1 | /****************************************************************************
|
---|
2 | ** $Id: qpointarray.cpp 2 2005-11-16 15:49:26Z dmik $
|
---|
3 | **
|
---|
4 | ** Implementation of QPointArray class
|
---|
5 | **
|
---|
6 | ** Created : 940213
|
---|
7 | **
|
---|
8 | ** Copyright (C) 1992-2000 Trolltech AS. All rights reserved.
|
---|
9 | **
|
---|
10 | ** This file is part of the kernel module of the Qt GUI Toolkit.
|
---|
11 | **
|
---|
12 | ** This file may be distributed under the terms of the Q Public License
|
---|
13 | ** as defined by Trolltech AS of Norway and appearing in the file
|
---|
14 | ** LICENSE.QPL included in the packaging of this file.
|
---|
15 | **
|
---|
16 | ** This file may be distributed and/or modified under the terms of the
|
---|
17 | ** GNU General Public License version 2 as published by the Free Software
|
---|
18 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
19 | ** packaging of this file.
|
---|
20 | **
|
---|
21 | ** Licensees holding valid Qt Enterprise Edition or Qt Professional Edition
|
---|
22 | ** licenses may use this file in accordance with the Qt Commercial License
|
---|
23 | ** Agreement provided with the Software.
|
---|
24 | **
|
---|
25 | ** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
---|
26 | ** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
---|
27 | **
|
---|
28 | ** See http://www.trolltech.com/pricing.html or email sales@trolltech.com for
|
---|
29 | ** information about Qt Commercial License Agreements.
|
---|
30 | ** See http://www.trolltech.com/qpl/ for QPL licensing information.
|
---|
31 | ** See http://www.trolltech.com/gpl/ for GPL licensing information.
|
---|
32 | **
|
---|
33 | ** Contact info@trolltech.com if any conditions of this licensing are
|
---|
34 | ** not clear to you.
|
---|
35 | **
|
---|
36 | **********************************************************************/
|
---|
37 |
|
---|
38 | #include "qpointarray.h"
|
---|
39 | #include "qrect.h"
|
---|
40 | #include "qdatastream.h"
|
---|
41 | #include "qwmatrix.h"
|
---|
42 | #include <stdarg.h>
|
---|
43 |
|
---|
44 | const double Q_PI = 3.14159265358979323846; // pi // one more useful comment
|
---|
45 |
|
---|
46 |
|
---|
47 | /*!
|
---|
48 | \class QPointArray qpointarray.h
|
---|
49 | \brief The QPointArray class provides an array of points.
|
---|
50 |
|
---|
51 | \ingroup images
|
---|
52 | \ingroup graphics
|
---|
53 | \ingroup shared
|
---|
54 |
|
---|
55 | A QPointArray is an array of QPoint objects. In addition to the
|
---|
56 | functions provided by QMemArray, QPointArray provides some
|
---|
57 | point-specific functions.
|
---|
58 |
|
---|
59 | For convenient reading and writing of the point data use
|
---|
60 | setPoints(), putPoints(), point(), and setPoint().
|
---|
61 |
|
---|
62 | For geometry operations use boundingRect() and translate(). There
|
---|
63 | is also the QWMatrix::map() function for more general
|
---|
64 | transformations of QPointArrays. You can also create arcs and
|
---|
65 | ellipses with makeArc() and makeEllipse().
|
---|
66 |
|
---|
67 | Among others, QPointArray is used by QPainter::drawLineSegments(),
|
---|
68 | QPainter::drawPolyline(), QPainter::drawPolygon() and
|
---|
69 | QPainter::drawCubicBezier().
|
---|
70 |
|
---|
71 | Note that because this class is a QMemArray, copying an array and
|
---|
72 | modifying the copy modifies the original as well, i.e. a shallow
|
---|
73 | copy. If you need a deep copy use copy() or detach(), for example:
|
---|
74 |
|
---|
75 | \code
|
---|
76 | void drawGiraffe( const QPointArray & r, QPainter * p )
|
---|
77 | {
|
---|
78 | QPointArray tmp = r;
|
---|
79 | tmp.detach();
|
---|
80 | // some code that modifies tmp
|
---|
81 | p->drawPoints( tmp );
|
---|
82 | }
|
---|
83 | \endcode
|
---|
84 |
|
---|
85 | If you forget the tmp.detach(), the const array will be modified.
|
---|
86 |
|
---|
87 | \sa QPainter QWMatrix QMemArray
|
---|
88 | */
|
---|
89 |
|
---|
90 |
|
---|
91 | /*****************************************************************************
|
---|
92 | QPointArray member functions
|
---|
93 | *****************************************************************************/
|
---|
94 |
|
---|
95 | /*!
|
---|
96 | \fn QPointArray::QPointArray()
|
---|
97 |
|
---|
98 | Constructs a null point array.
|
---|
99 |
|
---|
100 | \sa isNull()
|
---|
101 | */
|
---|
102 |
|
---|
103 | /*!
|
---|
104 | \fn QPointArray::QPointArray( int size )
|
---|
105 |
|
---|
106 | Constructs a point array with room for \a size points. Makes a
|
---|
107 | null array if \a size == 0.
|
---|
108 |
|
---|
109 | \sa resize(), isNull()
|
---|
110 | */
|
---|
111 |
|
---|
112 | /*!
|
---|
113 | \fn QPointArray::QPointArray( const QPointArray &a )
|
---|
114 |
|
---|
115 | Constructs a shallow copy of the point array \a a.
|
---|
116 |
|
---|
117 | \sa copy() detach()
|
---|
118 | */
|
---|
119 |
|
---|
120 | /*!
|
---|
121 | Constructs a point array from the rectangle \a r.
|
---|
122 |
|
---|
123 | If \a closed is FALSE, then the point array just contains the
|
---|
124 | following four points in the listed order: r.topLeft(),
|
---|
125 | r.topRight(), r.bottomRight() and r.bottomLeft().
|
---|
126 |
|
---|
127 | If \a closed is TRUE, then a fifth point is set to r.topLeft().
|
---|
128 | */
|
---|
129 |
|
---|
130 | QPointArray::QPointArray( const QRect &r, bool closed )
|
---|
131 | {
|
---|
132 | setPoints( 4, r.left(), r.top(),
|
---|
133 | r.right(), r.top(),
|
---|
134 | r.right(), r.bottom(),
|
---|
135 | r.left(), r.bottom() );
|
---|
136 | if ( closed ) {
|
---|
137 | resize( 5 );
|
---|
138 | setPoint( 4, r.left(), r.top() );
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | /*!
|
---|
143 | \internal
|
---|
144 | Constructs a point array with \a nPoints points, taken from the
|
---|
145 | \a points array.
|
---|
146 |
|
---|
147 | Equivalent to setPoints(nPoints, points).
