1 | /*
|
---|
2 | ** 2001 September 15
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** This file contains C code routines that are called by the SQLite parser
|
---|
13 | ** when syntax rules are reduced. The routines in this file handle the
|
---|
14 | ** following kinds of SQL syntax:
|
---|
15 | **
|
---|
16 | ** CREATE TABLE
|
---|
17 | ** DROP TABLE
|
---|
18 | ** CREATE INDEX
|
---|
19 | ** DROP INDEX
|
---|
20 | ** creating ID lists
|
---|
21 | ** BEGIN TRANSACTION
|
---|
22 | ** COMMIT
|
---|
23 | ** ROLLBACK
|
---|
24 | ** PRAGMA
|
---|
25 | **
|
---|
26 | ** $Id: build.c,v 1.176.2.3 2004/08/28 14:53:34 drh Exp $
|
---|
27 | */
|
---|
28 | #include "sqliteInt.h"
|
---|
29 | #include <ctype.h>
|
---|
30 |
|
---|
31 | /*
|
---|
32 | ** This routine is called when a new SQL statement is beginning to
|
---|
33 | ** be parsed. Check to see if the schema for the database needs
|
---|
34 | ** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
|
---|
35 | ** If it does, then read it.
|
---|
36 | */
|
---|
37 | void sqliteBeginParse(Parse *pParse, int explainFlag){
|
---|
38 | sqlite *db = pParse->db;
|
---|
39 | int i;
|
---|
40 | pParse->explain = explainFlag;
|
---|
41 | if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
|
---|
42 | int rc = sqliteInit(db, &pParse->zErrMsg);
|
---|
43 | if( rc!=SQLITE_OK ){
|
---|
44 | pParse->rc = rc;
|
---|
45 | pParse->nErr++;
|
---|
46 | }
|
---|
47 | }
|
---|
48 | for(i=0; i<db->nDb; i++){
|
---|
49 | DbClearProperty(db, i, DB_Locked);
|
---|
50 | if( !db->aDb[i].inTrans ){
|
---|
51 | DbClearProperty(db, i, DB_Cookie);
|
---|
52 | }
|
---|
53 | }
|
---|
54 | pParse->nVar = 0;
|
---|
55 | }
|
---|
56 |
|
---|
57 | /*
|
---|
58 | ** This routine is called after a single SQL statement has been
|
---|
59 | ** parsed and we want to execute the VDBE code to implement
|
---|
60 | ** that statement. Prior action routines should have already
|
---|
61 | ** constructed VDBE code to do the work of the SQL statement.
|
---|
62 | ** This routine just has to execute the VDBE code.
|
---|
63 | **
|
---|
64 | ** Note that if an error occurred, it might be the case that
|
---|
65 | ** no VDBE code was generated.
|
---|
66 | */
|
---|
67 | void sqliteExec(Parse *pParse){
|
---|
68 | sqlite *db = pParse->db;
|
---|
69 | Vdbe *v = pParse->pVdbe;
|
---|
70 |
|
---|
71 | if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
|
---|
72 | sqliteVdbeAddOp(v, OP_Halt, 0, 0);
|
---|
73 | }
|
---|
74 | if( sqlite_malloc_failed ) return;
|
---|
75 | if( v && pParse->nErr==0 ){
|
---|
76 | FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
---|
77 | sqliteVdbeTrace(v, trace);
|
---|
78 | sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
|
---|
79 | pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
|
---|
80 | pParse->colNamesSet = 0;
|
---|
81 | }else if( pParse->rc==SQLITE_OK ){
|
---|
82 | pParse->rc = SQLITE_ERROR;
|
---|
83 | }
|
---|
84 | pParse->nTab = 0;
|
---|
85 | pParse->nMem = 0;
|
---|
86 | pParse->nSet = 0;
|
---|
87 | pParse->nAgg = 0;
|
---|
88 | pParse->nVar = 0;
|
---|
89 | }
|
---|
90 |
|
---|
91 | /*
|
---|
92 | ** Locate the in-memory structure that describes
|
---|
93 | ** a particular database table given the name
|
---|
94 | ** of that table and (optionally) the name of the database
|
---|
95 | ** containing the table. Return NULL if not found.
