[205] | 1 | /*
|
---|
| 2 | ** 2001 September 22
|
---|
| 3 | **
|
---|
| 4 | ** The author disclaims copyright to this source code. In place of
|
---|
| 5 | ** a legal notice, here is a blessing:
|
---|
| 6 | **
|
---|
| 7 | ** May you do good and not evil.
|
---|
| 8 | ** May you find forgiveness for yourself and forgive others.
|
---|
| 9 | ** May you share freely, never taking more than you give.
|
---|
| 10 | **
|
---|
| 11 | *************************************************************************
|
---|
| 12 | ** This is the implementation of generic hash-tables
|
---|
| 13 | ** used in SQLite.
|
---|
| 14 | **
|
---|
| 15 | ** $Id: hash.c,v 1.11 2004/01/08 02:17:33 drh Exp $
|
---|
| 16 | */
|
---|
| 17 | #include "sqliteInt.h"
|
---|
| 18 | #include <assert.h>
|
---|
| 19 |
|
---|
| 20 | /* Turn bulk memory into a hash table object by initializing the
|
---|
| 21 | ** fields of the Hash structure.
|
---|
| 22 | **
|
---|
| 23 | ** "new" is a pointer to the hash table that is to be initialized.
|
---|
| 24 | ** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
|
---|
| 25 | ** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
|
---|
| 26 | ** determines what kind of key the hash table will use. "copyKey" is
|
---|
| 27 | ** true if the hash table should make its own private copy of keys and
|
---|
| 28 | ** false if it should just use the supplied pointer. CopyKey only makes
|
---|
| 29 | ** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
|
---|
| 30 | ** for other key classes.
|
---|
| 31 | */
|
---|
| 32 | void sqliteHashInit(Hash *new, int keyClass, int copyKey){
|
---|
| 33 | assert( new!=0 );
|
---|
| 34 | assert( keyClass>=SQLITE_HASH_INT && keyClass<=SQLITE_HASH_BINARY );
|
---|
| 35 | new->keyClass = keyClass;
|
---|
| 36 | new->copyKey = copyKey &&
|
---|
| 37 | (keyClass==SQLITE_HASH_STRING || keyClass==SQLITE_HASH_BINARY);
|
---|
| 38 | new->first = 0;
|
---|
| 39 | new->count = 0;
|
---|
| 40 | new->htsize = 0;
|
---|
| 41 | new->ht = 0;
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | /* Remove all entries from a hash table. Reclaim all memory.
|
---|
| 45 | ** Call this routine to delete a hash table or to reset a hash table
|
---|
| 46 | ** to the empty state.
|
---|
| 47 | */
|
---|
| 48 | void sqliteHashClear(Hash *pH){
|
---|
| 49 | HashElem *elem; /* For looping over all elements of the table */
|
---|
| 50 |
|
---|
| 51 | assert( pH!=0 );
|
---|
| 52 | elem = pH->first;
|
---|
| 53 | pH->first = 0;
|
---|
| 54 | if( pH->ht ) sqliteFree(pH->ht);
|
---|
| 55 | pH->ht = 0;
|
---|
| 56 | pH->htsize = 0;
|
---|
| 57 | while( elem ){
|
---|
| 58 | HashElem *next_elem = elem->next;
|
---|
| 59 | if( pH->copyKey && elem->pKey ){
|
---|
| 60 | sqliteFree(elem->pKey);
|
---|
| 61 | }
|
---|
| 62 | sqliteFree(elem);
|
---|
| 63 | elem = next_elem;
|
---|
| 64 | }
|
---|
| 65 | pH->count = 0;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | /*
|
---|
| 69 | ** Hash and comparison functions when the mode is SQLITE_HASH_INT
|
---|
| 70 | */
|
---|
| 71 | static int intHash(const void *pKey, int nKey){
|
---|
| 72 | return nKey ^ (nKey<<8) ^ (nKey>>8);
|
---|
| 73 | }
|
---|
| 74 | static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
---|
| 75 | return n2 - n1;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | #if 0 /* NOT USED */
|
---|
| 79 | /*
|
---|
| 80 | ** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
|
---|
| 81 | */
|
---|
| 82 | static int ptrHash(const void *pKey, int nKey){
|
---|
| 83 | uptr x = Addr(pKey);
|
---|
| 84 | return x ^ (x<<8) ^ (x>>8);
|
---|
| 85 | }
|
---|
| 86 | static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
---|
| 87 | if( pKey1==pKey2 ) return 0;
|
---|
| 88 | if( pKey1<pKey2 ) return -1;
|
---|
| 89 | return 1;
|
---|
| 90 | }
|
---|
| 91 | #endif
|
---|
| 92 |
|
---|
| 93 | /*
|
---|
| 94 | ** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
---|
| 95 | */
|
---|
| 96 | static int strHash(const void *pKey, int nKey){
|
---|
| 97 | return sqliteHashNoCase((const char*)pKey, nKey);
|
---|
| 98 | }
|
---|
| 99 | static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
---|
| 100 | if( n1!=n2 ) return n2-n1;
|
---|
| 101 | return sqliteStrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | /*
|
---|
| 105 | ** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
|
---|
| 106 | */
|
---|
| 107 | static int binHash(const void *pKey, int nKey){
|
---|
| 108 | int h = 0;
|
---|
| 109 | const char *z = (const char *)pKey;
|
---|
| 110 | while( nKey-- > 0 ){
|
---|
| 111 | h = (h<<3) ^ h ^ *(z++);
|
---|
| 112 | }
|
---|
| 113 | return h & 0x7fffffff;
|
---|
| 114 | }
|
---|
| 115 | static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
---|
| 116 | if( n1!=n2 ) return n2-n1;
|
---|
| 117 | return memcmp(pKey1,pKey2,n1);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | /*
|
---|
| 121 | ** Return a pointer to the appropriate hash function given the key class.