|
---|
148 | */
|
---|
149 |
|
---|
150 | QPointArray::QPointArray( int nPoints, const QCOORD *points )
|
---|
151 | {
|
---|
152 | setPoints( nPoints, points );
|
---|
153 | }
|
---|
154 |
|
---|
155 |
|
---|
156 | /*!
|
---|
157 | \fn QPointArray::~QPointArray()
|
---|
158 |
|
---|
159 | Destroys the point array.
|
---|
160 | */
|
---|
161 |
|
---|
162 |
|
---|
163 | /*!
|
---|
164 | \fn QPointArray &QPointArray::operator=( const QPointArray &a )
|
---|
165 |
|
---|
166 | Assigns a shallow copy of \a a to this point array and returns a
|
---|
167 | reference to this point array.
|
---|
168 |
|
---|
169 | Equivalent to assign(a).
|
---|
170 |
|
---|
171 | \sa copy() detach()
|
---|
172 | */
|
---|
173 |
|
---|
174 | /*!
|
---|
175 | \fn QPointArray QPointArray::copy() const
|
---|
176 |
|
---|
177 | Creates a deep copy of the array.
|
---|
178 |
|
---|
179 | \sa detach()
|
---|
180 | */
|
---|
181 |
|
---|
182 |
|
---|
183 |
|
---|
184 | /*!
|
---|
185 | Translates all points in the array by \a (dx, dy).
|
---|
186 | */
|
---|
187 |
|
---|
188 | void QPointArray::translate( int dx, int dy )
|
---|
189 | {
|
---|
190 | register QPoint *p = data();
|
---|
191 | register int i = size();
|
---|
192 | QPoint pt( dx, dy );
|
---|
193 | while ( i-- ) {
|
---|
194 | *p += pt;
|
---|
195 | p++;
|
---|
196 | }
|
---|
197 | }
|
---|
198 |
|
---|
199 |
|
---|
200 | /*!
|
---|
201 | Reads the coordinates of the point at position \a index within the
|
---|
202 | array and writes them into \a *x and \a *y.
|
---|
203 | */
|
---|
204 |
|
---|
205 | void QPointArray::point( uint index, int *x, int *y ) const
|
---|
206 | {
|
---|
207 | QPoint p = QMemArray<QPoint>::at( index );
|
---|
208 | if ( x )
|
---|
209 | *x = (int)p.x();
|
---|
210 | if ( y )
|
---|
211 | *y = (int)p.y();
|
---|
212 | }
|
---|
213 |
|
---|
214 | /*!
|
---|
215 | \overload
|
---|
216 |
|
---|
217 | Returns the point at position \a index within the array.
|
---|
218 | */
|
---|
219 |
|
---|
220 | QPoint QPointArray::point( uint index ) const
|
---|
221 | { // #### index out of bounds
|
---|
222 | return QMemArray<QPoint>::at( index );
|
---|
223 | }
|
---|
224 |
|
---|
225 | /*!
|
---|
226 | \fn void QPointArray::setPoint( uint i, const QPoint &p )
|
---|
227 |
|
---|
228 | \overload
|
---|
229 |
|
---|
230 | Sets the point at array index \a i to \a p.
|
---|
231 | */
|
---|
232 |
|
---|
233 | /*!
|
---|
234 | Sets the point at position \a index in the array to \a (x, y).
|
---|
235 | */
|
---|
236 |
|
---|
237 | void QPointArray::setPoint( uint index, int x, int y )
|
---|
238 | { // #### index out of bounds
|
---|
239 | QMemArray<QPoint>::at( index ) = QPoint( x, y );
|
---|
240 | }
|
---|
241 |
|
---|
242 | /*!
|
---|
243 | \internal
|
---|
244 | Resizes the array to \a nPoints and sets the points in the array to
|
---|
245 | the values taken from \a points.
|
---|
246 |
|
---|
247 | Returns TRUE if successful, or FALSE if the array could not be
|
---|
248 | resized (normally due to lack of memory).
|
---|
249 |
|
---|
250 | The example code creates an array with two points (1,2) and (3,4):
|
---|
251 | \code
|
---|
252 | static QCOORD points[] = { 1,2, 3,4 };
|
---|
253 | QPointArray a;
|
---|
254 | a.setPoints( 2, points );
|
---|
255 | \endcode
|
---|
256 |
|
---|
257 | \sa resize(), putPoints()
|
---|
258 | */
|
---|
259 |
|
---|
260 | bool QPointArray::setPoints( int nPoints, const QCOORD *points )
|
---|
261 | {
|
---|
262 | if ( !resize(nPoints) )
|
---|
263 | return FALSE;
|
---|
264 | int i = 0;
|
---|
265 | while ( nPoints-- ) { // make array of points
|
---|
266 | setPoint( i++, *points, *(points+1) );
|
---|
267 | points++;
|
---|
268 | points++;
|
---|
269 | }
|
---|
270 | return TRUE;
|
---|
271 | }
|
---|
272 |
|
---|
273 | /*!
|
---|
274 | \overload
|
---|
275 |
|
---|
276 | Resizes the array to \a nPoints and sets the points in the array
|
---|
277 | to the values taken from the variable argument list.
|
---|
278 |
|
---|
279 | Returns TRUE if successful, or FALSE if the array could not be
|
---|
280 | resized (typically due to lack of memory).
|
---|
281 |
|
---|
282 | The example code creates an array with two points (1,2) and (3,4):
|
---|
283 |
|
---|
284 | \code
|
---|
285 | QPointArray a;
|
---|
286 | a.setPoints( 2, 1,2, 3,4 );
|
---|
287 | \endcode
|
---|
288 |
|
---|
289 | The points are given as a sequence of integers, starting with \a
|
---|
290 | firstx then \a firsty, and so on.
|
---|
291 |
|
---|
292 | \sa resize(), putPoints()
|
---|
293 | */
|
---|
294 |
|
---|
295 | bool QPointArray::setPoints( int nPoints, int firstx, int firsty, ... )
|
---|
296 | {
|
---|
297 | va_list ap;
|
---|
298 | if ( !resize(nPoints) )
|
---|
299 | return FALSE;
|
---|
300 | setPoint( 0, firstx, firsty ); // set first point
|
---|
301 | int i = 1, x, y;
|
---|
302 | nPoints--;
|
---|
303 | va_start( ap, firsty );
|
---|
304 | while ( nPoints-- ) {
|
---|
305 | x = va_arg( ap, int );
|
---|
306 | y = va_arg( ap, int );
|
---|
307 | setPoint( i++, x, y );
|
---|
308 | }
|
---|
309 | va_end( ap );
|
---|
310 | return TRUE;
|
---|
311 | }
|
---|
312 |
|
---|
313 | /*! \overload
|
---|
314 | \internal
|
---|
315 | Copies \a nPoints points from the \a points coord array into
|
---|
316 | this point array, and resizes the point array if
|
---|
317 | \c{index+nPoints} exceeds the size of the array.
