1 | /*
|
---|
2 | ** 2002 April 25
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** This file contains helper routines used to translate binary data into
|
---|
13 | ** a null-terminated string (suitable for use in SQLite) and back again.
|
---|
14 | ** These are convenience routines for use by people who want to store binary
|
---|
15 | ** data in an SQLite database. The code in this file is not used by any other
|
---|
16 | ** part of the SQLite library.
|
---|
17 | **
|
---|
18 | ** $Id: encode.c,v 1.12 2004/03/17 18:44:46 drh Exp $
|
---|
19 | */
|
---|
20 | #include <string.h>
|
---|
21 | #include <assert.h>
|
---|
22 |
|
---|
23 | /*
|
---|
24 | ** How This Encoder Works
|
---|
25 | **
|
---|
26 | ** The output is allowed to contain any character except 0x27 (') and
|
---|
27 | ** 0x00. This is accomplished by using an escape character to encode
|
---|
28 | ** 0x27 and 0x00 as a two-byte sequence. The escape character is always
|
---|
29 | ** 0x01. An 0x00 is encoded as the two byte sequence 0x01 0x01. The
|
---|
30 | ** 0x27 character is encoded as the two byte sequence 0x01 0x28. Finally,
|
---|
31 | ** the escape character itself is encoded as the two-character sequence
|
---|
32 | ** 0x01 0x02.
|
---|
33 | **
|
---|
34 | ** To summarize, the encoder works by using an escape sequences as follows:
|
---|
35 | **
|
---|
36 | ** 0x00 -> 0x01 0x01
|
---|
37 | ** 0x01 -> 0x01 0x02
|
---|
38 | ** 0x27 -> 0x01 0x28
|
---|
39 | **
|
---|
40 | ** If that were all the encoder did, it would work, but in certain cases
|
---|
41 | ** it could double the size of the encoded string. For example, to
|
---|
42 | ** encode a string of 100 0x27 characters would require 100 instances of
|
---|
43 | ** the 0x01 0x03 escape sequence resulting in a 200-character output.
|
---|
44 | ** We would prefer to keep the size of the encoded string smaller than
|
---|
45 | ** this.
|
---|
46 | **
|
---|
47 | ** To minimize the encoding size, we first add a fixed offset value to each
|
---|
48 | ** byte in the sequence. The addition is modulo 256. (That is to say, if
|
---|
49 | ** the sum of the original character value and the offset exceeds 256, then
|
---|
50 | ** the higher order bits are truncated.) The offset is chosen to minimize
|
---|
51 | ** the number of characters in the string that need to be escaped. For
|
---|
52 | ** example, in the case above where the string was composed of 100 0x27
|
---|
53 | ** characters, the offset might be 0x01. Each of the 0x27 characters would
|
---|
54 | ** then be converted into an 0x28 character which would not need to be
|
---|
55 | ** escaped at all and so the 100 character input string would be converted
|
---|
56 | ** into just 100 characters of output. Actually 101 characters of output -
|
---|
57 | ** we have to record the offset used as the first byte in the sequence so
|
---|
58 | ** that the string can be decoded. Since the offset value is stored as
|
---|
59 | ** part of the output string and the output string is not allowed to contain
|
---|
60 | ** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
|
---|
61 | **
|
---|
62 | ** Here, then, are the encoding steps:
|
---|
63 | **
|
---|
64 | ** (1) Choose an offset value and make it the first character of
|
---|
65 | ** output.
|
---|
66 | **
|
---|
67 | ** (2) Copy each input character into the output buffer, one by
|
---|
68 | ** one, adding the offset value as you copy.
|
---|
69 | **
|
---|
70 | ** (3) If the value of an input character plus offset is 0x00, replace
|
---|
71 | ** that one character by the two-character sequence 0x01 0x01.
|
---|
72 | ** If the sum is 0x01, replace it with 0x01 0x02. If the sum
|
---|
73 | ** is 0x27, replace it with 0x01 0x03.
|
---|
74 | **
|
---|
75 | ** (4) Put a 0x00 terminator at the end of the output.
|
---|
76 | **
|
---|
77 | ** Decoding is obvious:
|
---|
78 | **
|
---|
79 | ** (5) Copy encoded characters except the first into the decode
|
---|
80 | ** buffer. Set the first encoded character aside for use as
|
---|
81 | ** the offset in step 7 below.
