1 | /*
|
---|
2 | ** 2001 September 15
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** This file contains C code routines that are called by the parser
|
---|
13 | ** to handle INSERT statements in SQLite.
|
---|
14 | **
|
---|
15 | ** $Id: insert.c,v 1.94 2004/02/24 01:05:33 drh Exp $
|
---|
16 | */
|
---|
17 | #include "sqliteInt.h"
|
---|
18 |
|
---|
19 | /*
|
---|
20 | ** This routine is call to handle SQL of the following forms:
|
---|
21 | **
|
---|
22 | ** insert into TABLE (IDLIST) values(EXPRLIST)
|
---|
23 | ** insert into TABLE (IDLIST) select
|
---|
24 | **
|
---|
25 | ** The IDLIST following the table name is always optional. If omitted,
|
---|
26 | ** then a list of all columns for the table is substituted. The IDLIST
|
---|
27 | ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
---|
28 | **
|
---|
29 | ** The pList parameter holds EXPRLIST in the first form of the INSERT
|
---|
30 | ** statement above, and pSelect is NULL. For the second form, pList is
|
---|
31 | ** NULL and pSelect is a pointer to the select statement used to generate
|
---|
32 | ** data for the insert.
|
---|
33 | **
|
---|
34 | ** The code generated follows one of three templates. For a simple
|
---|
35 | ** select with data coming from a VALUES clause, the code executes
|
---|
36 | ** once straight down through. The template looks like this:
|
---|
37 | **
|
---|
38 | ** open write cursor to <table> and its indices
|
---|
39 | ** puts VALUES clause expressions onto the stack
|
---|
40 | ** write the resulting record into <table>
|
---|
41 | ** cleanup
|
---|
42 | **
|
---|
43 | ** If the statement is of the form
|
---|
44 | **
|
---|
45 | ** INSERT INTO <table> SELECT ...
|
---|
46 | **
|
---|
47 | ** And the SELECT clause does not read from <table> at any time, then
|
---|
48 | ** the generated code follows this template:
|
---|
49 | **
|
---|
50 | ** goto B
|
---|
51 | ** A: setup for the SELECT
|
---|
52 | ** loop over the tables in the SELECT
|
---|
53 | ** gosub C
|
---|
54 | ** end loop
|
---|
55 | ** cleanup after the SELECT
|
---|
56 | ** goto D
|
---|
57 | ** B: open write cursor to <table> and its indices
|
---|
58 | ** goto A
|
---|
59 | ** C: insert the select result into <table>
|
---|
60 | ** return
|
---|
61 | ** D: cleanup
|
---|
62 | **
|
---|
63 | ** The third template is used if the insert statement takes its
|
---|
64 | ** values from a SELECT but the data is being inserted into a table
|
---|
65 | ** that is also read as part of the SELECT. In the third form,
|
---|
66 | ** we have to use a intermediate table to store the results of
|
---|
67 | ** the select. The template is like this:
|
---|
68 | **
|
---|
69 | ** goto B
|
---|
70 | ** A: setup for the SELECT
|
---|
71 | ** loop over the tables in the SELECT
|
---|
72 | ** gosub C
|
---|
73 | ** end loop
|
---|
74 | ** cleanup after the SELECT
|
---|
75 | ** goto D
|
---|
76 | ** C: insert the select result into the intermediate table
|
---|
77 | ** return
|
---|
78 | ** B: open a cursor to an intermediate table
|
---|
79 | ** goto A
|
---|
80 | ** D: open write cursor to <table> and its indices
|
---|
81 | ** loop over the intermediate table
|
---|
82 | ** transfer values form intermediate table into <table>
|
---|
83 | ** end the loop
|
---|
84 | ** cleanup
|
---|
85 | */
|
---|
86 | void sqliteInsert(
|
---|
87 | Parse *pParse, /* Parser context */
|
---|
88 | SrcList *pTabList, /* Name of table into which we are inserting */
|
---|
89 | ExprList *pList, /* List of values to be inserted */
|
---|
90 | Select *pSelect, /* A SELECT statement to use as the data source */
|
---|
91 | IdList *pColumn, /* Column names corresponding to IDLIST. */
|
---|
92 | int onError /* How to handle constraint errors */
|
---|
93 | ){
|
---|
94 | Table *pTab; /* The table to insert into */
|
---|
95 | char *zTab; /* Name of the table into which we are inserting */
|
---|
96 | const char *zDb; /* Name of the database holding this table */
|
---|
97 | int i, j, idx; /* Loop counters */
|
---|
98 | Vdbe *v; /* Generate code into this virtual machine */
|
---|
99 | Index *pIdx; /* For looping over indices of the table */
|
---|
100 | int nColumn; /* Number of columns in the data */
|
---|
101 | int base; /* VDBE Cursor number for pTab */
|
---|
102 | int iCont, iBreak; /* Beginning and end of the loop over srcTab */
|
---|
103 | sqlite *db; /* The main database structure */
|
---|
104 | int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
---|
105 | int endOfLoop; /* Label for the end of the insertion loop */
|
---|
106 | int useTempTable; /* Store SELECT results in intermediate table */
|
---|
107 | int srcTab; /* Data comes from this temporary cursor if >=0 */
|
---|
108 | int iSelectLoop; /* Address of code that implements the SELECT */
|
---|
109 | int iCleanup; /* Address of the cleanup code */
|
---|
110 | int iInsertBlock; /* Address of the subroutine used to insert data */
|
---|
111 | int iCntMem; /* Memory cell used for the row counter */
|
---|
112 | int isView; /* True if attempting to insert into a view */
|
---|
113 |
|
---|
114 | int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
|
---|
115 | int before_triggers; /* True if there are BEFORE triggers */
|
---|
116 | int after_triggers; /* True if there are AFTER triggers */
|
---|
117 | int newIdx = -1; /* Cursor for the NEW table */
|
---|
118 |
|
---|
119 | if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
|
---|
120 | db = pParse->db;
|
---|
121 |
|
---|
122 | /* Locate the table into which we will be inserting new information.
