x00008020, | 
|---|
| 377 | 0x00000000, 0x00108020, 0x80100020, 0x00100000, | 
|---|
| 378 | 0x80008020, 0x80100000, 0x80108000, 0x00008000, | 
|---|
| 379 | 0x80100000, 0x80008000, 0x00000020, 0x80108020, | 
|---|
| 380 | 0x00108020, 0x00000020, 0x00008000, 0x80000000, | 
|---|
| 381 | 0x00008020, 0x80108000, 0x00100000, 0x80000020, | 
|---|
| 382 | 0x00100020, 0x80008020, 0x80000020, 0x00100020, | 
|---|
| 383 | 0x00108000, 0x00000000, 0x80008000, 0x00008020, | 
|---|
| 384 | 0x80000000, 0x80100020, 0x80108020, 0x00108000}, | 
|---|
| 385 |  | 
|---|
| 386 | {0x00000208, 0x08020200, 0x00000000, 0x08020008, | 
|---|
| 387 | 0x08000200, 0x00000000, 0x00020208, 0x08000200, | 
|---|
| 388 | 0x00020008, 0x08000008, 0x08000008, 0x00020000, | 
|---|
| 389 | 0x08020208, 0x00020008, 0x08020000, 0x00000208, | 
|---|
| 390 | 0x08000000, 0x00000008, 0x08020200, 0x00000200, | 
|---|
| 391 | 0x00020200, 0x08020000, 0x08020008, 0x00020208, | 
|---|
| 392 | 0x08000208, 0x00020200, 0x00020000, 0x08000208, | 
|---|
| 393 | 0x00000008, 0x08020208, 0x00000200, 0x08000000, | 
|---|
| 394 | 0x08020200, 0x08000000, 0x00020008, 0x00000208, | 
|---|
| 395 | 0x00020000, 0x08020200, 0x08000200, 0x00000000, | 
|---|
| 396 | 0x00000200, 0x00020008, 0x08020208, 0x08000200, | 
|---|
| 397 | 0x08000008, 0x00000200, 0x00000000, 0x08020008, | 
|---|
| 398 | 0x08000208, 0x00020000, 0x08000000, 0x08020208, | 
|---|
| 399 | 0x00000008, 0x00020208, 0x00020200, 0x08000008, | 
|---|
| 400 | 0x08020000, 0x08000208, 0x00000208, 0x08020000, | 
|---|
| 401 | 0x00020208, 0x00000008, 0x08020008, 0x00020200}, | 
|---|
| 402 |  | 
|---|
| 403 | {0x00802001, 0x00002081, 0x00002081, 0x00000080, | 
|---|
| 404 | 0x00802080, 0x00800081, 0x00800001, 0x00002001, | 
|---|
| 405 | 0x00000000, 0x00802000, 0x00802000, 0x00802081, | 
|---|
| 406 | 0x00000081, 0x00000000, 0x00800080, 0x00800001, | 
|---|
| 407 | 0x00000001, 0x00002000, 0x00800000, 0x00802001, | 
|---|
| 408 | 0x00000080, 0x00800000, 0x00002001, 0x00002080, | 
|---|
| 409 | 0x00800081, 0x00000001, 0x00002080, 0x00800080, | 
|---|
| 410 | 0x00002000, 0x00802080, 0x00802081, 0x00000081, | 
|---|
| 411 | 0x00800080, 0x00800001, 0x00802000, 0x00802081, | 
|---|
| 412 | 0x00000081, 0x00000000, 0x00000000, 0x00802000, | 
|---|
| 413 | 0x00002080, 0x00800080, 0x00800081, 0x00000001, | 
|---|
| 414 | 0x00802001, 0x00002081, 0x00002081, 0x00000080, | 
|---|
| 415 | 0x00802081, 0x00000081, 0x00000001, 0x00002000, | 
|---|
| 416 | 0x00800001, 0x00002001, 0x00802080, 0x00800081, | 
|---|
| 417 | 0x00002001, 0x00002080, 0x00800000, 0x00802001, | 
|---|
| 418 | 0x00000080, 0x00800000, 0x00002000, 0x00802080}, | 
|---|
| 419 |  | 
|---|
| 420 | {0x00000100, 0x02080100, 0x02080000, 0x42000100, | 
|---|
| 421 | 0x00080000, 0x00000100, 0x40000000, 0x02080000, | 
|---|
| 422 | 0x40080100, 0x00080000, 0x02000100, 0x40080100, | 
|---|
| 423 | 0x42000100, 0x42080000, 0x00080100, 0x40000000, | 
|---|