|
---|
96 | **
|
---|
97 | ** If zDatabase is 0, all databases are searched for the
|
---|
98 | ** table and the first matching table is returned. (No checking
|
---|
99 | ** for duplicate table names is done.) The search order is
|
---|
100 | ** TEMP first, then MAIN, then any auxiliary databases added
|
---|
101 | ** using the ATTACH command.
|
---|
102 | **
|
---|
103 | ** See also sqliteLocateTable().
|
---|
104 | */
|
---|
105 | Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
|
---|
106 | Table *p = 0;
|
---|
107 | int i;
|
---|
108 | for(i=0; i<db->nDb; i++){
|
---|
109 | int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
---|
110 | if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
---|
111 | p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
|
---|
112 | if( p ) break;
|
---|
113 | }
|
---|
114 | return p;
|
---|
115 | }
|
---|
116 |
|
---|
117 | /*
|
---|
118 | ** Locate the in-memory structure that describes
|
---|
119 | ** a particular database table given the name
|
---|
120 | ** of that table and (optionally) the name of the database
|
---|
121 | ** containing the table. Return NULL if not found.
|
---|
122 | ** Also leave an error message in pParse->zErrMsg.
|
---|
123 | **
|
---|
124 | ** The difference between this routine and sqliteFindTable()
|
---|
125 | ** is that this routine leaves an error message in pParse->zErrMsg
|
---|
126 | ** where sqliteFindTable() does not.
|
---|
127 | */
|
---|
128 | Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
|
---|
129 | Table *p;
|
---|
130 |
|
---|
131 | p = sqliteFindTable(pParse->db, zName, zDbase);
|
---|
132 | if( p==0 ){
|
---|
133 | if( zDbase ){
|
---|
134 | sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
|
---|
135 | }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
|
---|
136 | sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
|
---|
137 | zName, zDbase);
|
---|
138 | }else{
|
---|
139 | sqliteErrorMsg(pParse, "no such table: %s", zName);
|
---|
140 | }
|
---|
141 | }
|
---|
142 | return p;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /*
|
---|
146 | ** Locate the in-memory structure that describes
|
---|
147 | ** a particular index given the name of that index
|
---|
148 | ** and the name of the database that contains the index.
|
---|
149 | ** Return NULL if not found.
|
---|
150 | **
|
---|
151 | ** If zDatabase is 0, all databases are searched for the
|
---|
152 | ** table and the first matching index is returned. (No checking
|
---|
153 | ** for duplicate index names is done.) The search order is
|
---|
154 | ** TEMP first, then MAIN, then any auxiliary databases added
|
---|
155 | ** using the ATTACH command.
|
---|
156 | */
|
---|
157 | Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
|
---|
158 | Index *p = 0;
|
---|
159 | int i;
|
---|
160 | for(i=0; i<db->nDb; i++){
|
---|
161 | int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
---|
162 | if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
|
---|
163 | p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
|
---|
164 | if( p ) break;
|
---|
165 | }
|
---|
166 | return p;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /*
|
---|
170 | ** Remove the given index from the index hash table, and free
|
---|
171 | ** its memory structures.
|
---|
172 | **
|
---|
173 | ** The index is removed from the database hash tables but
|
---|
174 | ** it is not unlinked from the Table that it indexes.
|
---|
175 | ** Unlinking from the Table must be done by the calling function.
|
---|
176 | */
|
---|
177 | static void sqliteDeleteIndex(sqlite *db, Index *p){
|
---|
178 | Index *pOld;
|
---|
179 |
|
---|
180 | assert( db!=0 && p->zName!=0 );
|
---|
181 | pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
|
---|
182 | strlen(p->zName)+1, 0);
|
---|
183 | if( pOld!=0 && pOld!=p ){
|
---|
184 | sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
|
---|
185 | strlen(pOld->zName)+1, pOld);
|
---|
186 | }
|
---|
187 | sqliteFree(p);
|
---|
188 | }
|
---|
189 |
|
---|
190 | /*
|
---|
191 | ** Unlink the given index from its table, then remove
|
---|
192 | ** the index from the index hash table and free its memory
|
---|
193 | ** structures.