|
---|
318 |
|
---|
319 | Returns TRUE if successful, or FALSE if the array could not be
|
---|
320 | resized (typically due to lack of memory).
|
---|
321 |
|
---|
322 | */
|
---|
323 |
|
---|
324 | bool QPointArray::putPoints( int index, int nPoints, const QCOORD *points )
|
---|
325 | {
|
---|
326 | if ( index + nPoints > (int)size() ) { // extend array
|
---|
327 | if ( !resize( index + nPoints ) )
|
---|
328 | return FALSE;
|
---|
329 | }
|
---|
330 | int i = index;
|
---|
331 | while ( nPoints-- ) { // make array of points
|
---|
332 | setPoint( i++, *points, *(points+1) );
|
---|
333 | points++;
|
---|
334 | points++;
|
---|
335 | }
|
---|
336 | return TRUE;
|
---|
337 | }
|
---|
338 |
|
---|
339 | /*!
|
---|
340 | Copies \a nPoints points from the variable argument list into this
|
---|
341 | point array from position \a index, and resizes the point array if
|
---|
342 | \c{index+nPoints} exceeds the size of the array.
|
---|
343 |
|
---|
344 | Returns TRUE if successful, or FALSE if the array could not be
|
---|
345 | resized (typically due to lack of memory).
|
---|
346 |
|
---|
347 | The example code creates an array with three points (4,5), (6,7)
|
---|
348 | and (8,9), by expanding the array from 1 to 3 points:
|
---|
349 |
|
---|
350 | \code
|
---|
351 | QPointArray a( 1 );
|
---|
352 | a[0] = QPoint( 4, 5 );
|
---|
353 | a.putPoints( 1, 2, 6,7, 8,9 ); // index == 1, points == 2
|
---|
354 | \endcode
|
---|
355 |
|
---|
356 | This has the same result, but here putPoints overwrites rather
|
---|
357 | than extends:
|
---|
358 | \code
|
---|
359 | QPointArray a( 3 );
|
---|
360 | a.putPoints( 0, 3, 4,5, 0,0, 8,9 );
|
---|
361 | a.putPoints( 1, 1, 6,7 );
|
---|
362 | \endcode
|
---|
363 |
|
---|
364 | The points are given as a sequence of integers, starting with \a
|
---|
365 | firstx then \a firsty, and so on.
|
---|
366 |
|
---|
367 | \sa resize()
|
---|
368 | */
|
---|
369 |
|
---|
370 | bool QPointArray::putPoints( int index, int nPoints, int firstx, int firsty,
|
---|
371 | ... )
|
---|
372 | {
|
---|
373 | va_list ap;
|
---|
374 | if ( index + nPoints > (int)size() ) { // extend array
|
---|
375 | if ( !resize(index + nPoints) )
|
---|
376 | return FALSE;
|
---|
377 | }
|
---|
378 | if ( nPoints <= 0 )
|
---|
379 | return TRUE;
|
---|
380 | setPoint( index, firstx, firsty ); // set first point
|
---|
381 | int i = index + 1, x, y;
|
---|
382 | nPoints--;
|
---|
383 | va_start( ap, firsty );
|
---|
384 | while ( nPoints-- ) {
|
---|
385 | x = va_arg( ap, int );
|
---|
386 | y = va_arg( ap, int );
|
---|
387 | setPoint( i++, x, y );
|
---|
388 | }
|
---|
389 | va_end( ap );
|
---|
390 | return TRUE;
|
---|
391 | }
|
---|
392 |
|
---|
393 |
|
---|
394 | /*!
|
---|
395 | \overload
|
---|
396 |
|
---|
397 | This version of the function copies \a nPoints from \a from into
|
---|
398 | this array, starting at \a index in this array and \a fromIndex in
|
---|
399 | \a from. \a fromIndex is 0 by default.
|
---|
400 |
|
---|
401 | \code
|
---|
402 | QPointArray a;
|
---|
403 | a.putPoints( 0, 3, 1,2, 0,0, 5,6 );
|
---|
404 | // a is now the three-point array ( 1,2, 0,0, 5,6 );
|
---|
405 | QPointArray b;
|
---|
406 | b.putPoints( 0, 3, 4,4, 5,5, 6,6 );
|
---|
407 | // b is now ( 4,4, 5,5, 6,6 );
|
---|
408 | a.putPoints( 2, 3, b );
|
---|
409 | // a is now ( 1,2, 0,0, 4,4, 5,5, 6,6 );
|
---|
410 | \endcode
|
---|
411 | */
|
---|
412 |
|
---|
413 | bool QPointArray::putPoints( int index, int nPoints,
|
---|
414 | const QPointArray & from, int fromIndex )
|
---|
415 | {
|
---|
416 | if ( index + nPoints > (int)size() ) { // extend array
|
---|
417 | if ( !resize(index + nPoints) )
|
---|
418 | return FALSE;
|
---|
419 | }
|
---|
420 | if ( nPoints <= 0 )
|
---|
421 | return TRUE;
|
---|
422 | int n = 0;
|
---|
423 | while( n < nPoints ) {
|
---|
424 | setPoint( index+n, from[fromIndex+n] );
|
---|
425 | n++;
|
---|
426 | }
|
---|
427 | return TRUE;
|
---|
428 | }
|
---|
429 |
|
---|
430 |
|
---|
431 | /*!
|
---|
432 | Returns the bounding rectangle of the points in the array, or
|
---|
433 | QRect(0,0,0,0) if the array is empty.
|
---|
434 | */
|
---|
435 |
|
---|
436 | QRect QPointArray::boundingRect() const
|
---|
437 | {
|
---|
438 | if ( isEmpty() )
|
---|
439 | return QRect( 0, 0, 0, 0 ); // null rectangle
|
---|
440 | register QPoint *pd = data();
|
---|
441 | int minx, maxx, miny, maxy;
|
---|
442 | minx = maxx = pd->x();
|
---|
443 | miny = maxy = pd->y();
|
---|
444 | pd++;
|
---|
445 | for ( int i=1; i<(int)size(); i++ ) { // find min+max x and y
|
---|
446 | if ( pd->x() < minx )
|
---|
447 | minx = pd->x();
|
---|
448 | else if ( pd->x() > maxx )
|
---|
449 | maxx = pd->x();
|
---|
450 | if ( pd->y() < miny )
|
---|
451 | miny = pd->y();
|
---|
452 | else if ( pd->y() > maxy )
|
---|
453 | maxy = pd->y();
|
---|
454 | pd++;
|
---|
455 | }
|
---|
456 | return QRect( QPoint(minx,miny), QPoint(maxx,maxy) );
|
---|
457 | }
|
---|
458 |
|
---|
459 |
|
---|
460 | static inline int fix_angle( int a )
|
---|
461 | {
|
---|
462 | if ( a > 16*360 )
|
---|
463 | a %= 16*360;
|
---|
464 | else if ( a < -16*360 ) {
|
---|
465 | a = -( (-a) % (16*360) );
|
---|
466 | }
|
---|
467 | return a;
|
---|
468 | }
|
---|
469 |
|
---|
470 | /*!
