1 | /*
|
---|
2 | ** 2003 September 6
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** This file contains code used for creating, destroying, and populating
|
---|
13 | ** a VDBE (or an "sqlite_vm" as it is known to the outside world.) Prior
|
---|
14 | ** to version 2.8.7, all this code was combined into the vdbe.c source file.
|
---|
15 | ** But that file was getting too big so this subroutines were split out.
|
---|
16 | */
|
---|
17 | #include "sqliteInt.h"
|
---|
18 | #include "os.h"
|
---|
19 | #include <ctype.h>
|
---|
20 | #include "vdbeInt.h"
|
---|
21 |
|
---|
22 |
|
---|
23 | /*
|
---|
24 | ** When debugging the code generator in a symbolic debugger, one can
|
---|
25 | ** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
|
---|
26 | ** as they are added to the instruction stream.
|
---|
27 | */
|
---|
28 | #ifndef NDEBUG
|
---|
29 | int sqlite_vdbe_addop_trace = 0;
|
---|
30 | #endif
|
---|
31 |
|
---|
32 |
|
---|
33 | /*
|
---|
34 | ** Create a new virtual database engine.
|
---|
35 | */
|
---|
36 | Vdbe *sqliteVdbeCreate(sqlite *db){
|
---|
37 | Vdbe *p;
|
---|
38 | p = sqliteMalloc( sizeof(Vdbe) );
|
---|
39 | if( p==0 ) return 0;
|
---|
40 | p->db = db;
|
---|
41 | if( db->pVdbe ){
|
---|
42 | db->pVdbe->pPrev = p;
|
---|
43 | }
|
---|
44 | p->pNext = db->pVdbe;
|
---|
45 | p->pPrev = 0;
|
---|
46 | db->pVdbe = p;
|
---|
47 | p->magic = VDBE_MAGIC_INIT;
|
---|
48 | return p;
|
---|
49 | }
|
---|
50 |
|
---|
51 | /*
|
---|
52 | ** Turn tracing on or off
|
---|
53 | */
|
---|
54 | void sqliteVdbeTrace(Vdbe *p, FILE *trace){
|
---|
55 | p->trace = trace;
|
---|
56 | }
|
---|
57 |
|
---|
58 | /*
|
---|
59 | ** Add a new instruction to the list of instructions current in the
|
---|
60 | ** VDBE. Return the address of the new instruction.
|
---|
61 | **
|
---|
62 | ** Parameters:
|
---|
63 | **
|
---|
64 | ** p Pointer to the VDBE
|
---|
65 | **
|
---|
66 | ** op The opcode for this instruction
|
---|
67 | **
|
---|
68 | ** p1, p2 First two of the three possible operands.
|
---|
69 | **
|
---|
70 | ** Use the sqliteVdbeResolveLabel() function to fix an address and
|
---|
71 | ** the sqliteVdbeChangeP3() function to change the value of the P3
|
---|
72 | ** operand.
|
---|
73 | */
|
---|
74 | int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
|
---|
75 | int i;
|
---|
76 | VdbeOp *pOp;
|
---|
77 |
|
---|
78 | i = p->nOp;
|
---|
79 | p->nOp++;
|
---|
80 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
81 | if( i>=p->nOpAlloc ){
|
---|
82 | int oldSize = p->nOpAlloc;
|
---|
83 | Op *aNew;
|
---|
84 | p->nOpAlloc = p->nOpAlloc*2 + 100;
|
---|
85 | aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
|
---|
86 | if( aNew==0 ){
|
---|
87 | p->nOpAlloc = oldSize;
|
---|
88 | return 0;
|
---|
89 | }
|
---|
90 | p->aOp = aNew;
|
---|
91 | memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
|
---|
92 | }
|
---|
93 | pOp = &p->aOp[i];
|
---|
94 | pOp->opcode = op;
|
---|
95 | pOp->p1 = p1;
|
---|
96 | if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
|
---|
97 | p2 = p->aLabel[-1-p2];
|
---|
98 | }
|
---|
99 | pOp->p2 = p2;
|
---|
100 | pOp->p3 = 0;
|
---|
101 | pOp->p3type = P3_NOTUSED;
|
---|
102 | #ifndef NDEBUG
|
---|
103 | if( sqlite_vdbe_addop_trace ) sqliteVdbePrintOp(0, i, &p->aOp[i]);
|
---|
104 | #endif
|
---|
105 | return i;
|
---|
106 | }
|
---|
107 |
|
---|
108 | /*
|
---|
109 | ** Add an opcode that includes the p3 value.
|
---|
110 | */
|
---|
111 | int sqliteVdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3, int p3type){
|
---|
112 | int addr = sqliteVdbeAddOp(p, op, p1, p2);
|
---|
113 | sqliteVdbeChangeP3(p, addr, zP3, p3type);
|
---|
114 | return addr;
|
---|
115 | }
|
---|
116 |
|
---|
117 | /*
|
---|
118 | ** Add multiple opcodes. The list is terminated by an opcode of 0.
|
---|
119 | */
|
---|
120 | int sqliteVdbeCode(Vdbe *p, ...){
|
---|
121 | int addr;
|
---|
122 | va_list ap;
|
---|
123 | int opcode, p1, p2;
|
---|
124 | va_start(ap, p);
|
---|
125 | addr = p->nOp;
|
---|
126 | while( (opcode = va_arg(ap,int))!=0 ){
|
---|
127 | p1 = va_arg(ap,int);
|
---|
128 | p2 = va_arg(ap,int);
|
---|
129 | sqliteVdbeAddOp(p, opcode, p1, p2);
|
---|
130 | }
|
---|
131 | va_end(ap);
|
---|
132 | return addr;
|
---|
133 | }
|
---|
134 |
|
---|
135 |
|
---|
136 |
|
---|
137 | /*
|
---|
138 | ** Create a new symbolic label for an instruction that has yet to be
|
---|
139 | ** coded. The symbolic label is really just a negative number. The
|
---|
140 | ** label can be used as the P2 value of an operation. Later, when
|
---|
141 | ** the label is resolved to a specific address, the VDBE will scan
|
---|
142 | ** through its operation list and change all values of P2 which match
|
---|
143 | ** the label into the resolved address.