|
---|
194 | */
|
---|
195 | void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
|
---|
196 | if( pIndex->pTable->pIndex==pIndex ){
|
---|
197 | pIndex->pTable->pIndex = pIndex->pNext;
|
---|
198 | }else{
|
---|
199 | Index *p;
|
---|
200 | for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
---|
201 | if( p && p->pNext==pIndex ){
|
---|
202 | p->pNext = pIndex->pNext;
|
---|
203 | }
|
---|
204 | }
|
---|
205 | sqliteDeleteIndex(db, pIndex);
|
---|
206 | }
|
---|
207 |
|
---|
208 | /*
|
---|
209 | ** Erase all schema information from the in-memory hash tables of
|
---|
210 | ** database connection. This routine is called to reclaim memory
|
---|
211 | ** before the connection closes. It is also called during a rollback
|
---|
212 | ** if there were schema changes during the transaction.
|
---|
213 | **
|
---|
214 | ** If iDb<=0 then reset the internal schema tables for all database
|
---|
215 | ** files. If iDb>=2 then reset the internal schema for only the
|
---|
216 | ** single file indicated.
|
---|
217 | */
|
---|
218 | void sqliteResetInternalSchema(sqlite *db, int iDb){
|
---|
219 | HashElem *pElem;
|
---|
220 | Hash temp1;
|
---|
221 | Hash temp2;
|
---|
222 | int i, j;
|
---|
223 |
|
---|
224 | assert( iDb>=0 && iDb<db->nDb );
|
---|
225 | db->flags &= ~SQLITE_Initialized;
|
---|
226 | for(i=iDb; i<db->nDb; i++){
|
---|
227 | Db *pDb = &db->aDb[i];
|
---|
228 | temp1 = pDb->tblHash;
|
---|
229 | temp2 = pDb->trigHash;
|
---|
230 | sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
|
---|
231 | sqliteHashClear(&pDb->aFKey);
|
---|
232 | sqliteHashClear(&pDb->idxHash);
|
---|
233 | for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
---|
234 | Trigger *pTrigger = sqliteHashData(pElem);
|
---|
235 | sqliteDeleteTrigger(pTrigger);
|
---|
236 | }
|
---|
237 | sqliteHashClear(&temp2);
|
---|
238 | sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
|
---|
239 | for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
---|
240 | Table *pTab = sqliteHashData(pElem);
|
---|
241 | sqliteDeleteTable(db, pTab);
|
---|
242 | }
|
---|
243 | sqliteHashClear(&temp1);
|
---|
244 | DbClearProperty(db, i, DB_SchemaLoaded);
|
---|
245 | if( iDb>0 ) return;
|
---|
246 | }
|
---|
247 | assert( iDb==0 );
|
---|
248 | db->flags &= ~SQLITE_InternChanges;
|
---|
249 |
|
---|
250 | /* If one or more of the auxiliary database files has been closed,
|
---|
251 | ** then remove then from the auxiliary database list. We take the
|
---|
252 | ** opportunity to do this here since we have just deleted all of the
|
---|
253 | ** schema hash tables and therefore do not have to make any changes
|
---|
254 | ** to any of those tables.