|
---|
471 | Sets the points of the array to those describing an arc of an
|
---|
472 | ellipse with size, width \a w by height \a h, and position (\a x,
|
---|
473 | \a y), starting from angle \a a1 and spanning by angle \a a2. The
|
---|
474 | resulting array has sufficient resolution for pixel accuracy (see
|
---|
475 | the overloaded function which takes an additional QWMatrix
|
---|
476 | parameter).
|
---|
477 |
|
---|
478 | Angles are specified in 16ths of a degree, i.e. a full circle
|
---|
479 | equals 5760 (16*360). Positive values mean counter-clockwise,
|
---|
480 | whereas negative values mean the clockwise direction. Zero degrees
|
---|
481 | is at the 3 o'clock position.
|
---|
482 |
|
---|
483 | See the \link qcanvas.html#anglediagram angle diagram\endlink.
|
---|
484 | */
|
---|
485 |
|
---|
486 | void QPointArray::makeArc( int x, int y, int w, int h, int a1, int a2 )
|
---|
487 | {
|
---|
488 | #if !defined(QT_OLD_MAKEELLIPSE) && !defined(QT_NO_TRANSFORMATIONS)
|
---|
489 | QWMatrix unit;
|
---|
490 | makeArc(x,y,w,h,a1,a2,unit);
|
---|
491 | #else
|
---|
492 | a1 = fix_angle( a1 );
|
---|
493 | if ( a1 < 0 )
|
---|
494 | a1 += 16*360;
|
---|
495 | a2 = fix_angle( a2 );
|
---|
496 | int a3 = a2 > 0 ? a2 : -a2; // abs angle
|
---|
497 | makeEllipse( x, y, w, h );
|
---|
498 | int npts = a3*size()/(16*360); // # points in arc array
|
---|
499 | QPointArray a(npts);
|
---|
500 | int i = a1*size()/(16*360);
|
---|
501 | int j = 0;
|
---|
502 | if ( a2 > 0 ) {
|
---|
503 | while ( npts-- ) {
|
---|
504 | if ( i >= (int)size() ) // wrap index
|
---|
505 | i = 0;
|
---|
506 | a.QMemArray<QPoint>::at( j++ ) = QMemArray<QPoint>::at( i++ );
|
---|
507 | }
|
---|
508 | } else {
|
---|
509 | while ( npts-- ) {
|
---|
510 | if ( i < 0 ) // wrap index
|
---|
511 | i = (int)size()-1;
|
---|
512 | a.QMemArray<QPoint>::at( j++ ) = QMemArray<QPoint>::at( i-- );
|
---|
513 | }
|
---|
514 | }
|
---|
515 | *this = a;
|
---|
516 | return;
|
---|
517 | #endif
|
---|
518 | }
|
---|
519 |
|
---|
520 | #ifndef QT_NO_TRANSFORMATIONS
|
---|
521 | // Based upon:
|
---|
522 | // parelarc.c from Graphics Gems III
|
---|
523 | // VanAken / Simar, "A Parametric Elliptical Arc Algorithm"
|
---|
524 | //
|
---|
525 | static void
|
---|
526 | qtr_elips(QPointArray& a, int off, double dxP, double dyP, double dxQ, double dyQ, double dxK, double dyK, int m)
|
---|
527 | {
|
---|
528 | #define PIV2 102944 /* fixed point PI/2 */
|
---|
529 | #define TWOPI 411775 /* fixed point 2*PI */
|
---|
530 | #define HALF 32768 /* fixed point 1/2 */
|
---|
531 |
|
---|
532 | int xP, yP, xQ, yQ, xK, yK;
|
---|
533 | xP = int(dxP * 65536.0); yP = int(dyP * 65536.0);
|
---|
534 | xQ = int(dxQ * 65536.0); yQ = int(dyQ * 65536.0);
|
---|
535 | xK = int(dxK * 65536.0); yK = int(dyK * 65536.0);
|
---|
536 |
|
---|
537 | int i;
|
---|
538 | int vx, ux, vy, uy, xJ, yJ;
|
---|
539 |
|
---|
540 | vx = xK - xQ; /* displacements from center */
|
---|
541 | ux = xK - xP;
|
---|
542 | vy = yK - yQ;
|
---|
543 | uy = yK - yP;
|
---|
544 | xJ = xP - vx + HALF; /* center of ellipse J */
|
---|
545 | yJ = yP - vy + HALF;
|
---|
546 |
|
---|
547 | int r;
|
---|
548 | ux -= (r = ux >> (2*m + 3)); /* cancel 2nd-order error */
|
---|
549 | ux -= (r >>= (2*m + 4)); /* cancel 4th-order error */
|
---|
550 | ux -= r >> (2*m + 3); /* cancel 6th-order error */
|
---|
551 | ux += vx >> (m + 1); /* cancel 1st-order error */
|
---|
552 | uy -= (r = uy >> (2*m + 3)); /* cancel 2nd-order error */
|
---|
553 | uy -= (r >>= (2*m + 4)); /* cancel 4th-order error */
|
---|
554 | uy -= r >> (2*m + 3); /* cancel 6th-order error */
|
---|
555 | uy += vy >> (m + 1); /* cancel 1st-order error */
|
---|
556 |
|
---|
557 | const int qn = a.size()/4;
|
---|
558 | for (i = 0; i < qn; i++) {
|
---|
559 | a[off+i] = QPoint((xJ + vx) >> 16, (yJ + vy) >> 16);
|
---|
560 | ux -= vx >> m;
|
---|
561 | vx += ux >> m;
|
---|
562 | uy -= vy >> m;
|
---|
563 | vy += uy >> m;
|
---|
564 | }
|
---|
565 |
|
---|
566 | #undef PIV2
|
---|
567 | #undef TWOPI
|
---|
568 | #undef HALF
|
---|
569 | }
|
---|
570 |
|
---|
571 |
|
---|
572 | /*!
|
---|
573 | \overload
|
---|
574 |
|
---|
575 | Sets the points of the array to those describing an arc of an
|
---|
576 | ellipse with width \a w and height \a h and position (\a x, \a y),
|
---|
577 | starting from angle \a a1, and spanning angle by \a a2, and
|
---|
578 | transformed by the matrix \a xf. The resulting array has
|
---|
579 | sufficient resolution for pixel accuracy.