|
---|
123 | */
|
---|
124 | assert( pTabList->nSrc==1 );
|
---|
125 | zTab = pTabList->a[0].zName;
|
---|
126 | if( zTab==0 ) goto insert_cleanup;
|
---|
127 | pTab = sqliteSrcListLookup(pParse, pTabList);
|
---|
128 | if( pTab==0 ){
|
---|
129 | goto insert_cleanup;
|
---|
130 | }
|
---|
131 | assert( pTab->iDb<db->nDb );
|
---|
132 | zDb = db->aDb[pTab->iDb].zName;
|
---|
133 | if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
|
---|
134 | goto insert_cleanup;
|
---|
135 | }
|
---|
136 |
|
---|
137 | /* Ensure that:
|
---|
138 | * (a) the table is not read-only,
|
---|
139 | * (b) that if it is a view then ON INSERT triggers exist
|
---|
140 | */
|
---|
141 | before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
|
---|
142 | TK_BEFORE, TK_ROW, 0);
|
---|
143 | after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
|
---|
144 | TK_AFTER, TK_ROW, 0);
|
---|
145 | row_triggers_exist = before_triggers || after_triggers;
|
---|
146 | isView = pTab->pSelect!=0;
|
---|
147 | if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
|
---|
148 | goto insert_cleanup;
|
---|
149 | }
|
---|
150 | if( pTab==0 ) goto insert_cleanup;
|
---|
151 |
|
---|
152 | /* If pTab is really a view, make sure it has been initialized.
|
---|
153 | */
|
---|
154 | if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
|
---|
155 | goto insert_cleanup;
|
---|
156 | }
|
---|
157 |
|
---|
158 | /* Allocate a VDBE
|
---|
159 | */
|
---|
160 | v = sqliteGetVdbe(pParse);
|
---|
161 | if( v==0 ) goto insert_cleanup;
|
---|
162 | sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb);
|
---|
163 |
|
---|
164 | /* if there are row triggers, allocate a temp table for new.* references. */
|
---|
165 | if( row_triggers_exist ){
|
---|
166 | newIdx = pParse->nTab++;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /* Figure out how many columns of data are supplied. If the data
|
---|
170 | ** is coming from a SELECT statement, then this step also generates
|
---|
171 | ** all the code to implement the SELECT statement and invoke a subroutine
|
---|
172 | ** to process each row of the result. (Template 2.) If the SELECT
|
---|
173 | ** statement uses the the table that is being inserted into, then the
|
---|
174 | ** subroutine is also coded here. That subroutine stores the SELECT
|
---|
175 | ** results in a temporary table. (Template 3.)
|
---|
176 | */
|
---|
177 | if( pSelect ){
|
---|
178 | /* Data is coming from a SELECT. Generate code to implement that SELECT
|
---|
179 | */
|
---|
180 | int rc, iInitCode;
|
---|
181 | iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
|
---|
182 | iSelectLoop = sqliteVdbeCurrentAddr(v);
|
---|
183 | iInsertBlock = sqliteVdbeMakeLabel(v);
|
---|
184 | rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0);
|
---|
185 | if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
|
---|
186 | iCleanup = sqliteVdbeMakeLabel(v);
|
---|
187 | sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup);
|
---|
188 | assert( pSelect->pEList );
|
---|
189 | nColumn = pSelect->pEList->nExpr;
|
---|
190 |
|
---|
191 | /* Set useTempTable to TRUE if the result of the SELECT statement
|
---|
192 | ** should be written into a temporary table. Set to FALSE if each
|
---|
193 | ** row of the SELECT can be written directly into the result table.
|
---|
194 | **
|
---|
195 | ** A temp table must be used if the table being updated is also one
|
---|
196 | ** of the tables being read by the SELECT statement. Also use a
|
---|
197 | ** temp table in the case of row triggers.
|
---|
198 | */
|
---|
199 | if( row_triggers_exist ){
|
---|
200 | useTempTable = 1;
|
---|
201 | }else{
|
---|
202 | int addr = sqliteVdbeFindOp(v, OP_OpenRead, pTab->tnum);
|
---|
203 | useTempTable = 0;
|
---|
204 | if( addr>0 ){
|
---|
205 | VdbeOp *pOp = sqliteVdbeGetOp(v, addr-2);
|
---|
206 | if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){
|
---|
207 | useTempTable = 1;
|
---|
208 | }
|
---|
209 | }
|
---|
210 | }
|
---|
211 |
|
---|
212 | if( useTempTable ){
|
---|
213 | /* Generate the subroutine that SELECT calls to process each row of
|
---|
214 | ** the result. Store the result in a temporary table
|
---|
215 | */
|
---|
216 | srcTab = pParse->nTab++;
|
---|
217 | sqliteVdbeResolveLabel(v, iInsertBlock);
|
---|
218 | sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
---|
219 | sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0);
|
---|
220 | sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
---|
221 | sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0);
|
---|
222 | sqliteVdbeAddOp(v, OP_Return, 0, 0);
|
---|
223 |
|
---|
224 | /* The following code runs first because the GOTO at the very top
|
---|
225 | ** of the program jumps to it. Create the temporary table, then jump
|
---|
226 | ** back up and execute the SELECT code above.