|
---|
255 | */
|
---|
256 | for(i=0; i<db->nDb; i++){
|
---|
257 | struct Db *pDb = &db->aDb[i];
|
---|
258 | if( pDb->pBt==0 ){
|
---|
259 | if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
---|
260 | pDb->pAux = 0;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | for(i=j=2; i<db->nDb; i++){
|
---|
264 | struct Db *pDb = &db->aDb[i];
|
---|
265 | if( pDb->pBt==0 ){
|
---|
266 | sqliteFree(pDb->zName);
|
---|
267 | pDb->zName = 0;
|
---|
268 | continue;
|
---|
269 | }
|
---|
270 | if( j<i ){
|
---|
271 | db->aDb[j] = db->aDb[i];
|
---|
272 | }
|
---|
273 | j++;
|
---|
274 | }
|
---|
275 | memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
---|
276 | db->nDb = j;
|
---|
277 | if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
---|
278 | memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
---|
279 | sqliteFree(db->aDb);
|
---|
280 | db->aDb = db->aDbStatic;
|
---|
281 | }
|
---|
282 | }
|
---|
283 |
|
---|
284 | /*
|
---|
285 | ** This routine is called whenever a rollback occurs. If there were
|
---|
286 | ** schema changes during the transaction, then we have to reset the
|
---|
287 | ** internal hash tables and reload them from disk.
|
---|
288 | */
|
---|
289 | void sqliteRollbackInternalChanges(sqlite *db){
|
---|
290 | if( db->flags & SQLITE_InternChanges ){
|
---|
291 | sqliteResetInternalSchema(db, 0);
|
---|
292 | }
|
---|
293 | }
|
---|
294 |
|
---|
295 | /*
|
---|
296 | ** This routine is called when a commit occurs.
|
---|
297 | */
|
---|
298 | void sqliteCommitInternalChanges(sqlite *db){
|
---|
299 | db->aDb[0].schema_cookie = db->next_cookie;
|
---|
300 | db->flags &= ~SQLITE_InternChanges;
|
---|
301 | }
|
---|
302 |
|
---|
303 | /*
|
---|
304 | ** Remove the memory data structures associated with the given
|
---|
305 | ** Table. No changes are made to disk by this routine.
|
---|
306 | **
|
---|
307 | ** This routine just deletes the data structure. It does not unlink
|
---|
308 | ** the table data structure from the hash table. Nor does it remove
|
---|
309 | ** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
---|
310 | ** memory structures of the indices and foreign keys associated with
|
---|
311 | ** the table.
|
---|
312 | **
|
---|
313 | ** Indices associated with the table are unlinked from the "db"
|
---|
314 | ** data structure if db!=NULL. If db==NULL, indices attached to
|
---|
315 | ** the table are deleted, but it is assumed they have already been
|
---|
316 | ** unlinked.
|
---|
317 | */
|
---|
318 | void sqliteDeleteTable(sqlite *db, Table *pTable){
|
---|
319 | int i;
|
---|
320 | Index *pIndex, *pNext;
|
---|
321 | FKey *pFKey, *pNextFKey;
|
---|
322 |
|
---|
323 | if( pTable==0 ) return;
|
---|
324 |
|
---|
325 | /* Delete all indices associated with this table
|
---|
326 | */
|
---|
327 | for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
---|
328 | pNext = pIndex->pNext;
|
---|
329 | assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
|
---|
330 | sqliteDeleteIndex(db, pIndex);
|
---|
331 | }
|
---|
332 |
|
---|
333 | /* Delete all foreign keys associated with this table. The keys
|
---|
334 | ** should have already been unlinked from the db->aFKey hash table
|
---|
335 | */
|
---|
336 | for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
---|
337 | pNextFKey = pFKey->pNextFrom;
|
---|
338 | assert( pTable->iDb<db->nDb );
|
---|
339 | assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
|
---|
340 | pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
---|
341 | sqliteFree(pFKey);
|
---|
342 | }
|
---|
343 |
|
---|
344 | /* Delete the Table structure itself.
|
---|
345 | */
|
---|
346 | for(i=0; i<pTable->nCol; i++){
|
---|
347 | sqliteFree(pTable->aCol[i].zName);
|
---|
348 | sqliteFree(pTable->aCol[i].zDflt);
|
---|
349 | sqliteFree(pTable->aCol[i].zType);
|
---|
350 | }
|
---|
351 | sqliteFree(pTable->zName);
|
---|
352 | sqliteFree(pTable->aCol);
|
---|
353 | sqliteSelectDelete(pTable->pSelect);
|
---|
354 | sqliteFree(pTable);
|
---|
355 | }
|
---|
356 |
|
---|
357 | /*
|
---|
358 | ** Unlink the given table from the hash tables and the delete the
|
---|
359 | ** table structure with all its indices and foreign keys.
