1 | /*
|
---|
2 | ** 2001 September 15
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** This file contains routines used for analyzing expressions and
|
---|
13 | ** for generating VDBE code that evaluates expressions in SQLite.
|
---|
14 | **
|
---|
15 | ** $Id: expr.c,v 1.114.2.4 2004/11/20 20:42:10 drh Exp $
|
---|
16 | */
|
---|
17 | #include "sqliteInt.h"
|
---|
18 | #include <ctype.h>
|
---|
19 |
|
---|
20 | /*
|
---|
21 | ** Construct a new expression node and return a pointer to it. Memory
|
---|
22 | ** for this node is obtained from sqliteMalloc(). The calling function
|
---|
23 | ** is responsible for making sure the node eventually gets freed.
|
---|
24 | */
|
---|
25 | Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
|
---|
26 | Expr *pNew;
|
---|
27 | pNew = sqliteMalloc( sizeof(Expr) );
|
---|
28 | if( pNew==0 ){
|
---|
29 | /* When malloc fails, we leak memory from pLeft and pRight */
|
---|
30 | return 0;
|
---|
31 | }
|
---|
32 | pNew->op = op;
|
---|
33 | pNew->pLeft = pLeft;
|
---|
34 | pNew->pRight = pRight;
|
---|
35 | if( pToken ){
|
---|
36 | assert( pToken->dyn==0 );
|
---|
37 | pNew->token = *pToken;
|
---|
38 | pNew->span = *pToken;
|
---|
39 | }else{
|
---|
40 | assert( pNew->token.dyn==0 );
|
---|
41 | assert( pNew->token.z==0 );
|
---|
42 | assert( pNew->token.n==0 );
|
---|
43 | if( pLeft && pRight ){
|
---|
44 | sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
|
---|
45 | }else{
|
---|
46 | pNew->span = pNew->token;
|
---|
47 | }
|
---|
48 | }
|
---|
49 | return pNew;
|
---|
50 | }
|
---|
51 |
|
---|
52 | /*
|
---|
53 | ** Set the Expr.span field of the given expression to span all
|
---|
54 | ** text between the two given tokens.
|
---|
55 | */
|
---|
56 | void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
|
---|
57 | assert( pRight!=0 );
|
---|
58 | assert( pLeft!=0 );
|
---|
59 | /* Note: pExpr might be NULL due to a prior malloc failure */
|
---|
60 | if( pExpr && pRight->z && pLeft->z ){
|
---|
61 | if( pLeft->dyn==0 && pRight->dyn==0 ){
|
---|
62 | pExpr->span.z = pLeft->z;
|
---|
63 | pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
|
---|
64 | }else{
|
---|
65 | pExpr->span.z = 0;
|
---|
66 | }
|
---|
67 | }
|
---|
68 | }
|
---|
69 |
|
---|
70 | /*
|
---|
71 | ** Construct a new expression node for a function with multiple
|
---|
72 | ** arguments.
|
---|
73 | */
|
---|
74 | Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
|
---|
75 | Expr *pNew;
|
---|
76 | pNew = sqliteMalloc( sizeof(Expr) );
|
---|
77 | if( pNew==0 ){
|
---|
78 | /* sqliteExprListDelete(pList); // Leak pList when malloc fails */
|
---|
79 | return 0;
|
---|
80 | }
|
---|
81 | pNew->op = TK_FUNCTION;
|
---|
82 | pNew->pList = pList;
|
---|
83 | if( pToken ){
|
---|
84 | assert( pToken->dyn==0 );
|
---|
85 | pNew->token = *pToken;
|
---|
86 | }else{
|
---|
87 | pNew->token.z = 0;
|
---|
88 | }
|
---|
89 | pNew->span = pNew->token;
|
---|
90 | return pNew;
|
---|
91 | }
|
---|
92 |
|
---|
93 | /*
|
---|
94 | ** Recursively delete an expression tree.
|
---|
95 | */
|
---|
96 | void sqliteExprDelete(Expr *p){
|
---|
97 | if( p==0 ) return;
|
---|
98 | if( p->span.dyn ) sqliteFree((char*)p->span.z);
|
---|
99 | if( p->token.dyn ) sqliteFree((char*)p->token.z);
|
---|
100 | sqliteExprDelete(p->pLeft);
|
---|
101 | sqliteExprDelete(p->pRight);
|
---|
102 | sqliteExprListDelete(p->pList);
|
---|
103 | sqliteSelectDelete(p->pSelect);
|
---|
104 | sqliteFree(p);
|
---|
105 | }
|
---|
106 |
|
---|
107 |
|
---|
108 | /*
|
---|
109 | ** The following group of routines make deep copies of expressions,
|
---|
110 | ** expression lists, ID lists, and select statements. The copies can
|
---|
111 | ** be deleted (by being passed to their respective ...Delete() routines)
|
---|
112 | ** without effecting the originals.
|
---|
113 | **
|
---|
114 | ** The expression list, ID, and source lists return by sqliteExprListDup(),
|
---|
115 | ** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded
|
---|
116 | ** by subsequent calls to sqlite*ListAppend() routines.
|
---|
117 | **
|
---|
118 | ** Any tables that the SrcList might point to are not duplicated.
|
---|
119 | */
|
---|
120 | Expr *sqliteExprDup(Expr *p){
|
---|
121 | Expr *pNew;
|
---|
122 | if( p==0 ) return 0;
|
---|
123 | pNew = sqliteMallocRaw( sizeof(*p) );
|
---|
124 | if( pNew==0 ) return 0;
|
---|
125 | memcpy(pNew, p, sizeof(*pNew));
|
---|
126 | if( p->token.z!=0 ){
|
---|
127 | pNew->token.z = sqliteStrNDup(p->token.z, p->token.n);
|
---|
128 | pNew->token.dyn = 1;
|
---|
129 | }else{
|
---|
130 | assert( pNew->token.z==0 );
|
---|
131 | }
|
---|
132 | pNew->span.z = 0;
|
---|
133 | pNew->pLeft = sqliteExprDup(p->pLeft);
|
---|
134 | pNew->pRight = sqliteExprDup(p->pRight);
|
---|
135 | pNew->pList = sqliteExprListDup(p->pList);
|
---|
136 | pNew->pSelect = sqliteSelectDup(p->pSelect);
|
---|
137 | return pNew;
|
---|
138 | }
|
---|
139 | void sqliteTokenCopy(Token *pTo, Token *pFrom){
|
---|
140 | if( pTo->dyn ) sqliteFree((char*)pTo->z);
|
---|
141 | if( pFrom->z ){
|
---|
142 | pTo->n = pFrom->n;
|
---|
143 | pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
|
---|
144 | pTo->dyn = 1;
|
---|
145 | }else{
|
---|
146 | pTo->z = 0;
|
---|
147 | }
|
---|
148 | }
|
---|
149 | ExprList *sqliteExprListDup(ExprList *p){
|
---|
150 | ExprList *pNew;
|
---|
151 | struct ExprList_item *pItem;
|
---|
152 | int i;
|
---|
153 | if( p==0 ) return 0;
|
---|
154 | pNew = sqliteMalloc( sizeof(*pNew) );
|
---|
155 | if( pNew==0 ) return 0;
|
---|
156 | pNew->nExpr = pNew->nAlloc = p->nExpr;
|
---|
157 | pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
|
---|
158 | if( pItem==0 ){
|
---|
159 | sqliteFree(pNew);
|
---|
160 | return 0;
|
---|
161 | }
|
---|
162 | for(i=0; i<p->nExpr; i++, pItem++){
|
---|
163 | Expr *pNewExpr, *pOldExpr;
|
---|
164 | pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
|
---|
165 | if( pOldExpr->span.z!=0 && pNewExpr ){
|
---|
166 | /* Always make a copy of the span for top-level expressions in the
|
---|
167 | ** expression list. The logic in SELECT processing that determines
|
---|
168 | ** the names of columns in the result set needs this information */
|
---|
169 | sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
|
---|
170 | }
|
---|
171 | assert( pNewExpr==0 || pNewExpr->span.z!=0
|
---|
172 | || pOldExpr->span.z==0 || sqlite_malloc_failed );
|
---|
173 | pItem->zName = sqliteStrDup(p->a[i].zName);
|
---|
174 | pItem->sortOrder = p->a[i].sortOrder;
|
---|
175 | pItem->isAgg = p->a[i].isAgg;
|
---|
176 | pItem->done = 0;
|
---|
177 | }
|
---|
178 | return pNew;
|
---|
179 | }
|
---|
180 | SrcList *sqliteSrcListDup(SrcList *p){
|
---|
181 | SrcList *pNew;
|
---|
182 | int i;
|
---|
183 | int nByte;
|
---|
184 | if( p==0 ) return 0;
|
---|
185 | nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
---|
186 | pNew = sqliteMallocRaw( nByte );
|
---|
187 | if( pNew==0 ) return 0;
|
---|
188 | pNew->nSrc = pNew->nAlloc = p->nSrc;
|
---|
189 | for(i=0; i<p->nSrc; i++){
|
---|
190 | struct SrcList_item *pNewItem = &pNew->a[i];
|
---|
191 | struct SrcList_item *pOldItem = &p->a[i];
|
---|
192 | pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
|
---|
193 | pNewItem->zName = sqliteStrDup(pOldItem->zName);
|
---|
194 | pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
|
---|
195 | pNewItem->jointype = pOldItem->jointype;
|
---|
196 | pNewItem->iCursor = pOldItem->iCursor;
|
---|
197 | pNewItem->pTab = 0;
|
---|
198 | pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
|
---|
199 | pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
|
---|
200 | pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
|
---|
201 | }
|
---|
202 | return pNew;
|
---|
203 | }
|
---|
204 | IdList *sqliteIdListDup(IdList *p){
|
---|
205 | IdList *pNew;
|
---|
206 | int i;
|
---|
207 | if( p==0 ) return 0;
|
---|
208 | pNew = sqliteMallocRaw( sizeof(*pNew) );
|
---|
209 | if( pNew==0 ) return 0;
|
---|
210 | pNew->nId = pNew->nAlloc = p->nId;
|
---|
211 | pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
|
---|
212 | if( pNew->a==0 ) return 0;
|
---|
213 | for(i=0; i<p->nId; i++){
|
---|
214 | struct IdList_item *pNewItem = &pNew->a[i];
|
---|
215 | struct IdList_item *pOldItem = &p->a[i];
|
---|
216 | pNewItem->zName = sqliteStrDup(pOldItem->zName);
|
---|
217 | pNewItem->idx = pOldItem->idx;
|
---|
218 | }
|
---|
219 | return pNew;
|
---|
220 | }
|
---|
221 | Select *sqliteSelectDup(Select *p){
|
---|
222 | Select *pNew;
|
---|
223 | if( p==0 ) return 0;
|
---|
224 | pNew = sqliteMallocRaw( sizeof(*p) );
|
---|
225 | if( pNew==0 ) return 0;
|
---|
226 | pNew->isDistinct = p->isDistinct;
|
---|
227 | pNew->pEList = sqliteExprListDup(p->pEList);
|
---|
228 | pNew->pSrc = sqliteSrcListDup(p->pSrc);
|
---|
229 | pNew->pWhere = sqliteExprDup(p->pWhere);
|
---|
230 | pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
|
---|
231 | pNew->pHaving = sqliteExprDup(p->pHaving);
|
---|
232 | pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
|
---|
233 | pNew->op = p->op;
|
---|
234 | pNew->pPrior = sqliteSelectDup(p->pPrior);
|
---|
235 | pNew->nLimit = p->nLimit;
|
---|
236 | pNew->nOffset = p->nOffset;
|
---|
237 | pNew->zSelect = 0;
|
---|
238 | pNew->iLimit = -1;
|
---|
239 | pNew->iOffset = -1;
|
---|
240 | return pNew;
|
---|
241 | }
|
---|
242 |
|
---|
243 |
|
---|
244 | /*
|
---|
245 | ** Add a new element to the end of an expression list. If pList is
|
---|
246 | ** initially NULL, then create a new expression list.
