1 | /*
|
---|
2 | ** 2001 September 15
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** Utility functions used throughout sqlite.
|
---|
13 | **
|
---|
14 | ** This file contains functions for allocating memory, comparing
|
---|
15 | ** strings, and stuff like that.
|
---|
16 | **
|
---|
17 | ** $Id: util.c,v 1.74.2.2 2005/06/06 15:07:03 drh Exp $
|
---|
18 | */
|
---|
19 | #include "sqliteInt.h"
|
---|
20 | #include <stdarg.h>
|
---|
21 | #include <ctype.h>
|
---|
22 |
|
---|
23 | /*
|
---|
24 | ** If malloc() ever fails, this global variable gets set to 1.
|
---|
25 | ** This causes the library to abort and never again function.
|
---|
26 | */
|
---|
27 | int sqlite_malloc_failed = 0;
|
---|
28 |
|
---|
29 | /*
|
---|
30 | ** If MEMORY_DEBUG is defined, then use versions of malloc() and
|
---|
31 | ** free() that track memory usage and check for buffer overruns.
|
---|
32 | */
|
---|
33 | #ifdef MEMORY_DEBUG
|
---|
34 |
|
---|
35 | /*
|
---|
36 | ** For keeping track of the number of mallocs and frees. This
|
---|
37 | ** is used to check for memory leaks.
|
---|
38 | */
|
---|
39 | int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
|
---|
40 | int sqlite_nFree; /* Number of sqliteFree() calls */
|
---|
41 | int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
|
---|
42 | #if MEMORY_DEBUG>1
|
---|
43 | static int memcnt = 0;
|
---|
44 | #endif
|
---|
45 |
|
---|
46 | /*
|
---|
47 | ** Number of 32-bit guard words
|
---|
48 | */
|
---|
49 | #define N_GUARD 1
|
---|
50 |
|
---|
51 | /*
|
---|
52 | ** Allocate new memory and set it to zero. Return NULL if
|
---|
53 | ** no memory is available.
|
---|
54 | */
|
---|
55 | void *sqliteMalloc_(int n, int bZero, char *zFile, int line){
|
---|
56 | void *p;
|
---|
57 | int *pi;
|
---|
58 | int i, k;
|
---|
59 | if( sqlite_iMallocFail>=0 ){
|
---|
60 | sqlite_iMallocFail--;
|
---|
61 | if( sqlite_iMallocFail==0 ){
|
---|
62 | sqlite_malloc_failed++;
|
---|
63 | #if MEMORY_DEBUG>1
|
---|
64 | fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
|
---|
65 | n, zFile,line);
|
---|
66 | #endif
|
---|
67 | sqlite_iMallocFail--;
|
---|
68 | return 0;
|
---|
69 | }
|
---|
70 | }
|
---|
71 | if( n==0 ) return 0;
|
---|
72 | k = (n+sizeof(int)-1)/sizeof(int);
|
---|
73 | pi = malloc( (N_GUARD*2+1+k)*sizeof(int));
|
---|
74 | if( pi==0 ){
|
---|
75 | sqlite_malloc_failed++;
|
---|
76 | return 0;
|
---|
77 | }
|
---|
78 | sqlite_nMalloc++;
|
---|
79 | for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
|
---|
80 | pi[N_GUARD] = n;
|
---|
81 | for(i=0; i<N_GUARD; i++) pi[k+1+N_GUARD+i] = 0xdead3344;
|
---|
82 | p = &pi[N_GUARD+1];
|
---|
83 | memset(p, bZero==0, n);
|
---|
84 | #if MEMORY_DEBUG>1
|
---|
85 | fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n",
|
---|
86 | ++memcnt, n, (int)p, zFile,line);
|
---|
87 | #endif
|
---|
88 | return p;
|
---|
89 | }
|
---|
90 |
|
---|
91 | /*
|
---|
92 | ** Check to see if the given pointer was obtained from sqliteMalloc()
|
---|
93 | ** and is able to hold at least N bytes. Raise an exception if this
|
---|
94 | ** is not the case.
|
---|
95 | **
|
---|
96 | ** This routine is used for testing purposes only.
|
---|
97 | */
|
---|
98 | void sqliteCheckMemory(void *p, int N){
|
---|
99 | int *pi = p;
|
---|
100 | int n, i, k;
|
---|
101 | pi -= N_GUARD+1;
|
---|
102 | for(i=0; i<N_GUARD; i++){
|
---|
103 | assert( pi[i]==0xdead1122 );
|
---|
104 | }
|
---|
105 | n = pi[N_GUARD];
|
---|
106 | assert( N>=0 && N<n );
|
---|
107 | k = (n+sizeof(int)-1)/sizeof(int);
|
---|
108 | for(i=0; i<N_GUARD; i++){
|
---|
109 | assert( pi[k+N_GUARD+1+i]==0xdead3344 );
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | /*
|
---|
114 | ** Free memory previously obtained from sqliteMalloc()
|
---|
115 | */
|
---|
116 | void sqliteFree_(void *p, char *zFile, int line){
|
---|
117 | if( p ){
|
---|
118 | int *pi, i, k, n;
|
---|
119 | pi = p;
|
---|
120 | pi -= N_GUARD+1;
|
---|
121 | sqlite_nFree++;
|
---|
122 | for(i=0; i<N_GUARD; i++){
|
---|
123 | if( pi[i]!=0xdead1122 ){
|
---|
124 | fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p);
|
---|
125 | return;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | n = pi[N_GUARD];
|
---|
129 | k = (n+sizeof(int)-1)/sizeof(int);
|
---|
130 | for(i=0; i<N_GUARD; i++){
|
---|
131 | if( pi[k+N_GUARD+1+i]!=0xdead3344 ){
|
---|
132 | fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p);
|
---|
133 | return;
|
---|
134 | }
|
---|
135 | }
|
---|
136 | memset(pi, 0xff, (k+N_GUARD*2+1)*sizeof(int));
|
---|
137 | #if MEMORY_DEBUG>1
|
---|
138 | fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n",
|
---|
139 | ++memcnt, n, (int)p, zFile,line);
|
---|
140 | #endif
|
---|
141 | free(pi);
|
---|
142 | }
|
---|
143 | }
|
---|
144 |
|
---|
145 | /*
|
---|
146 | ** Resize a prior allocation. If p==0, then this routine
|
---|
147 | ** works just like sqliteMalloc(). If n==0, then this routine
|
---|
148 | ** works just like sqliteFree().