|
---|
144 | **
|
---|
145 | ** The VDBE knows that a P2 value is a label because labels are
|
---|
146 | ** always negative and P2 values are suppose to be non-negative.
|
---|
147 | ** Hence, a negative P2 value is a label that has yet to be resolved.
|
---|
148 | */
|
---|
149 | int sqliteVdbeMakeLabel(Vdbe *p){
|
---|
150 | int i;
|
---|
151 | i = p->nLabel++;
|
---|
152 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
153 | if( i>=p->nLabelAlloc ){
|
---|
154 | int *aNew;
|
---|
155 | p->nLabelAlloc = p->nLabelAlloc*2 + 10;
|
---|
156 | aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
|
---|
157 | if( aNew==0 ){
|
---|
158 | sqliteFree(p->aLabel);
|
---|
159 | }
|
---|
160 | p->aLabel = aNew;
|
---|
161 | }
|
---|
162 | if( p->aLabel==0 ){
|
---|
163 | p->nLabel = 0;
|
---|
164 | p->nLabelAlloc = 0;
|
---|
165 | return 0;
|
---|
166 | }
|
---|
167 | p->aLabel[i] = -1;
|
---|
168 | return -1-i;
|
---|
169 | }
|
---|
170 |
|
---|
171 | /*
|
---|
172 | ** Resolve label "x" to be the address of the next instruction to
|
---|
173 | ** be inserted. The parameter "x" must have been obtained from
|
---|
174 | ** a prior call to sqliteVdbeMakeLabel().
|
---|
175 | */
|
---|
176 | void sqliteVdbeResolveLabel(Vdbe *p, int x){
|
---|
177 | int j;
|
---|
178 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
179 | if( x<0 && (-x)<=p->nLabel && p->aOp ){
|
---|
180 | if( p->aLabel[-1-x]==p->nOp ) return;
|
---|
181 | assert( p->aLabel[-1-x]<0 );
|
---|
182 | p->aLabel[-1-x] = p->nOp;
|
---|
183 | for(j=0; j<p->nOp; j++){
|
---|
184 | if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|
188 |
|
---|
189 | /*
|
---|
190 | ** Return the address of the next instruction to be inserted.
|
---|
191 | */
|
---|
192 | int sqliteVdbeCurrentAddr(Vdbe *p){
|
---|
193 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
194 | return p->nOp;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /*
|
---|
198 | ** Add a whole list of operations to the operation stack. Return the
|
---|
199 | ** address of the first operation added.
|
---|
200 | */
|
---|
201 | int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
---|
202 | int addr;
|
---|
203 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
204 | if( p->nOp + nOp >= p->nOpAlloc ){
|
---|
205 | int oldSize = p->nOpAlloc;
|
---|
206 | Op *aNew;
|
---|
207 | p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
|
---|
208 | aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
|
---|
209 | if( aNew==0 ){
|
---|
210 | p->nOpAlloc = oldSize;
|
---|
211 | return 0;
|
---|
212 | }
|
---|
213 | p->aOp = aNew;
|
---|
214 | memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
|
---|
215 | }
|
---|
216 | addr = p->nOp;
|
---|
217 | if( nOp>0 ){
|
---|
218 | int i;
|
---|
219 | VdbeOpList const *pIn = aOp;
|
---|
220 | for(i=0; i<nOp; i++, pIn++){
|
---|
221 | int p2 = pIn->p2;
|
---|
222 | VdbeOp *pOut = &p->aOp[i+addr];
|
---|
223 | pOut->opcode = pIn->opcode;
|
---|
224 | pOut->p1 = pIn->p1;
|
---|
225 | pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
|
---|
226 | pOut->p3 = pIn->p3;
|
---|
227 | pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
|
---|
228 | #ifndef NDEBUG
|
---|
229 | if( sqlite_vdbe_addop_trace ){
|
---|
230 | sqliteVdbePrintOp(0, i+addr, &p->aOp[i+addr]);
|
---|
231 | }
|
---|
232 | #endif
|
---|
233 | }
|
---|
234 | p->nOp += nOp;
|
---|
235 | }
|
---|
236 | return addr;
|
---|
237 | }
|
---|
238 |
|
---|
239 | /*
|
---|
240 | ** Change the value of the P1 operand for a specific instruction.
|
---|
241 | ** This routine is useful when a large program is loaded from a
|
---|
242 | ** static array using sqliteVdbeAddOpList but we want to make a
|
---|
243 | ** few minor changes to the program.
|
---|
244 | */
|
---|
245 | void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
|
---|
246 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
247 | if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
---|
248 | p->aOp[addr].p1 = val;
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 | /*
|
---|
253 | ** Change the value of the P2 operand for a specific instruction.
|
---|
254 | ** This routine is useful for setting a jump destination.
|
---|
255 | */
|
---|
256 | void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
|
---|
257 | assert( val>=0 );
|
---|
258 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
259 | if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
---|
260 | p->aOp[addr].p2 = val;
|
---|
261 | }
|
---|
262 | }
|
---|
263 |
|
---|
264 | /*
|
---|
265 | ** Change the value of the P3 operand for a specific instruction.
|
---|
266 | ** This routine is useful when a large program is loaded from a
|
---|
267 | ** static array using sqliteVdbeAddOpList but we want to make a
|
---|
268 | ** few minor changes to the program.
|
---|
269 | **
|
---|
270 | ** If n>=0 then the P3 operand is dynamic, meaning that a copy of
|
---|
271 | ** the string is made into memory obtained from sqliteMalloc().
|
---|
272 | ** A value of n==0 means copy bytes of zP3 up to and including the
|
---|
273 | ** first null byte. If n>0 then copy n+1 bytes of zP3.
|
---|
274 | **
|
---|
275 | ** If n==P3_STATIC it means that zP3 is a pointer to a constant static
|
---|
276 | ** string and we can just copy the pointer. n==P3_POINTER means zP3 is
|
---|
277 | ** a pointer to some object other than a string.
|
---|
278 | **
|
---|
279 | ** If addr<0 then change P3 on the most recently inserted instruction.