|
---|
227 | */
|
---|
228 | sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
|
---|
229 | sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0);
|
---|
230 | sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
---|
231 | sqliteVdbeResolveLabel(v, iCleanup);
|
---|
232 | }else{
|
---|
233 | sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
|
---|
234 | }
|
---|
235 | }else{
|
---|
236 | /* This is the case if the data for the INSERT is coming from a VALUES
|
---|
237 | ** clause
|
---|
238 | */
|
---|
239 | SrcList dummy;
|
---|
240 | assert( pList!=0 );
|
---|
241 | srcTab = -1;
|
---|
242 | useTempTable = 0;
|
---|
243 | assert( pList );
|
---|
244 | nColumn = pList->nExpr;
|
---|
245 | dummy.nSrc = 0;
|
---|
246 | for(i=0; i<nColumn; i++){
|
---|
247 | if( sqliteExprResolveIds(pParse, &dummy, 0, pList->a[i].pExpr) ){
|
---|
248 | goto insert_cleanup;
|
---|
249 | }
|
---|
250 | if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){
|
---|
251 | goto insert_cleanup;
|
---|
252 | }
|
---|
253 | }
|
---|
254 | }
|
---|
255 |
|
---|
256 | /* Make sure the number of columns in the source data matches the number
|
---|
257 | ** of columns to be inserted into the table.
|
---|
258 | */
|
---|
259 | if( pColumn==0 && nColumn!=pTab->nCol ){
|
---|
260 | sqliteErrorMsg(pParse,
|
---|
261 | "table %S has %d columns but %d values were supplied",
|
---|
262 | pTabList, 0, pTab->nCol, nColumn);
|
---|
263 | goto insert_cleanup;
|
---|
264 | }
|
---|
265 | if( pColumn!=0 && nColumn!=pColumn->nId ){
|
---|
266 | sqliteErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
|
---|
267 | goto insert_cleanup;
|
---|
268 | }
|
---|
269 |
|
---|
270 | /* If the INSERT statement included an IDLIST term, then make sure
|
---|
271 | ** all elements of the IDLIST really are columns of the table and
|
---|
272 | ** remember the column indices.
|
---|
273 | **
|
---|
274 | ** If the table has an INTEGER PRIMARY KEY column and that column
|
---|
275 | ** is named in the IDLIST, then record in the keyColumn variable
|
---|
276 | ** the index into IDLIST of the primary key column. keyColumn is
|
---|
277 | ** the index of the primary key as it appears in IDLIST, not as
|
---|
278 | ** is appears in the original table. (The index of the primary
|
---|
279 | ** key in the original table is pTab->iPKey.)
|
---|
280 | */
|
---|
281 | if( pColumn ){
|
---|
282 | for(i=0; i<pColumn->nId; i++){
|
---|
283 | pColumn->a[i].idx = -1;
|
---|
284 | }
|
---|
285 | for(i=0; i<pColumn->nId; i++){
|
---|
286 | for(j=0; j<pTab->nCol; j++){
|
---|
287 | if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
---|
288 | pColumn->a[i].idx = j;
|
---|
289 | if( j==pTab->iPKey ){
|
---|
290 | keyColumn = i;
|
---|
291 | }
|
---|
292 | break;
|
---|
293 | }
|
---|
294 | }
|
---|
295 | if( j>=pTab->nCol ){
|
---|
296 | if( sqliteIsRowid(pColumn->a[i].zName) ){
|
---|
297 | keyColumn = i;
|
---|
298 | }else{
|
---|
299 | sqliteErrorMsg(pParse, "table %S has no column named %s",
|
---|
300 | pTabList, 0, pColumn->a[i].zName);
|
---|
301 | pParse->nErr++;
|
---|
302 | goto insert_cleanup;
|
---|
303 | }
|
---|
304 | }
|
---|
305 | }
|
---|
306 | }
|
---|
307 |
|
---|
308 | /* If there is no IDLIST term but the table has an integer primary
|
---|
309 | ** key, the set the keyColumn variable to the primary key column index
|
---|
310 | ** in the original table definition.
|
---|
311 | */
|
---|
312 | if( pColumn==0 ){
|
---|
313 | keyColumn = pTab->iPKey;
|
---|
314 | }
|
---|
315 |
|
---|
316 | /* Open the temp table for FOR EACH ROW triggers
|
---|
317 | */
|
---|
318 | if( row_triggers_exist ){
|
---|
319 | sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
|
---|
320 | }
|
---|
321 |
|
---|
322 | /* Initialize the count of rows to be inserted
|
---|
323 | */
|
---|
324 | if( db->flags & SQLITE_CountRows ){
|
---|
325 | iCntMem = pParse->nMem++;
|
---|
326 | sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
---|
327 | sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1);
|
---|
328 | }
|
---|
329 |
|
---|
330 | /* Open tables and indices if there are no row triggers */
|
---|
331 | if( !row_triggers_exist ){
|
---|
332 | base = pParse->nTab;
|
---|
333 | idx = sqliteOpenTableAndIndices(pParse, pTab, base);
|
---|
334 | pParse->nTab += idx;
|
---|
335 | }
|
---|
336 |
|
---|
337 | /* If the data source is a temporary table, then we have to create
|
---|
338 | ** a loop because there might be multiple rows of data. If the data
|
---|
339 | ** source is a subroutine call from the SELECT statement, then we need
|
---|
340 | ** to launch the SELECT statement processing.