|
---|
149 | */
|
---|
150 | void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
|
---|
151 | int *oldPi, *pi, i, k, oldN, oldK;
|
---|
152 | void *p;
|
---|
153 | if( oldP==0 ){
|
---|
154 | return sqliteMalloc_(n,1,zFile,line);
|
---|
155 | }
|
---|
156 | if( n==0 ){
|
---|
157 | sqliteFree_(oldP,zFile,line);
|
---|
158 | return 0;
|
---|
159 | }
|
---|
160 | oldPi = oldP;
|
---|
161 | oldPi -= N_GUARD+1;
|
---|
162 | if( oldPi[0]!=0xdead1122 ){
|
---|
163 | fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP);
|
---|
164 | return 0;
|
---|
165 | }
|
---|
166 | oldN = oldPi[N_GUARD];
|
---|
167 | oldK = (oldN+sizeof(int)-1)/sizeof(int);
|
---|
168 | for(i=0; i<N_GUARD; i++){
|
---|
169 | if( oldPi[oldK+N_GUARD+1+i]!=0xdead3344 ){
|
---|
170 | fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n",
|
---|
171 | (int)oldP);
|
---|
172 | return 0;
|
---|
173 | }
|
---|
174 | }
|
---|
175 | k = (n + sizeof(int) - 1)/sizeof(int);
|
---|
176 | pi = malloc( (k+N_GUARD*2+1)*sizeof(int) );
|
---|
177 | if( pi==0 ){
|
---|
178 | sqlite_malloc_failed++;
|
---|
179 | return 0;
|
---|
180 | }
|
---|
181 | for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
|
---|
182 | pi[N_GUARD] = n;
|
---|
183 | for(i=0; i<N_GUARD; i++) pi[k+N_GUARD+1+i] = 0xdead3344;
|
---|
184 | p = &pi[N_GUARD+1];
|
---|
185 | memcpy(p, oldP, n>oldN ? oldN : n);
|
---|
186 | if( n>oldN ){
|
---|
187 | memset(&((char*)p)[oldN], 0, n-oldN);
|
---|
188 | }
|
---|
189 | memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int));
|
---|
190 | free(oldPi);
|
---|
191 | #if MEMORY_DEBUG>1
|
---|
192 | fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n",
|
---|
193 | ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line);
|
---|
194 | #endif
|
---|
195 | return p;
|
---|
196 | }
|
---|
197 |
|
---|
198 | /*
|
---|
199 | ** Make a duplicate of a string into memory obtained from malloc()
|
---|
200 | ** Free the original string using sqliteFree().
|
---|
201 | **
|
---|
202 | ** This routine is called on all strings that are passed outside of
|
---|
203 | ** the SQLite library. That way clients can free the string using free()
|
---|
204 | ** rather than having to call sqliteFree().
|
---|
205 | */
|
---|
206 | void sqliteStrRealloc(char **pz){
|
---|
207 | char *zNew;
|
---|
208 | if( pz==0 || *pz==0 ) return;
|
---|
209 | zNew = malloc( strlen(*pz) + 1 );
|
---|
210 | if( zNew==0 ){
|
---|
211 | sqlite_malloc_failed++;
|
---|
212 | sqliteFree(*pz);
|
---|
213 | *pz = 0;
|
---|
214 | }
|
---|
215 | strcpy(zNew, *pz);
|
---|
216 | sqliteFree(*pz);
|
---|
217 | *pz = zNew;
|
---|
218 | }
|
---|
219 |
|
---|
220 | /*
|
---|
221 | ** Make a copy of a string in memory obtained from sqliteMalloc()
|
---|
222 | */
|
---|
223 | char *sqliteStrDup_(const char *z, char *zFile, int line){
|
---|
224 | char *zNew;
|
---|
225 | if( z==0 ) return 0;
|
---|
226 | zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line);
|
---|
227 | if( zNew ) strcpy(zNew, z);
|
---|
228 | return zNew;
|
---|
229 | }
|
---|
230 | char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
|
---|
231 | char *zNew;
|
---|
232 | if( z==0 ) return 0;
|
---|
233 | zNew = sqliteMalloc_(n+1, 0, zFile, line);
|
---|
234 | if( zNew ){
|
---|
235 | memcpy(zNew, z, n);
|
---|
236 | zNew[n] = 0;
|
---|
237 | }
|
---|
238 | return zNew;
|
---|
239 | }
|
---|
240 | #endif /* MEMORY_DEBUG */
|
---|
241 |
|
---|
242 | /*
|
---|
243 | ** The following versions of malloc() and free() are for use in a
|
---|
244 | ** normal build.
|
---|
245 | */
|
---|
246 | #if !defined(MEMORY_DEBUG)
|
---|
247 |
|
---|
248 | /*
|
---|
249 | ** Allocate new memory and set it to zero. Return NULL if
|
---|
250 | ** no memory is available. See also sqliteMallocRaw().
|
---|
251 | */
|
---|
252 | void *sqliteMalloc(int n){
|
---|
253 | void *p;
|
---|
254 | if( (p = malloc(n))==0 ){
|
---|
255 | if( n>0 ) sqlite_malloc_failed++;
|
---|
256 | }else{
|
---|
257 | memset(p, 0, n);
|
---|
258 | }
|
---|
259 | return p;
|
---|
260 | }
|
---|
261 |
|
---|
262 | /*
|
---|
263 | ** Allocate new memory but do not set it to zero. Return NULL if
|
---|
264 | ** no memory is available. See also sqliteMalloc().
|
---|
265 | */
|
---|
266 | void *sqliteMallocRaw(int n){
|
---|
267 | void *p;
|
---|
268 | if( (p = malloc(n))==0 ){
|
---|
269 | if( n>0 ) sqlite_malloc_failed++;
|
---|
270 | }
|
---|
271 | return p;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /*
|
---|
275 | ** Free memory previously obtained from sqliteMalloc()
|
---|
276 | */
|
---|
277 | void sqliteFree(void *p){
|
---|
278 | if( p ){
|
---|
279 | free(p);
|
---|
280 | }
|
---|
281 | }
|
---|
282 |
|
---|
283 | /*
|
---|
284 | ** Resize a prior allocation. If p==0, then this routine
|
---|
285 | ** works just like sqliteMalloc(). If n==0, then this routine
|
---|
286 | ** works just like sqliteFree().