|
---|
280 | */
|
---|
281 | void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
|
---|
282 | Op *pOp;
|
---|
283 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
284 | if( p==0 || p->aOp==0 ) return;
|
---|
285 | if( addr<0 || addr>=p->nOp ){
|
---|
286 | addr = p->nOp - 1;
|
---|
287 | if( addr<0 ) return;
|
---|
288 | }
|
---|
289 | pOp = &p->aOp[addr];
|
---|
290 | if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
|
---|
291 | sqliteFree(pOp->p3);
|
---|
292 | pOp->p3 = 0;
|
---|
293 | }
|
---|
294 | if( zP3==0 ){
|
---|
295 | pOp->p3 = 0;
|
---|
296 | pOp->p3type = P3_NOTUSED;
|
---|
297 | }else if( n<0 ){
|
---|
298 | pOp->p3 = (char*)zP3;
|
---|
299 | pOp->p3type = n;
|
---|
300 | }else{
|
---|
301 | sqliteSetNString(&pOp->p3, zP3, n, 0);
|
---|
302 | pOp->p3type = P3_DYNAMIC;
|
---|
303 | }
|
---|
304 | }
|
---|
305 |
|
---|
306 | /*
|
---|
307 | ** If the P3 operand to the specified instruction appears
|
---|
308 | ** to be a quoted string token, then this procedure removes
|
---|
309 | ** the quotes.
|
---|
310 | **
|
---|
311 | ** The quoting operator can be either a grave ascent (ASCII 0x27)
|
---|
312 | ** or a double quote character (ASCII 0x22). Two quotes in a row
|
---|
313 | ** resolve to be a single actual quote character within the string.
|
---|
314 | */
|
---|
315 | void sqliteVdbeDequoteP3(Vdbe *p, int addr){
|
---|
316 | Op *pOp;
|
---|
317 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
318 | if( p->aOp==0 ) return;
|
---|
319 | if( addr<0 || addr>=p->nOp ){
|
---|
320 | addr = p->nOp - 1;
|
---|
321 | if( addr<0 ) return;
|
---|
322 | }
|
---|
323 | pOp = &p->aOp[addr];
|
---|
324 | if( pOp->p3==0 || pOp->p3[0]==0 ) return;
|
---|
325 | if( pOp->p3type==P3_POINTER ) return;
|
---|
326 | if( pOp->p3type!=P3_DYNAMIC ){
|
---|
327 | pOp->p3 = sqliteStrDup(pOp->p3);
|
---|
328 | pOp->p3type = P3_DYNAMIC;
|
---|
329 | }
|
---|
330 | sqliteDequote(pOp->p3);
|
---|
331 | }
|
---|
332 |
|
---|
333 | /*
|
---|
334 | ** On the P3 argument of the given instruction, change all
|
---|
335 | ** strings of whitespace characters into a single space and
|
---|
336 | ** delete leading and trailing whitespace.
|
---|
337 | */
|
---|
338 | void sqliteVdbeCompressSpace(Vdbe *p, int addr){
|
---|
339 | unsigned char *z;
|
---|
340 | int i, j;
|
---|
341 | Op *pOp;
|
---|
342 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
343 | if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
|
---|
344 | pOp = &p->aOp[addr];
|
---|
345 | if( pOp->p3type==P3_POINTER ){
|
---|
346 | return;
|
---|
347 | }
|
---|
348 | if( pOp->p3type!=P3_DYNAMIC ){
|
---|
349 | pOp->p3 = sqliteStrDup(pOp->p3);
|
---|
350 | pOp->p3type = P3_DYNAMIC;
|
---|
351 | }
|
---|
352 | z = (unsigned char*)pOp->p3;
|
---|
353 | if( z==0 ) return;
|
---|
354 | i = j = 0;
|
---|
355 | while( isspace(z[i]) ){ i++; }
|
---|
356 | while( z[i] ){
|
---|
357 | if( isspace(z[i]) ){
|
---|
358 | z[j++] = ' ';
|
---|
359 | while( isspace(z[++i]) ){}
|
---|
360 | }else{
|
---|
361 | z[j++] = z[i++];
|
---|
362 | }
|
---|
363 | }
|
---|
364 | while( j>0 && isspace(z[j-1]) ){ j--; }
|
---|
365 | z[j] = 0;
|
---|
366 | }
|
---|
367 |
|
---|
368 | /*
|
---|
369 | ** Search for the current program for the given opcode and P2
|
---|
370 | ** value. Return the address plus 1 if found and 0 if not found.
|
---|
371 | */
|
---|
372 | int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
|
---|
373 | int i;
|
---|
374 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
375 | for(i=0; i<p->nOp; i++){
|
---|
376 | if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
|
---|
377 | }
|
---|
378 | return 0;
|
---|
379 | }
|
---|
380 |
|
---|
381 | /*
|
---|
382 | ** Return the opcode for a given address.
|
---|
383 | */
|
---|
384 | VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
|
---|
385 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
386 | assert( addr>=0 && addr<p->nOp );
|
---|
387 | return &p->aOp[addr];
|
---|
388 | }
|
---|
389 |
|
---|
390 | /*
|
---|
391 | ** The following group or routines are employed by installable functions
|
---|
392 | ** to return their results.
|
---|
393 | **
|
---|
394 | ** The sqlite_set_result_string() routine can be used to return a string
|
---|
395 | ** value or to return a NULL. To return a NULL, pass in NULL for zResult.
|
---|
396 | ** A copy is made of the string before this routine returns so it is safe
|
---|
397 | ** to pass in an ephemeral string.
|
---|
398 | **
|
---|
399 | ** sqlite_set_result_error() works like sqlite_set_result_string() except
|
---|
400 | ** that it signals a fatal error. The string argument, if any, is the
|
---|
401 | ** error message. If the argument is NULL a generic substitute error message
|
---|
402 | ** is used.
|
---|
403 | **
|
---|
404 | ** The sqlite_set_result_int() and sqlite_set_result_double() set the return
|
---|
405 | ** value of the user function to an integer or a double.
|
---|
406 | **
|
---|
407 | ** These routines are defined here in vdbe.c because they depend on knowing
|
---|
408 | ** the internals of the sqlite_func structure which is only defined in
|
---|
409 | ** this source file.