|
---|
| 122 | **
|
---|
| 123 | ** The C syntax in this function definition may be unfamilar to some
|
---|
| 124 | ** programmers, so we provide the following additional explanation:
|
---|
| 125 | **
|
---|
| 126 | ** The name of the function is "hashFunction". The function takes a
|
---|
| 127 | ** single parameter "keyClass". The return value of hashFunction()
|
---|
| 128 | ** is a pointer to another function. Specifically, the return value
|
---|
| 129 | ** of hashFunction() is a pointer to a function that takes two parameters
|
---|
| 130 | ** with types "const void*" and "int" and returns an "int".
|
---|
| 131 | */
|
---|
| 132 | static int (*hashFunction(int keyClass))(const void*,int){
|
---|
| 133 | switch( keyClass ){
|
---|
| 134 | case SQLITE_HASH_INT: return &intHash;
|
---|
| 135 | /* case SQLITE_HASH_POINTER: return &ptrHash; // NOT USED */
|
---|
| 136 | case SQLITE_HASH_STRING: return &strHash;
|
---|
| 137 | case SQLITE_HASH_BINARY: return &binHash;;
|
---|
| 138 | default: break;
|
---|
| 139 | }
|
---|
| 140 | return 0;
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | /*
|
---|
| 144 | ** Return a pointer to the appropriate hash function given the key class.
|
---|
| 145 | **
|
---|
| 146 | ** For help in interpreted the obscure C code in the function definition,
|
---|
| 147 | ** see the header comment on the previous function.
|
---|
| 148 | */
|
---|
| 149 | static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
---|
| 150 | switch( keyClass ){
|
---|
| 151 | case SQLITE_HASH_INT: return &intCompare;
|
---|
| 152 | /* case SQLITE_HASH_POINTER: return &ptrCompare; // NOT USED */
|
---|
| 153 | case SQLITE_HASH_STRING: return &strCompare;
|
---|
| 154 | case SQLITE_HASH_BINARY: return &binCompare;
|
---|
| 155 | default: break;
|
---|
| 156 | }
|
---|
| 157 | return 0;
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 |
|
---|
| 161 | /* Resize the hash table so that it cantains "new_size" buckets.
|
---|
| 162 | ** "new_size" must be a power of 2. The hash table might fail
|
---|
| 163 | ** to resize if sqliteMalloc() fails.
|
---|
| 164 | */
|
---|
| 165 | static void rehash(Hash *pH, int new_size){
|
---|
| 166 | struct _ht *new_ht; /* The new hash table */
|
---|
| 167 | HashElem *elem, *next_elem; /* For looping over existing elements */
|
---|
| 168 | HashElem *x; /* Element being copied to new hash table */
|
---|
| 169 | int (*xHash)(const void*,int); /* The hash function */
|
---|
| 170 |
|
---|
| 171 | assert( (new_size & (new_size-1))==0 );
|
---|
| 172 | new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) );
|
---|
| 173 | if( new_ht==0 ) return;
|
---|
| 174 | if( pH->ht ) sqliteFree(pH->ht);
|
---|
| 175 | pH->ht = new_ht;
|
---|
| 176 | pH->htsize = new_size;
|
---|
| 177 | xHash = hashFunction(pH->keyClass);
|
---|
| 178 | for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
---|
| 179 | int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
---|
| 180 | next_elem = elem->next;
|
---|
| 181 | x = new_ht[h].chain;
|
---|
| 182 | if( x ){
|
---|
| 183 | elem->next = x;
|
---|
| 184 | elem->prev = x->prev;
|
---|
| 185 | if( x->prev ) x->prev->next = elem;
|
---|
| 186 | else pH->first = elem;
|
---|
| 187 | x->prev = elem;
|
---|
| 188 | }else{
|
---|
| 189 | elem->next = pH->first;
|
---|
| 190 | if( pH->first ) pH->first->prev = elem;
|
---|
| 191 | elem->prev = 0;
|
---|
| 192 | pH->first = elem;
|
---|
| 193 | }
|
---|
| 194 | new_ht[h].chain = elem;
|
---|
| 195 | new_ht[h].count++;
|
---|
| 196 | }
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | /* This function (for internal use only) locates an element in an
|
---|
| 200 | ** hash table that matches the given key. The hash for this key has
|
---|
| 201 | ** already been computed and is passed as the 4th parameter.