|
---|
287 | */
|
---|
288 | void *sqliteRealloc(void *p, int n){
|
---|
289 | void *p2;
|
---|
290 | if( p==0 ){
|
---|
291 | return sqliteMalloc(n);
|
---|
292 | }
|
---|
293 | if( n==0 ){
|
---|
294 | sqliteFree(p);
|
---|
295 | return 0;
|
---|
296 | }
|
---|
297 | p2 = realloc(p, n);
|
---|
298 | if( p2==0 ){
|
---|
299 | sqlite_malloc_failed++;
|
---|
300 | }
|
---|
301 | return p2;
|
---|
302 | }
|
---|
303 |
|
---|
304 | /*
|
---|
305 | ** Make a copy of a string in memory obtained from sqliteMalloc()
|
---|
306 | */
|
---|
307 | char *sqliteStrDup(const char *z){
|
---|
308 | char *zNew;
|
---|
309 | if( z==0 ) return 0;
|
---|
310 | zNew = sqliteMallocRaw(strlen(z)+1);
|
---|
311 | if( zNew ) strcpy(zNew, z);
|
---|
312 | return zNew;
|
---|
313 | }
|
---|
314 | char *sqliteStrNDup(const char *z, int n){
|
---|
315 | char *zNew;
|
---|
316 | if( z==0 ) return 0;
|
---|
317 | zNew = sqliteMallocRaw(n+1);
|
---|
318 | if( zNew ){
|
---|
319 | memcpy(zNew, z, n);
|
---|
320 | zNew[n] = 0;
|
---|
321 | }
|
---|
322 | return zNew;
|
---|
323 | }
|
---|
324 | #endif /* !defined(MEMORY_DEBUG) */
|
---|
325 |
|
---|
326 | /*
|
---|
327 | ** Create a string from the 2nd and subsequent arguments (up to the
|
---|
328 | ** first NULL argument), store the string in memory obtained from
|
---|
329 | ** sqliteMalloc() and make the pointer indicated by the 1st argument
|
---|
330 | ** point to that string. The 1st argument must either be NULL or
|
---|
331 | ** point to memory obtained from sqliteMalloc().
|
---|
332 | */
|
---|
333 | void sqliteSetString(char **pz, ...){
|
---|
334 | va_list ap;
|
---|
335 | int nByte;
|
---|
336 | const char *z;
|
---|
337 | char *zResult;
|
---|
338 |
|
---|
339 | if( pz==0 ) return;
|
---|
340 | nByte = 1;
|
---|
341 | va_start(ap, pz);
|
---|
342 | while( (z = va_arg(ap, const char*))!=0 ){
|
---|
343 | nByte += strlen(z);
|
---|
344 | }
|
---|
345 | va_end(ap);
|
---|
346 | sqliteFree(*pz);
|
---|
347 | *pz = zResult = sqliteMallocRaw( nByte );
|
---|
348 | if( zResult==0 ){
|
---|
349 | return;
|
---|
350 | }
|
---|
351 | *zResult = 0;
|
---|
352 | va_start(ap, pz);
|
---|
353 | while( (z = va_arg(ap, const char*))!=0 ){
|
---|
354 | strcpy(zResult, z);
|
---|
355 | zResult += strlen(zResult);
|
---|
356 | }
|
---|
357 | va_end(ap);
|
---|
358 | #ifdef MEMORY_DEBUG
|
---|
359 | #if MEMORY_DEBUG>1
|
---|
360 | fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
|
---|
361 | #endif
|
---|
362 | #endif
|
---|
363 | }
|
---|
364 |
|
---|
365 | /*
|
---|
366 | ** Works like sqliteSetString, but each string is now followed by
|
---|
367 | ** a length integer which specifies how much of the source string
|
---|
368 | ** to copy (in bytes). -1 means use the whole string. The 1st
|
---|
369 | ** argument must either be NULL or point to memory obtained from
|
---|
370 | ** sqliteMalloc().
|
---|
371 | */
|
---|
372 | void sqliteSetNString(char **pz, ...){
|
---|
373 | va_list ap;
|
---|
374 | int nByte;
|
---|
375 | const char *z;
|
---|
376 | char *zResult;
|
---|
377 | int n;
|
---|
378 |
|
---|
379 | if( pz==0 ) return;
|
---|
380 | nByte = 0;
|
---|
381 | va_start(ap, pz);
|
---|
382 | while( (z = va_arg(ap, const char*))!=0 ){
|
---|
383 | n = va_arg(ap, int);
|
---|
384 | if( n<=0 ) n = strlen(z);
|
---|
385 | nByte += n;
|
---|
386 | }
|
---|
387 | va_end(ap);
|
---|
388 | sqliteFree(*pz);
|
---|
389 | *pz = zResult = sqliteMallocRaw( nByte + 1 );
|
---|
390 | if( zResult==0 ) return;
|
---|
391 | va_start(ap, pz);
|
---|
392 | while( (z = va_arg(ap, const char*))!=0 ){
|
---|
393 | n = va_arg(ap, int);
|
---|
394 | if( n<=0 ) n = strlen(z);
|
---|
395 | strncpy(zResult, z, n);
|
---|
396 | zResult += n;
|
---|
397 | }
|
---|
398 | *zResult = 0;
|
---|
399 | #ifdef MEMORY_DEBUG
|
---|
400 | #if MEMORY_DEBUG>1
|
---|
401 | fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
|
---|
402 | #endif
|
---|
403 | #endif
|
---|
404 | va_end(ap);
|
---|
405 | }
|
---|
406 |
|
---|
407 | /*
|
---|
408 | ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
---|
409 | ** The following formatting characters are allowed:
|
---|
410 | **
|
---|
411 | ** %s Insert a string
|
---|
412 | ** %z A string that should be freed after use
|
---|
413 | ** %d Insert an integer
|
---|
414 | ** %T Insert a token
|
---|
415 | ** %S Insert the first element of a SrcList
|
---|
416 | */
|
---|
417 | void sqliteErrorMsg(Parse *pParse, const char *zFormat, ...){
|
---|
418 | va_list ap;
|
---|
419 | pParse->nErr++;
|
---|
420 | sqliteFree(pParse->zErrMsg);
|
---|
421 | va_start(ap, zFormat);
|
---|
422 | pParse->zErrMsg = sqliteVMPrintf(zFormat, ap);
|
---|
423 | va_end(ap);
|
---|
424 | }
|
---|
425 |
|
---|
426 | /*
|
---|
427 | ** Convert an SQL-style quoted string into a normal string by removing
|
---|
428 | ** the quote characters. The conversion is done in-place. If the
|
---|
429 | ** input does not begin with a quote character, then this routine
|
---|
430 | ** is a no-op.