|
---|
247 | */
|
---|
248 | ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
|
---|
249 | if( pList==0 ){
|
---|
250 | pList = sqliteMalloc( sizeof(ExprList) );
|
---|
251 | if( pList==0 ){
|
---|
252 | /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
|
---|
253 | return 0;
|
---|
254 | }
|
---|
255 | assert( pList->nAlloc==0 );
|
---|
256 | }
|
---|
257 | if( pList->nAlloc<=pList->nExpr ){
|
---|
258 | pList->nAlloc = pList->nAlloc*2 + 4;
|
---|
259 | pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
|
---|
260 | if( pList->a==0 ){
|
---|
261 | /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
|
---|
262 | pList->nExpr = pList->nAlloc = 0;
|
---|
263 | return pList;
|
---|
264 | }
|
---|
265 | }
|
---|
266 | assert( pList->a!=0 );
|
---|
267 | if( pExpr || pName ){
|
---|
268 | struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
---|
269 | memset(pItem, 0, sizeof(*pItem));
|
---|
270 | pItem->pExpr = pExpr;
|
---|
271 | if( pName ){
|
---|
272 | sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
|
---|
273 | sqliteDequote(pItem->zName);
|
---|
274 | }
|
---|
275 | }
|
---|
276 | return pList;
|
---|
277 | }
|
---|
278 |
|
---|
279 | /*
|
---|
280 | ** Delete an entire expression list.
|
---|
281 | */
|
---|
282 | void sqliteExprListDelete(ExprList *pList){
|
---|
283 | int i;
|
---|
284 | if( pList==0 ) return;
|
---|
285 | assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
|
---|
286 | assert( pList->nExpr<=pList->nAlloc );
|
---|
287 | for(i=0; i<pList->nExpr; i++){
|
---|
288 | sqliteExprDelete(pList->a[i].pExpr);
|
---|
289 | sqliteFree(pList->a[i].zName);
|
---|
290 | }
|
---|
291 | sqliteFree(pList->a);
|
---|
292 | sqliteFree(pList);
|
---|
293 | }
|
---|
294 |
|
---|
295 | /*
|
---|
296 | ** Walk an expression tree. Return 1 if the expression is constant
|
---|
297 | ** and 0 if it involves variables.
|
---|
298 | **
|
---|
299 | ** For the purposes of this function, a double-quoted string (ex: "abc")
|
---|
300 | ** is considered a variable but a single-quoted string (ex: 'abc') is
|
---|
301 | ** a constant.
|
---|
302 | */
|
---|
303 | int sqliteExprIsConstant(Expr *p){
|
---|
304 | switch( p->op ){
|
---|
305 | case TK_ID:
|
---|
306 | case TK_COLUMN:
|
---|
307 | case TK_DOT:
|
---|
308 | case TK_FUNCTION:
|
---|
309 | return 0;
|
---|
310 | case TK_NULL:
|
---|
311 | case TK_STRING:
|
---|
312 | case TK_INTEGER:
|
---|
313 | case TK_FLOAT:
|
---|
314 | case TK_VARIABLE:
|
---|
315 | return 1;
|
---|
316 | default: {
|
---|
317 | if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
|
---|
318 | if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
|
---|
319 | if( p->pList ){
|
---|
320 | int i;
|
---|
321 | for(i=0; i<p->pList->nExpr; i++){
|
---|
322 | if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
|
---|
323 | }
|
---|
324 | }
|
---|
325 | return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
|
---|
326 | }
|
---|
327 | }
|
---|
328 | return 0;
|
---|
329 | }
|
---|
330 |
|
---|
331 | /*
|
---|
332 | ** If the given expression codes a constant integer that is small enough
|
---|
333 | ** to fit in a 32-bit integer, return 1 and put the value of the integer
|
---|
334 | ** in *pValue. If the expression is not an integer or if it is too big
|
---|
335 | ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
---|
336 | */
|
---|
337 | int sqliteExprIsInteger(Expr *p, int *pValue){
|
---|
338 | switch( p->op ){
|
---|
339 | case TK_INTEGER: {
|
---|
340 | if( sqliteFitsIn32Bits(p->token.z) ){
|
---|
341 | *pValue = atoi(p->token.z);
|
---|
342 | return 1;
|
---|
343 | }
|
---|
344 | break;
|
---|
345 | }
|
---|
346 | case TK_STRING: {
|
---|
347 | const char *z = p->token.z;
|
---|
348 | int n = p->token.n;
|
---|
349 | if( n>0 && z[0]=='-' ){ z++; n--; }
|
---|
350 | while( n>0 && *z && isdigit(*z) ){ z++; n--; }
|
---|
351 | if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
|
---|
352 | *pValue = atoi(p->token.z);
|
---|
353 | return 1;
|
---|
354 | }
|
---|
355 | break;
|
---|
356 | }
|
---|
357 | case TK_UPLUS: {
|
---|
358 | return sqliteExprIsInteger(p->pLeft, pValue);
|
---|
359 | }
|
---|
360 | case TK_UMINUS: {
|
---|
361 | int v;
|
---|
362 | if( sqliteExprIsInteger(p->pLeft, &v) ){
|
---|
363 | *pValue = -v;
|
---|
364 | return 1;
|
---|
365 | }
|
---|
366 | break;
|
---|
367 | }
|
---|
368 | default: break;
|
---|
369 | }
|
---|
370 | return 0;
|
---|
371 | }
|
---|
372 |
|
---|
373 | /*
|
---|
374 | ** Return TRUE if the given string is a row-id column name.
|
---|
375 | */
|
---|
376 | int sqliteIsRowid(const char *z){
|
---|
377 | if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
|
---|
378 | if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
|
---|
379 | if( sqliteStrICmp(z, "OID")==0 ) return 1;
|
---|
380 | return 0;
|
---|
381 | }
|
---|
382 |
|
---|
383 | /*
|
---|
384 | ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
|
---|
385 | ** that name in the set of source tables in pSrcList and make the pExpr
|
---|
386 | ** expression node refer back to that source column. The following changes
|
---|
387 | ** are made to pExpr:
|
---|
388 | **
|
---|
389 | ** pExpr->iDb Set the index in db->aDb[] of the database holding
|
---|
390 | ** the table.
|
---|
391 | ** pExpr->iTable Set to the cursor number for the table obtained
|
---|
392 | ** from pSrcList.
|
---|
393 | ** pExpr->iColumn Set to the column number within the table.
|
---|
394 | ** pExpr->dataType Set to the appropriate data type for the column.
|
---|
395 | ** pExpr->op Set to TK_COLUMN.
|
---|
396 | ** pExpr->pLeft Any expression this points to is deleted
|
---|
397 | ** pExpr->pRight Any expression this points to is deleted.