|
---|
580 |
|
---|
581 | Angles are specified in 16ths of a degree, i.e. a full circle
|
---|
582 | equals 5760 (16*360). Positive values mean counter-clockwise,
|
---|
583 | whereas negative values mean the clockwise direction. Zero degrees
|
---|
584 | is at the 3 o'clock position.
|
---|
585 |
|
---|
586 | See the \link qcanvas.html#anglediagram angle diagram\endlink.
|
---|
587 | */
|
---|
588 | void QPointArray::makeArc( int x, int y, int w, int h,
|
---|
589 | int a1, int a2,
|
---|
590 | const QWMatrix& xf )
|
---|
591 | {
|
---|
592 | #define PIV2 102944 /* fixed point PI/2 */
|
---|
593 | if ( --w < 0 || --h < 0 || !a2 ) {
|
---|
594 | resize( 0 );
|
---|
595 | return;
|
---|
596 | }
|
---|
597 |
|
---|
598 | bool rev = a2 < 0;
|
---|
599 | if ( rev ) {
|
---|
600 | a1 += a2;
|
---|
601 | a2 = -a2;
|
---|
602 | }
|
---|
603 | a1 = fix_angle( a1 );
|
---|
604 | if ( a1 < 0 )
|
---|
605 | a1 += 16*360;
|
---|
606 | a2 = fix_angle( a2 );
|
---|
607 |
|
---|
608 | bool arc = a1 != 0 || a2 != 360*16 || rev;
|
---|
609 |
|
---|
610 | double xP, yP, xQ, yQ, xK, yK;
|
---|
611 |
|
---|
612 | xf.map(x+w, y+h/2.0, &xP, &yP);
|
---|
613 | xf.map(x+w/2.0, y, &xQ, &yQ);
|
---|
614 | xf.map(x+w, y, &xK, &yK);
|
---|
615 |
|
---|
616 | int m = 3;
|
---|
617 | int max;
|
---|
618 | int q = int(QMAX(QABS(xP-xQ),QABS(yP-yQ)));
|
---|
619 | if ( arc )
|
---|
620 | q *= 2;
|
---|
621 | do {
|
---|
622 | m++;
|
---|
623 | max = 4*(1 + (PIV2 >> (16 - m)) );
|
---|
624 | } while (max < q && m < 16); // 16 limits memory usage on HUGE arcs
|
---|
625 |
|
---|
626 | double inc = 1.0/(1<<m);
|
---|
627 |
|
---|
628 | const int qn = (PIV2 >> (16 - m));
|
---|
629 | resize(qn*4);
|
---|
630 |
|
---|
631 | qtr_elips(*this, 0, xP, yP, xQ, yQ, xK, yK, m);
|
---|
632 | xP = xQ; yP = yQ;
|
---|
633 | xf.map(x, y+h/2.0, &xQ, &yQ);
|
---|
634 | xf.map(x, y, &xK, &yK);
|
---|
635 | qtr_elips(*this, qn, xP, yP, xQ, yQ, xK, yK, m);
|
---|
636 | xP = xQ; yP = yQ;
|
---|
637 | xf.map(x+w/2.0, y+h, &xQ, &yQ);
|
---|
638 | xf.map(x, y+h, &xK, &yK);
|
---|
639 | qtr_elips(*this, qn*2, xP, yP, xQ, yQ, xK, yK, m);
|
---|
640 | xP = xQ; yP = yQ;
|
---|
641 | xf.map(x+w, y+h/2.0, &xQ, &yQ);
|
---|
642 | xf.map(x+w, y+h, &xK, &yK);
|
---|
643 | qtr_elips(*this, qn*3, xP, yP, xQ, yQ, xK, yK, m);
|
---|
644 |
|
---|
645 | int n = size();
|
---|
646 |
|
---|
647 | if ( arc ) {
|
---|
648 | double da1 = double(a1)*Q_PI / (360*8);
|
---|
649 | double da3 = double(a2+a1)*Q_PI / (360*8);
|
---|
650 | int i = int(da1/inc+0.5);
|
---|
651 | int l = int(da3/inc+0.5);
|
---|
652 | int k = (l-i)+1;
|
---|
653 | QPointArray r(k);
|
---|
654 | int j = 0;
|
---|
655 |
|
---|
656 | if ( rev ) {
|
---|
657 | while ( k-- )
|
---|
658 | r[j++] = at((i+k)%n);
|
---|
659 | } else {
|
---|
660 | while ( j < k ) {
|
---|
661 | r[j] = at((i+j)%n);
|
---|
662 | j++;
|
---|
663 | }
|
---|
664 | }
|
---|
665 | *this = r;
|
---|
666 | }
|
---|
667 | #undef PIV2
|
---|
668 | }
|
---|
669 |
|
---|
670 | #endif // QT_NO_TRANSFORMATIONS
|
---|
671 |
|
---|
672 | /*!
|
---|
673 | Sets the points of the array to those describing an ellipse with
|
---|
674 | size, width \a w by height \a h, and position (\a x, \a y).
|
---|
675 |
|
---|
676 | The returned array has sufficient resolution for use as pixels.