|
---|
431 | **
|
---|
432 | ** 2002-Feb-14: This routine is extended to remove MS-Access style
|
---|
433 | ** brackets from around identifers. For example: "[a-b-c]" becomes
|
---|
434 | ** "a-b-c".
|
---|
435 | */
|
---|
436 | void sqliteDequote(char *z){
|
---|
437 | int quote;
|
---|
438 | int i, j;
|
---|
439 | if( z==0 ) return;
|
---|
440 | quote = z[0];
|
---|
441 | switch( quote ){
|
---|
442 | case '\'': break;
|
---|
443 | case '"': break;
|
---|
444 | case '[': quote = ']'; break;
|
---|
445 | default: return;
|
---|
446 | }
|
---|
447 | for(i=1, j=0; z[i]; i++){
|
---|
448 | if( z[i]==quote ){
|
---|
449 | if( z[i+1]==quote ){
|
---|
450 | z[j++] = quote;
|
---|
451 | i++;
|
---|
452 | }else{
|
---|
453 | z[j++] = 0;
|
---|
454 | break;
|
---|
455 | }
|
---|
456 | }else{
|
---|
457 | z[j++] = z[i];
|
---|
458 | }
|
---|
459 | }
|
---|
460 | }
|
---|
461 |
|
---|
462 | /* An array to map all upper-case characters into their corresponding
|
---|
463 | ** lower-case character.
|
---|
464 | */
|
---|
465 | static unsigned char UpperToLower[] = {
|
---|
466 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
---|
467 | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
---|
468 | 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
---|
469 | 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
---|
470 | 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
---|
471 | 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
---|
472 | 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
---|
473 | 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
---|
474 | 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
---|
475 | 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
---|
476 | 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
---|
477 | 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
---|
478 | 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
---|
479 | 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
---|
480 | 252,253,254,255
|
---|
481 | };
|
---|
482 |
|
---|
483 | /*
|
---|
484 | ** This function computes a hash on the name of a keyword.
|
---|
485 | ** Case is not significant.
|
---|
486 | */
|
---|
487 | int sqliteHashNoCase(const char *z, int n){
|
---|
488 | int h = 0;
|
---|
489 | if( n<=0 ) n = strlen(z);
|
---|
490 | while( n > 0 ){
|
---|
491 | h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
|
---|
492 | n--;
|
---|
493 | }
|
---|
494 | return h & 0x7fffffff;
|
---|
495 | }
|
---|
496 |
|
---|
497 | /*
|
---|
498 | ** Some systems have stricmp(). Others have strcasecmp(). Because
|
---|
499 | ** there is no consistency, we will define our own.
|
---|
500 | */
|
---|
501 | int sqliteStrICmp(const char *zLeft, const char *zRight){
|
---|
502 | register unsigned char *a, *b;
|
---|
503 | a = (unsigned char *)zLeft;
|
---|
504 | b = (unsigned char *)zRight;
|
---|
505 | while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
---|
506 | return UpperToLower[*a] - UpperToLower[*b];
|
---|
507 | }
|
---|
508 | int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
|
---|
509 | register unsigned char *a, *b;
|
---|
510 | a = (unsigned char *)zLeft;
|
---|
511 | b = (unsigned char *)zRight;
|
---|
512 | while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
---|
513 | return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
---|
514 | }
|
---|
515 |
|
---|
516 | /*
|
---|
517 | ** Return TRUE if z is a pure numeric string. Return FALSE if the
|
---|
518 | ** string contains any character which is not part of a number.
|
---|
519 | **
|
---|
520 | ** Am empty string is considered non-numeric.
|
---|
521 | */
|
---|
522 | int sqliteIsNumber(const char *z){
|
---|
523 | if( *z=='-' || *z=='+' ) z++;
|
---|
524 | if( !isdigit(*z) ){
|
---|
525 | return 0;
|
---|
526 | }
|
---|
527 | z++;
|
---|
528 | while( isdigit(*z) ){ z++; }
|
---|
529 | if( *z=='.' ){
|
---|
530 | z++;
|
---|
531 | if( !isdigit(*z) ) return 0;
|
---|
532 | while( isdigit(*z) ){ z++; }
|
---|
533 | }
|
---|
534 | if( *z=='e' || *z=='E' ){
|
---|
535 | z++;
|
---|
536 | if( *z=='+' || *z=='-' ) z++;
|
---|
537 | if( !isdigit(*z) ) return 0;
|
---|
538 | while( isdigit(*z) ){ z++; }
|
---|
539 | }
|
---|
540 | return *z==0;
|
---|
541 | }
|
---|
542 |
|
---|
543 | /*
|
---|
544 | ** The string z[] is an ascii representation of a real number.
|
---|
545 | ** Convert this string to a double.
|
---|
546 | **
|
---|
547 | ** This routine assumes that z[] really is a valid number. If it
|
---|
548 | ** is not, the result is undefined.
|
---|
549 | **
|
---|
550 | ** This routine is used instead of the library atof() function because
|
---|
551 | ** the library atof() might want to use "," as the decimal point instead
|
---|
552 | ** of "." depending on how locale is set. But that would cause problems
|
---|
553 | ** for SQL. So this routine always uses "." regardless of locale.