|
---|
398 | **
|
---|
399 | ** The pDbToken is the name of the database (the "X"). This value may be
|
---|
400 | ** NULL meaning that name is of the form Y.Z or Z. Any available database
|
---|
401 | ** can be used. The pTableToken is the name of the table (the "Y"). This
|
---|
402 | ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
|
---|
403 | ** means that the form of the name is Z and that columns from any table
|
---|
404 | ** can be used.
|
---|
405 | **
|
---|
406 | ** If the name cannot be resolved unambiguously, leave an error message
|
---|
407 | ** in pParse and return non-zero. Return zero on success.
|
---|
408 | */
|
---|
409 | static int lookupName(
|
---|
410 | Parse *pParse, /* The parsing context */
|
---|
411 | Token *pDbToken, /* Name of the database containing table, or NULL */
|
---|
412 | Token *pTableToken, /* Name of table containing column, or NULL */
|
---|
413 | Token *pColumnToken, /* Name of the column. */
|
---|
414 | SrcList *pSrcList, /* List of tables used to resolve column names */
|
---|
415 | ExprList *pEList, /* List of expressions used to resolve "AS" */
|
---|
416 | Expr *pExpr /* Make this EXPR node point to the selected column */
|
---|
417 | ){
|
---|
418 | char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
|
---|
419 | char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
|
---|
420 | char *zCol = 0; /* Name of the column. The "Z" */
|
---|
421 | int i, j; /* Loop counters */
|
---|
422 | int cnt = 0; /* Number of matching column names */
|
---|
423 | int cntTab = 0; /* Number of matching table names */
|
---|
424 | sqlite *db = pParse->db; /* The database */
|
---|
425 |
|
---|
426 | assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
|
---|
427 | if( pDbToken && pDbToken->z ){
|
---|
428 | zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
|
---|
429 | sqliteDequote(zDb);
|
---|
430 | }else{
|
---|
431 | zDb = 0;
|
---|
432 | }
|
---|
433 | if( pTableToken && pTableToken->z ){
|
---|
434 | zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
|
---|
435 | sqliteDequote(zTab);
|
---|
436 | }else{
|
---|
437 | assert( zDb==0 );
|
---|
438 | zTab = 0;
|
---|
439 | }
|
---|
440 | zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
|
---|
441 | sqliteDequote(zCol);
|
---|
442 | if( sqlite_malloc_failed ){
|
---|
443 | return 1; /* Leak memory (zDb and zTab) if malloc fails */
|
---|
444 | }
|
---|
445 | assert( zTab==0 || pEList==0 );
|
---|
446 |
|
---|
447 | pExpr->iTable = -1;
|
---|
448 | for(i=0; i<pSrcList->nSrc; i++){
|
---|
449 | struct SrcList_item *pItem = &pSrcList->a[i];
|
---|
450 | Table *pTab = pItem->pTab;
|
---|
451 | Column *pCol;
|
---|
452 |
|
---|
453 | if( pTab==0 ) continue;
|
---|
454 | assert( pTab->nCol>0 );
|
---|
455 | if( zTab ){
|
---|
456 | if( pItem->zAlias ){
|
---|
457 | char *zTabName = pItem->zAlias;
|
---|
458 | if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
|
---|
459 | }else{
|
---|
460 | char *zTabName = pTab->zName;
|
---|
461 | if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
|
---|
462 | if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
|
---|
463 | continue;
|
---|
464 | }
|
---|
465 | }
|
---|
466 | }
|
---|
467 | if( 0==(cntTab++) ){
|
---|
468 | pExpr->iTable = pItem->iCursor;
|
---|
469 | pExpr->iDb = pTab->iDb;
|
---|
470 | }
|
---|
471 | for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
|
---|
472 | if( sqliteStrICmp(pCol->zName, zCol)==0 ){
|
---|
473 | cnt++;
|
---|
474 | pExpr->iTable = pItem->iCursor;
|
---|
475 | pExpr->iDb = pTab->iDb;
|
---|
476 | /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
|
---|
477 | pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
---|
478 | pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
|
---|
479 | break;
|
---|
480 | }
|
---|
481 | }
|
---|
482 | }
|
---|
483 |
|
---|
484 | /* If we have not already resolved the name, then maybe
|
---|
485 | ** it is a new.* or old.* trigger argument reference
|
---|
486 | */
|
---|
487 | if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
|
---|
488 | TriggerStack *pTriggerStack = pParse->trigStack;
|
---|
489 | Table *pTab = 0;
|
---|
490 | if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
|
---|
491 | pExpr->iTable = pTriggerStack->newIdx;
|
---|
492 | assert( pTriggerStack->pTab );
|
---|
493 | pTab = pTriggerStack->pTab;
|
---|
494 | }else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
|
---|
495 | pExpr->iTable = pTriggerStack->oldIdx;
|
---|
496 | assert( pTriggerStack->pTab );
|
---|
497 | pTab = pTriggerStack->pTab;
|
---|
498 | }
|
---|
499 |
|
---|
500 | if( pTab ){
|
---|
501 | int j;
|
---|
502 | Column *pCol = pTab->aCol;
|
---|
503 |
|
---|
504 | pExpr->iDb = pTab->iDb;
|
---|
505 | cntTab++;
|
---|
506 | for(j=0; j < pTab->nCol; j++, pCol++) {
|
---|
507 | if( sqliteStrICmp(pCol->zName, zCol)==0 ){
|
---|
508 | cnt++;
|
---|
509 | pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
---|
510 | pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
|
---|
511 | break;
|
---|
512 | }
|
---|
513 | }
|
---|
514 | }
|
---|
515 | }
|
---|
516 |
|
---|
517 | /*
|
---|
518 | ** Perhaps the name is a reference to the ROWID
|
---|
519 | */
|
---|
520 | if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
|
---|
521 | cnt = 1;
|
---|
522 | pExpr->iColumn = -1;
|
---|
523 | pExpr->dataType = SQLITE_SO_NUM;
|
---|
524 | }
|
---|
525 |
|
---|
526 | /*
|
---|
527 | ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
|
---|
528 | ** might refer to an result-set alias. This happens, for example, when
|
---|
529 | ** we are resolving names in the WHERE clause of the following command:
|
---|
530 | **
|
---|
531 | ** SELECT a+b AS x FROM table WHERE x<10;
|
---|
532 | **
|
---|
533 | ** In cases like this, replace pExpr with a copy of the expression that
|
---|
534 | ** forms the result set entry ("a+b" in the example) and return immediately.
|
---|
535 | ** Note that the expression in the result set should have already been
|
---|
536 | ** resolved by the time the WHERE clause is resolved.
|
---|
537 | */
|
---|
538 | if( cnt==0 && pEList!=0 ){
|
---|
539 | for(j=0; j<pEList->nExpr; j++){
|
---|
540 | char *zAs = pEList->a[j].zName;
|
---|
541 | if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
|
---|
542 | assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
---|
543 | pExpr->op = TK_AS;
|
---|
544 | pExpr->iColumn = j;
|
---|
545 | pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
|
---|
546 | sqliteFree(zCol);
|
---|
547 | assert( zTab==0 && zDb==0 );
|
---|
548 | return 0;
|
---|
549 | }
|
---|
550 | }
|
---|
551 | }
|
---|
552 |
|
---|
553 | /*
|
---|
554 | ** If X and Y are NULL (in other words if only the column name Z is
|
---|
555 | ** supplied) and the value of Z is enclosed in double-quotes, then
|
---|
556 | ** Z is a string literal if it doesn't match any column names. In that
|
---|
557 | ** case, we need to return right away and not make any changes to
|
---|
558 | ** pExpr.
|
---|
559 | */
|
---|
560 | if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
|
---|
561 | sqliteFree(zCol);
|
---|
562 | return 0;
|
---|
563 | }
|
---|
564 |
|
---|
565 | /*
|
---|
566 | ** cnt==0 means there was not match. cnt>1 means there were two or
|
---|
567 | ** more matches. Either way, we have an error.
|
---|
568 | */
|
---|
569 | if( cnt!=1 ){
|
---|
570 | char *z = 0;
|
---|
571 | char *zErr;
|
---|
572 | zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
|
---|
573 | if( zDb ){
|
---|
574 | sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
|
---|
575 | }else if( zTab ){
|
---|
576 | sqliteSetString(&z, zTab, ".", zCol, 0);
|
---|
577 | }else{
|
---|
578 | z = sqliteStrDup(zCol);
|
---|
579 | }
|
---|
580 | sqliteErrorMsg(pParse, zErr, z);
|
---|
581 | sqliteFree(z);
|
---|
582 | }
|
---|
583 |
|
---|
584 | /* Clean up and return
|
---|
585 | */
|
---|
586 | sqliteFree(zDb);
|
---|
587 | sqliteFree(zTab);
|
---|
588 | sqliteFree(zCol);
|
---|
589 | sqliteExprDelete(pExpr->pLeft);
|
---|
590 | pExpr->pLeft = 0;
|
---|
591 | sqliteExprDelete(pExpr->pRight);
|
---|
592 | pExpr->pRight = 0;
|
---|
593 | pExpr->op = TK_COLUMN;
|
---|
594 | sqliteAuthRead(pParse, pExpr, pSrcList);
|
---|
595 | return cnt!=1;
|
---|
596 | }
|
---|
597 |
|
---|
598 | /*
|
---|
599 | ** This routine walks an expression tree and resolves references to
|
---|
600 | ** table columns. Nodes of the form ID.ID or ID resolve into an
|
---|
601 | ** index to the table in the table list and a column offset. The
|
---|
602 | ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
|
---|
603 | ** value is changed to the index of the referenced table in pTabList
|
---|
604 | ** plus the "base" value. The base value will ultimately become the
|
---|
605 | ** VDBE cursor number for a cursor that is pointing into the referenced
|
---|
606 | ** table. The Expr.iColumn value is changed to the index of the column
|
---|
607 | ** of the referenced table. The Expr.iColumn value for the special
|
---|
608 | ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
|
---|
609 | ** alias for ROWID.