|
---|
677 | */
|
---|
678 | void QPointArray::makeEllipse( int x, int y, int w, int h )
|
---|
679 | { // midpoint, 1/4 ellipse
|
---|
680 | #if !defined(QT_OLD_MAKEELLIPSE) && !defined(QT_NO_TRANSFORMATIONS)
|
---|
681 | QWMatrix unit;
|
---|
682 | makeArc(x,y,w,h,0,360*16,unit);
|
---|
683 | return;
|
---|
684 | #else
|
---|
685 | if ( w <= 0 || h <= 0 ) {
|
---|
686 | if ( w == 0 || h == 0 ) {
|
---|
687 | resize( 0 );
|
---|
688 | return;
|
---|
689 | }
|
---|
690 | if ( w < 0 ) { // negative width
|
---|
691 | w = -w;
|
---|
692 | x -= w;
|
---|
693 | }
|
---|
694 | if ( h < 0 ) { // negative height
|
---|
695 | h = -h;
|
---|
696 | y -= h;
|
---|
697 | }
|
---|
698 | }
|
---|
699 | int s = (w+h+2)/2; // max size of xx,yy array
|
---|
700 | int *px = new int[s]; // 1/4th of ellipse
|
---|
701 | int *py = new int[s];
|
---|
702 | int xx, yy, i=0;
|
---|
703 | double d1, d2;
|
---|
704 | double a2=(w/2)*(w/2), b2=(h/2)*(h/2);
|
---|
705 | xx = 0;
|
---|
706 | yy = int(h/2);
|
---|
707 | d1 = b2 - a2*(h/2) + 0.25*a2;
|
---|
708 | px[i] = xx;
|
---|
709 | py[i] = yy;
|
---|
710 | i++;
|
---|
711 | while ( a2*(yy-0.5) > b2*(xx+0.5) ) { // region 1
|
---|
712 | if ( d1 < 0 ) {
|
---|
713 | d1 = d1 + b2*(3.0+2*xx);
|
---|
714 | xx++;
|
---|
715 | } else {
|
---|
716 | d1 = d1 + b2*(3.0+2*xx) + 2.0*a2*(1-yy);
|
---|
717 | xx++;
|
---|
718 | yy--;
|
---|
719 | }
|
---|
720 | px[i] = xx;
|
---|
721 | py[i] = yy;
|
---|
722 | i++;
|
---|
723 | }
|
---|
724 | d2 = b2*(xx+0.5)*(xx+0.5) + a2*(yy-1)*(yy-1) - a2*b2;
|
---|
725 | while ( yy > 0 ) { // region 2
|
---|
726 | if ( d2 < 0 ) {
|
---|
727 | d2 = d2 + 2.0*b2*(xx+1) + a2*(3-2*yy);
|
---|
728 | xx++;
|
---|
729 | yy--;
|
---|
730 | } else {
|
---|
731 | d2 = d2 + a2*(3-2*yy);
|
---|
732 | yy--;
|
---|
733 | }
|
---|
734 | px[i] = xx;
|
---|
735 | py[i] = yy;
|
---|
736 | i++;
|
---|
737 | }
|
---|
738 | s = i;
|
---|
739 | resize( 4*s ); // make full point array
|
---|
740 | x += w/2;
|
---|
741 | y += h/2;
|
---|
742 | for ( i=0; i<s; i++ ) { // mirror
|
---|
743 | xx = px[i];
|
---|
744 | yy = py[i];
|
---|
745 | setPoint( s-i-1, x+xx, y-yy );
|
---|
746 | setPoint( s+i, x-xx, y-yy );
|
---|
747 | setPoint( 3*s-i-1, x-xx, y+yy );
|
---|
748 | setPoint( 3*s+i, x+xx, y+yy );
|
---|
749 | }
|
---|
750 | delete[] px;
|
---|
751 | delete[] py;
|
---|
752 | #endif
|
---|
753 | }
|
---|
754 |
|
---|
755 | #ifndef QT_NO_BEZIER
|
---|
756 | // Work functions for QPointArray::cubicBezier()
|
---|
757 | static
|
---|
758 | void split(const double *p, double *l, double *r)
|
---|
759 | {
|
---|
760 | double tmpx;
|
---|
761 | double tmpy;
|
---|
762 |
|
---|
763 | l[0] = p[0];
|
---|
764 | l[1] = p[1];
|
---|
765 | r[6] = p[6];
|
---|
766 | r[7] = p[7];
|
---|
767 |
|
---|
768 | l[2] = (p[0]+ p[2])/2;
|
---|
769 | l[3] = (p[1]+ p[3])/2;
|
---|
770 | tmpx = (p[2]+ p[4])/2;
|
---|
771 | tmpy = (p[3]+ p[5])/2;
|
---|
772 | r[4] = (p[4]+ p[6])/2;
|
---|
773 | r[5] = (p[5]+ p[7])/2;
|
---|
774 |
|
---|
775 | l[4] = (l[2]+ tmpx)/2;
|
---|
776 | l[5] = (l[3]+ tmpy)/2;
|
---|
777 | r[2] = (tmpx + r[4])/2;
|
---|
778 | r[3] = (tmpy + r[5])/2;
|
---|
779 |
|
---|
780 | l[6] = (l[4]+ r[2])/2;
|
---|
781 | l[7] = (l[5]+ r[3])/2;
|
---|
782 | r[0] = l[6];
|
---|
783 | r[1] = l[7];
|
---|
784 | }
|
---|
785 |
|
---|
786 | // Based on:
|
---|
787 | //
|
---|
788 | // A Fast 2D Point-On-Line Test
|
---|
789 | // by Alan Paeth
|
---|
790 | // from "Graphics Gems", Academic Press, 1990
|
---|
791 | static
|
---|
792 | int pnt_on_line( const int* p, const int* q, const int* t )
|
---|
793 | {
|
---|
794 | /*
|
---|
795 | * given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty)
|
---|
796 | * return 0 if T is not on the line through <--P--Q-->
|
---|
797 | * 1 if T is on the open ray ending at P: <--P
|
---|
798 | * 2 if T is on the closed interior along: P--Q
|
---|
799 | * 3 if T is on the open ray beginning at Q: Q-->
|
---|
800 | *
|
---|
801 | * Example: consider the line P = (3,2), Q = (17,7). A plot
|
---|
802 | * of the test points T(x,y) (with 0 mapped onto '.') yields:
|
---|
803 | *
|
---|
804 | * 8| . . . . . . . . . . . . . . . . . 3 3
|
---|
805 | * Y 7| . . . . . . . . . . . . . . 2 2 Q 3 3 Q = 2
|
---|
806 | * 6| . . . . . . . . . . . 2 2 2 2 2 . . .
|
---|
807 | * a 5| . . . . . . . . 2 2 2 2 2 2 . . . . .
|
---|
808 | * x 4| . . . . . 2 2 2 2 2 2 . . . . . . . .
|
---|
809 | * i 3| . . . 2 2 2 2 2 . . . . . . . . . . .
|
---|
810 | * s 2| 1 1 P 2 2 . . . . . . . . . . . . . . P = 2
|
---|
811 | * 1| 1 1 . . . . . . . . . . . . . . . . .
|
---|
812 | * +--------------------------------------
|
---|
813 | * 1 2 3 4 5 X-axis 10 15 19
|
---|
814 | *
|
---|
815 | * Point-Line distance is normalized with the Infinity Norm
|
---|
816 | * avoiding square-root code and tightening the test vs the
|
---|
817 | * Manhattan Norm. All math is done on the field of integers.
|
---|
818 | * The latter replaces the initial ">= MAX(...)" test with
|
---|
819 | * "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality
|
---|
820 | * and norm, yielding a broader target line for selection.
|
---|
821 | * The tightest test is employed here for best discrimination
|
---|
822 | * in merging collinear (to grid coordinates) vertex chains
|
---|
823 | * into a larger, spanning vectors within the Lemming editor.