|
---|
360 | */
|
---|
361 | static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
|
---|
362 | Table *pOld;
|
---|
363 | FKey *pF1, *pF2;
|
---|
364 | int i = p->iDb;
|
---|
365 | assert( db!=0 );
|
---|
366 | pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
|
---|
367 | assert( pOld==0 || pOld==p );
|
---|
368 | for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
---|
369 | int nTo = strlen(pF1->zTo) + 1;
|
---|
370 | pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
|
---|
371 | if( pF2==pF1 ){
|
---|
372 | sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
---|
373 | }else{
|
---|
374 | while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
---|
375 | if( pF2 ){
|
---|
376 | pF2->pNextTo = pF1->pNextTo;
|
---|
377 | }
|
---|
378 | }
|
---|
379 | }
|
---|
380 | sqliteDeleteTable(db, p);
|
---|
381 | }
|
---|
382 |
|
---|
383 | /*
|
---|
384 | ** Construct the name of a user table or index from a token.
|
---|
385 | **
|
---|
386 | ** Space to hold the name is obtained from sqliteMalloc() and must
|
---|
387 | ** be freed by the calling function.
|
---|
388 | */
|
---|
389 | char *sqliteTableNameFromToken(Token *pName){
|
---|
390 | char *zName = sqliteStrNDup(pName->z, pName->n);
|
---|
391 | sqliteDequote(zName);
|
---|
392 | return zName;
|
---|
393 | }
|
---|
394 |
|
---|
395 | /*
|
---|
396 | ** Generate code to open the appropriate master table. The table
|
---|
397 | ** opened will be SQLITE_MASTER for persistent tables and
|
---|
398 | ** SQLITE_TEMP_MASTER for temporary tables. The table is opened
|
---|
399 | ** on cursor 0.
|
---|
400 | */
|
---|
401 | void sqliteOpenMasterTable(Vdbe *v, int isTemp){
|
---|
402 | sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
|
---|
403 | sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
|
---|
404 | }
|
---|
405 |
|
---|
406 | /*
|
---|
407 | ** Begin constructing a new table representation in memory. This is
|
---|
408 | ** the first of several action routines that get called in response
|
---|
409 | ** to a CREATE TABLE statement. In particular, this routine is called
|
---|
410 | ** after seeing tokens "CREATE" and "TABLE" and the table name. The
|
---|
411 | ** pStart token is the CREATE and pName is the table name. The isTemp
|
---|
412 | ** flag is true if the table should be stored in the auxiliary database
|
---|
413 | ** file instead of in the main database file. This is normally the case
|
---|
414 | ** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
---|
415 | ** CREATE and TABLE.
|
---|
416 | **
|
---|
417 | ** The new table record is initialized and put in pParse->pNewTable.
|
---|
418 | ** As more of the CREATE TABLE statement is parsed, additional action
|
---|
419 | ** routines will be called to add more information to this record.
|
---|
420 | ** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
|
---|
421 | ** is called to complete the construction of the new table record.