|
---|
82 | **
|
---|
83 | ** (6) Convert each 0x01 0x01 sequence into a single character 0x00.
|
---|
84 | ** Convert 0x01 0x02 into 0x01. Convert 0x01 0x28 into 0x27.
|
---|
85 | **
|
---|
86 | ** (7) Subtract the offset value that was the first character of
|
---|
87 | ** the encoded buffer from all characters in the output buffer.
|
---|
88 | **
|
---|
89 | ** The only tricky part is step (1) - how to compute an offset value to
|
---|
90 | ** minimize the size of the output buffer. This is accomplished by testing
|
---|
91 | ** all offset values and picking the one that results in the fewest number
|
---|
92 | ** of escapes. To do that, we first scan the entire input and count the
|
---|
93 | ** number of occurances of each character value in the input. Suppose
|
---|
94 | ** the number of 0x00 characters is N(0), the number of occurances of 0x01
|
---|
95 | ** is N(1), and so forth up to the number of occurances of 0xff is N(255).
|
---|
96 | ** An offset of 0 is not allowed so we don't have to test it. The number
|
---|
97 | ** of escapes required for an offset of 1 is N(1)+N(2)+N(40). The number
|
---|
98 | ** of escapes required for an offset of 2 is N(2)+N(3)+N(41). And so forth.
|
---|
99 | ** In this way we find the offset that gives the minimum number of escapes,
|
---|
100 | ** and thus minimizes the length of the output string.
|
---|
101 | */
|
---|
102 |
|
---|
103 | /*
|
---|
104 | ** Encode a binary buffer "in" of size n bytes so that it contains
|
---|
105 | ** no instances of characters '\'' or '\000'. The output is
|
---|
106 | ** null-terminated and can be used as a string value in an INSERT
|
---|
107 | ** or UPDATE statement. Use sqlite_decode_binary() to convert the
|
---|
108 | ** string back into its original binary.
|
---|
109 | **
|
---|
110 | ** The result is written into a preallocated output buffer "out".
|
---|
111 | ** "out" must be able to hold at least 2 +(257*n)/254 bytes.
|
---|
112 | ** In other words, the output will be expanded by as much as 3
|
---|
113 | ** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
|
---|
114 | ** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
|
---|
115 | **
|
---|
116 | ** The return value is the number of characters in the encoded
|
---|
117 | ** string, excluding the "\000" terminator.
|
---|
118 | **
|
---|
119 | ** If out==NULL then no output is generated but the routine still returns
|
---|
120 | ** the number of characters that would have been generated if out had
|
---|
121 | ** not been NULL.
|
---|
122 | */
|
---|
123 | int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){
|
---|
124 | int i, j, e, m;
|
---|
125 | unsigned char x;
|
---|
126 | int cnt[256];
|
---|
127 | if( n<=0 ){
|
---|
128 | if( out ){
|
---|
129 | out[0] = 'x';
|
---|
130 | out[1] = 0;
|
---|
131 | }
|
---|
132 | return 1;
|
---|
133 | }
|
---|
134 | memset(cnt, 0, sizeof(cnt));
|
---|
135 | for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
|
---|
136 | m = n;
|
---|
137 | for(i=1; i<256; i++){
|
---|
138 | int sum;
|
---|
139 | if( i=='\'' ) continue;
|
---|
140 | sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
|
---|
141 | if( sum<m ){
|
---|
142 | m = sum;
|
---|
143 | e = i;
|
---|
144 | if( m==0 ) break;
|
---|
145 | }
|
---|
146 | }
|
---|
147 | if( out==0 ){
|
---|
148 | return n+m+1;
|
---|
149 | }
|
---|
150 | out[0] = e;
|
---|
151 | j = 1;
|
---|
152 | for(i=0; i<n; i++){
|
---|
153 | x = in[i] - e;
|
---|
154 | if( x==0 || x==1 || x=='\''){
|
---|
155 | out[j++] = 1;
|
---|
156 | x++;
|
---|
157 | }
|
---|
158 | out[j++] = x;
|
---|
159 | }
|
---|
160 | out[j] = 0;
|
---|
161 | assert( j==n+m+1 );
|
---|
162 | return j;
|
---|
163 | }
|
---|
164 |
|
---|
165 | /*
|
---|
166 | ** Decode the string "in" into binary data and write it into "out".
|
---|
167 | ** This routine reverses the encoding created by sqlite_encode_binary().