|
---|
341 | */
|
---|
342 | if( useTempTable ){
|
---|
343 | iBreak = sqliteVdbeMakeLabel(v);
|
---|
344 | sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak);
|
---|
345 | iCont = sqliteVdbeCurrentAddr(v);
|
---|
346 | }else if( pSelect ){
|
---|
347 | sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
---|
348 | sqliteVdbeResolveLabel(v, iInsertBlock);
|
---|
349 | }
|
---|
350 |
|
---|
351 | /* Run the BEFORE and INSTEAD OF triggers, if there are any
|
---|
352 | */
|
---|
353 | endOfLoop = sqliteVdbeMakeLabel(v);
|
---|
354 | if( before_triggers ){
|
---|
355 |
|
---|
356 | /* build the NEW.* reference row. Note that if there is an INTEGER
|
---|
357 | ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
|
---|
358 | ** translated into a unique ID for the row. But on a BEFORE trigger,
|
---|
359 | ** we do not know what the unique ID will be (because the insert has
|
---|
360 | ** not happened yet) so we substitute a rowid of -1
|
---|
361 | */
|
---|
362 | if( keyColumn<0 ){
|
---|
363 | sqliteVdbeAddOp(v, OP_Integer, -1, 0);
|
---|
364 | }else if( useTempTable ){
|
---|
365 | sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
|
---|
366 | }else if( pSelect ){
|
---|
367 | sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
|
---|
368 | }else{
|
---|
369 | sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
|
---|
370 | sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
|
---|
371 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
372 | sqliteVdbeAddOp(v, OP_Integer, -1, 0);
|
---|
373 | sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
|
---|
374 | }
|
---|
375 |
|
---|
376 | /* Create the new column data
|
---|
377 | */
|
---|
378 | for(i=0; i<pTab->nCol; i++){
|
---|
379 | if( pColumn==0 ){
|
---|
380 | j = i;
|
---|
381 | }else{
|
---|
382 | for(j=0; j<pColumn->nId; j++){
|
---|
383 | if( pColumn->a[j].idx==i ) break;
|
---|
384 | }
|
---|
385 | }
|
---|
386 | if( pColumn && j>=pColumn->nId ){
|
---|
387 | sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
|
---|
388 | }else if( useTempTable ){
|
---|
389 | sqliteVdbeAddOp(v, OP_Column, srcTab, j);
|
---|
390 | }else if( pSelect ){
|
---|
391 | sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1);
|
---|
392 | }else{
|
---|
393 | sqliteExprCode(pParse, pList->a[j].pExpr);
|
---|
394 | }
|
---|
395 | }
|
---|
396 | sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
---|
397 | sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
|
---|
398 |
|
---|
399 | /* Fire BEFORE or INSTEAD OF triggers */
|
---|
400 | if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab,
|
---|
401 | newIdx, -1, onError, endOfLoop) ){
|
---|
402 | goto insert_cleanup;
|
---|
403 | }
|
---|
404 | }
|
---|
405 |
|
---|
406 | /* If any triggers exists, the opening of tables and indices is deferred
|
---|
407 | ** until now.
|
---|
408 | */
|
---|
409 | if( row_triggers_exist && !isView ){
|
---|
410 | base = pParse->nTab;
|
---|
411 | idx = sqliteOpenTableAndIndices(pParse, pTab, base);
|
---|
412 | pParse->nTab += idx;
|
---|
413 | }
|
---|
414 |
|
---|
415 | /* Push the record number for the new entry onto the stack. The
|
---|
416 | ** record number is a randomly generate integer created by NewRecno
|
---|
417 | ** except when the table has an INTEGER PRIMARY KEY column, in which
|
---|
418 | ** case the record number is the same as that column.
|
---|
419 | */
|
---|
420 | if( !isView ){
|
---|
421 | if( keyColumn>=0 ){
|
---|
422 | if( useTempTable ){
|
---|
423 | sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
|
---|
424 | }else if( pSelect ){
|
---|
425 | sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
|
---|
426 | }else{
|
---|
427 | sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
|
---|
428 | }
|
---|
429 | /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno
|
---|
430 | ** to generate a unique primary key value.
|
---|
431 | */
|
---|
432 | sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
|
---|
433 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
434 | sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
|
---|
435 | sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
|
---|
436 | }else{
|
---|
437 | sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
|
---|
438 | }
|
---|
439 |
|
---|
440 | /* Push onto the stack, data for all columns of the new entry, beginning
|
---|
441 | ** with the first column.
|
---|
442 | */
|
---|
443 | for(i=0; i<pTab->nCol; i++){
|
---|
444 | if( i==pTab->iPKey ){
|
---|
445 | /* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
---|
446 | ** Whenever this column is read, the record number will be substituted
|
---|
447 | ** in its place. So will fill this column with a NULL to avoid
|
---|
448 | ** taking up data space with information that will never be used. */
|
---|
449 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
450 | continue;
|
---|
451 | }
|
---|
452 | if( pColumn==0 ){
|
---|
453 | j = i;
|
---|
454 | }else{
|
---|
455 | for(j=0; j<pColumn->nId; j++){
|
---|
456 | if( pColumn->a[j].idx==i ) break;
|
---|
457 | }
|
---|
458 | }
|
---|
459 | if( pColumn && j>=pColumn->nId ){
|
---|
460 | sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
|
---|
461 | }else if( useTempTable ){
|
---|
462 | sqliteVdbeAddOp(v, OP_Column, srcTab, j);
|
---|
463 | }else if( pSelect ){
|
---|
464 | sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1);
|
---|
465 | }else{
|
---|
466 | sqliteExprCode(pParse, pList->a[j].pExpr);
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 | /* Generate code to check constraints and generate index keys and
|
---|
471 | ** do the insertion.