|
---|
422 | */
|
---|
423 | void sqliteStartTable(
|
---|
424 | Parse *pParse, /* Parser context */
|
---|
425 | Token *pStart, /* The "CREATE" token */
|
---|
426 | Token *pName, /* Name of table or view to create */
|
---|
427 | int isTemp, /* True if this is a TEMP table */
|
---|
428 | int isView /* True if this is a VIEW */
|
---|
429 | ){
|
---|
430 | Table *pTable;
|
---|
431 | Index *pIdx;
|
---|
432 | char *zName;
|
---|
433 | sqlite *db = pParse->db;
|
---|
434 | Vdbe *v;
|
---|
435 | int iDb;
|
---|
436 |
|
---|
437 | pParse->sFirstToken = *pStart;
|
---|
438 | zName = sqliteTableNameFromToken(pName);
|
---|
439 | if( zName==0 ) return;
|
---|
440 | if( db->init.iDb==1 ) isTemp = 1;
|
---|
441 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
442 | assert( (isTemp & 1)==isTemp );
|
---|
443 | {
|
---|
444 | int code;
|
---|
445 | char *zDb = isTemp ? "temp" : "main";
|
---|
446 | if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
---|
447 | sqliteFree(zName);
|
---|
448 | return;
|
---|
449 | }
|
---|
450 | if( isView ){
|
---|
451 | if( isTemp ){
|
---|
452 | code = SQLITE_CREATE_TEMP_VIEW;
|
---|
453 | }else{
|
---|
454 | code = SQLITE_CREATE_VIEW;
|
---|
455 | }
|
---|
456 | }else{
|
---|
457 | if( isTemp ){
|
---|
458 | code = SQLITE_CREATE_TEMP_TABLE;
|
---|
459 | }else{
|
---|
460 | code = SQLITE_CREATE_TABLE;
|
---|
461 | }
|
---|
462 | }
|
---|
463 | if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
|
---|
464 | sqliteFree(zName);
|
---|
465 | return;
|
---|
466 | }
|
---|
467 | }
|
---|
468 | #endif
|
---|
469 |
|
---|
470 |
|
---|
471 | /* Before trying to create a temporary table, make sure the Btree for
|
---|
472 | ** holding temporary tables is open.
|
---|
473 | */
|
---|
474 | if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
|
---|
475 | int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
|
---|
476 | if( rc!=SQLITE_OK ){
|
---|
477 | sqliteErrorMsg(pParse, "unable to open a temporary database "
|
---|
478 | "file for storing temporary tables");
|
---|
479 | pParse->nErr++;
|
---|
480 | return;
|
---|
481 | }
|
---|
482 | if( db->flags & SQLITE_InTrans ){
|
---|
483 | rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
|
---|
484 | if( rc!=SQLITE_OK ){
|
---|
485 | sqliteErrorMsg(pParse, "unable to get a write lock on "
|
---|
486 | "the temporary database file");
|
---|
487 | return;
|
---|
488 | }
|
---|
489 | }
|
---|
490 | }
|
---|
491 |
|
---|
492 | /* Make sure the new table name does not collide with an existing
|
---|
493 | ** index or table name. Issue an error message if it does.
|
---|
494 | **
|
---|
495 | ** If we are re-reading the sqlite_master table because of a schema
|
---|
496 | ** change and a new permanent table is found whose name collides with
|
---|
497 | ** an existing temporary table, that is not an error.
|
---|
498 | */
|
---|
499 | pTable = sqliteFindTable(db, zName, 0);
|
---|
500 | iDb = isTemp ? 1 : db->init.iDb;
|
---|
501 | if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
|
---|
502 | sqliteErrorMsg(pParse, "table %T already exists", pName);
|
---|
503 | sqliteFree(zName);
|
---|
504 | return;
|
---|
505 | }
|
---|
506 | if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
|
---|
507 | (pIdx->iDb==0 || !db->init.busy) ){
|
---|
508 | sqliteErrorMsg(pParse, "there is already an index named %s", zName);
|
---|
509 | sqliteFree(zName);
|
---|
510 | return;
|
---|
511 | }
|
---|
512 | pTable = sqliteMalloc( sizeof(Table) );
|
---|
513 | if( pTable==0 ){
|
---|
514 | sqliteFree(zName);
|
---|
515 | return;
|
---|
516 | }
|
---|
517 | pTable->zName = zName;
|
---|
518 | pTable->nCol = 0;
|
---|
519 | pTable->aCol = 0;
|
---|
520 | pTable->iPKey = -1;
|
---|
521 | pTable->pIndex = 0;
|
---|
522 | pTable->iDb = iDb;
|
---|
523 | if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
|
---|
524 | pParse->pNewTable = pTable;
|
---|
525 |
|
---|
526 | /* Begin generating the code that will insert the table record into
|
---|
527 | ** the SQLITE_MASTER table. Note in particular that we must go ahead
|
---|
528 | ** and allocate the record number for the table entry now. Before any
|
---|
529 | ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
---|
530 | ** indices to be created and the table record must come before the
|
---|
531 | ** indices. Hence, the record number for the table must be allocated
|
---|
532 | ** now.