|
---|
410 | */
|
---|
411 | char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
|
---|
412 | assert( !p->isStep );
|
---|
413 | if( p->s.flags & MEM_Dyn ){
|
---|
414 | sqliteFree(p->s.z);
|
---|
415 | }
|
---|
416 | if( zResult==0 ){
|
---|
417 | p->s.flags = MEM_Null;
|
---|
418 | n = 0;
|
---|
419 | p->s.z = 0;
|
---|
420 | p->s.n = 0;
|
---|
421 | }else{
|
---|
422 | if( n<0 ) n = strlen(zResult);
|
---|
423 | if( n<NBFS-1 ){
|
---|
424 | memcpy(p->s.zShort, zResult, n);
|
---|
425 | p->s.zShort[n] = 0;
|
---|
426 | p->s.flags = MEM_Str | MEM_Short;
|
---|
427 | p->s.z = p->s.zShort;
|
---|
428 | }else{
|
---|
429 | p->s.z = sqliteMallocRaw( n+1 );
|
---|
430 | if( p->s.z ){
|
---|
431 | memcpy(p->s.z, zResult, n);
|
---|
432 | p->s.z[n] = 0;
|
---|
433 | }
|
---|
434 | p->s.flags = MEM_Str | MEM_Dyn;
|
---|
435 | }
|
---|
436 | p->s.n = n+1;
|
---|
437 | }
|
---|
438 | return p->s.z;
|
---|
439 | }
|
---|
440 | void sqlite_set_result_int(sqlite_func *p, int iResult){
|
---|
441 | assert( !p->isStep );
|
---|
442 | if( p->s.flags & MEM_Dyn ){
|
---|
443 | sqliteFree(p->s.z);
|
---|
444 | }
|
---|
445 | p->s.i = iResult;
|
---|
446 | p->s.flags = MEM_Int;
|
---|
447 | }
|
---|
448 | void sqlite_set_result_double(sqlite_func *p, double rResult){
|
---|
449 | assert( !p->isStep );
|
---|
450 | if( p->s.flags & MEM_Dyn ){
|
---|
451 | sqliteFree(p->s.z);
|
---|
452 | }
|
---|
453 | p->s.r = rResult;
|
---|
454 | p->s.flags = MEM_Real;
|
---|
455 | }
|
---|
456 | void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
|
---|
457 | assert( !p->isStep );
|
---|
458 | sqlite_set_result_string(p, zMsg, n);
|
---|
459 | p->isError = 1;
|
---|
460 | }
|
---|
461 |
|
---|
462 | /*
|
---|
463 | ** Extract the user data from a sqlite_func structure and return a
|
---|
464 | ** pointer to it.
|
---|
465 | */
|
---|
466 | void *sqlite_user_data(sqlite_func *p){
|
---|
467 | assert( p && p->pFunc );
|
---|
468 | return p->pFunc->pUserData;
|
---|
469 | }
|
---|
470 |
|
---|
471 | /*
|
---|
472 | ** Allocate or return the aggregate context for a user function. A new
|
---|
473 | ** context is allocated on the first call. Subsequent calls return the
|
---|
474 | ** same context that was returned on prior calls.
|
---|
475 | **
|
---|
476 | ** This routine is defined here in vdbe.c because it depends on knowing
|
---|
477 | ** the internals of the sqlite_func structure which is only defined in
|
---|
478 | ** this source file.
|
---|
479 | */
|
---|
480 | void *sqlite_aggregate_context(sqlite_func *p, int nByte){
|
---|
481 | assert( p && p->pFunc && p->pFunc->xStep );
|
---|
482 | if( p->pAgg==0 ){
|
---|
483 | if( nByte<=NBFS ){
|
---|
484 | p->pAgg = (void*)p->s.z;
|
---|
485 | memset(p->pAgg, 0, nByte);
|
---|
486 | }else{
|
---|
487 | p->pAgg = sqliteMalloc( nByte );
|
---|
488 | }
|
---|
489 | }
|
---|
490 | return p->pAgg;
|
---|
491 | }
|
---|
492 |
|
---|
493 | /*
|
---|
494 | ** Return the number of times the Step function of a aggregate has been
|
---|
495 | ** called.
|
---|
496 | **
|
---|
497 | ** This routine is defined here in vdbe.c because it depends on knowing
|
---|
498 | ** the internals of the sqlite_func structure which is only defined in
|
---|
499 | ** this source file.
|
---|
500 | */
|
---|
501 | int sqlite_aggregate_count(sqlite_func *p){
|
---|
502 | assert( p && p->pFunc && p->pFunc->xStep );
|
---|
503 | return p->cnt;
|
---|
504 | }
|
---|
505 |
|
---|
506 | #if !defined(NDEBUG) || defined(VDBE_PROFILE)
|
---|
507 | /*
|
---|
508 | ** Print a single opcode. This routine is used for debugging only.
|
---|
509 | */
|
---|
510 | void sqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp){
|
---|
511 | char *zP3;
|
---|
512 | char zPtr[40];
|
---|
513 | if( pOp->p3type==P3_POINTER ){
|
---|
514 | sprintf(zPtr, "ptr(%#lx)", (long)pOp->p3);
|
---|
515 | zP3 = zPtr;
|
---|
516 | }else{
|
---|
517 | zP3 = pOp->p3;
|
---|
518 | }
|
---|
519 | if( pOut==0 ) pOut = stdout;
|
---|
520 | fprintf(pOut,"%4d %-12s %4d %4d %s\n",
|
---|
521 | pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
|
---|
522 | fflush(pOut);
|
---|
523 | }
|
---|
524 | #endif
|
---|
525 |
|
---|
526 | /*
|
---|
527 | ** Give a listing of the program in the virtual machine.
|
---|
528 | **
|
---|
529 | ** The interface is the same as sqliteVdbeExec(). But instead of
|
---|
530 | ** running the code, it invokes the callback once for each instruction.
|
---|
531 | ** This feature is used to implement "EXPLAIN".