|
---|
472 | */
|
---|
473 | sqliteGenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
|
---|
474 | 0, onError, endOfLoop);
|
---|
475 | sqliteCompleteInsertion(pParse, pTab, base, 0,0,0,
|
---|
476 | after_triggers ? newIdx : -1);
|
---|
477 | }
|
---|
478 |
|
---|
479 | /* Update the count of rows that are inserted
|
---|
480 | */
|
---|
481 | if( (db->flags & SQLITE_CountRows)!=0 ){
|
---|
482 | sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0);
|
---|
483 | }
|
---|
484 |
|
---|
485 | if( row_triggers_exist ){
|
---|
486 | /* Close all tables opened */
|
---|
487 | if( !isView ){
|
---|
488 | sqliteVdbeAddOp(v, OP_Close, base, 0);
|
---|
489 | for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
---|
490 | sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
|
---|
491 | }
|
---|
492 | }
|
---|
493 |
|
---|
494 | /* Code AFTER triggers */
|
---|
495 | if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1,
|
---|
496 | onError, endOfLoop) ){
|
---|
497 | goto insert_cleanup;
|
---|
498 | }
|
---|
499 | }
|
---|
500 |
|
---|
501 | /* The bottom of the loop, if the data source is a SELECT statement
|
---|
502 | */
|
---|
503 | sqliteVdbeResolveLabel(v, endOfLoop);
|
---|
504 | if( useTempTable ){
|
---|
505 | sqliteVdbeAddOp(v, OP_Next, srcTab, iCont);
|
---|
506 | sqliteVdbeResolveLabel(v, iBreak);
|
---|
507 | sqliteVdbeAddOp(v, OP_Close, srcTab, 0);
|
---|
508 | }else if( pSelect ){
|
---|
509 | sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
|
---|
510 | sqliteVdbeAddOp(v, OP_Return, 0, 0);
|
---|
511 | sqliteVdbeResolveLabel(v, iCleanup);
|
---|
512 | }
|
---|
513 |
|
---|
514 | if( !row_triggers_exist ){
|
---|
515 | /* Close all tables opened */
|
---|
516 | sqliteVdbeAddOp(v, OP_Close, base, 0);
|
---|
517 | for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
---|
518 | sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
|
---|
519 | }
|
---|
520 | }
|
---|
521 |
|
---|
522 | sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
|
---|
523 | sqliteEndWriteOperation(pParse);
|
---|
524 |
|
---|
525 | /*
|
---|
526 | ** Return the number of rows inserted.
|
---|
527 | */
|
---|
528 | if( db->flags & SQLITE_CountRows ){
|
---|
529 | sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows inserted", P3_STATIC);
|
---|
530 | sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0);
|
---|
531 | sqliteVdbeAddOp(v, OP_Callback, 1, 0);
|
---|
532 | }
|
---|
533 |
|
---|
534 | insert_cleanup:
|
---|
535 | sqliteSrcListDelete(pTabList);
|
---|
536 | if( pList ) sqliteExprListDelete(pList);
|
---|
537 | if( pSelect ) sqliteSelectDelete(pSelect);
|
---|
538 | sqliteIdListDelete(pColumn);
|
---|
539 | }
|
---|
540 |
|
---|
541 | /*
|
---|
542 | ** Generate code to do a constraint check prior to an INSERT or an UPDATE.
|
---|
543 | **
|
---|
544 | ** When this routine is called, the stack contains (from bottom to top)
|
---|
545 | ** the following values:
|
---|
546 | **
|
---|
547 | ** 1. The recno of the row to be updated before the update. This
|
---|
548 | ** value is omitted unless we are doing an UPDATE that involves a
|
---|
549 | ** change to the record number.
|
---|
550 | **
|
---|
551 | ** 2. The recno of the row after the update.
|
---|
552 | **
|
---|
553 | ** 3. The data in the first column of the entry after the update.
|
---|
554 | **
|
---|
555 | ** i. Data from middle columns...
|
---|
556 | **
|
---|
557 | ** N. The data in the last column of the entry after the update.
|
---|
558 | **
|
---|
559 | ** The old recno shown as entry (1) above is omitted unless both isUpdate
|
---|
560 | ** and recnoChng are 1. isUpdate is true for UPDATEs and false for
|
---|
561 | ** INSERTs and recnoChng is true if the record number is being changed.
|
---|
562 | **
|
---|
563 | ** The code generated by this routine pushes additional entries onto
|
---|
564 | ** the stack which are the keys for new index entries for the new record.
|
---|
565 | ** The order of index keys is the same as the order of the indices on
|
---|
566 | ** the pTable->pIndex list. A key is only created for index i if
|
---|
567 | ** aIdxUsed!=0 and aIdxUsed[i]!=0.
|
---|
568 | **
|
---|
569 | ** This routine also generates code to check constraints. NOT NULL,
|
---|
570 | ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
---|
571 | ** then the appropriate action is performed. There are five possible
|
---|
572 | ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
---|
573 | **
|
---|
574 | ** Constraint type Action What Happens
|
---|
575 | ** --------------- ---------- ----------------------------------------
|
---|
576 | ** any ROLLBACK The current transaction is rolled back and
|
---|
577 | ** sqlite_exec() returns immediately with a
|
---|
578 | ** return code of SQLITE_CONSTRAINT.