|
---|
554 | */
|
---|
555 | double sqliteAtoF(const char *z, const char **pzEnd){
|
---|
556 | int sign = 1;
|
---|
557 | LONGDOUBLE_TYPE v1 = 0.0;
|
---|
558 | if( *z=='-' ){
|
---|
559 | sign = -1;
|
---|
560 | z++;
|
---|
561 | }else if( *z=='+' ){
|
---|
562 | z++;
|
---|
563 | }
|
---|
564 | while( isdigit(*z) ){
|
---|
565 | v1 = v1*10.0 + (*z - '0');
|
---|
566 | z++;
|
---|
567 | }
|
---|
568 | if( *z=='.' ){
|
---|
569 | LONGDOUBLE_TYPE divisor = 1.0;
|
---|
570 | z++;
|
---|
571 | while( isdigit(*z) ){
|
---|
572 | v1 = v1*10.0 + (*z - '0');
|
---|
573 | divisor *= 10.0;
|
---|
574 | z++;
|
---|
575 | }
|
---|
576 | v1 /= divisor;
|
---|
577 | }
|
---|
578 | if( *z=='e' || *z=='E' ){
|
---|
579 | int esign = 1;
|
---|
580 | int eval = 0;
|
---|
581 | LONGDOUBLE_TYPE scale = 1.0;
|
---|
582 | z++;
|
---|
583 | if( *z=='-' ){
|
---|
584 | esign = -1;
|
---|
585 | z++;
|
---|
586 | }else if( *z=='+' ){
|
---|
587 | z++;
|
---|
588 | }
|
---|
589 | while( isdigit(*z) ){
|
---|
590 | eval = eval*10 + *z - '0';
|
---|
591 | z++;
|
---|
592 | }
|
---|
593 | while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
|
---|
594 | while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
|
---|
595 | while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
|
---|
596 | while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
|
---|
597 | if( esign<0 ){
|
---|
598 | v1 /= scale;
|
---|
599 | }else{
|
---|
600 | v1 *= scale;
|
---|
601 | }
|
---|
602 | }
|
---|
603 | if( pzEnd ) *pzEnd = z;
|
---|
604 | return sign<0 ? -v1 : v1;
|
---|
605 | }
|
---|
606 |
|
---|
607 | /*
|
---|
608 | ** The string zNum represents an integer. There might be some other
|
---|
609 | ** information following the integer too, but that part is ignored.
|
---|
610 | ** If the integer that the prefix of zNum represents will fit in a
|
---|
611 | ** 32-bit signed integer, return TRUE. Otherwise return FALSE.
|
---|
612 | **
|
---|
613 | ** This routine returns FALSE for the string -2147483648 even that
|
---|
614 | ** that number will, in theory fit in a 32-bit integer. But positive
|
---|
615 | ** 2147483648 will not fit in 32 bits. So it seems safer to return
|
---|
616 | ** false.
|
---|
617 | */
|
---|
618 | int sqliteFitsIn32Bits(const char *zNum){
|
---|
619 | int i, c;
|
---|
620 | if( *zNum=='-' || *zNum=='+' ) zNum++;
|
---|
621 | for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
---|
622 | return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
|
---|
623 | }
|
---|
624 |
|
---|
625 | /* This comparison routine is what we use for comparison operations
|
---|
626 | ** between numeric values in an SQL expression. "Numeric" is a little
|
---|
627 | ** bit misleading here. What we mean is that the strings have a
|
---|
628 | ** type of "numeric" from the point of view of SQL. The strings
|
---|
629 | ** do not necessarily contain numbers. They could contain text.
|
---|
630 | **
|
---|
631 | ** If the input strings both look like actual numbers then they
|
---|
632 | ** compare in numerical order. Numerical strings are always less
|
---|
633 | ** than non-numeric strings so if one input string looks like a
|
---|
634 | ** number and the other does not, then the one that looks like
|
---|
635 | ** a number is the smaller. Non-numeric strings compare in
|
---|
636 | ** lexigraphical order (the same order as strcmp()).
|
---|
637 | */
|
---|
638 | int sqliteCompare(const char *atext, const char *btext){
|
---|
639 | int result;
|
---|
640 | int isNumA, isNumB;
|
---|
641 | if( atext==0 ){
|
---|
642 | return -1;
|
---|
643 | }else if( btext==0 ){
|
---|
644 | return 1;
|
---|
645 | }
|
---|
646 | isNumA = sqliteIsNumber(atext);
|
---|
647 | isNumB = sqliteIsNumber(btext);
|
---|
648 | if( isNumA ){
|
---|
649 | if( !isNumB ){
|
---|
650 | result = -1;
|
---|
651 | }else{
|
---|
652 | double rA, rB;
|
---|
653 | rA = sqliteAtoF(atext, 0);
|
---|
654 | rB = sqliteAtoF(btext, 0);
|
---|
655 | if( rA<rB ){
|
---|
656 | result = -1;
|
---|
657 | }else if( rA>rB ){
|
---|
658 | result = +1;
|
---|
659 | }else{
|
---|
660 | result = 0;
|
---|
661 | }
|
---|
662 | }
|
---|
663 | }else if( isNumB ){
|
---|
664 | result = +1;
|
---|
665 | }else {
|
---|
666 | result = strcmp(atext, btext);
|
---|
667 | }
|
---|
668 | return result;
|
---|
669 | }
|
---|
670 |
|
---|
671 | /*
|
---|
672 | ** This routine is used for sorting. Each key is a list of one or more
|
---|
673 | ** null-terminated elements. The list is terminated by two nulls in
|
---|
674 | ** a row. For example, the following text is a key with three elements
|
---|
675 | **
|
---|
676 | ** Aone\000Dtwo\000Athree\000\000
|
---|
677 | **
|
---|
678 | ** All elements begin with one of the characters "+-AD" and end with "\000"
|
---|
679 | ** with zero or more text elements in between. Except, NULL elements
|
---|
680 | ** consist of the special two-character sequence "N\000".
|
---|
681 | **
|
---|
682 | ** Both arguments will have the same number of elements. This routine
|
---|
683 | ** returns negative, zero, or positive if the first argument is less
|
---|
684 | ** than, equal to, or greater than the first. (Result is a-b).
|
---|
685 | **
|
---|
686 | ** Each element begins with one of the characters "+", "-", "A", "D".
|
---|
687 | ** This character determines the sort order and collating sequence:
|
---|
688 | **
|
---|
689 | ** + Sort numerically in ascending order
|
---|
690 | ** - Sort numerically in descending order
|
---|
691 | ** A Sort as strings in ascending order
|
---|
692 | ** D Sort as strings in descending order.
|
---|
693 | **
|
---|
694 | ** For the "+" and "-" sorting, pure numeric strings (strings for which the
|
---|
695 | ** isNum() function above returns TRUE) always compare less than strings
|
---|
696 | ** that are not pure numerics. Non-numeric strings compare in memcmp()
|
---|
697 | ** order. This is the same sort order as the sqliteCompare() function
|
---|
698 | ** above generates.
|
---|
699 | **
|
---|
700 | ** The last point is a change from version 2.6.3 to version 2.7.0. In
|
---|
701 | ** version 2.6.3 and earlier, substrings of digits compare in numerical
|
---|
702 | ** and case was used only to break a tie.