|
---|
532 | */
|
---|
533 | int sqliteVdbeList(
|
---|
534 | Vdbe *p /* The VDBE */
|
---|
535 | ){
|
---|
536 | sqlite *db = p->db;
|
---|
537 | int i;
|
---|
538 | int rc = SQLITE_OK;
|
---|
539 | static char *azColumnNames[] = {
|
---|
540 | "addr", "opcode", "p1", "p2", "p3",
|
---|
541 | "int", "text", "int", "int", "text",
|
---|
542 | 0
|
---|
543 | };
|
---|
544 |
|
---|
545 | assert( p->popStack==0 );
|
---|
546 | assert( p->explain );
|
---|
547 | p->azColName = azColumnNames;
|
---|
548 | p->azResColumn = p->zArgv;
|
---|
549 | for(i=0; i<5; i++) p->zArgv[i] = p->aStack[i].zShort;
|
---|
550 | i = p->pc;
|
---|
551 | if( i>=p->nOp ){
|
---|
552 | p->rc = SQLITE_OK;
|
---|
553 | rc = SQLITE_DONE;
|
---|
554 | }else if( db->flags & SQLITE_Interrupt ){
|
---|
555 | db->flags &= ~SQLITE_Interrupt;
|
---|
556 | if( db->magic!=SQLITE_MAGIC_BUSY ){
|
---|
557 | p->rc = SQLITE_MISUSE;
|
---|
558 | }else{
|
---|
559 | p->rc = SQLITE_INTERRUPT;
|
---|
560 | }
|
---|
561 | rc = SQLITE_ERROR;
|
---|
562 | sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0);
|
---|
563 | }else{
|
---|
564 | sprintf(p->zArgv[0],"%d",i);
|
---|
565 | sprintf(p->zArgv[2],"%d", p->aOp[i].p1);
|
---|
566 | sprintf(p->zArgv[3],"%d", p->aOp[i].p2);
|
---|
567 | if( p->aOp[i].p3type==P3_POINTER ){
|
---|
568 | sprintf(p->aStack[4].zShort, "ptr(%#lx)", (long)p->aOp[i].p3);
|
---|
569 | p->zArgv[4] = p->aStack[4].zShort;
|
---|
570 | }else{
|
---|
571 | p->zArgv[4] = p->aOp[i].p3;
|
---|
572 | }
|
---|
573 | p->zArgv[1] = sqliteOpcodeNames[p->aOp[i].opcode];
|
---|
574 | p->pc = i+1;
|
---|
575 | p->azResColumn = p->zArgv;
|
---|
576 | p->nResColumn = 5;
|
---|
577 | p->rc = SQLITE_OK;
|
---|
578 | rc = SQLITE_ROW;
|
---|
579 | }
|
---|
580 | return rc;
|
---|
581 | }
|
---|
582 |
|
---|
583 | /*
|
---|
584 | ** Prepare a virtual machine for execution. This involves things such
|
---|
585 | ** as allocating stack space and initializing the program counter.
|
---|
586 | ** After the VDBE has be prepped, it can be executed by one or more
|
---|
587 | ** calls to sqliteVdbeExec().
|
---|
588 | */
|
---|
589 | void sqliteVdbeMakeReady(
|
---|
590 | Vdbe *p, /* The VDBE */
|
---|
591 | int nVar, /* Number of '?' see in the SQL statement */
|
---|
592 | int isExplain /* True if the EXPLAIN keywords is present */
|
---|
593 | ){
|
---|
594 | int n;
|
---|
595 |
|
---|
596 | assert( p!=0 );
|
---|
597 | assert( p->magic==VDBE_MAGIC_INIT );
|
---|
598 |
|
---|
599 | /* Add a HALT instruction to the very end of the program.
|
---|
600 | */
|
---|
601 | if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
|
---|
602 | sqliteVdbeAddOp(p, OP_Halt, 0, 0);
|
---|
603 | }
|
---|
604 |
|
---|
605 | /* No instruction ever pushes more than a single element onto the
|
---|
606 | ** stack. And the stack never grows on successive executions of the
|
---|
607 | ** same loop. So the total number of instructions is an upper bound
|
---|
608 | ** on the maximum stack depth required.
|
---|
609 | **
|
---|
610 | ** Allocation all the stack space we will ever need.
|
---|
611 | */
|
---|
612 | if( p->aStack==0 ){
|
---|
613 | p->nVar = nVar;
|
---|
614 | assert( nVar>=0 );
|
---|
615 | n = isExplain ? 10 : p->nOp;
|
---|
616 | p->aStack = sqliteMalloc(
|
---|
617 | n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zArgv */
|
---|
618 | + p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */
|
---|
619 | );
|
---|
620 | p->zArgv = (char**)&p->aStack[n];
|
---|
621 | p->azColName = (char**)&p->zArgv[n];
|
---|
622 | p->azVar = (char**)&p->azColName[n];
|
---|
623 | p->anVar = (int*)&p->azVar[p->nVar];
|
---|
624 | p->abVar = (u8*)&p->anVar[p->nVar];
|
---|
625 | }
|
---|
626 |
|
---|
627 | sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
|
---|
628 | p->agg.pSearch = 0;
|
---|
629 | #ifdef MEMORY_DEBUG
|
---|
630 | if( sqliteOsFileExists("vdbe_trace") ){
|
---|
631 | p->trace = stdout;
|
---|
632 | }
|
---|
633 | #endif
|
---|
634 | p->pTos = &p->aStack[-1];
|
---|
635 | p->pc = 0;
|
---|
636 | p->rc = SQLITE_OK;
|
---|
637 | p->uniqueCnt = 0;
|
---|
638 | p->returnDepth = 0;
|
---|
639 | p->errorAction = OE_Abort;
|
---|
640 | p->undoTransOnError = 0;
|
---|
641 | p->popStack = 0;
|
---|
642 | p->explain |= isExplain;
|
---|
643 | p->magic = VDBE_MAGIC_RUN;
|
---|
644 | #ifdef VDBE_PROFILE
|
---|
645 | {
|
---|
646 | int i;
|
---|
647 | for(i=0; i<p->nOp; i++){
|
---|
648 | p->aOp[i].cnt = 0;
|
---|
649 | p->aOp[i].cycles = 0;
|
---|
650 | }
|
---|
651 | }
|
---|
652 | #endif
|
---|
653 | }
|
---|
654 |
|
---|
655 |
|
---|
656 | /*
|
---|
657 | ** Remove any elements that remain on the sorter for the VDBE given.
|
---|
658 | */
|
---|
659 | void sqliteVdbeSorterReset(Vdbe *p){
|
---|
660 | while( p->pSort ){
|
---|
661 | Sorter *pSorter = p->pSort;
|
---|
662 | p->pSort = pSorter->pNext;
|
---|
663 | sqliteFree(pSorter->zKey);
|
---|
664 | sqliteFree(pSorter->pData);
|
---|
665 | sqliteFree(pSorter);
|
---|
666 | }
|
---|
667 | }
|
---|
668 |
|
---|
669 | /*
|
---|
670 | ** Reset an Agg structure. Delete all its contents.