|
---|
| 202 | */
|
---|
| 203 | static HashElem *findElementGivenHash(
|
---|
| 204 | const Hash *pH, /* The pH to be searched */
|
---|
| 205 | const void *pKey, /* The key we are searching for */
|
---|
| 206 | int nKey,
|
---|
| 207 | int h /* The hash for this key. */
|
---|
| 208 | ){
|
---|
| 209 | HashElem *elem; /* Used to loop thru the element list */
|
---|
| 210 | int count; /* Number of elements left to test */
|
---|
| 211 | int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
---|
| 212 |
|
---|
| 213 | if( pH->ht ){
|
---|
| 214 | elem = pH->ht[h].chain;
|
---|
| 215 | count = pH->ht[h].count;
|
---|
| 216 | xCompare = compareFunction(pH->keyClass);
|
---|
| 217 | while( count-- && elem ){
|
---|
| 218 | if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
---|
| 219 | return elem;
|
---|
| 220 | }
|
---|
| 221 | elem = elem->next;
|
---|
| 222 | }
|
---|
| 223 | }
|
---|
| 224 | return 0;
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | /* Remove a single entry from the hash table given a pointer to that
|
---|
| 228 | ** element and a hash on the element's key.
|
---|
| 229 | */
|
---|
| 230 | static void removeElementGivenHash(
|
---|
| 231 | Hash *pH, /* The pH containing "elem" */
|
---|
| 232 | HashElem* elem, /* The element to be removed from the pH */
|
---|
| 233 | int h /* Hash value for the element */
|
---|
| 234 | ){
|
---|
| 235 | if( elem->prev ){
|
---|
| 236 | elem->prev->next = elem->next;
|
---|
| 237 | }else{
|
---|
| 238 | pH->first = elem->next;
|
---|
| 239 | }
|
---|
| 240 | if( elem->next ){
|
---|
| 241 | elem->next->prev = elem->prev;
|
---|
| 242 | }
|
---|
| 243 | if( pH->ht[h].chain==elem ){
|
---|
| 244 | pH->ht[h].chain = elem->next;
|
---|
| 245 | }
|
---|
| 246 | pH->ht[h].count--;
|
---|
| 247 | if( pH->ht[h].count<=0 ){
|
---|
| 248 | pH->ht[h].chain = 0;
|
---|
| 249 | }
|
---|
| 250 | if( pH->copyKey && elem->pKey ){
|
---|
| 251 | sqliteFree(elem->pKey);
|
---|
| 252 | }
|
---|
| 253 | sqliteFree( elem );
|
---|
| 254 | pH->count--;
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | /* Attempt to locate an element of the hash table pH with a key
|
---|
| 258 | ** that matches pKey,nKey. Return the data for this element if it is
|
---|
| 259 | ** found, or NULL if there is no match.
|
---|
| 260 | */
|
---|
| 261 | void *sqliteHashFind(const Hash *pH, const void *pKey, int nKey){
|
---|
| 262 | int h; /* A hash on key */
|
---|
| 263 | HashElem *elem; /* The element that matches key */
|
---|
| 264 | int (*xHash)(const void*,int); /* The hash function */
|
---|
| 265 |
|
---|
| 266 | if( pH==0 || pH->ht==0 ) return 0;
|
---|
| 267 | xHash = hashFunction(pH->keyClass);
|
---|
| 268 | assert( xHash!=0 );
|
---|
| 269 | h = (*xHash)(pKey,nKey);
|
---|
| 270 | assert( (pH->htsize & (pH->htsize-1))==0 );
|
---|
| 271 | elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
---|
| 272 | return elem ? elem->data : 0;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | /* Insert an element into the hash table pH. The key is pKey,nKey
|
---|
| 276 | ** and the data is "data".