|
---|
703 | **
|
---|
704 | ** Elements that begin with 'A' or 'D' compare in memcmp() order regardless
|
---|
705 | ** of whether or not they look like a number.
|
---|
706 | **
|
---|
707 | ** Note that the sort order imposed by the rules above is the same
|
---|
708 | ** from the ordering defined by the "<", "<=", ">", and ">=" operators
|
---|
709 | ** of expressions and for indices. This was not the case for version
|
---|
710 | ** 2.6.3 and earlier.
|
---|
711 | */
|
---|
712 | int sqliteSortCompare(const char *a, const char *b){
|
---|
713 | int res = 0;
|
---|
714 | int isNumA, isNumB;
|
---|
715 | int dir = 0;
|
---|
716 |
|
---|
717 | while( res==0 && *a && *b ){
|
---|
718 | if( a[0]=='N' || b[0]=='N' ){
|
---|
719 | if( a[0]==b[0] ){
|
---|
720 | a += 2;
|
---|
721 | b += 2;
|
---|
722 | continue;
|
---|
723 | }
|
---|
724 | if( a[0]=='N' ){
|
---|
725 | dir = b[0];
|
---|
726 | res = -1;
|
---|
727 | }else{
|
---|
728 | dir = a[0];
|
---|
729 | res = +1;
|
---|
730 | }
|
---|
731 | break;
|
---|
732 | }
|
---|
733 | assert( a[0]==b[0] );
|
---|
734 | if( (dir=a[0])=='A' || a[0]=='D' ){
|
---|
735 | res = strcmp(&a[1],&b[1]);
|
---|
736 | if( res ) break;
|
---|
737 | }else{
|
---|
738 | isNumA = sqliteIsNumber(&a[1]);
|
---|
739 | isNumB = sqliteIsNumber(&b[1]);
|
---|
740 | if( isNumA ){
|
---|
741 | double rA, rB;
|
---|
742 | if( !isNumB ){
|
---|
743 | res = -1;
|
---|
744 | break;
|
---|
745 | }
|
---|
746 | rA = sqliteAtoF(&a[1], 0);
|
---|
747 | rB = sqliteAtoF(&b[1], 0);
|
---|
748 | if( rA<rB ){
|
---|
749 | res = -1;
|
---|
750 | break;
|
---|
751 | }
|
---|
752 | if( rA>rB ){
|
---|
753 | res = +1;
|
---|
754 | break;
|
---|
755 | }
|
---|
756 | }else if( isNumB ){
|
---|
757 | res = +1;
|
---|
758 | break;
|
---|
759 | }else{
|
---|
760 | res = strcmp(&a[1],&b[1]);
|
---|
761 | if( res ) break;
|
---|
762 | }
|
---|
763 | }
|
---|
764 | a += strlen(&a[1]) + 2;
|
---|
765 | b += strlen(&b[1]) + 2;
|
---|
766 | }
|
---|
767 | if( dir=='-' || dir=='D' ) res = -res;
|
---|
768 | return res;
|
---|
769 | }
|
---|
770 |
|
---|
771 | /*
|
---|
772 | ** Some powers of 64. These constants are needed in the
|
---|
773 | ** sqliteRealToSortable() routine below.
|
---|
774 | */
|
---|
775 | #define _64e3 (64.0 * 64.0 * 64.0)
|
---|
776 | #define _64e4 (64.0 * 64.0 * 64.0 * 64.0)
|
---|
777 | #define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
|
---|
778 | #define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
|
---|
779 | #define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
|
---|
780 | #define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)
|
---|
781 |
|
---|
782 | /*
|
---|
783 | ** The following procedure converts a double-precision floating point
|
---|
784 | ** number into a string. The resulting string has the property that
|
---|
785 | ** two such strings comparied using strcmp() or memcmp() will give the
|
---|
786 | ** same results as a numeric comparison of the original floating point
|
---|
787 | ** numbers.
|
---|
788 | **
|
---|
789 | ** This routine is used to generate database keys from floating point
|
---|
790 | ** numbers such that the keys sort in the same order as the original
|
---|
791 | ** floating point numbers even though the keys are compared using
|
---|
792 | ** memcmp().
|
---|
793 | **
|
---|
794 | ** The calling function should have allocated at least 14 characters
|
---|
795 | ** of space for the buffer z[].
|
---|
796 | */
|
---|
797 | void sqliteRealToSortable(double r, char *z){
|
---|
798 | int neg;
|
---|
799 | int exp;
|
---|
800 | int cnt = 0;
|
---|
801 |
|
---|
802 | /* This array maps integers between 0 and 63 into base-64 digits.
|
---|
803 | ** The digits must be chosen such at their ASCII codes are increasing.
|
---|
804 | ** This means we can not use the traditional base-64 digit set. */
|
---|
805 | static const char zDigit[] =
|
---|
806 | "0123456789"
|
---|
807 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
---|
808 | "abcdefghijklmnopqrstuvwxyz"
|
---|
809 | "|~";
|
---|
810 | if( r<0.0 ){
|
---|
811 | neg = 1;
|
---|
812 | r = -r;
|
---|
813 | *z++ = '-';
|
---|
814 | } else {
|
---|
815 | neg = 0;
|
---|
816 | *z++ = '0';
|
---|
817 | }
|
---|
818 | exp = 0;
|
---|
819 |
|
---|
820 | if( r==0.0 ){
|
---|
821 | exp = -1024;
|
---|
822 | }else if( r<(0.5/64.0) ){
|
---|
823 | while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; }
|
---|
824 | while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; }
|
---|
825 | while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; }
|
---|
826 | while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; }
|
---|
827 | }else if( r>=0.5 ){
|
---|
828 | while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; }
|
---|
829 | while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
|
---|
830 | while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; }
|
---|
831 | while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; }
|
---|
832 | }
|
---|
833 | if( neg ){
|
---|
834 | exp = -exp;
|
---|
835 | r = -r;
|
---|
836 | }
|
---|
837 | exp += 1024;
|
---|
838 | r += 0.5;
|
---|
839 | if( exp<0 ) return;
|
---|
840 | if( exp>=2048 || r>=1.0 ){
|
---|
841 | strcpy(z, "~~~~~~~~~~~~");
|
---|
842 | return;
|
---|
843 | }
|
---|
844 | *z++ = zDigit[(exp>>6)&0x3f];
|
---|
845 | *z++ = zDigit[exp & 0x3f];
|
---|
846 | while( r>0.0 && cnt<10 ){
|
---|
847 | int digit;
|
---|
848 | r *= 64.0;
|
---|
849 | digit = (int)r;
|
---|
850 | assert( digit>=0 && digit<64 );
|
---|
851 | *z++ = zDigit[digit & 0x3f];
|
---|
852 | r -= digit;
|
---|
853 | cnt++;
|
---|
854 | }
|
---|
855 | *z = 0;
|
---|
856 | }
|
---|
857 |
|
---|
858 | #ifdef SQLITE_UTF8
|
---|
859 | /*
|
---|
860 | ** X is a pointer to the first byte of a UTF-8 character. Increment
|
---|
861 | ** X so that it points to the next character. This only works right
|
---|
862 | ** if X points to a well-formed UTF-8 string.