|
---|
610 | **
|
---|
611 | ** We also check for instances of the IN operator. IN comes in two
|
---|
612 | ** forms:
|
---|
613 | **
|
---|
614 | ** expr IN (exprlist)
|
---|
615 | ** and
|
---|
616 | ** expr IN (SELECT ...)
|
---|
617 | **
|
---|
618 | ** The first form is handled by creating a set holding the list
|
---|
619 | ** of allowed values. The second form causes the SELECT to generate
|
---|
620 | ** a temporary table.
|
---|
621 | **
|
---|
622 | ** This routine also looks for scalar SELECTs that are part of an expression.
|
---|
623 | ** If it finds any, it generates code to write the value of that select
|
---|
624 | ** into a memory cell.
|
---|
625 | **
|
---|
626 | ** Unknown columns or tables provoke an error. The function returns
|
---|
627 | ** the number of errors seen and leaves an error message on pParse->zErrMsg.
|
---|
628 | */
|
---|
629 | int sqliteExprResolveIds(
|
---|
630 | Parse *pParse, /* The parser context */
|
---|
631 | SrcList *pSrcList, /* List of tables used to resolve column names */
|
---|
632 | ExprList *pEList, /* List of expressions used to resolve "AS" */
|
---|
633 | Expr *pExpr /* The expression to be analyzed. */
|
---|
634 | ){
|
---|
635 | int i;
|
---|
636 |
|
---|
637 | if( pExpr==0 || pSrcList==0 ) return 0;
|
---|
638 | for(i=0; i<pSrcList->nSrc; i++){
|
---|
639 | assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
|
---|
640 | }
|
---|
641 | switch( pExpr->op ){
|
---|
642 | /* Double-quoted strings (ex: "abc") are used as identifiers if
|
---|
643 | ** possible. Otherwise they remain as strings. Single-quoted
|
---|
644 | ** strings (ex: 'abc') are always string literals.
|
---|
645 | */
|
---|
646 | case TK_STRING: {
|
---|
647 | if( pExpr->token.z[0]=='\'' ) break;
|
---|
648 | /* Fall thru into the TK_ID case if this is a double-quoted string */
|
---|
649 | }
|
---|
650 | /* A lone identifier is the name of a columnd.
|
---|
651 | */
|
---|
652 | case TK_ID: {
|
---|
653 | if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
|
---|
654 | return 1;
|
---|
655 | }
|
---|
656 | break;
|
---|
657 | }
|
---|
658 |
|
---|
659 | /* A table name and column name: ID.ID
|
---|
660 | ** Or a database, table and column: ID.ID.ID
|
---|
661 | */
|
---|
662 | case TK_DOT: {
|
---|
663 | Token *pColumn;
|
---|
664 | Token *pTable;
|
---|
665 | Token *pDb;
|
---|
666 | Expr *pRight;
|
---|
667 |
|
---|
668 | pRight = pExpr->pRight;
|
---|
669 | if( pRight->op==TK_ID ){
|
---|
670 | pDb = 0;
|
---|
671 | pTable = &pExpr->pLeft->token;
|
---|
672 | pColumn = &pRight->token;
|
---|
673 | }else{
|
---|
674 | assert( pRight->op==TK_DOT );
|
---|
675 | pDb = &pExpr->pLeft->token;
|
---|
676 | pTable = &pRight->pLeft->token;
|
---|
677 | pColumn = &pRight->pRight->token;
|
---|
678 | }
|
---|
679 | if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
|
---|
680 | return 1;
|
---|
681 | }
|
---|
682 | break;
|
---|
683 | }
|
---|
684 |
|
---|
685 | case TK_IN: {
|
---|
686 | Vdbe *v = sqliteGetVdbe(pParse);
|
---|
687 | if( v==0 ) return 1;
|
---|
688 | if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
---|
689 | return 1;
|
---|
690 | }
|
---|
691 | if( pExpr->pSelect ){
|
---|
692 | /* Case 1: expr IN (SELECT ...)
|
---|
693 | **
|
---|
694 | ** Generate code to write the results of the select into a temporary
|
---|
695 | ** table. The cursor number of the temporary table has already
|
---|
696 | ** been put in iTable by sqliteExprResolveInSelect().
|
---|
697 | */
|
---|
698 | pExpr->iTable = pParse->nTab++;
|
---|
699 | sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
|
---|
700 | sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
|
---|
701 | }else if( pExpr->pList ){
|
---|
702 | /* Case 2: expr IN (exprlist)
|
---|
703 | **
|
---|
704 | ** Create a set to put the exprlist values in. The Set id is stored
|
---|
705 | ** in iTable.
|
---|
706 | */
|
---|
707 | int i, iSet;
|
---|
708 | for(i=0; i<pExpr->pList->nExpr; i++){
|
---|
709 | Expr *pE2 = pExpr->pList->a[i].pExpr;
|
---|
710 | if( !sqliteExprIsConstant(pE2) ){
|
---|
711 | sqliteErrorMsg(pParse,
|
---|
712 | "right-hand side of IN operator must be constant");
|
---|
713 | return 1;
|
---|
714 | }
|
---|
715 | if( sqliteExprCheck(pParse, pE2, 0, 0) ){
|
---|
716 | return 1;
|
---|
717 | }
|
---|
718 | }
|
---|
719 | iSet = pExpr->iTable = pParse->nSet++;
|
---|
720 | for(i=0; i<pExpr->pList->nExpr; i++){
|
---|
721 | Expr *pE2 = pExpr->pList->a[i].pExpr;
|
---|
722 | switch( pE2->op ){
|
---|
723 | case TK_FLOAT:
|
---|
724 | case TK_INTEGER:
|
---|
725 | case TK_STRING: {
|
---|
726 | int addr;
|
---|
727 | assert( pE2->token.z );
|
---|
728 | addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
|
---|
729 | pE2->token.z, pE2->token.n);
|
---|
730 | sqliteVdbeDequoteP3(v, addr);
|
---|
731 | break;
|
---|
732 | }
|
---|
733 | default: {
|
---|
734 | sqliteExprCode(pParse, pE2);
|
---|
735 | sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
|
---|
736 | break;
|
---|
737 | }
|
---|
738 | }
|
---|
739 | }
|
---|
740 | }
|
---|
741 | break;
|
---|
742 | }
|
---|
743 |
|
---|
744 | case TK_SELECT: {
|
---|
745 | /* This has to be a scalar SELECT. Generate code to put the
|
---|
746 | ** value of this select in a memory cell and record the number
|
---|
747 | ** of the memory cell in iColumn.
|
---|
748 | */
|
---|
749 | pExpr->iColumn = pParse->nMem++;
|
---|
750 | if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
|
---|
751 | return 1;
|
---|
752 | }
|
---|
753 | break;
|
---|
754 | }
|
---|
755 |
|
---|
756 | /* For all else, just recursively walk the tree */
|
---|
757 | default: {
|
---|
758 | if( pExpr->pLeft
|
---|
759 | && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
---|
760 | return 1;
|
---|
761 | }
|
---|
762 | if( pExpr->pRight
|
---|
763 | && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
|
---|
764 | return 1;
|
---|
765 | }
|
---|
766 | if( pExpr->pList ){
|
---|
767 | int i;
|
---|
768 | ExprList *pList = pExpr->pList;
|
---|
769 | for(i=0; i<pList->nExpr; i++){
|
---|
770 | Expr *pArg = pList->a[i].pExpr;
|
---|
771 | if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
|
---|
772 | return 1;
|
---|
773 | }
|
---|
774 | }
|
---|
775 | }
|
---|
776 | }
|
---|
777 | }
|
---|
778 | return 0;
|
---|
779 | }
|
---|
780 |
|
---|
781 | /*
|
---|
782 | ** pExpr is a node that defines a function of some kind. It might
|
---|
783 | ** be a syntactic function like "count(x)" or it might be a function
|
---|
784 | ** that implements an operator, like "a LIKE b".
|
---|
785 | **
|
---|
786 | ** This routine makes *pzName point to the name of the function and
|
---|
787 | ** *pnName hold the number of characters in the function name.
|
---|
788 | */
|
---|
789 | static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
|
---|
790 | switch( pExpr->op ){
|
---|
791 | case TK_FUNCTION: {
|
---|
792 | *pzName = pExpr->token.z;
|
---|
793 | *pnName = pExpr->token.n;
|
---|
794 | break;
|
---|
795 | }
|
---|
796 | case TK_LIKE: {
|
---|
797 | *pzName = "like";
|
---|
798 | *pnName = 4;
|
---|
799 | break;
|
---|
800 | }
|
---|
801 | case TK_GLOB: {
|
---|
802 | *pzName = "glob";
|
---|
803 | *pnName = 4;
|
---|
804 | break;
|
---|
805 | }
|
---|
806 | default: {
|
---|
807 | *pzName = "can't happen";
|
---|
808 | *pnName = 12;
|
---|
809 | break;
|
---|
810 | }
|
---|
811 | }
|
---|
812 | }
|
---|
813 |
|
---|
814 | /*
|
---|
815 | ** Error check the functions in an expression. Make sure all
|
---|
816 | ** function names are recognized and all functions have the correct
|
---|
817 | ** number of arguments. Leave an error message in pParse->zErrMsg
|
---|
818 | ** if anything is amiss. Return the number of errors.