|
---|
824 | */
|
---|
825 |
|
---|
826 | // if all points are coincident, return condition 2 (on line)
|
---|
827 | if(q[0]==p[0] && q[1]==p[1] && q[0]==t[0] && q[1]==t[1]) {
|
---|
828 | return 2;
|
---|
829 | }
|
---|
830 |
|
---|
831 | if ( QABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >=
|
---|
832 | (QMAX(QABS(q[0]-p[0]), QABS(q[1]-p[1])))) return 0;
|
---|
833 |
|
---|
834 | if (((q[0]<p[0])&&(p[0]<t[0])) || ((q[1]<p[1])&&(p[1]<t[1])))
|
---|
835 | return 1 ;
|
---|
836 | if (((t[0]<p[0])&&(p[0]<q[0])) || ((t[1]<p[1])&&(p[1]<q[1])))
|
---|
837 | return 1 ;
|
---|
838 | if (((p[0]<q[0])&&(q[0]<t[0])) || ((p[1]<q[1])&&(q[1]<t[1])))
|
---|
839 | return 3 ;
|
---|
840 | if (((t[0]<q[0])&&(q[0]<p[0])) || ((t[1]<q[1])&&(q[1]<p[1])))
|
---|
841 | return 3 ;
|
---|
842 |
|
---|
843 | return 2 ;
|
---|
844 | }
|
---|
845 | static
|
---|
846 | void polygonizeQBezier( double* acc, int& accsize, const double ctrl[],
|
---|
847 | int maxsize )
|
---|
848 | {
|
---|
849 | if ( accsize > maxsize / 2 )
|
---|
850 | {
|
---|
851 | // This never happens in practice.
|
---|
852 |
|
---|
853 | if ( accsize >= maxsize-4 )
|
---|
854 | return;
|
---|
855 | // Running out of space - approximate by a line.
|
---|
856 | acc[accsize++] = ctrl[0];
|
---|
857 | acc[accsize++] = ctrl[1];
|
---|
858 | acc[accsize++] = ctrl[6];
|
---|
859 | acc[accsize++] = ctrl[7];
|
---|
860 | return;
|
---|
861 | }
|
---|
862 |
|
---|
863 | //intersects:
|
---|
864 | double l[8];
|
---|
865 | double r[8];
|
---|
866 | split( ctrl, l, r);
|
---|
867 |
|
---|
868 | // convert to integers for line condition check
|
---|
869 | int c0[2]; c0[0] = int(ctrl[0]); c0[1] = int(ctrl[1]);
|
---|
870 | int c1[2]; c1[0] = int(ctrl[2]); c1[1] = int(ctrl[3]);
|
---|
871 | int c2[2]; c2[0] = int(ctrl[4]); c2[1] = int(ctrl[5]);
|
---|
872 | int c3[2]; c3[0] = int(ctrl[6]); c3[1] = int(ctrl[7]);
|
---|
873 |
|
---|
874 | // #### Duplication needed?
|
---|
875 | if ( QABS(c1[0]-c0[0]) <= 1 && QABS(c1[1]-c0[1]) <= 1
|
---|
876 | && QABS(c2[0]-c0[0]) <= 1 && QABS(c2[1]-c0[1]) <= 1
|
---|
877 | && QABS(c3[0]-c1[0]) <= 1 && QABS(c3[1]-c0[1]) <= 1 )
|
---|
878 | {
|
---|
879 | // Approximate by one line.
|
---|
880 | // Dont need to write last pt as it is the same as first pt
|
---|
881 | // on the next segment
|
---|
882 | acc[accsize++] = l[0];
|
---|
883 | acc[accsize++] = l[1];
|
---|
884 | return;
|
---|
885 | }
|
---|
886 |
|
---|
887 | if ( ( pnt_on_line( c0, c3, c1 ) == 2 && pnt_on_line( c0, c3, c2 ) == 2 )
|
---|
888 | || ( QABS(c1[0]-c0[0]) <= 1 && QABS(c1[1]-c0[1]) <= 1
|
---|
889 | && QABS(c2[0]-c0[0]) <= 1 && QABS(c2[1]-c0[1]) <= 1
|
---|
890 | && QABS(c3[0]-c1[0]) <= 1 && QABS(c3[1]-c0[1]) <= 1 ) )
|
---|
891 | {
|
---|
892 | // Approximate by one line.
|
---|
893 | // Dont need to write last pt as it is the same as first pt
|
---|
894 | // on the next segment
|
---|
895 | acc[accsize++] = l[0];
|
---|
896 | acc[accsize++] = l[1];
|
---|
897 | return;
|
---|
898 | }
|
---|
899 |
|
---|
900 | // Too big and too curved - recusively subdivide.
|
---|
901 | polygonizeQBezier( acc, accsize, l, maxsize );
|
---|
902 | polygonizeQBezier( acc, accsize, r, maxsize );
|
---|
903 | }
|
---|
904 |
|
---|
905 | /*!
|
---|
906 | Returns the Bezier points for the four control points in this
|
---|
907 | array.
|
---|
908 | */
|
---|
909 |
|
---|
910 | QPointArray QPointArray::cubicBezier() const
|
---|
911 | {
|
---|
912 | #ifdef USE_SIMPLE_QBEZIER_CODE
|
---|
913 | if ( size() != 4 ) {
|
---|
914 | #if defined(QT_CHECK_RANGE)
|
---|
915 | qWarning( "QPointArray::bezier: The array must have 4 control points" );
|
---|
916 | #endif
|
---|
917 | QPointArray p;
|
---|
918 | return p;
|
---|
919 | }
|
---|
920 |
|
---|
921 | int v;
|
---|
922 | float xvec[4];
|
---|
923 | float yvec[4];
|
---|
924 | for ( v=0; v<4; v++ ) { // store all x,y in xvec,yvec
|
---|
925 | int x, y;
|
---|
926 | point( v, &x, &y );
|
---|
927 | xvec[v] = (float)x;
|
---|
928 | yvec[v] = (float)y;
|
---|
929 | }
|
---|
930 |
|
---|
931 | QRect r = boundingRect();
|
---|
932 | int m = QMAX(r.width(),r.height())/2;
|
---|
933 | m = QMIN(m,30); // m = number of result points
|
---|
934 | if ( m < 2 ) // at least two points
|
---|
935 | m = 2;
|
---|
936 | QPointArray p( m ); // p = Bezier point array
|
---|
937 | register QPointData *pd = p.data();
|
---|
938 |
|
---|
939 | float x0 = xvec[0], y0 = yvec[0];
|
---|
940 | float dt = 1.0F/m;
|
---|
941 | float cx = 3.0F * (xvec[1] - x0);
|
---|
942 | float bx = 3.0F * (xvec[2] - xvec[1]) - cx;
|
---|
943 | float ax = xvec[3] - (x0 + cx + bx);
|
---|
944 | float cy = 3.0F * (yvec[1] - y0);
|
---|
945 | float by = 3.0F * (yvec[2] - yvec[1]) - cy;
|
---|
946 | float ay = yvec[3] - (y0 + cy + by);
|
---|
947 | float t = dt;
|
---|
948 |
|
---|
949 | pd->rx() = (QCOORD)xvec[0];
|
---|
950 | pd->ry() = (QCOORD)yvec[0];
|
---|
951 | pd++;
|
---|
952 | m -= 2;
|
---|
953 |
|
---|
954 | while ( m-- ) {
|
---|
955 | pd->rx() = (QCOORD)qRound( ((ax * t + bx) * t + cx) * t + x0 );