|
---|
| 277 | **
|
---|
| 278 | ** If no element exists with a matching key, then a new
|
---|
| 279 | ** element is created. A copy of the key is made if the copyKey
|
---|
| 280 | ** flag is set. NULL is returned.
|
---|
| 281 | **
|
---|
| 282 | ** If another element already exists with the same key, then the
|
---|
| 283 | ** new data replaces the old data and the old data is returned.
|
---|
| 284 | ** The key is not copied in this instance. If a malloc fails, then
|
---|
| 285 | ** the new data is returned and the hash table is unchanged.
|
---|
| 286 | **
|
---|
| 287 | ** If the "data" parameter to this function is NULL, then the
|
---|
| 288 | ** element corresponding to "key" is removed from the hash table.
|
---|
| 289 | */
|
---|
| 290 | void *sqliteHashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
---|
| 291 | int hraw; /* Raw hash value of the key */
|
---|
| 292 | int h; /* the hash of the key modulo hash table size */
|
---|
| 293 | HashElem *elem; /* Used to loop thru the element list */
|
---|
| 294 | HashElem *new_elem; /* New element added to the pH */
|
---|
| 295 | int (*xHash)(const void*,int); /* The hash function */
|
---|
| 296 |
|
---|
| 297 | assert( pH!=0 );
|
---|
| 298 | xHash = hashFunction(pH->keyClass);
|
---|
| 299 | assert( xHash!=0 );
|
---|
| 300 | hraw = (*xHash)(pKey, nKey);
|
---|
| 301 | assert( (pH->htsize & (pH->htsize-1))==0 );
|
---|
| 302 | h = hraw & (pH->htsize-1);
|
---|
| 303 | elem = findElementGivenHash(pH,pKey,nKey,h);
|
---|
| 304 | if( elem ){
|
---|
| 305 | void *old_data = elem->data;
|
---|
| 306 | if( data==0 ){
|
---|
| 307 | removeElementGivenHash(pH,elem,h);
|
---|
| 308 | }else{
|
---|
| 309 | elem->data = data;
|
---|
| 310 | }
|
---|
| 311 | return old_data;
|
---|
| 312 | }
|
---|
| 313 | if( data==0 ) return 0;
|
---|
| 314 | new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) );
|
---|
| 315 | if( new_elem==0 ) return data;
|
---|
| 316 | if( pH->copyKey && pKey!=0 ){
|
---|
| 317 | new_elem->pKey = sqliteMallocRaw( nKey );
|
---|
| 318 | if( new_elem->pKey==0 ){
|
---|
| 319 | sqliteFree(new_elem);
|
---|
| 320 | return data;
|
---|
| 321 | }
|
---|
| 322 | memcpy((void*)new_elem->pKey, pKey, nKey);
|
---|
| 323 | }else{
|
---|
| 324 | new_elem->pKey = (void*)pKey;
|
---|
| 325 | }
|
---|
| 326 | new_elem->nKey = nKey;
|
---|
| 327 | pH->count++;
|
---|
| 328 | if( pH->htsize==0 ) rehash(pH,8);
|
---|
| 329 | if( pH->htsize==0 ){
|
---|
| 330 | pH->count = 0;
|
---|
| 331 | sqliteFree(new_elem);
|
---|
| 332 | return data;
|
---|
| 333 | }
|
---|
| 334 | if( pH->count > pH->htsize ){
|
---|
| 335 | rehash(pH,pH->htsize*2);
|
---|
| 336 | }
|
---|
| 337 | assert( (pH->htsize & (pH->htsize-1))==0 );
|
---|
| 338 | h = hraw & (pH->htsize-1);
|
---|
| 339 | elem = pH->ht[h].chain;
|
---|
| 340 | if( elem ){
|
---|
| 341 | new_elem->next = elem;
|
---|
| 342 | new_elem->prev = elem->prev;
|
---|
| 343 | if( elem->prev ){ elem->prev->next = new_elem; }
|
---|
| 344 | else { pH->first = new_elem; }
|
---|
| 345 | elem->prev = new_elem;
|
---|
| 346 | }else{
|
---|
| 347 | new_elem->next = pH->first;
|
---|
| 348 | new_elem->prev = 0;
|
---|
| 349 | if( pH->first ){ pH->first->prev = new_elem; }
|
---|
| 350 | pH->first = new_elem;
|
---|
| 351 | }
|
---|
| 352 | pH->ht[h].count++;
|
---|
| 353 | pH->ht[h].chain = new_elem;
|
---|
| 354 | new_elem->data = data;
|
---|
| 355 | return 0;
|
---|
| 356 | }
|
---|