|
---|
168 | ** The output will always be a few bytes less than the input. The number
|
---|
169 | ** of bytes of output is returned. If the input is not a well-formed
|
---|
170 | ** encoding, -1 is returned.
|
---|
171 | **
|
---|
172 | ** The "in" and "out" parameters may point to the same buffer in order
|
---|
173 | ** to decode a string in place.
|
---|
174 | */
|
---|
175 | int sqlite_decode_binary(const unsigned char *in, unsigned char *out){
|
---|
176 | int i, e;
|
---|
177 | unsigned char c;
|
---|
178 | e = *(in++);
|
---|
179 | i = 0;
|
---|
180 | while( (c = *(in++))!=0 ){
|
---|
181 | if( c==1 ){
|
---|
182 | c = *(in++) - 1;
|
---|
183 | }
|
---|
184 | out[i++] = c + e;
|
---|
185 | }
|
---|
186 | return i;
|
---|
187 | }
|
---|
188 |
|
---|
189 | #ifdef ENCODER_TEST
|
---|
190 | #include <stdio.h>
|
---|
191 | /*
|
---|
192 | ** The subroutines above are not tested by the usual test suite. To test
|
---|
193 | ** these routines, compile just this one file with a -DENCODER_TEST=1 option
|
---|
194 | ** and run the result.
|
---|
195 | */
|
---|
196 | int main(int argc, char **argv){
|
---|
197 | int i, j, n, m, nOut, nByteIn, nByteOut;
|
---|
198 | unsigned char in[30000];
|
---|
199 | unsigned char out[33000];
|
---|
200 |
|
---|
201 | nByteIn = nByteOut = 0;
|
---|
202 | for(i=0; i<sizeof(in); i++){
|
---|
203 | printf("Test %d: ", i+1);
|
---|
204 | n = rand() % (i+1);
|
---|
205 | if( i%100==0 ){
|
---|
206 | int k;
|
---|
207 | for(j=k=0; j<n; j++){
|
---|
208 | /* if( k==0 || k=='\'' ) k++; */
|
---|
209 | in[j] = k;
|
---|
210 | k = (k+1)&0xff;
|
---|
211 | }
|
---|
212 | }else{
|
---|
213 | for(j=0; j<n; j++) in[j] = rand() & 0xff;
|
---|
214 | }
|
---|
215 | nByteIn += n;
|
---|
216 | nOut = sqlite_encode_binary(in, n, out);
|
---|
217 | nByteOut += nOut;
|
---|
218 | if( nOut!=strlen(out) ){
|
---|
219 | printf(" ERROR return value is %d instead of %d\n", nOut, strlen(out));
|
---|
220 | exit(1);
|
---|
221 | }
|
---|
222 | if( nOut!=sqlite_encode_binary(in, n, 0) ){
|
---|
223 | printf(" ERROR actual output size disagrees with predicted size\n");
|
---|
224 | exit(1);
|
---|
225 | }
|
---|
226 | m = (256*n + 1262)/253;
|
---|
227 | printf("size %d->%d (max %d)", n, strlen(out)+1, m);
|
---|
228 | if( strlen(out)+1>m ){
|
---|
229 | printf(" ERROR output too big\n");
|
---|
230 | exit(1);
|
---|
231 | }
|
---|
232 | for(j=0; out[j]; j++){
|
---|
233 | if( out[j]=='\'' ){
|
---|
234 | printf(" ERROR contains (')\n");
|
---|
235 | exit(1);
|
---|
236 | }
|
---|
237 | }
|
---|
238 | j = sqlite_decode_binary(out, out);
|
---|
239 | if( j!=n ){
|
---|
240 | printf(" ERROR decode size %d\n", j);
|
---|
241 | exit(1);
|
---|
242 | }
|
---|
243 | if( memcmp(in, out, n)!=0 ){
|
---|
244 | printf(" ERROR decode mismatch\n");
|
---|
245 | exit(1);
|
---|
246 | }
|
---|
247 | printf(" OK\n");
|
---|
248 | }
|
---|
249 | fprintf(stderr,"Finished. Total encoding: %d->%d bytes\n",
|
---|
250 | nByteIn, nByteOut);
|
---|
251 | fprintf(stderr,"Avg size increase: %.3f%%\n",
|
---|
252 | (nByteOut-nByteIn)*100.0/(double)nByteIn);
|
---|
253 | }
|
---|
254 | #endif /* ENCODER_TEST */
|
---|