| 424 | 0x02000000, 0x40080000, 0x40080000, 0x00000000, | 
|---|
| 425 | 0x40000100, 0x42080100, 0x42080100, 0x02000100, | 
|---|
| 426 | 0x42080000, 0x40000100, 0x00000000, 0x42000000, | 
|---|
| 427 | 0x02080100, 0x02000000, 0x42000000, 0x00080100, | 
|---|
| 428 | 0x00080000, 0x42000100, 0x00000100, 0x02000000, | 
|---|
| 429 | 0x40000000, 0x02080000, 0x42000100, 0x40080100, | 
|---|
| 430 | 0x02000100, 0x40000000, 0x42080000, 0x02080100, | 
|---|
| 431 | 0x40080100, 0x00000100, 0x02000000, 0x42080000, | 
|---|
| 432 | 0x42080100, 0x00080100, 0x42000000, 0x42080100, | 
|---|
| 433 | 0x02080000, 0x00000000, 0x40080000, 0x42000000, | 
|---|
| 434 | 0x00080100, 0x02000100, 0x40000100, 0x00080000, | 
|---|
| 435 | 0x00000000, 0x40080000, 0x02080100, 0x40000100}, | 
|---|
| 436 |  | 
|---|
| 437 | {0x20000010, 0x20400000, 0x00004000, 0x20404010, | 
|---|
| 438 | 0x20400000, 0x00000010, 0x20404010, 0x00400000, | 
|---|
| 439 | 0x20004000, 0x00404010, 0x00400000, 0x20000010, | 
|---|
| 440 | 0x00400010, 0x20004000, 0x20000000, 0x00004010, | 
|---|
| 441 | 0x00000000, 0x00400010, 0x20004010, 0x00004000, | 
|---|
| 442 | 0x00404000, 0x20004010, 0x00000010, 0x20400010, | 
|---|
| 443 | 0x20400010, 0x00000000, 0x00404010, 0x20404000, | 
|---|
| 444 | 0x00004010, 0x00404000, 0x20404000, 0x20000000, | 
|---|
| 445 | 0x20004000, 0x00000010, 0x20400010, 0x00404000, | 
|---|
| 446 | 0x20404010, 0x00400000, 0x00004010, 0x20000010, | 
|---|
| 447 | 0x00400000, 0x20004000, 0x20000000, 0x00004010, | 
|---|
| 448 | 0x20000010, 0x20404010, 0x00404000, 0x20400000, | 
|---|
| 449 | 0x00404010, 0x20404000, 0x00000000, 0x20400010, | 
|---|
| 450 | 0x00000010, 0x00004000, 0x20400000, 0x00404010, | 
|---|
| 451 | 0x00004000, 0x00400010, 0x20004010, 0x00000000, | 
|---|
| 452 | 0x20404000, 0x20000000, 0x00400010, 0x20004010}, | 
|---|
| 453 |  | 
|---|
| 454 | {0x00200000, 0x04200002, 0x04000802, 0x00000000, | 
|---|
| 455 | 0x00000800, 0x04000802, 0x00200802, 0x04200800, | 
|---|
| 456 | 0x04200802, 0x00200000, 0x00000000, 0x04000002, | 
|---|
| 457 | 0x00000002, 0x04000000, 0x04200002, 0x00000802, | 
|---|
| 458 | 0x04000800, 0x00200802, 0x00200002, 0x04000800, | 
|---|
| 459 | 0x04000002, 0x04200000, 0x04200800, 0x00200002, | 
|---|
| 460 | 0x04200000, 0x00000800, 0x00000802, 0x04200802, | 
|---|
| 461 | 0x00200800, 0x00000002, 0x04000000, 0x00200800, | 
|---|
| 462 | 0x04000000, 0x00200800, 0x00200000, 0x04000802, | 
|---|
| 463 | 0x04000802, 0x04200002, 0x04200002, 0x00000002, | 
|---|
| 464 | 0x00200002, 0x04000000, 0x04000800, 0x00200000, | 
|---|
| 465 | 0x04200800, 0x00000802, 0x00200802, 0x04200800, | 
|---|
| 466 | 0x00000802, 0x04000002, 0x04200802, 0x04200000, | 
|---|
| 467 | 0x00200800, 0x00000000, 0x00000002, 0x04200802, | 
|---|
| 468 | 0x00000000, 0x00200802, 0x04200000, 0x00000800, | 
|---|
| 469 | 0x04000002, 0x04000800, 0x00000800, 0x00200002}, | 
|---|
| 470 |  | 
|---|