|
---|
579 | **
|
---|
580 | ** any ABORT Back out changes from the current command
|
---|
581 | ** only (do not do a complete rollback) then
|
---|
582 | ** cause sqlite_exec() to return immediately
|
---|
583 | ** with SQLITE_CONSTRAINT.
|
---|
584 | **
|
---|
585 | ** any FAIL Sqlite_exec() returns immediately with a
|
---|
586 | ** return code of SQLITE_CONSTRAINT. The
|
---|
587 | ** transaction is not rolled back and any
|
---|
588 | ** prior changes are retained.
|
---|
589 | **
|
---|
590 | ** any IGNORE The record number and data is popped from
|
---|
591 | ** the stack and there is an immediate jump
|
---|
592 | ** to label ignoreDest.
|
---|
593 | **
|
---|
594 | ** NOT NULL REPLACE The NULL value is replace by the default
|
---|
595 | ** value for that column. If the default value
|
---|
596 | ** is NULL, the action is the same as ABORT.
|
---|
597 | **
|
---|
598 | ** UNIQUE REPLACE The other row that conflicts with the row
|
---|
599 | ** being inserted is removed.
|
---|
600 | **
|
---|
601 | ** CHECK REPLACE Illegal. The results in an exception.
|
---|
602 | **
|
---|
603 | ** Which action to take is determined by the overrideError parameter.
|
---|
604 | ** Or if overrideError==OE_Default, then the pParse->onError parameter
|
---|
605 | ** is used. Or if pParse->onError==OE_Default then the onError value
|
---|
606 | ** for the constraint is used.
|
---|
607 | **
|
---|
608 | ** The calling routine must open a read/write cursor for pTab with
|
---|
609 | ** cursor number "base". All indices of pTab must also have open
|
---|
610 | ** read/write cursors with cursor number base+i for the i-th cursor.
|
---|
611 | ** Except, if there is no possibility of a REPLACE action then
|
---|
612 | ** cursors do not need to be open for indices where aIdxUsed[i]==0.
|
---|
613 | **
|
---|
614 | ** If the isUpdate flag is true, it means that the "base" cursor is
|
---|
615 | ** initially pointing to an entry that is being updated. The isUpdate
|
---|
616 | ** flag causes extra code to be generated so that the "base" cursor
|
---|
617 | ** is still pointing at the same entry after the routine returns.
|
---|
618 | ** Without the isUpdate flag, the "base" cursor might be moved.
|
---|
619 | */
|
---|
620 | void sqliteGenerateConstraintChecks(
|
---|
621 | Parse *pParse, /* The parser context */
|
---|
622 | Table *pTab, /* the table into which we are inserting */
|
---|
623 | int base, /* Index of a read/write cursor pointing at pTab */
|
---|
624 | char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
---|
625 | int recnoChng, /* True if the record number will change */
|
---|
626 | int isUpdate, /* True for UPDATE, False for INSERT */
|
---|
627 | int overrideError, /* Override onError to this if not OE_Default */
|
---|
628 | int ignoreDest /* Jump to this label on an OE_Ignore resolution */
|
---|
629 | ){
|
---|
630 | int i;
|
---|
631 | Vdbe *v;
|
---|
632 | int nCol;
|
---|
633 | int onError;
|
---|
634 | int addr;
|
---|
635 | int extra;
|
---|
636 | int iCur;
|
---|
637 | Index *pIdx;
|
---|
638 | int seenReplace = 0;
|
---|
639 | int jumpInst1, jumpInst2;
|
---|
640 | int contAddr;
|
---|
641 | int hasTwoRecnos = (isUpdate && recnoChng);
|
---|
642 |
|
---|
643 | v = sqliteGetVdbe(pParse);
|
---|
644 | assert( v!=0 );
|
---|
645 | assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
---|
646 | nCol = pTab->nCol;
|
---|
647 |
|
---|
648 | /* Test all NOT NULL constraints.
|
---|
649 | */
|
---|
650 | for(i=0; i<nCol; i++){
|
---|
651 | if( i==pTab->iPKey ){
|
---|
652 | continue;
|
---|
653 | }
|
---|
654 | onError = pTab->aCol[i].notNull;
|
---|
655 | if( onError==OE_None ) continue;
|
---|
656 | if( overrideError!=OE_Default ){
|
---|
657 | onError = overrideError;
|
---|
658 | }else if( pParse->db->onError!=OE_Default ){
|
---|
659 | onError = pParse->db->onError;
|
---|
660 | }else if( onError==OE_Default ){
|
---|
661 | onError = OE_Abort;
|
---|
662 | }
|
---|
663 | if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){
|
---|
664 | onError = OE_Abort;
|
---|
665 | }
|
---|
666 | sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1);
|
---|
667 | addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0);
|
---|
668 | switch( onError ){
|
---|
669 | case OE_Rollback:
|
---|
670 | case OE_Abort:
|
---|
671 | case OE_Fail: {
|
---|
672 | char *zMsg = 0;
|
---|
673 | sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
---|
674 | sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
|
---|
675 | " may not be NULL", (char*)0);
|
---|
676 | sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
|
---|
677 | break;
|
---|
678 | }
|
---|
679 | case OE_Ignore: {
|
---|
680 | sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
|
---|
681 | sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
---|
682 | break;
|
---|
683 | }
|
---|
684 | case OE_Replace: {
|
---|
685 | sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
|
---|
686 | sqliteVdbeAddOp(v, OP_Push, nCol-i, 0);
|
---|
687 | break;
|
---|
688 | }
|
---|
689 | default: assert(0);
|
---|
690 | }
|
---|
691 | sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
|
---|
692 | }
|
---|
693 |
|
---|
694 | /* Test all CHECK constraints
|
---|
695 | */
|
---|
696 | /**** TBD ****/
|
---|
697 |
|
---|
698 | /* If we have an INTEGER PRIMARY KEY, make sure the primary key
|
---|
699 | ** of the new record does not previously exist. Except, if this
|
---|
700 | ** is an UPDATE and the primary key is not changing, that is OK.