|
---|
671 | **
|
---|
672 | ** For installable aggregate functions, if the step function has been
|
---|
673 | ** called, make sure the finalizer function has also been called. The
|
---|
674 | ** finalizer might need to free memory that was allocated as part of its
|
---|
675 | ** private context. If the finalizer has not been called yet, call it
|
---|
676 | ** now.
|
---|
677 | */
|
---|
678 | void sqliteVdbeAggReset(Agg *pAgg){
|
---|
679 | int i;
|
---|
680 | HashElem *p;
|
---|
681 | for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
|
---|
682 | AggElem *pElem = sqliteHashData(p);
|
---|
683 | assert( pAgg->apFunc!=0 );
|
---|
684 | for(i=0; i<pAgg->nMem; i++){
|
---|
685 | Mem *pMem = &pElem->aMem[i];
|
---|
686 | if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
|
---|
687 | sqlite_func ctx;
|
---|
688 | ctx.pFunc = pAgg->apFunc[i];
|
---|
689 | ctx.s.flags = MEM_Null;
|
---|
690 | ctx.pAgg = pMem->z;
|
---|
691 | ctx.cnt = pMem->i;
|
---|
692 | ctx.isStep = 0;
|
---|
693 | ctx.isError = 0;
|
---|
694 | (*pAgg->apFunc[i]->xFinalize)(&ctx);
|
---|
695 | if( pMem->z!=0 && pMem->z!=pMem->zShort ){
|
---|
696 | sqliteFree(pMem->z);
|
---|
697 | }
|
---|
698 | if( ctx.s.flags & MEM_Dyn ){
|
---|
699 | sqliteFree(ctx.s.z);
|
---|
700 | }
|
---|
701 | }else if( pMem->flags & MEM_Dyn ){
|
---|
702 | sqliteFree(pMem->z);
|
---|
703 | }
|
---|
704 | }
|
---|
705 | sqliteFree(pElem);
|
---|
706 | }
|
---|
707 | sqliteHashClear(&pAgg->hash);
|
---|
708 | sqliteFree(pAgg->apFunc);
|
---|
709 | pAgg->apFunc = 0;
|
---|
710 | pAgg->pCurrent = 0;
|
---|
711 | pAgg->pSearch = 0;
|
---|
712 | pAgg->nMem = 0;
|
---|
713 | }
|
---|
714 |
|
---|
715 | /*
|
---|
716 | ** Delete a keylist
|
---|
717 | */
|
---|
718 | void sqliteVdbeKeylistFree(Keylist *p){
|
---|
719 | while( p ){
|
---|
720 | Keylist *pNext = p->pNext;
|
---|
721 | sqliteFree(p);
|
---|
722 | p = pNext;
|
---|
723 | }
|
---|
724 | }
|
---|
725 |
|
---|
726 | /*
|
---|
727 | ** Close a cursor and release all the resources that cursor happens
|
---|
728 | ** to hold.
|
---|
729 | */
|
---|
730 | void sqliteVdbeCleanupCursor(Cursor *pCx){
|
---|
731 | if( pCx->pCursor ){
|
---|
732 | sqliteBtreeCloseCursor(pCx->pCursor);
|
---|
733 | }
|
---|
734 | if( pCx->pBt ){
|
---|
735 | sqliteBtreeClose(pCx->pBt);
|
---|
736 | }
|
---|
737 | sqliteFree(pCx->pData);
|
---|
738 | memset(pCx, 0, sizeof(Cursor));
|
---|
739 | }
|
---|
740 |
|
---|
741 | /*
|
---|
742 | ** Close all cursors
|
---|
743 | */
|
---|
744 | static void closeAllCursors(Vdbe *p){
|
---|
745 | int i;
|
---|
746 | for(i=0; i<p->nCursor; i++){
|
---|
747 | sqliteVdbeCleanupCursor(&p->aCsr[i]);
|
---|
748 | }
|
---|
749 | sqliteFree(p->aCsr);
|
---|
750 | p->aCsr = 0;
|
---|
751 | p->nCursor = 0;
|
---|
752 | }
|
---|
753 |
|
---|
754 | /*
|
---|
755 | ** Clean up the VM after execution.
|
---|
756 | **
|
---|
757 | ** This routine will automatically close any cursors, lists, and/or
|
---|
758 | ** sorters that were left open. It also deletes the values of
|
---|
759 | ** variables in the azVariable[] array.
|
---|
760 | */
|
---|
761 | static void Cleanup(Vdbe *p){
|
---|
762 | int i;
|
---|
763 | if( p->aStack ){
|
---|
764 | Mem *pTos = p->pTos;
|
---|
765 | while( pTos>=p->aStack ){
|
---|
766 | if( pTos->flags & MEM_Dyn ){
|
---|
767 | sqliteFree(pTos->z);
|
---|
768 | }
|
---|
769 | pTos--;
|
---|
770 | }
|
---|
771 | p->pTos = pTos;
|
---|
772 | }
|
---|
773 | closeAllCursors(p);
|
---|
774 | if( p->aMem ){
|
---|
775 | for(i=0; i<p->nMem; i++){
|
---|
776 | if( p->aMem[i].flags & MEM_Dyn ){
|
---|
777 | sqliteFree(p->aMem[i].z);
|
---|
778 | }
|
---|
779 | }
|
---|
780 | }
|
---|
781 | sqliteFree(p->aMem);
|
---|
782 | p->aMem = 0;
|
---|
783 | p->nMem = 0;
|
---|
784 | if( p->pList ){
|
---|
785 | sqliteVdbeKeylistFree(p->pList);
|
---|
786 | p->pList = 0;
|
---|
787 | }
|
---|
788 | sqliteVdbeSorterReset(p);
|
---|
789 | if( p->pFile ){
|
---|
790 | if( p->pFile!=stdin ) fclose(p->pFile);
|
---|
791 | p->pFile = 0;
|
---|
792 | }
|
---|
793 | if( p->azField ){
|
---|
794 | sqliteFree(p->azField);
|
---|
795 | p->azField = 0;
|
---|
796 | }
|
---|
797 | p->nField = 0;
|
---|
798 | if( p->zLine ){
|
---|
799 | sqliteFree(p->zLine);
|
---|
800 | p->zLine = 0;
|
---|
801 | }
|
---|
802 | p->nLineAlloc = 0;
|
---|
803 | sqliteVdbeAggReset(&p->agg);
|
---|
804 | if( p->aSet ){
|
---|
805 | for(i=0; i<p->nSet; i++){
|
---|
806 | sqliteHashClear(&p->aSet[i].hash);
|
---|
807 | }
|
---|
808 | }
|
---|
809 | sqliteFree(p->aSet);
|
---|
810 | p->aSet = 0;
|
---|
811 | p->nSet = 0;
|
---|
812 | if( p->keylistStack ){
|
---|
813 | int ii;
|
---|
814 | for(ii = 0; ii < p->keylistStackDepth; ii++){
|
---|
815 | sqliteVdbeKeylistFree(p->keylistStack[ii]);
|
---|
816 | }
|
---|
817 | sqliteFree(p->keylistStack);
|
---|
818 | p->keylistStackDepth = 0;
|
---|
819 | p->keylistStack = 0;
|
---|
820 | }
|
---|
821 | sqliteFree(p->contextStack);
|
---|
822 | p->contextStack = 0;
|
---|
823 | sqliteFree(p->zErrMsg);
|
---|
824 | p->zErrMsg = 0;
|
---|
825 | }
|
---|
826 |
|
---|
827 | /*
|
---|
828 | ** Clean up a VDBE after execution but do not delete the VDBE just yet.