| 471 | {0x10001040, 0x00001000, 0x00040000, 0x10041040, | 
|---|
| 472 | 0x10000000, 0x10001040, 0x00000040, 0x10000000, | 
|---|
| 473 | 0x00040040, 0x10040000, 0x10041040, 0x00041000, | 
|---|
| 474 | 0x10041000, 0x00041040, 0x00001000, 0x00000040, | 
|---|
| 475 | 0x10040000, 0x10000040, 0x10001000, 0x00001040, | 
|---|
| 476 | 0x00041000, 0x00040040, 0x10040040, 0x10041000, | 
|---|
| 477 | 0x00001040, 0x00000000, 0x00000000, 0x10040040, | 
|---|
| 478 | 0x10000040, 0x10001000, 0x00041040, 0x00040000, | 
|---|
| 479 | 0x00041040, 0x00040000, 0x10041000, 0x00001000, | 
|---|
| 480 | 0x00000040, 0x10040040, 0x00001000, 0x00041040, | 
|---|
| 481 | 0x10001000, 0x00000040, 0x10000040, 0x10040000, | 
|---|
| 482 | 0x10040040, 0x10000000, 0x00040000, 0x10001040, | 
|---|
| 483 | 0x00000000, 0x10041040, 0x00040040, 0x10000040, | 
|---|
| 484 | 0x10040000, 0x10001000, 0x10001040, 0x00000000, | 
|---|
| 485 | 0x10041040, 0x00041000, 0x00041000, 0x00001040, | 
|---|
| 486 | 0x00001040, 0x00040040, 0x10000000, 0x10041000} | 
|---|
| 487 | }; | 
|---|
| 488 |  | 
|---|
| 489 | #define f(R, K0246, K1357) (\ | 
|---|
| 490 | s0246 = R ^ K0246, \ | 
|---|
| 491 | s1357 = R ^ K1357, \ | 
|---|
| 492 | s0246 = rotl(s0246, 28), \ | 
|---|
| 493 | SPboxes[0] [(s0246 >> 24) & 0x3F] | \ | 
|---|
| 494 | SPboxes[1] [(s1357 >> 24) & 0x3F] | \ | 
|---|
| 495 | SPboxes[2] [(s0246 >> 16) & 0x3F] | \ | 
|---|
| 496 | SPboxes[3] [(s1357 >> 16) & 0x3F] | \ | 
|---|
| 497 | SPboxes[4] [(s0246 >>  8) & 0x3F] | \ | 
|---|
| 498 | SPboxes[5] [(s1357 >>  8) & 0x3F] | \ | 
|---|
| 499 | SPboxes[6] [(s0246      ) & 0x3F] | \ | 
|---|
| 500 | SPboxes[7] [(s1357      ) & 0x3F]) | 
|---|
| 501 |  | 
|---|
| 502 | #define bitswap(L, R, n, mask) (\ | 
|---|
| 503 | swap = mask & ( (R >> n) ^ L ), \ | 
|---|
| 504 | R ^= swap << n, \ | 
|---|
| 505 | L ^= swap) | 
|---|
| 506 |  | 
|---|
| 507 | /* Initial permutation */ | 
|---|
| 508 | #define IP(L, R) (\ | 
|---|
| 509 | bitswap(R, L,  4, 0x0F0F0F0F), \ | 
|---|
| 510 | bitswap(R, L, 16, 0x0000FFFF), \ | 
|---|
| 511 | bitswap(L, R,  2, 0x33333333), \ | 
|---|
| 512 | bitswap(L, R,  8, 0x00FF00FF), \ | 
|---|
| 513 | bitswap(R, L,  1, 0x55555555)) | 
|---|
| 514 |  | 
|---|
| 515 | /* Final permutation */ | 
|---|
| 516 | #define FP(L, R) (\ | 
|---|
| 517 | bitswap(R, L,  1, 0x55555555), \ | 
|---|
| 518 | bitswap(L, R,  8, 0x00FF00FF), \ | 
|---|
| 519 | bitswap(L, R,  2, 0x33333333), \ | 
|---|
| 520 | bitswap(R, L, 16, 0x0000FFFF), \ | 
|---|
| 521 | bitswap(R, L,  4, 0x0F0F0F0F)) | 
|---|
| 522 |  | 
|---|
| 523 | static void | 
|---|
| 524 | des_encipher(quint32 *output, quint32 L, quint32 R, | 
|---|
| 525 | struct des_context *sched) | 
|---|
| 526 | { | 
|---|
| 527 | quint32 swap, s0246, s1357; | 
|---|
| 528 |  | 
|---|
| 529 | IP(L, R); | 
|---|
| 530 |  | 
|---|
| 531 | L = rotl(L, 1); | 
|---|
| 532 | R = rotl(R, 1); | 
|---|
| 533 |  | 
|---|