|
---|
533 | */
|
---|
534 | if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
|
---|
535 | sqliteBeginWriteOperation(pParse, 0, isTemp);
|
---|
536 | if( !isTemp ){
|
---|
537 | sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
|
---|
538 | sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
|
---|
539 | }
|
---|
540 | sqliteOpenMasterTable(v, isTemp);
|
---|
541 | sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
---|
542 | sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
---|
543 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
544 | sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
---|
545 | }
|
---|
546 | }
|
---|
547 |
|
---|
548 | /*
|
---|
549 | ** Add a new column to the table currently being constructed.
|
---|
550 | **
|
---|
551 | ** The parser calls this routine once for each column declaration
|
---|
552 | ** in a CREATE TABLE statement. sqliteStartTable() gets called
|
---|
553 | ** first to get things going. Then this routine is called for each
|
---|
554 | ** column.
|
---|
555 | */
|
---|
556 | void sqliteAddColumn(Parse *pParse, Token *pName){
|
---|
557 | Table *p;
|
---|
558 | int i;
|
---|
559 | char *z = 0;
|
---|
560 | Column *pCol;
|
---|
561 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
562 | sqliteSetNString(&z, pName->z, pName->n, 0);
|
---|
563 | if( z==0 ) return;
|
---|
564 | sqliteDequote(z);
|
---|
565 | for(i=0; i<p->nCol; i++){
|
---|
566 | if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
|
---|
567 | sqliteErrorMsg(pParse, "duplicate column name: %s", z);
|
---|
568 | sqliteFree(z);
|
---|
569 | return;
|
---|
570 | }
|
---|
571 | }
|
---|
572 | if( (p->nCol & 0x7)==0 ){
|
---|
573 | Column *aNew;
|
---|
574 | aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
|
---|
575 | if( aNew==0 ) return;
|
---|
576 | p->aCol = aNew;
|
---|
577 | }
|
---|
578 | pCol = &p->aCol[p->nCol];
|
---|
579 | memset(pCol, 0, sizeof(p->aCol[0]));
|
---|
580 | pCol->zName = z;
|
---|
581 | pCol->sortOrder = SQLITE_SO_NUM;
|
---|
582 | p->nCol++;
|
---|
583 | }
|
---|
584 |
|
---|
585 | /*
|
---|
586 | ** This routine is called by the parser while in the middle of
|
---|
587 | ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
---|
588 | ** been seen on a column. This routine sets the notNull flag on
|
---|
589 | ** the column currently under construction.
|
---|
590 | */
|
---|
591 | void sqliteAddNotNull(Parse *pParse, int onError){
|
---|
592 | Table *p;
|
---|
593 | int i;
|
---|
594 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
595 | i = p->nCol-1;
|
---|
596 | if( i>=0 ) p->aCol[i].notNull = onError;
|
---|
597 | }
|
---|
598 |
|
---|
599 | /*
|
---|
600 | ** This routine is called by the parser while in the middle of
|
---|
601 | ** parsing a CREATE TABLE statement. The pFirst token is the first
|
---|
602 | ** token in the sequence of tokens that describe the type of the
|
---|
603 | ** column currently under construction. pLast is the last token
|
---|
604 | ** in the sequence. Use this information to construct a string
|
---|
605 | ** that contains the typename of the column and store that string
|
---|
606 | ** in zType.