|
---|
819 | **
|
---|
820 | ** if pIsAgg is not null and this expression is an aggregate function
|
---|
821 | ** (like count(*) or max(value)) then write a 1 into *pIsAgg.
|
---|
822 | */
|
---|
823 | int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
|
---|
824 | int nErr = 0;
|
---|
825 | if( pExpr==0 ) return 0;
|
---|
826 | switch( pExpr->op ){
|
---|
827 | case TK_GLOB:
|
---|
828 | case TK_LIKE:
|
---|
829 | case TK_FUNCTION: {
|
---|
830 | int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
|
---|
831 | int no_such_func = 0; /* True if no such function exists */
|
---|
832 | int wrong_num_args = 0; /* True if wrong number of arguments */
|
---|
833 | int is_agg = 0; /* True if is an aggregate function */
|
---|
834 | int i;
|
---|
835 | int nId; /* Number of characters in function name */
|
---|
836 | const char *zId; /* The function name. */
|
---|
837 | FuncDef *pDef;
|
---|
838 |
|
---|
839 | getFunctionName(pExpr, &zId, &nId);
|
---|
840 | pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
|
---|
841 | if( pDef==0 ){
|
---|
842 | pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
|
---|
843 | if( pDef==0 ){
|
---|
844 | no_such_func = 1;
|
---|
845 | }else{
|
---|
846 | wrong_num_args = 1;
|
---|
847 | }
|
---|
848 | }else{
|
---|
849 | is_agg = pDef->xFunc==0;
|
---|
850 | }
|
---|
851 | if( is_agg && !allowAgg ){
|
---|
852 | sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
|
---|
853 | nErr++;
|
---|
854 | is_agg = 0;
|
---|
855 | }else if( no_such_func ){
|
---|
856 | sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
|
---|
857 | nErr++;
|
---|
858 | }else if( wrong_num_args ){
|
---|
859 | sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
|
---|
860 | nId, zId);
|
---|
861 | nErr++;
|
---|
862 | }
|
---|
863 | if( is_agg ){
|
---|
864 | pExpr->op = TK_AGG_FUNCTION;
|
---|
865 | if( pIsAgg ) *pIsAgg = 1;
|
---|
866 | }
|
---|
867 | for(i=0; nErr==0 && i<n; i++){
|
---|
868 | nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
|
---|
869 | allowAgg && !is_agg, pIsAgg);
|
---|
870 | }
|
---|
871 | if( pDef==0 ){
|
---|
872 | /* Already reported an error */
|
---|
873 | }else if( pDef->dataType>=0 ){
|
---|
874 | if( pDef->dataType<n ){
|
---|
875 | pExpr->dataType =
|
---|
876 | sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
|
---|
877 | }else{
|
---|
878 | pExpr->dataType = SQLITE_SO_NUM;
|
---|
879 | }
|
---|
880 | }else if( pDef->dataType==SQLITE_ARGS ){
|
---|
881 | pDef->dataType = SQLITE_SO_TEXT;
|
---|
882 | for(i=0; i<n; i++){
|
---|
883 | if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
|
---|
884 | pExpr->dataType = SQLITE_SO_NUM;
|
---|
885 | break;
|
---|
886 | }
|
---|
887 | }
|
---|
888 | }else if( pDef->dataType==SQLITE_NUMERIC ){
|
---|
889 | pExpr->dataType = SQLITE_SO_NUM;
|
---|
890 | }else{
|
---|
891 | pExpr->dataType = SQLITE_SO_TEXT;
|
---|
892 | }
|
---|
893 | }
|
---|
894 | default: {
|
---|
895 | if( pExpr->pLeft ){
|
---|
896 | nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
|
---|
897 | }
|
---|
898 | if( nErr==0 && pExpr->pRight ){
|
---|
899 | nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
|
---|
900 | }
|
---|
901 | if( nErr==0 && pExpr->pList ){
|
---|
902 | int n = pExpr->pList->nExpr;
|
---|
903 | int i;
|
---|
904 | for(i=0; nErr==0 && i<n; i++){
|
---|
905 | Expr *pE2 = pExpr->pList->a[i].pExpr;
|
---|
906 | nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
|
---|
907 | }
|
---|
908 | }
|
---|
909 | break;
|
---|
910 | }
|
---|
911 | }
|
---|
912 | return nErr;
|
---|
913 | }
|
---|
914 |
|
---|
915 | /*
|
---|
916 | ** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
|
---|
917 | ** given expression should sort as numeric values or as text.
|
---|
918 | **
|
---|
919 | ** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
|
---|
920 | ** both been called on the expression before it is passed to this routine.
|
---|
921 | */
|
---|
922 | int sqliteExprType(Expr *p){
|
---|
923 | if( p==0 ) return SQLITE_SO_NUM;
|
---|
924 | while( p ) switch( p->op ){
|
---|
925 | case TK_PLUS:
|
---|
926 | case TK_MINUS:
|
---|
927 | case TK_STAR:
|
---|
928 | case TK_SLASH:
|
---|
929 | case TK_AND:
|
---|
930 | case TK_OR:
|
---|
931 | case TK_ISNULL:
|
---|
932 | case TK_NOTNULL:
|
---|
933 | case TK_NOT:
|
---|
934 | case TK_UMINUS:
|
---|
935 | case TK_UPLUS:
|
---|
936 | case TK_BITAND:
|
---|
937 | case TK_BITOR:
|
---|
938 | case TK_BITNOT:
|
---|
939 | case TK_LSHIFT:
|
---|
940 | case TK_RSHIFT:
|
---|
941 | case TK_REM:
|
---|
942 | case TK_INTEGER:
|
---|
943 | case TK_FLOAT:
|
---|
944 | case TK_IN:
|
---|
945 | case TK_BETWEEN:
|
---|
946 | case TK_GLOB:
|
---|
947 | case TK_LIKE:
|
---|
948 | return SQLITE_SO_NUM;
|
---|
949 |
|
---|
950 | case TK_STRING:
|
---|
951 | case TK_NULL:
|
---|
952 | case TK_CONCAT:
|
---|
953 | case TK_VARIABLE:
|
---|
954 | return SQLITE_SO_TEXT;
|
---|
955 |
|
---|
956 | case TK_LT:
|
---|
957 | case TK_LE:
|
---|
958 | case TK_GT:
|
---|
959 | case TK_GE:
|
---|
960 | case TK_NE:
|
---|
961 | case TK_EQ:
|
---|
962 | if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
|
---|
963 | return SQLITE_SO_NUM;
|
---|
964 | }
|
---|
965 | p = p->pRight;
|
---|
966 | break;
|
---|
967 |
|
---|
968 | case TK_AS:
|
---|
969 | p = p->pLeft;
|
---|
970 | break;
|
---|
971 |
|
---|
972 | case TK_COLUMN:
|
---|
973 | case TK_FUNCTION:
|
---|
974 | case TK_AGG_FUNCTION:
|
---|
975 | return p->dataType;
|
---|
976 |
|
---|
977 | case TK_SELECT:
|
---|
978 | assert( p->pSelect );
|
---|
979 | assert( p->pSelect->pEList );
|
---|
980 | assert( p->pSelect->pEList->nExpr>0 );
|
---|
981 | p = p->pSelect->pEList->a[0].pExpr;
|
---|
982 | break;
|
---|
983 |
|
---|
984 | case TK_CASE: {
|
---|
985 | if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
|
---|
986 | return SQLITE_SO_NUM;
|
---|
987 | }
|
---|
988 | if( p->pList ){
|
---|
989 | int i;
|
---|
990 | ExprList *pList = p->pList;
|
---|
991 | for(i=1; i<pList->nExpr; i+=2){
|
---|
992 | if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
|
---|
993 | return SQLITE_SO_NUM;
|
---|
994 | }
|
---|
995 | }
|
---|
996 | }
|
---|
997 | return SQLITE_SO_TEXT;
|
---|
998 | }
|
---|
999 |
|
---|
1000 | default:
|
---|
1001 | assert( p->op==TK_ABORT ); /* Can't Happen */
|
---|
1002 | break;
|
---|
1003 | }
|
---|
1004 | return SQLITE_SO_NUM;
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | /*
|
---|
1008 | ** Generate code into the current Vdbe to evaluate the given
|
---|
1009 | ** expression and leave the result on the top of stack.