|
---|
701 | */
|
---|
702 | if( recnoChng ){
|
---|
703 | onError = pTab->keyConf;
|
---|
704 | if( overrideError!=OE_Default ){
|
---|
705 | onError = overrideError;
|
---|
706 | }else if( pParse->db->onError!=OE_Default ){
|
---|
707 | onError = pParse->db->onError;
|
---|
708 | }else if( onError==OE_Default ){
|
---|
709 | onError = OE_Abort;
|
---|
710 | }
|
---|
711 |
|
---|
712 | if( isUpdate ){
|
---|
713 | sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
---|
714 | sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
---|
715 | jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0);
|
---|
716 | }
|
---|
717 | sqliteVdbeAddOp(v, OP_Dup, nCol, 1);
|
---|
718 | jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
|
---|
719 | switch( onError ){
|
---|
720 | default: {
|
---|
721 | onError = OE_Abort;
|
---|
722 | /* Fall thru into the next case */
|
---|
723 | }
|
---|
724 | case OE_Rollback:
|
---|
725 | case OE_Abort:
|
---|
726 | case OE_Fail: {
|
---|
727 | sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
|
---|
728 | "PRIMARY KEY must be unique", P3_STATIC);
|
---|
729 | break;
|
---|
730 | }
|
---|
731 | case OE_Replace: {
|
---|
732 | sqliteGenerateRowIndexDelete(pParse->db, v, pTab, base, 0);
|
---|
733 | if( isUpdate ){
|
---|
734 | sqliteVdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1);
|
---|
735 | sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
---|
736 | }
|
---|
737 | seenReplace = 1;
|
---|
738 | break;
|
---|
739 | }
|
---|
740 | case OE_Ignore: {
|
---|
741 | assert( seenReplace==0 );
|
---|
742 | sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
|
---|
743 | sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
---|
744 | break;
|
---|
745 | }
|
---|
746 | }
|
---|
747 | contAddr = sqliteVdbeCurrentAddr(v);
|
---|
748 | sqliteVdbeChangeP2(v, jumpInst2, contAddr);
|
---|
749 | if( isUpdate ){
|
---|
750 | sqliteVdbeChangeP2(v, jumpInst1, contAddr);
|
---|
751 | sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
---|
752 | sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
---|
753 | }
|
---|
754 | }
|
---|
755 |
|
---|
756 | /* Test all UNIQUE constraints by creating entries for each UNIQUE
|
---|
757 | ** index and making sure that duplicate entries do not already exist.
|
---|
758 | ** Add the new records to the indices as we go.
|
---|
759 | */
|
---|
760 | extra = -1;
|
---|
761 | for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
|
---|
762 | if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */
|
---|
763 | extra++;
|
---|
764 |
|
---|
765 | /* Create a key for accessing the index entry */
|
---|
766 | sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1);
|
---|
767 | for(i=0; i<pIdx->nColumn; i++){
|
---|
768 | int idx = pIdx->aiColumn[i];
|
---|
769 | if( idx==pTab->iPKey ){
|
---|
770 | sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
|
---|
771 | }else{
|
---|
772 | sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
|
---|
773 | }
|
---|
774 | }
|
---|
775 | jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
|
---|
776 | if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
|
---|
777 |
|
---|
778 | /* Find out what action to take in case there is an indexing conflict */
|
---|
779 | onError = pIdx->onError;
|
---|
780 | if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
|
---|
781 | if( overrideError!=OE_Default ){
|
---|
782 | onError = overrideError;
|
---|
783 | }else if( pParse->db->onError!=OE_Default ){
|
---|
784 | onError = pParse->db->onError;
|
---|
785 | }else if( onError==OE_Default ){
|
---|
786 | onError = OE_Abort;
|
---|
787 | }
|
---|
788 | if( seenReplace ){
|
---|
789 | if( onError==OE_Ignore ) onError = OE_Replace;
|
---|
790 | else if( onError==OE_Fail ) onError = OE_Abort;
|
---|
791 | }
|
---|
792 |
|
---|
793 |
|
---|
794 | /* Check to see if the new index entry will be unique */
|
---|
795 | sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1);
|
---|
796 | jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
|
---|
797 |
|
---|
798 | /* Generate code that executes if the new index entry is not unique */
|
---|
799 | switch( onError ){
|
---|
800 | case OE_Rollback:
|
---|
801 | case OE_Abort:
|
---|
802 | case OE_Fail: {
|
---|
803 | int j, n1, n2;
|
---|
804 | char zErrMsg[200];
|
---|
805 | strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column ");
|
---|
806 | n1 = strlen(zErrMsg);
|
---|
807 | for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
|
---|
808 | char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
|
---|
809 | n2 = strlen(zCol);
|
---|
810 | if( j>0 ){
|
---|
811 | strcpy(&zErrMsg[n1], ", ");
|
---|