|
---|
829 | ** Write any error messages into *pzErrMsg. Return the result code.
|
---|
830 | **
|
---|
831 | ** After this routine is run, the VDBE should be ready to be executed
|
---|
832 | ** again.
|
---|
833 | */
|
---|
834 | int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
|
---|
835 | sqlite *db = p->db;
|
---|
836 | int i;
|
---|
837 |
|
---|
838 | if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
|
---|
839 | sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
|
---|
840 | return SQLITE_MISUSE;
|
---|
841 | }
|
---|
842 | if( p->zErrMsg ){
|
---|
843 | if( pzErrMsg && *pzErrMsg==0 ){
|
---|
844 | *pzErrMsg = p->zErrMsg;
|
---|
845 | }else{
|
---|
846 | sqliteFree(p->zErrMsg);
|
---|
847 | }
|
---|
848 | p->zErrMsg = 0;
|
---|
849 | }else if( p->rc ){
|
---|
850 | sqliteSetString(pzErrMsg, sqlite_error_string(p->rc), (char*)0);
|
---|
851 | }
|
---|
852 | Cleanup(p);
|
---|
853 | if( p->rc!=SQLITE_OK ){
|
---|
854 | switch( p->errorAction ){
|
---|
855 | case OE_Abort: {
|
---|
856 | if( !p->undoTransOnError ){
|
---|
857 | for(i=0; i<db->nDb; i++){
|
---|
858 | if( db->aDb[i].pBt ){
|
---|
859 | sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
|
---|
860 | }
|
---|
861 | }
|
---|
862 | break;
|
---|
863 | }
|
---|
864 | /* Fall through to ROLLBACK */
|
---|
865 | }
|
---|
866 | case OE_Rollback: {
|
---|
867 | sqliteRollbackAll(db);
|
---|
868 | db->flags &= ~SQLITE_InTrans;
|
---|
869 | db->onError = OE_Default;
|
---|
870 | break;
|
---|
871 | }
|
---|
872 | default: {
|
---|
873 | if( p->undoTransOnError ){
|
---|
874 | sqliteRollbackAll(db);
|
---|
875 | db->flags &= ~SQLITE_InTrans;
|
---|
876 | db->onError = OE_Default;
|
---|
877 | }
|
---|
878 | break;
|
---|
879 | }
|
---|
880 | }
|
---|
881 | sqliteRollbackInternalChanges(db);
|
---|
882 | }
|
---|
883 | for(i=0; i<db->nDb; i++){
|
---|
884 | if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
|
---|
885 | sqliteBtreeCommitCkpt(db->aDb[i].pBt);
|
---|
886 | db->aDb[i].inTrans = 1;
|
---|
887 | }
|
---|
888 | }
|
---|
889 | assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 );
|
---|
890 | #ifdef VDBE_PROFILE
|
---|
891 | {
|
---|
892 | FILE *out = fopen("vdbe_profile.out", "a");
|
---|
893 | if( out ){
|
---|
894 | int i;
|
---|
895 | fprintf(out, "---- ");
|
---|
896 | for(i=0; i<p->nOp; i++){
|
---|
897 | fprintf(out, "%02x", p->aOp[i].opcode);
|
---|
898 | }
|
---|
899 | fprintf(out, "\n");
|
---|
900 | for(i=0; i<p->nOp; i++){
|
---|
901 | fprintf(out, "%6d %10lld %8lld ",
|
---|
902 | p->aOp[i].cnt,
|
---|
903 | p->aOp[i].cycles,
|
---|
904 | p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
|
---|
905 | );
|
---|
906 | sqliteVdbePrintOp(out, i, &p->aOp[i]);
|
---|
907 | }
|
---|
908 | fclose(out);
|
---|
909 | }
|
---|
910 | }
|
---|
911 | #endif
|
---|
912 | p->magic = VDBE_MAGIC_INIT;
|
---|
913 | return p->rc;
|
---|
914 | }
|
---|
915 |
|
---|
916 | /*
|
---|
917 | ** Clean up and delete a VDBE after execution. Return an integer which is
|
---|
918 | ** the result code. Write any error message text into *pzErrMsg.
|
---|
919 | */
|
---|
920 | int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
|
---|
921 | int rc;
|
---|
922 | sqlite *db;
|
---|
923 |
|
---|
924 | if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
|
---|
925 | sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
|
---|
926 | return SQLITE_MISUSE;
|
---|
927 | }
|
---|
928 | db = p->db;
|
---|
929 | rc = sqliteVdbeReset(p, pzErrMsg);
|
---|
930 | sqliteVdbeDelete(p);
|
---|
931 | if( db->want_to_close && db->pVdbe==0 ){
|
---|
932 | sqlite_close(db);
|
---|
933 | }
|
---|
934 | if( rc==SQLITE_SCHEMA ){
|
---|
935 | sqliteResetInternalSchema(db, 0);
|
---|
936 | }
|
---|
937 | return rc;
|
---|
938 | }
|
---|
939 |
|
---|
940 | /*
|
---|
941 | ** Set the values of all variables. Variable $1 in the original SQL will
|
---|
942 | ** be the string azValue[0]. $2 will have the value azValue[1]. And
|
---|
943 | ** so forth. If a value is out of range (for example $3 when nValue==2)
|
---|
944 | ** then its value will be NULL.