|
---|
863 | */
|
---|
864 | #define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
|
---|
865 | #define sqliteCharVal(X) sqlite_utf8_to_int(X)
|
---|
866 |
|
---|
867 | #else /* !defined(SQLITE_UTF8) */
|
---|
868 | /*
|
---|
869 | ** For iso8859 encoding, the next character is just the next byte.
|
---|
870 | */
|
---|
871 | #define sqliteNextChar(X) (++(X));
|
---|
872 | #define sqliteCharVal(X) ((int)*(X))
|
---|
873 |
|
---|
874 | #endif /* defined(SQLITE_UTF8) */
|
---|
875 |
|
---|
876 |
|
---|
877 | #ifdef SQLITE_UTF8
|
---|
878 | /*
|
---|
879 | ** Convert the UTF-8 character to which z points into a 31-bit
|
---|
880 | ** UCS character. This only works right if z points to a well-formed
|
---|
881 | ** UTF-8 string.
|
---|
882 | */
|
---|
883 | static int sqlite_utf8_to_int(const unsigned char *z){
|
---|
884 | int c;
|
---|
885 | static const int initVal[] = {
|
---|
886 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
---|
887 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
---|
888 | 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
|
---|
889 | 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
---|
890 | 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
|
---|
891 | 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
|
---|
892 | 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
|
---|
893 | 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
|
---|
894 | 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
|
---|
895 | 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
|
---|
896 | 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
|
---|
897 | 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
|
---|
898 | 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2,
|
---|
899 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
---|
900 | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0,
|
---|
901 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
---|
902 | 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254,
|
---|
903 | 255,
|
---|
904 | };
|
---|
905 | c = initVal[*(z++)];
|
---|
906 | while( (0xc0&*z)==0x80 ){
|
---|
907 | c = (c<<6) | (0x3f&*(z++));
|
---|
908 | }
|
---|
909 | return c;
|
---|
910 | }
|
---|
911 | #endif
|
---|
912 |
|
---|
913 | /*
|
---|
914 | ** Compare two UTF-8 strings for equality where the first string can
|
---|
915 | ** potentially be a "glob" expression. Return true (1) if they
|
---|
916 | ** are the same and false (0) if they are different.
|
---|
917 | **
|
---|
918 | ** Globbing rules:
|
---|
919 | **
|
---|
920 | ** '*' Matches any sequence of zero or more characters.
|
---|
921 | **
|
---|
922 | ** '?' Matches exactly one character.
|
---|
923 | **
|
---|
924 | ** [...] Matches one character from the enclosed list of
|
---|
925 | ** characters.
|
---|
926 | **
|
---|
927 | ** [^...] Matches one character not in the enclosed list.
|
---|
928 | **
|
---|
929 | ** With the [...] and [^...] matching, a ']' character can be included
|
---|
930 | ** in the list by making it the first character after '[' or '^'. A
|
---|
931 | ** range of characters can be specified using '-'. Example:
|
---|
932 | ** "[a-z]" matches any single lower-case letter. To match a '-', make
|
---|
933 | ** it the last character in the list.
|
---|
934 | **
|
---|
935 | ** This routine is usually quick, but can be N**2 in the worst case.
|
---|
936 | **
|
---|
937 | ** Hints: to match '*' or '?', put them in "[]". Like this:
|
---|
938 | **
|
---|
939 | ** abc[*]xyz Matches "abc*xyz" only
|
---|
940 | */
|
---|
941 | int
|
---|
942 | sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
|
---|
943 | register int c;
|
---|
944 | int invert;
|
---|
945 | int seen;
|
---|
946 | int c2;
|
---|
947 |
|
---|
948 | while( (c = *zPattern)!=0 ){
|
---|
949 | switch( c ){
|
---|
950 | case '*':
|
---|
951 | while( (c=zPattern[1]) == '*' || c == '?' ){
|
---|
952 | if( c=='?' ){
|
---|
953 | if( *zString==0 ) return 0;
|
---|
954 | sqliteNextChar(zString);
|
---|
955 | }
|
---|
956 | zPattern++;
|
---|
957 | }
|
---|
958 | if( c==0 ) return 1;
|
---|
959 | if( c=='[' ){
|
---|
960 | while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
|
---|
961 | sqliteNextChar(zString);
|
---|
962 | }
|
---|
963 | return *zString!=0;
|
---|
964 | }else{
|
---|
965 | while( (c2 = *zString)!=0 ){
|
---|
966 | while( c2 != 0 && c2 != c ){ c2 = *++zString; }
|
---|
967 | if( c2==0 ) return 0;
|
---|
968 | if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
|
---|
969 | sqliteNextChar(zString);
|
---|
970 | }
|
---|
971 | return 0;
|
---|
972 | }
|
---|
973 | case '?': {
|
---|
974 | if( *zString==0 ) return 0;
|
---|
975 | sqliteNextChar(zString);
|
---|
976 | zPattern++;
|
---|
977 | break;
|
---|
978 | }
|
---|
979 | case '[': {
|
---|
980 | int prior_c = 0;
|
---|
981 | seen = 0;
|
---|
982 | invert = 0;
|
---|
983 | c = sqliteCharVal(zString);
|
---|
984 | if( c==0 ) return 0;
|
---|
985 | c2 = *++zPattern;
|
---|
986 | if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
|
---|
987 | if( c2==']' ){
|
---|
988 | if( c==']' ) seen = 1;
|
---|
989 | c2 = *++zPattern;
|
---|
990 | }
|
---|
991 | while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
|
---|
992 | if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
|
---|
993 | zPattern++;
|
---|
994 | c2 = sqliteCharVal(zPattern);
|
---|
995 | if( c>=prior_c && c<=c2 ) seen = 1;
|
---|
996 | prior_c = 0;
|
---|
997 | }else if( c==c2 ){
|
---|
998 | seen = 1;
|
---|
999 | prior_c = c2;
|
---|
1000 | }else{
|
---|
1001 | prior_c = c2;
|
---|
1002 | }
|
---|
1003 | sqliteNextChar(zPattern);
|
---|
1004 | }
|
---|
1005 | if( c2==0 || (seen ^ invert)==0 ) return 0;
|
---|
1006 | sqliteNextChar(zString);
|
---|
1007 | zPattern++;
|
---|
1008 | break;
|
---|
1009 | }
|
---|
1010 | default: {
|
---|
1011 | if( c != *zString ) return 0;
|
---|
1012 | zPattern++;
|
---|
1013 | zString++;
|
---|
1014 | break;
|
---|
1015 | }
|
---|
1016 | }
|
---|
1017 | }
|
---|
1018 | return *zString==0;
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 | /*
|
---|
1022 | ** Compare two UTF-8 strings for equality using the "LIKE" operator of
|
---|
1023 | ** SQL. The '%' character matches any sequence of 0 or more
|
---|
1024 | ** characters and '_' matches any single character. Case is
|
---|
1025 | ** not significant.