|
---|
1010 | */
|
---|
1011 | void sqliteExprCode(Parse *pParse, Expr *pExpr){
|
---|
1012 | Vdbe *v = pParse->pVdbe;
|
---|
1013 | int op;
|
---|
1014 | if( v==0 || pExpr==0 ) return;
|
---|
1015 | switch( pExpr->op ){
|
---|
1016 | case TK_PLUS: op = OP_Add; break;
|
---|
1017 | case TK_MINUS: op = OP_Subtract; break;
|
---|
1018 | case TK_STAR: op = OP_Multiply; break;
|
---|
1019 | case TK_SLASH: op = OP_Divide; break;
|
---|
1020 | case TK_AND: op = OP_And; break;
|
---|
1021 | case TK_OR: op = OP_Or; break;
|
---|
1022 | case TK_LT: op = OP_Lt; break;
|
---|
1023 | case TK_LE: op = OP_Le; break;
|
---|
1024 | case TK_GT: op = OP_Gt; break;
|
---|
1025 | case TK_GE: op = OP_Ge; break;
|
---|
1026 | case TK_NE: op = OP_Ne; break;
|
---|
1027 | case TK_EQ: op = OP_Eq; break;
|
---|
1028 | case TK_ISNULL: op = OP_IsNull; break;
|
---|
1029 | case TK_NOTNULL: op = OP_NotNull; break;
|
---|
1030 | case TK_NOT: op = OP_Not; break;
|
---|
1031 | case TK_UMINUS: op = OP_Negative; break;
|
---|
1032 | case TK_BITAND: op = OP_BitAnd; break;
|
---|
1033 | case TK_BITOR: op = OP_BitOr; break;
|
---|
1034 | case TK_BITNOT: op = OP_BitNot; break;
|
---|
1035 | case TK_LSHIFT: op = OP_ShiftLeft; break;
|
---|
1036 | case TK_RSHIFT: op = OP_ShiftRight; break;
|
---|
1037 | case TK_REM: op = OP_Remainder; break;
|
---|
1038 | default: break;
|
---|
1039 | }
|
---|
1040 | switch( pExpr->op ){
|
---|
1041 | case TK_COLUMN: {
|
---|
1042 | if( pParse->useAgg ){
|
---|
1043 | sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
---|
1044 | }else if( pExpr->iColumn>=0 ){
|
---|
1045 | sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
|
---|
1046 | }else{
|
---|
1047 | sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
|
---|
1048 | }
|
---|
1049 | break;
|
---|
1050 | }
|
---|
1051 | case TK_STRING:
|
---|
1052 | case TK_FLOAT:
|
---|
1053 | case TK_INTEGER: {
|
---|
1054 | if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
|
---|
1055 | sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
|
---|
1056 | }else{
|
---|
1057 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
1058 | }
|
---|
1059 | assert( pExpr->token.z );
|
---|
1060 | sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
|
---|
1061 | sqliteVdbeDequoteP3(v, -1);
|
---|
1062 | break;
|
---|
1063 | }
|
---|
1064 | case TK_NULL: {
|
---|
1065 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
1066 | break;
|
---|
1067 | }
|
---|
1068 | case TK_VARIABLE: {
|
---|
1069 | sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
|
---|
1070 | break;
|
---|
1071 | }
|
---|
1072 | case TK_LT:
|
---|
1073 | case TK_LE:
|
---|
1074 | case TK_GT:
|
---|
1075 | case TK_GE:
|
---|
1076 | case TK_NE:
|
---|
1077 | case TK_EQ: {
|
---|
1078 | if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
---|
1079 | op += 6; /* Convert numeric opcodes to text opcodes */
|
---|
1080 | }
|
---|
1081 | /* Fall through into the next case */
|
---|
1082 | }
|
---|
1083 | case TK_AND:
|
---|
1084 | case TK_OR:
|
---|
1085 | case TK_PLUS:
|
---|
1086 | case TK_STAR:
|
---|
1087 | case TK_MINUS:
|
---|
1088 | case TK_REM:
|
---|
1089 | case TK_BITAND:
|
---|
1090 | case TK_BITOR:
|
---|
1091 | case TK_SLASH: {
|
---|
1092 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1093 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1094 | sqliteVdbeAddOp(v, op, 0, 0);
|
---|
1095 | break;
|
---|
1096 | }
|
---|
1097 | case TK_LSHIFT:
|
---|
1098 | case TK_RSHIFT: {
|
---|
1099 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1100 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1101 | sqliteVdbeAddOp(v, op, 0, 0);
|
---|
1102 | break;
|
---|
1103 | }
|
---|
1104 | case TK_CONCAT: {
|
---|
1105 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1106 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1107 | sqliteVdbeAddOp(v, OP_Concat, 2, 0);
|
---|
1108 | break;
|
---|
1109 | }
|
---|
1110 | case TK_UMINUS: {
|
---|
1111 | assert( pExpr->pLeft );
|
---|
1112 | if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
|
---|
1113 | Token *p = &pExpr->pLeft->token;
|
---|
1114 | char *z = sqliteMalloc( p->n + 2 );
|
---|
1115 | sprintf(z, "-%.*s", p->n, p->z);
|
---|
1116 | if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
|
---|
1117 | sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
|
---|
1118 | }else{
|
---|
1119 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
1120 | }
|
---|
1121 | sqliteVdbeChangeP3(v, -1, z, p->n+1);
|
---|
1122 | sqliteFree(z);
|
---|
1123 | break;
|
---|
1124 | }
|
---|
1125 | /* Fall through into TK_NOT */
|
---|
1126 | }
|
---|
1127 | case TK_BITNOT:
|
---|
1128 | case TK_NOT: {
|
---|
1129 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1130 | sqliteVdbeAddOp(v, op, 0, 0);
|
---|
1131 | break;
|
---|
1132 | }
|
---|
1133 | case TK_ISNULL:
|
---|
1134 | case TK_NOTNULL: {
|
---|
1135 | int dest;
|
---|
1136 | sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
---|
1137 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1138 | dest = sqliteVdbeCurrentAddr(v) + 2;
|
---|
1139 | sqliteVdbeAddOp(v, op, 1, dest);
|
---|
1140 | sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
---|
1141 | break;
|
---|
1142 | }
|
---|
1143 | case TK_AGG_FUNCTION: {
|
---|
1144 | sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
---|
1145 | break;
|
---|
1146 | }
|
---|
1147 | case TK_GLOB:
|
---|
1148 | case TK_LIKE:
|
---|
1149 | case TK_FUNCTION: {
|
---|
1150 | ExprList *pList = pExpr->pList;
|
---|
1151 | int nExpr = pList ? pList->nExpr : 0;
|
---|
1152 | FuncDef *pDef;
|
---|
1153 | int nId;
|
---|
1154 | const char *zId;
|
---|
1155 | getFunctionName(pExpr, &zId, &nId);
|
---|
1156 | pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
|
---|
1157 | assert( pDef!=0 );
|
---|
1158 | nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
|
---|
1159 | sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
|
---|
1160 | break;
|
---|
1161 | }
|
---|
1162 | case TK_SELECT: {
|
---|
1163 | sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
|
---|
1164 | break;
|
---|
1165 | }
|
---|
1166 | case TK_IN: {
|
---|
1167 | int addr;
|
---|
1168 | sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
---|
1169 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1170 | addr = sqliteVdbeCurrentAddr(v);
|
---|
1171 | sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
|
---|
1172 | sqliteVdbeAddOp(v, OP_Pop, 2, 0);
|
---|
1173 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
1174 | sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
|
---|
1175 | if( pExpr->pSelect ){
|
---|
1176 | sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
|
---|
1177 | }else{
|
---|
1178 | sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
|
---|
1179 | }
|
---|
1180 | sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
---|
1181 | break;
|
---|
1182 | }
|
---|
1183 | case TK_BETWEEN: {
|
---|
1184 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1185 | sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
---|
1186 | sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
---|
1187 | sqliteVdbeAddOp(v, OP_Ge, 0, 0);
|
---|
1188 | sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
---|
1189 | sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
---|
1190 | sqliteVdbeAddOp(v, OP_Le, 0, 0);
|
---|
1191 | sqliteVdbeAddOp(v, OP_And, 0, 0);
|
---|
1192 | break;
|
---|
1193 | }
|
---|
1194 | case TK_UPLUS:
|
---|
1195 | case TK_AS: {
|
---|
1196 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1197 | break;
|
---|
1198 | }
|
---|
1199 | case TK_CASE: {
|
---|
1200 | int expr_end_label;
|
---|
1201 | int jumpInst;
|
---|
1202 | int addr;
|
---|
1203 | int nExpr;
|
---|
1204 | int i;
|
---|
1205 |
|
---|
1206 | assert(pExpr->pList);
|
---|
1207 | assert((pExpr->pList->nExpr % 2) == 0);
|
---|
1208 | assert(pExpr->pList->nExpr > 0);
|
---|
1209 | nExpr = pExpr->pList->nExpr;
|
---|
1210 | expr_end_label = sqliteVdbeMakeLabel(v);
|
---|
1211 | if( pExpr->pLeft ){
|
---|
1212 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1213 | }
|
---|
1214 | for(i=0; i<nExpr; i=i+2){
|
---|
1215 | sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
|
---|
1216 | if( pExpr->pLeft ){
|
---|
1217 | sqliteVdbeAddOp(v, OP_Dup, 1, 1);
|
---|
1218 | jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
|
---|
1219 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
1220 | }else{
|
---|
1221 | jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
|
---|
1222 | }
|
---|
1223 | sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
|
---|
1224 | sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
|
---|
1225 | addr = sqliteVdbeCurrentAddr(v);
|
---|
1226 | sqliteVdbeChangeP2(v, jumpInst, addr);
|
---|
1227 | }
|
---|
1228 | if( pExpr->pLeft ){
|
---|
1229 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
1230 | }
|
---|
1231 | if( pExpr->pRight ){
|
---|
1232 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1233 | }else{
|
---|
1234 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
1235 | }
|
---|
1236 | sqliteVdbeResolveLabel(v, expr_end_label);
|
---|
1237 | break;
|
---|
1238 | }
|
---|
1239 | case TK_RAISE: {
|
---|
1240 | if( !pParse->trigStack ){
|
---|
1241 | sqliteErrorMsg(pParse,
|
---|
1242 | "RAISE() may only be used within a trigger-program");
|
---|
1243 | pParse->nErr++;
|
---|
1244 | return;
|
---|
1245 | }
|
---|
1246 | if( pExpr->iColumn == OE_Rollback ||
|
---|
1247 | pExpr->iColumn == OE_Abort ||
|
---|
1248 | pExpr->iColumn == OE_Fail ){
|
---|
1249 | sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
|
---|
1250 | pExpr->token.z, pExpr->token.n);
|
---|
1251 | sqliteVdbeDequoteP3(v, -1);
|
---|
1252 | } else {
|
---|
1253 | assert( pExpr->iColumn == OE_Ignore );
|
---|
1254 | sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
|
---|
1255 | "(IGNORE jump)", 0);
|
---|
1256 | }
|
---|
1257 | }
|
---|
1258 | break;
|
---|
1259 | }
|
---|
1260 | }
|
---|
1261 |
|
---|
1262 | /*
|
---|
1263 | ** Generate code that pushes the value of every element of the given
|
---|
1264 | ** expression list onto the stack. If the includeTypes flag is true,
|
---|
1265 | ** then also push a string that is the datatype of each element onto
|
---|
1266 | ** the stack after the value.