|
---|
945 | **
|
---|
946 | ** This routine overrides any prior call.
|
---|
947 | */
|
---|
948 | int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){
|
---|
949 | Vdbe *p = (Vdbe*)pVm;
|
---|
950 | if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){
|
---|
951 | return SQLITE_MISUSE;
|
---|
952 | }
|
---|
953 | if( i<1 || i>p->nVar ){
|
---|
954 | return SQLITE_RANGE;
|
---|
955 | }
|
---|
956 | i--;
|
---|
957 | if( p->abVar[i] ){
|
---|
958 | sqliteFree(p->azVar[i]);
|
---|
959 | }
|
---|
960 | if( zVal==0 ){
|
---|
961 | copy = 0;
|
---|
962 | len = 0;
|
---|
963 | }
|
---|
964 | if( len<0 ){
|
---|
965 | len = strlen(zVal)+1;
|
---|
966 | }
|
---|
967 | if( copy ){
|
---|
968 | p->azVar[i] = sqliteMalloc( len );
|
---|
969 | if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len);
|
---|
970 | }else{
|
---|
971 | p->azVar[i] = (char*)zVal;
|
---|
972 | }
|
---|
973 | p->abVar[i] = copy;
|
---|
974 | p->anVar[i] = len;
|
---|
975 | return SQLITE_OK;
|
---|
976 | }
|
---|
977 |
|
---|
978 |
|
---|
979 | /*
|
---|
980 | ** Delete an entire VDBE.
|
---|
981 | */
|
---|
982 | void sqliteVdbeDelete(Vdbe *p){
|
---|
983 | int i;
|
---|
984 | if( p==0 ) return;
|
---|
985 | Cleanup(p);
|
---|
986 | if( p->pPrev ){
|
---|
987 | p->pPrev->pNext = p->pNext;
|
---|
988 | }else{
|
---|
989 | assert( p->db->pVdbe==p );
|
---|
990 | p->db->pVdbe = p->pNext;
|
---|
991 | }
|
---|
992 | if( p->pNext ){
|
---|
993 | p->pNext->pPrev = p->pPrev;
|
---|
994 | }
|
---|
995 | p->pPrev = p->pNext = 0;
|
---|
996 | if( p->nOpAlloc==0 ){
|
---|
997 | p->aOp = 0;
|
---|
998 | p->nOp = 0;
|
---|
999 | }
|
---|
1000 | for(i=0; i<p->nOp; i++){
|
---|
1001 | if( p->aOp[i].p3type==P3_DYNAMIC ){
|
---|
1002 | sqliteFree(p->aOp[i].p3);
|
---|
1003 | }
|
---|
1004 | }
|
---|
1005 | for(i=0; i<p->nVar; i++){
|
---|
1006 | if( p->abVar[i] ) sqliteFree(p->azVar[i]);
|
---|
1007 | }
|
---|
1008 | sqliteFree(p->aOp);
|
---|
1009 | sqliteFree(p->aLabel);
|
---|
1010 | sqliteFree(p->aStack);
|
---|
1011 | p->magic = VDBE_MAGIC_DEAD;
|
---|
1012 | sqliteFree(p);
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | /*
|
---|
1016 | ** Convert an integer in between the native integer format and
|
---|
1017 | ** the bigEndian format used as the record number for tables.
|
---|
1018 | **
|
---|
1019 | ** The bigEndian format (most significant byte first) is used for
|
---|
1020 | ** record numbers so that records will sort into the correct order
|
---|
1021 | ** even though memcmp() is used to compare the keys. On machines
|
---|
1022 | ** whose native integer format is little endian (ex: i486) the
|
---|
1023 | ** order of bytes is reversed. On native big-endian machines
|
---|
1024 | ** (ex: Alpha, Sparc, Motorola) the byte order is the same.
|
---|
1025 | **
|
---|
1026 | ** This function is its own inverse. In other words
|
---|
1027 | **
|
---|
1028 | ** X == byteSwap(byteSwap(X))
|
---|
1029 | */
|
---|
1030 | int sqliteVdbeByteSwap(int x){
|
---|
1031 | union {
|
---|
1032 | char zBuf[sizeof(int)];
|
---|
1033 | int i;
|
---|
1034 | } ux;
|
---|
1035 | ux.zBuf[3] = x&0xff;
|
---|
1036 | ux.zBuf[2] = (x>>8)&0xff;
|
---|
1037 | ux.zBuf[1] = (x>>16)&0xff;
|
---|
1038 | ux.zBuf[0] = (x>>24)&0xff;
|
---|
1039 | return ux.i;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | /*
|
---|
1043 | ** If a MoveTo operation is pending on the given cursor, then do that
|
---|
1044 | ** MoveTo now. Return an error code. If no MoveTo is pending, this
|
---|
1045 | ** routine does nothing and returns SQLITE_OK.
|
---|
1046 | */
|
---|
1047 | int sqliteVdbeCursorMoveto(Cursor *p){
|
---|
1048 | if( p->deferredMoveto ){
|
---|
1049 | int res;
|
---|
1050 | extern int sqlite_search_count;
|
---|
1051 | sqliteBtreeMoveto(p->pCursor, (char*)&p->movetoTarget, sizeof(int), &res);
|
---|
1052 | p->lastRecno = keyToInt(p->movetoTarget);
|
---|
1053 | p->recnoIsValid = res==0;
|
---|
1054 | if( res<0 ){
|
---|
1055 | sqliteBtreeNext(p->pCursor, &res);
|
---|
1056 | }
|
---|
1057 | sqlite_search_count++;
|
---|
1058 | p->deferredMoveto = 0;
|
---|
1059 | }
|
---|
1060 | return SQLITE_OK;
|
---|
1061 | }
|
---|