812 | n1 += 2;
|
---|
813 | }
|
---|
814 | if( n1+n2>sizeof(zErrMsg)-30 ){
|
---|
815 | strcpy(&zErrMsg[n1], "...");
|
---|
816 | n1 += 3;
|
---|
817 | break;
|
---|
818 | }else{
|
---|
819 | strcpy(&zErrMsg[n1], zCol);
|
---|
820 | n1 += n2;
|
---|
821 | }
|
---|
822 | }
|
---|
823 | strcpy(&zErrMsg[n1],
|
---|
824 | pIdx->nColumn>1 ? " are not unique" : " is not unique");
|
---|
825 | sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
|
---|
826 | break;
|
---|
827 | }
|
---|
828 | case OE_Ignore: {
|
---|
829 | assert( seenReplace==0 );
|
---|
830 | sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0);
|
---|
831 | sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
---|
832 | break;
|
---|
833 | }
|
---|
834 | case OE_Replace: {
|
---|
835 | sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0);
|
---|
836 | if( isUpdate ){
|
---|
837 | sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1);
|
---|
838 | sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
---|
839 | }
|
---|
840 | seenReplace = 1;
|
---|
841 | break;
|
---|
842 | }
|
---|
843 | default: assert(0);
|
---|
844 | }
|
---|
845 | contAddr = sqliteVdbeCurrentAddr(v);
|
---|
846 | #if NULL_DISTINCT_FOR_UNIQUE
|
---|
847 | sqliteVdbeChangeP2(v, jumpInst1, contAddr);
|
---|
848 | #endif
|
---|
849 | sqliteVdbeChangeP2(v, jumpInst2, contAddr);
|
---|
850 | }
|
---|
851 | }
|
---|
852 |
|
---|
853 | /*
|
---|
854 | ** This routine generates code to finish the INSERT or UPDATE operation
|
---|
855 | ** that was started by a prior call to sqliteGenerateConstraintChecks.
|
---|
856 | ** The stack must contain keys for all active indices followed by data
|
---|
857 | ** and the recno for the new entry. This routine creates the new
|
---|
858 | ** entries in all indices and in the main table.
|
---|
859 | **
|
---|
860 | ** The arguments to this routine should be the same as the first six
|
---|
861 | ** arguments to sqliteGenerateConstraintChecks.
|
---|
862 | */
|
---|
863 | void sqliteCompleteInsertion(
|
---|
864 | Parse *pParse, /* The parser context */
|
---|
865 | Table *pTab, /* the table into which we are inserting */
|
---|
866 | int base, /* Index of a read/write cursor pointing at pTab */
|
---|
867 | char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
---|
868 | int recnoChng, /* True if the record number will change */
|
---|
869 | int isUpdate, /* True for UPDATE, False for INSERT */
|
---|
870 | int newIdx /* Index of NEW table for triggers. -1 if none */
|
---|
871 | ){
|
---|
872 | int i;
|
---|
873 | Vdbe *v;
|
---|
874 | int nIdx;
|
---|
875 | Index *pIdx;
|
---|
876 |
|
---|
877 | v = sqliteGetVdbe(pParse);
|
---|
878 | assert( v!=0 );
|
---|
879 | assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
---|
880 | for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
---|
881 | for(i=nIdx-1; i>=0; i--){
|
---|
882 | if( aIdxUsed && aIdxUsed[i]==0 ) continue;
|
---|
883 | sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0);
|
---|
884 | }
|
---|
885 | sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
---|
886 | if( newIdx>=0 ){
|
---|
887 | sqliteVdbeAddOp(v, OP_Dup, 1, 0);
|
---|
888 | sqliteVdbeAddOp(v, OP_Dup, 1, 0);
|
---|
889 | sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
|
---|
890 | }
|
---|
891 | sqliteVdbeAddOp(v, OP_PutIntKey, base,
|
---|
892 | (pParse->trigStack?0:OPFLAG_NCHANGE) |
|
---|
893 | (isUpdate?0:OPFLAG_LASTROWID) | OPFLAG_CSCHANGE);
|
---|
894 | if( isUpdate && recnoChng ){
|
---|
895 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
896 | }
|
---|
897 | }
|
---|
898 |
|
---|
899 | /*
|
---|
900 | ** Generate code that will open write cursors for a table and for all
|
---|
901 | ** indices of that table. The "base" parameter is the cursor number used
|
---|
902 | ** for the table. Indices are opened on subsequent cursors.
|
---|
903 | **
|
---|
904 | ** Return the total number of cursors opened. This is always at least
|
---|
905 | ** 1 (for the main table) plus more for each cursor.
|
---|
906 | */
|
---|
907 | int sqliteOpenTableAndIndices(Parse *pParse, Table *pTab, int base){
|
---|
908 | int i;
|
---|
909 | Index *pIdx;
|
---|
910 | Vdbe *v = sqliteGetVdbe(pParse);
|
---|
911 | assert( v!=0 );
|
---|
912 | sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
---|
913 | sqliteVdbeOp3(v, OP_OpenWrite, base, pTab->tnum, pTab->zName, P3_STATIC);
|
---|
914 | for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
---|
915 | sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
|
---|
916 | sqliteVdbeOp3(v, OP_OpenWrite, i+base, pIdx->tnum, pIdx->zName, P3_STATIC);
|
---|
917 | }
|
---|
918 | return i;
|
---|
919 | }
|
---|