|
---|
1267 | **
|
---|
1268 | ** Return the number of elements pushed onto the stack.
|
---|
1269 | */
|
---|
1270 | int sqliteExprCodeExprList(
|
---|
1271 | Parse *pParse, /* Parsing context */
|
---|
1272 | ExprList *pList, /* The expression list to be coded */
|
---|
1273 | int includeTypes /* TRUE to put datatypes on the stack too */
|
---|
1274 | ){
|
---|
1275 | struct ExprList_item *pItem;
|
---|
1276 | int i, n;
|
---|
1277 | Vdbe *v;
|
---|
1278 | if( pList==0 ) return 0;
|
---|
1279 | v = sqliteGetVdbe(pParse);
|
---|
1280 | n = pList->nExpr;
|
---|
1281 | for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
---|
1282 | sqliteExprCode(pParse, pItem->pExpr);
|
---|
1283 | if( includeTypes ){
|
---|
1284 | sqliteVdbeOp3(v, OP_String, 0, 0,
|
---|
1285 | sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
|
---|
1286 | P3_STATIC);
|
---|
1287 | }
|
---|
1288 | }
|
---|
1289 | return includeTypes ? n*2 : n;
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 | /*
|
---|
1293 | ** Generate code for a boolean expression such that a jump is made
|
---|
1294 | ** to the label "dest" if the expression is true but execution
|
---|
1295 | ** continues straight thru if the expression is false.
|
---|
1296 | **
|
---|
1297 | ** If the expression evaluates to NULL (neither true nor false), then
|
---|
1298 | ** take the jump if the jumpIfNull flag is true.
|
---|
1299 | */
|
---|
1300 | void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
---|
1301 | Vdbe *v = pParse->pVdbe;
|
---|
1302 | int op = 0;
|
---|
1303 | if( v==0 || pExpr==0 ) return;
|
---|
1304 | switch( pExpr->op ){
|
---|
1305 | case TK_LT: op = OP_Lt; break;
|
---|
1306 | case TK_LE: op = OP_Le; break;
|
---|
1307 | case TK_GT: op = OP_Gt; break;
|
---|
1308 | case TK_GE: op = OP_Ge; break;
|
---|
1309 | case TK_NE: op = OP_Ne; break;
|
---|
1310 | case TK_EQ: op = OP_Eq; break;
|
---|
1311 | case TK_ISNULL: op = OP_IsNull; break;
|
---|
1312 | case TK_NOTNULL: op = OP_NotNull; break;
|
---|
1313 | default: break;
|
---|
1314 | }
|
---|
1315 | switch( pExpr->op ){
|
---|
1316 | case TK_AND: {
|
---|
1317 | int d2 = sqliteVdbeMakeLabel(v);
|
---|
1318 | sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
|
---|
1319 | sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
---|
1320 | sqliteVdbeResolveLabel(v, d2);
|
---|
1321 | break;
|
---|
1322 | }
|
---|
1323 | case TK_OR: {
|
---|
1324 | sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
---|
1325 | sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
---|
1326 | break;
|
---|
1327 | }
|
---|
1328 | case TK_NOT: {
|
---|
1329 | sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
---|
1330 | break;
|
---|
1331 | }
|
---|
1332 | case TK_LT:
|
---|
1333 | case TK_LE:
|
---|
1334 | case TK_GT:
|
---|
1335 | case TK_GE:
|
---|
1336 | case TK_NE:
|
---|
1337 | case TK_EQ: {
|
---|
1338 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1339 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1340 | if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
---|
1341 | op += 6; /* Convert numeric opcodes to text opcodes */
|
---|
1342 | }
|
---|
1343 | sqliteVdbeAddOp(v, op, jumpIfNull, dest);
|
---|
1344 | break;
|
---|
1345 | }
|
---|
1346 | case TK_ISNULL:
|
---|
1347 | case TK_NOTNULL: {
|
---|
1348 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1349 | sqliteVdbeAddOp(v, op, 1, dest);
|
---|
1350 | break;
|
---|
1351 | }
|
---|
1352 | case TK_IN: {
|
---|
1353 | int addr;
|
---|
1354 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1355 | addr = sqliteVdbeCurrentAddr(v);
|
---|
1356 | sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
|
---|
1357 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
1358 | sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
|
---|
1359 | if( pExpr->pSelect ){
|
---|
1360 | sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
|
---|
1361 | }else{
|
---|
1362 | sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
|
---|
1363 | }
|
---|
1364 | break;
|
---|
1365 | }
|
---|
1366 | case TK_BETWEEN: {
|
---|
1367 | int addr;
|
---|
1368 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1369 | sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
---|
1370 | sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
---|
1371 | addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
|
---|
1372 | sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
---|
1373 | sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
|
---|
1374 | sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
---|
1375 | sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
|
---|
1376 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
1377 | break;
|
---|
1378 | }
|
---|
1379 | default: {
|
---|
1380 | sqliteExprCode(pParse, pExpr);
|
---|
1381 | sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
|
---|
1382 | break;
|
---|
1383 | }
|
---|
1384 | }
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | /*
|
---|
1388 | ** Generate code for a boolean expression such that a jump is made
|
---|
1389 | ** to the label "dest" if the expression is false but execution
|
---|
1390 | ** continues straight thru if the expression is true.
|
---|
1391 | **
|
---|
1392 | ** If the expression evaluates to NULL (neither true nor false) then
|
---|
1393 | ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
|
---|
1394 | */
|
---|
1395 | void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
---|
1396 | Vdbe *v = pParse->pVdbe;
|
---|
1397 | int op = 0;
|
---|
1398 | if( v==0 || pExpr==0 ) return;
|
---|
1399 | switch( pExpr->op ){
|
---|
1400 | case TK_LT: op = OP_Ge; break;
|
---|
1401 | case TK_LE: op = OP_Gt; break;
|
---|
1402 | case TK_GT: op = OP_Le; break;
|
---|
1403 | case TK_GE: op = OP_Lt; break;
|
---|
1404 | case TK_NE: op = OP_Eq; break;
|
---|
1405 | case TK_EQ: op = OP_Ne; break;
|
---|
1406 | case TK_ISNULL: op = OP_NotNull; break;
|
---|
1407 | case TK_NOTNULL: op = OP_IsNull; break;
|
---|
1408 | default: break;
|
---|
1409 | }
|
---|
1410 | switch( pExpr->op ){
|
---|
1411 | case TK_AND: {
|
---|
1412 | sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
---|
1413 | sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
---|
1414 | break;
|
---|
1415 | }
|
---|
1416 | case TK_OR: {
|
---|
1417 | int d2 = sqliteVdbeMakeLabel(v);
|
---|
1418 | sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
|
---|
1419 | sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
---|
1420 | sqliteVdbeResolveLabel(v, d2);
|
---|
1421 | break;
|
---|
1422 | }
|
---|
1423 | case TK_NOT: {
|
---|
1424 | sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
---|
1425 | break;
|
---|
1426 | }
|
---|
1427 | case TK_LT:
|
---|
1428 | case TK_LE:
|
---|
1429 | case TK_GT:
|
---|
1430 | case TK_GE:
|
---|
1431 | case TK_NE:
|
---|
1432 | case TK_EQ: {
|
---|
1433 | if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
---|
1434 | /* Convert numeric comparison opcodes into text comparison opcodes.
|
---|
1435 | ** This step depends on the fact that the text comparision opcodes are
|
---|
1436 | ** always 6 greater than their corresponding numeric comparison
|
---|
1437 | ** opcodes.