| 534 | L ^= f(R, sched->k0246[0], sched->k1357[0]); | 
|---|
| 535 | R ^= f(L, sched->k0246[1], sched->k1357[1]); | 
|---|
| 536 | L ^= f(R, sched->k0246[2], sched->k1357[2]); | 
|---|
| 537 | R ^= f(L, sched->k0246[3], sched->k1357[3]); | 
|---|
| 538 | L ^= f(R, sched->k0246[4], sched->k1357[4]); | 
|---|
| 539 | R ^= f(L, sched->k0246[5], sched->k1357[5]); | 
|---|
| 540 | L ^= f(R, sched->k0246[6], sched->k1357[6]); | 
|---|
| 541 | R ^= f(L, sched->k0246[7], sched->k1357[7]); | 
|---|
| 542 | L ^= f(R, sched->k0246[8], sched->k1357[8]); | 
|---|
| 543 | R ^= f(L, sched->k0246[9], sched->k1357[9]); | 
|---|
| 544 | L ^= f(R, sched->k0246[10], sched->k1357[10]); | 
|---|
| 545 | R ^= f(L, sched->k0246[11], sched->k1357[11]); | 
|---|
| 546 | L ^= f(R, sched->k0246[12], sched->k1357[12]); | 
|---|
| 547 | R ^= f(L, sched->k0246[13], sched->k1357[13]); | 
|---|
| 548 | L ^= f(R, sched->k0246[14], sched->k1357[14]); | 
|---|
| 549 | R ^= f(L, sched->k0246[15], sched->k1357[15]); | 
|---|
| 550 |  | 
|---|
| 551 | L = rotl(L, 31); | 
|---|
| 552 | R = rotl(R, 31); | 
|---|
| 553 |  | 
|---|
| 554 | swap = L; | 
|---|
| 555 | L = R; | 
|---|
| 556 | R = swap; | 
|---|
| 557 |  | 
|---|
| 558 | FP(L, R); | 
|---|
| 559 |  | 
|---|
| 560 | output[0] = L; | 
|---|
| 561 | output[1] = R; | 
|---|
| 562 | } | 
|---|
| 563 |  | 
|---|
| 564 | #define GET_32BIT_MSB_FIRST(cp) \ | 
|---|
| 565 | (((unsigned long)(unsigned char)(cp)[3]) | \ | 
|---|
| 566 | ((unsigned long)(unsigned char)(cp)[2] << 8) | \ | 
|---|
| 567 | ((unsigned long)(unsigned char)(cp)[1] << 16) | \ | 
|---|
| 568 | ((unsigned long)(unsigned char)(cp)[0] << 24)) | 
|---|
| 569 |  | 
|---|
| 570 | #define PUT_32BIT_MSB_FIRST(cp, value) do { \ | 
|---|
| 571 | (cp)[3] = (value); \ | 
|---|
| 572 | (cp)[2] = (value) >> 8; \ | 
|---|
| 573 | (cp)[1] = (value) >> 16; \ | 
|---|
| 574 | (cp)[0] = (value) >> 24; } while (0) | 
|---|
| 575 |  | 
|---|
| 576 | static inline void | 
|---|
| 577 | des_cbc_encrypt(unsigned char *dest, const unsigned char *src, | 
|---|
| 578 | struct des_context *sched) | 
|---|
| 579 | { | 
|---|
| 580 | quint32 out[2], L, R; | 
|---|
| 581 |  | 
|---|
| 582 | L = GET_32BIT_MSB_FIRST(src); | 
|---|
| 583 | R = GET_32BIT_MSB_FIRST(src + 4); | 
|---|
| 584 | des_encipher(out, L, R, sched); | 
|---|
| 585 | PUT_32BIT_MSB_FIRST(dest, out[0]); | 
|---|
| 586 | PUT_32BIT_MSB_FIRST(dest + 4, out[1]); | 
|---|
| 587 | } | 
|---|
| 588 |  | 
|---|
| 589 |  | 
|---|
| 590 | static unsigned char * | 
|---|
| 591 | deshash(unsigned char *dst, const unsigned char *key, | 
|---|
| 592 | const unsigned char *src) | 
|---|
| 593 | { | 
|---|
| 594 | struct des_context ctx; | 
|---|
| 595 |  | 
|---|
| 596 | des_key_setup(GET_32BIT_MSB_FIRST(key) >> 8, | 
|---|
| 597 | GET_32BIT_MSB_FIRST(key + 3), &ctx); | 
|---|
| 598 |  | 
|---|
| 599 | des_cbc_encrypt(dst, src, &ctx); | 
|---|
| 600 |  | 
|---|
| 601 | return dst; | 
|---|
| 602 | } | 
|---|