|
---|
956 | pd->ry() = (QCOORD)qRound( ((ay * t + by) * t + cy) * t + y0 );
|
---|
957 | pd++;
|
---|
958 | t += dt;
|
---|
959 | }
|
---|
960 |
|
---|
961 | pd->rx() = (QCOORD)xvec[3];
|
---|
962 | pd->ry() = (QCOORD)yvec[3];
|
---|
963 |
|
---|
964 | return p;
|
---|
965 | #else
|
---|
966 |
|
---|
967 | if ( size() != 4 ) {
|
---|
968 | #if defined(QT_CHECK_RANGE)
|
---|
969 | qWarning( "QPointArray::bezier: The array must have 4 control points" );
|
---|
970 | #endif
|
---|
971 | QPointArray pa;
|
---|
972 | return pa;
|
---|
973 | } else {
|
---|
974 | QRect r = boundingRect();
|
---|
975 | int m = 4+2*QMAX(r.width(),r.height());
|
---|
976 | double *p = new double[m];
|
---|
977 | double ctrl[8];
|
---|
978 | int i;
|
---|
979 | for (i=0; i<4; i++) {
|
---|
980 | ctrl[i*2] = at(i).x();
|
---|
981 | ctrl[i*2+1] = at(i).y();
|
---|
982 | }
|
---|
983 | int len=0;
|
---|
984 | polygonizeQBezier( p, len, ctrl, m );
|
---|
985 | QPointArray pa((len/2)+1); // one extra point for last point on line
|
---|
986 | int j=0;
|
---|
987 | for (i=0; j<len; i++) {
|
---|
988 | int x = qRound(p[j++]);
|
---|
989 | int y = qRound(p[j++]);
|
---|
990 | pa[i] = QPoint(x,y);
|
---|
991 | }
|
---|
992 | // add last pt on the line, which will be at the last control pt
|
---|
993 | pa[(int)pa.size()-1] = at(3);
|
---|
994 | delete[] p;
|
---|
995 |
|
---|
996 | return pa;
|
---|
997 | }
|
---|
998 |
|
---|
999 | #endif
|
---|
1000 | }
|
---|
1001 | #endif //QT_NO_BEZIER
|
---|
1002 |
|
---|
1003 | /*****************************************************************************
|
---|
1004 | QPointArray stream functions
|
---|
1005 | *****************************************************************************/
|
---|
1006 | #ifndef QT_NO_DATASTREAM
|
---|
1007 | /*!
|
---|
1008 | \relates QPointArray
|
---|
1009 |
|
---|
1010 | Writes the point array, \a a to the stream \a s and returns a
|
---|
1011 | reference to the stream.
|
---|
1012 |
|
---|
1013 | \sa \link datastreamformat.html Format of the QDataStream operators \endlink
|
---|
1014 | */
|
---|
1015 |
|
---|
1016 | QDataStream &operator<<( QDataStream &s, const QPointArray &a )
|
---|
1017 | {
|
---|
1018 | register uint i;
|
---|
1019 | uint len = a.size();
|
---|
1020 | s << len; // write size of array
|
---|
1021 | for ( i=0; i<len; i++ ) // write each point
|
---|
1022 | s << a.point( i );
|
---|
1023 | return s;
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | /*!
|
---|
1027 | \relates QPointArray
|
---|
1028 |
|
---|
1029 | Reads a point array, \a a from the stream \a s and returns a
|
---|
1030 | reference to the stream.
|
---|
1031 |
|
---|
1032 | \sa \link datastreamformat.html Format of the QDataStream operators \endlink
|
---|
1033 | */
|
---|
1034 |
|
---|
1035 | QDataStream &operator>>( QDataStream &s, QPointArray &a )
|
---|
1036 | {
|
---|
1037 | register uint i;
|
---|
1038 | uint len;
|
---|
1039 | s >> len; // read size of array
|
---|
1040 | if ( !a.resize( len ) ) // no memory
|
---|
1041 | return s;
|
---|
1042 | QPoint p;
|
---|
1043 | for ( i=0; i<len; i++ ) { // read each point
|
---|
1044 | s >> p;
|
---|
1045 | a.setPoint( i, p );
|
---|
1046 | }
|
---|
1047 | return s;
|
---|
1048 | }
|
---|
1049 | #endif //QT_NO_DATASTREAM
|
---|
1050 |
|
---|
1051 |
|
---|
1052 |
|
---|
1053 | struct QShortPoint { // Binary compatible with XPoint
|
---|
1054 | short x, y;
|
---|
1055 | };
|
---|
1056 |
|
---|
1057 | uint QPointArray::splen = 0;
|
---|
1058 | void* QPointArray::sp = 0; // Really a QShortPoint*
|
---|
1059 |
|
---|
1060 | /*!
|
---|
1061 | \internal
|
---|
1062 |
|
---|
1063 | Converts the point coords to short (16bit) size, compatible with
|
---|
1064 | X11's XPoint structure. The pointer returned points to a static
|
---|
1065 | array, so its contents will be overwritten the next time this
|
---|
1066 | function is called.
|
---|
1067 | */
|
---|
1068 |
|
---|
1069 | void* QPointArray::shortPoints( int index, int nPoints ) const
|
---|
1070 | {
|
---|
1071 |
|
---|
1072 | if ( isNull() || !nPoints )
|
---|
1073 | return 0;
|
---|
1074 | QPoint* p = data();
|
---|
1075 | p += index;
|
---|
1076 | uint i = nPoints < 0 ? size() : nPoints;
|
---|
1077 | if ( splen < i ) {
|
---|
1078 | if ( sp )
|
---|
1079 | delete[] ((QShortPoint*)sp);
|
---|
1080 | sp = new QShortPoint[i];
|
---|
1081 | splen = i;
|
---|
1082 | }
|
---|
1083 | QShortPoint* ps = (QShortPoint*)sp;
|
---|
1084 | while ( i-- ) {
|
---|
1085 | ps->x = (short)p->x();
|
---|
1086 | ps->y = (short)p->y();
|
---|
1087 | p++;
|
---|
1088 | ps++;
|
---|
1089 | }
|
---|
1090 | return sp;
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 |
|
---|
1094 | /*!
|
---|
1095 | \internal
|
---|
1096 |
|
---|
1097 | Deallocates the internal buffer used by shortPoints().
|
---|
1098 | */
|
---|
1099 |
|
---|
1100 | void QPointArray::cleanBuffers()
|
---|
1101 | {
|
---|
1102 | if ( sp )
|
---|
1103 | delete[] ((QShortPoint*)sp);
|
---|
1104 | sp = 0;
|
---|
1105 | splen = 0;
|
---|
1106 | }
|
---|