|
---|
1026 | **
|
---|
1027 | ** This routine is just an adaptation of the sqliteGlobCompare()
|
---|
1028 | ** routine above.
|
---|
1029 | */
|
---|
1030 | int
|
---|
1031 | sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
|
---|
1032 | register int c;
|
---|
1033 | int c2;
|
---|
1034 |
|
---|
1035 | while( (c = UpperToLower[*zPattern])!=0 ){
|
---|
1036 | switch( c ){
|
---|
1037 | case '%': {
|
---|
1038 | while( (c=zPattern[1]) == '%' || c == '_' ){
|
---|
1039 | if( c=='_' ){
|
---|
1040 | if( *zString==0 ) return 0;
|
---|
1041 | sqliteNextChar(zString);
|
---|
1042 | }
|
---|
1043 | zPattern++;
|
---|
1044 | }
|
---|
1045 | if( c==0 ) return 1;
|
---|
1046 | c = UpperToLower[c];
|
---|
1047 | while( (c2=UpperToLower[*zString])!=0 ){
|
---|
1048 | while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
|
---|
1049 | if( c2==0 ) return 0;
|
---|
1050 | if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
|
---|
1051 | sqliteNextChar(zString);
|
---|
1052 | }
|
---|
1053 | return 0;
|
---|
1054 | }
|
---|
1055 | case '_': {
|
---|
1056 | if( *zString==0 ) return 0;
|
---|
1057 | sqliteNextChar(zString);
|
---|
1058 | zPattern++;
|
---|
1059 | break;
|
---|
1060 | }
|
---|
1061 | default: {
|
---|
1062 | if( c != UpperToLower[*zString] ) return 0;
|
---|
1063 | zPattern++;
|
---|
1064 | zString++;
|
---|
1065 | break;
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 | }
|
---|
1069 | return *zString==0;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | /*
|
---|
1073 | ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
---|
1074 | ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
---|
1075 | ** when this routine is called.
|
---|
1076 | **
|
---|
1077 | ** This routine is a attempt to detect if two threads use the
|
---|
1078 | ** same sqlite* pointer at the same time. There is a race
|
---|
1079 | ** condition so it is possible that the error is not detected.
|
---|
1080 | ** But usually the problem will be seen. The result will be an
|
---|
1081 | ** error which can be used to debug the application that is
|
---|
1082 | ** using SQLite incorrectly.
|
---|
1083 | **
|
---|
1084 | ** Ticket #202: If db->magic is not a valid open value, take care not
|
---|
1085 | ** to modify the db structure at all. It could be that db is a stale
|
---|
1086 | ** pointer. In other words, it could be that there has been a prior
|
---|
1087 | ** call to sqlite_close(db) and db has been deallocated. And we do
|
---|
1088 | ** not want to write into deallocated memory.
|
---|
1089 | */
|
---|
1090 | int sqliteSafetyOn(sqlite *db){
|
---|
1091 | if( db->magic==SQLITE_MAGIC_OPEN ){
|
---|
1092 | db->magic = SQLITE_MAGIC_BUSY;
|
---|
1093 | return 0;
|
---|
1094 | }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR
|
---|
1095 | || db->want_to_close ){
|
---|
1096 | db->magic = SQLITE_MAGIC_ERROR;
|
---|
1097 | db->flags |= SQLITE_Interrupt;
|
---|
1098 | }
|
---|
1099 | return 1;
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 | /*
|
---|
1103 | ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
---|
1104 | ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
---|
1105 | ** when this routine is called.
|
---|
1106 | */
|
---|
1107 | int sqliteSafetyOff(sqlite *db){
|
---|
1108 | if( db->magic==SQLITE_MAGIC_BUSY ){
|
---|
1109 | db->magic = SQLITE_MAGIC_OPEN;
|
---|
1110 | return 0;
|
---|
1111 | }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR
|
---|
1112 | || db->want_to_close ){
|
---|
1113 | db->magic = SQLITE_MAGIC_ERROR;
|
---|
1114 | db->flags |= SQLITE_Interrupt;
|
---|
1115 | }
|
---|
1116 | return 1;
|
---|
1117 | }
|
---|
1118 |
|
---|
1119 | /*
|
---|
1120 | ** Check to make sure we are not currently executing an sqlite_exec().
|
---|
1121 | ** If we are currently in an sqlite_exec(), return true and set
|
---|
1122 | ** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete
|
---|
1123 | ** shutdown of the database.
|
---|
1124 | **
|
---|
1125 | ** This routine is used to try to detect when API routines are called
|
---|
1126 | ** at the wrong time or in the wrong sequence.
|
---|
1127 | */
|
---|
1128 | int sqliteSafetyCheck(sqlite *db){
|
---|
1129 | if( db->pVdbe!=0 ){
|
---|
1130 | db->magic = SQLITE_MAGIC_ERROR;
|
---|
1131 | return 1;
|
---|
1132 | }
|
---|
1133 | return 0;
|
---|
1134 | }
|
---|