|
---|
1438 | */
|
---|
1439 | assert( OP_Eq+6 == OP_StrEq );
|
---|
1440 | op += 6;
|
---|
1441 | }
|
---|
1442 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1443 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1444 | sqliteVdbeAddOp(v, op, jumpIfNull, dest);
|
---|
1445 | break;
|
---|
1446 | }
|
---|
1447 | case TK_ISNULL:
|
---|
1448 | case TK_NOTNULL: {
|
---|
1449 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1450 | sqliteVdbeAddOp(v, op, 1, dest);
|
---|
1451 | break;
|
---|
1452 | }
|
---|
1453 | case TK_IN: {
|
---|
1454 | int addr;
|
---|
1455 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1456 | addr = sqliteVdbeCurrentAddr(v);
|
---|
1457 | sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
|
---|
1458 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
1459 | sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
|
---|
1460 | if( pExpr->pSelect ){
|
---|
1461 | sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
|
---|
1462 | }else{
|
---|
1463 | sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
|
---|
1464 | }
|
---|
1465 | break;
|
---|
1466 | }
|
---|
1467 | case TK_BETWEEN: {
|
---|
1468 | int addr;
|
---|
1469 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1470 | sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
---|
1471 | sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
---|
1472 | addr = sqliteVdbeCurrentAddr(v);
|
---|
1473 | sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
|
---|
1474 | sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
---|
1475 | sqliteVdbeAddOp(v, OP_Goto, 0, dest);
|
---|
1476 | sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
---|
1477 | sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
|
---|
1478 | break;
|
---|
1479 | }
|
---|
1480 | default: {
|
---|
1481 | sqliteExprCode(pParse, pExpr);
|
---|
1482 | sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
|
---|
1483 | break;
|
---|
1484 | }
|
---|
1485 | }
|
---|
1486 | }
|
---|
1487 |
|
---|
1488 | /*
|
---|
1489 | ** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
---|
1490 | ** if they are identical and return FALSE if they differ in any way.
|
---|
1491 | */
|
---|
1492 | int sqliteExprCompare(Expr *pA, Expr *pB){
|
---|
1493 | int i;
|
---|
1494 | if( pA==0 ){
|
---|
1495 | return pB==0;
|
---|
1496 | }else if( pB==0 ){
|
---|
1497 | return 0;
|
---|
1498 | }
|
---|
1499 | if( pA->op!=pB->op ) return 0;
|
---|
1500 | if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
---|
1501 | if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
|
---|
1502 | if( pA->pList ){
|
---|
1503 | if( pB->pList==0 ) return 0;
|
---|
1504 | if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
|
---|
1505 | for(i=0; i<pA->pList->nExpr; i++){
|
---|
1506 | if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
|
---|
1507 | return 0;
|
---|
1508 | }
|
---|
1509 | }
|
---|
1510 | }else if( pB->pList ){
|
---|
1511 | return 0;
|
---|
1512 | }
|
---|
1513 | if( pA->pSelect || pB->pSelect ) return 0;
|
---|
1514 | if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
|
---|
1515 | if( pA->token.z ){
|
---|
1516 | if( pB->token.z==0 ) return 0;
|
---|
1517 | if( pB->token.n!=pA->token.n ) return 0;
|
---|
1518 | if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
|
---|
1519 | }
|
---|
1520 | return 1;
|
---|
1521 | }
|
---|
1522 |
|
---|
1523 | /*
|
---|
1524 | ** Add a new element to the pParse->aAgg[] array and return its index.
|
---|
1525 | */
|
---|
1526 | static int appendAggInfo(Parse *pParse){
|
---|
1527 | if( (pParse->nAgg & 0x7)==0 ){
|
---|
1528 | int amt = pParse->nAgg + 8;
|
---|
1529 | AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
|
---|
1530 | if( aAgg==0 ){
|
---|
1531 | return -1;
|
---|
1532 | }
|
---|
1533 | pParse->aAgg = aAgg;
|
---|
1534 | }
|
---|
1535 | memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
|
---|
1536 | return pParse->nAgg++;
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | /*
|
---|
1540 | ** Analyze the given expression looking for aggregate functions and
|
---|
1541 | ** for variables that need to be added to the pParse->aAgg[] array.
|
---|
1542 | ** Make additional entries to the pParse->aAgg[] array as necessary.
|
---|
1543 | **
|
---|
1544 | ** This routine should only be called after the expression has been
|
---|
1545 | ** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
|
---|
1546 | **
|
---|
1547 | ** If errors are seen, leave an error message in zErrMsg and return
|
---|
1548 | ** the number of errors.
|
---|
1549 | */
|
---|
1550 | int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
---|
1551 | int i;
|
---|
1552 | AggExpr *aAgg;
|
---|
1553 | int nErr = 0;
|
---|
1554 |
|
---|
1555 | if( pExpr==0 ) return 0;
|
---|
1556 | switch( pExpr->op ){
|
---|
1557 | case TK_COLUMN: {
|
---|
1558 | aAgg = pParse->aAgg;
|
---|
1559 | for(i=0; i<pParse->nAgg; i++){
|
---|
1560 | if( aAgg[i].isAgg ) continue;
|
---|
1561 | if( aAgg[i].pExpr->iTable==pExpr->iTable
|
---|
1562 | && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
|
---|
1563 | break;
|
---|
1564 | }
|
---|
1565 | }
|
---|
1566 | if( i>=pParse->nAgg ){
|
---|
1567 | i = appendAggInfo(pParse);
|
---|
1568 | if( i<0 ) return 1;
|
---|
1569 | pParse->aAgg[i].isAgg = 0;
|
---|
1570 | pParse->aAgg[i].pExpr = pExpr;
|
---|
1571 | }
|
---|
1572 | pExpr->iAgg = i;
|
---|
1573 | break;
|
---|
1574 | }
|
---|
1575 | case TK_AGG_FUNCTION: {
|
---|
1576 | aAgg = pParse->aAgg;
|
---|
1577 | for(i=0; i<pParse->nAgg; i++){
|
---|
1578 | if( !aAgg[i].isAgg ) continue;
|
---|
1579 | if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
|
---|
1580 | break;
|
---|
1581 | }
|
---|
1582 | }
|
---|
1583 | if( i>=pParse->nAgg ){
|
---|
1584 | i = appendAggInfo(pParse);
|
---|
1585 | if( i<0 ) return 1;
|
---|
1586 | pParse->aAgg[i].isAgg = 1;
|
---|
1587 | pParse->aAgg[i].pExpr = pExpr;
|
---|
1588 | pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
|
---|
1589 | pExpr->token.z, pExpr->token.n,
|
---|
1590 | pExpr->pList ? pExpr->pList->nExpr : 0, 0);
|
---|
1591 | }
|
---|
1592 | pExpr->iAgg = i;
|
---|
1593 | break;
|
---|
1594 | }
|
---|
1595 | default: {
|
---|
1596 | if( pExpr->pLeft ){
|
---|
1597 | nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
|
---|
1598 | }
|
---|
1599 | if( nErr==0 && pExpr->pRight ){
|
---|
1600 | nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
|
---|
1601 | }
|
---|
1602 | if( nErr==0 && pExpr->pList ){
|
---|
1603 | int n = pExpr->pList->nExpr;
|
---|
1604 | int i;
|
---|
1605 | for(i=0; nErr==0 && i<n; i++){
|
---|
1606 | nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
|
---|
1607 | }
|
---|
1608 | }
|
---|
1609 | break;
|
---|
1610 | }
|
---|
1611 | }
|
---|
1612 | return nErr;
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 | /*
|
---|
1616 | ** Locate a user function given a name and a number of arguments.
|
---|
1617 | ** Return a pointer to the FuncDef structure that defines that
|
---|
1618 | ** function, or return NULL if the function does not exist.
|
---|
1619 | **
|
---|
1620 | ** If the createFlag argument is true, then a new (blank) FuncDef
|
---|
1621 | ** structure is created and liked into the "db" structure if a
|
---|
1622 | ** no matching function previously existed. When createFlag is true
|
---|
1623 | ** and the nArg parameter is -1, then only a function that accepts
|
---|
1624 | ** any number of arguments will be returned.
|
---|
1625 | **
|
---|
1626 | ** If createFlag is false and nArg is -1, then the first valid
|
---|
1627 | ** function found is returned. A function is valid if either xFunc
|
---|
1628 | ** or xStep is non-zero.
|
---|
1629 | */
|
---|
1630 | FuncDef *sqliteFindFunction(
|
---|
1631 | sqlite *db, /* An open database */
|
---|
1632 | const char *zName, /* Name of the function. Not null-terminated */
|
---|
1633 | int nName, /* Number of characters in the name */
|
---|
1634 | int nArg, /* Number of arguments. -1 means any number */
|
---|
1635 | int createFlag /* Create new entry if true and does not otherwise exist */
|
---|
1636 | ){
|
---|
1637 | FuncDef *pFirst, *p, *pMaybe;
|
---|
1638 | pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
|
---|
1639 | if( p && !createFlag && nArg<0 ){
|
---|
1640 | while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
|
---|
1641 | return p;
|
---|
1642 | }
|
---|
1643 | pMaybe = 0;
|
---|
1644 | while( p && p->nArg!=nArg ){
|
---|
1645 | if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
|
---|
1646 | p = p->pNext;
|
---|
1647 | }
|
---|
1648 | if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
|
---|
1649 | return 0;
|
---|
1650 | }
|
---|
1651 | if( p==0 && pMaybe ){
|
---|
1652 | assert( createFlag==0 );
|
---|
1653 | return pMaybe;
|
---|
1654 | }
|
---|
1655 | if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
|
---|
1656 | p->nArg = nArg;
|
---|
1657 | p->pNext = pFirst;
|
---|
1658 | p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
|
---|
1659 | sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
|
---|
1660 | }
|
---|
1661 | return p;
|
---|
1662 | }
|
---|