|
---|
607 | */
|
---|
608 | void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
|
---|
609 | Table *p;
|
---|
610 | int i, j;
|
---|
611 | int n;
|
---|
612 | char *z, **pz;
|
---|
613 | Column *pCol;
|
---|
614 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
615 | i = p->nCol-1;
|
---|
616 | if( i<0 ) return;
|
---|
617 | pCol = &p->aCol[i];
|
---|
618 | pz = &pCol->zType;
|
---|
619 | n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
|
---|
620 | sqliteSetNString(pz, pFirst->z, n, 0);
|
---|
621 | z = *pz;
|
---|
622 | if( z==0 ) return;
|
---|
623 | for(i=j=0; z[i]; i++){
|
---|
624 | int c = z[i];
|
---|
625 | if( isspace(c) ) continue;
|
---|
626 | z[j++] = c;
|
---|
627 | }
|
---|
628 | z[j] = 0;
|
---|
629 | if( pParse->db->file_format>=4 ){
|
---|
630 | pCol->sortOrder = sqliteCollateType(z, n);
|
---|
631 | }else{
|
---|
632 | pCol->sortOrder = SQLITE_SO_NUM;
|
---|
633 | }
|
---|
634 | }
|
---|
635 |
|
---|
636 | /*
|
---|
637 | ** The given token is the default value for the last column added to
|
---|
638 | ** the table currently under construction. If "minusFlag" is true, it
|
---|
639 | ** means the value token was preceded by a minus sign.
|
---|
640 | **
|
---|
641 | ** This routine is called by the parser while in the middle of
|
---|
642 | ** parsing a CREATE TABLE statement.
|
---|
643 | */
|
---|
644 | void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
|
---|
645 | Table *p;
|
---|
646 | int i;
|
---|
647 | char **pz;
|
---|
648 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
649 | i = p->nCol-1;
|
---|
650 | if( i<0 ) return;
|
---|
651 | pz = &p->aCol[i].zDflt;
|
---|
652 | if( minusFlag ){
|
---|
653 | sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
|
---|
654 | }else{
|
---|
655 | sqliteSetNString(pz, pVal->z, pVal->n, 0);
|
---|
656 | }
|
---|
657 | sqliteDequote(*pz);
|
---|
658 | }
|
---|
659 |
|
---|
660 | /*
|
---|
661 | ** Designate the PRIMARY KEY for the table. pList is a list of names
|
---|
662 | ** of columns that form the primary key. If pList is NULL, then the
|
---|
663 | ** most recently added column of the table is the primary key.
|
---|
664 | **
|
---|
665 | ** A table can have at most one primary key. If the table already has
|
---|
666 | ** a primary key (and this is the second primary key) then create an
|
---|
667 | ** error.
|
---|
668 | **
|
---|
669 | ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
---|
670 | ** then we will try to use that column as the row id. (Exception:
|
---|
671 | ** For backwards compatibility with older databases, do not do this
|
---|
672 | ** if the file format version number is less than 1.) Set the Table.iPKey
|
---|
673 | ** field of the table under construction to be the index of the
|
---|
674 | ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
---|
675 | ** no INTEGER PRIMARY KEY.
|
---|
676 | **
|
---|
677 | ** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
---|
678 | ** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
---|
679 | */
|
---|
680 | void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
|
---|
681 | Table *pTab = pParse->pNewTable;
|
---|
682 | char *zType = 0;
|
---|
683 | int iCol = -1, i;
|
---|
684 | if( pTab==0 ) goto primary_key_exit;
|
---|
685 | if( pTab->hasPrimKey ){
|
---|
686 | sqliteErrorMsg(pParse,
|
---|
687 | "table \"%s\" has more than one primary key", pTab->zName);
|
---|
688 | goto primary_key_exit;
|
---|
689 | }
|
---|
690 | pTab->hasPrimKey = 1;
|
---|
691 | if( pList==0 ){
|
---|
692 | iCol = pTab->nCol - 1;
|
---|
693 | pTab->aCol[iCol].isPrimKey = 1;
|
---|
694 | }else{
|
---|
695 | for(i=0; i<pList->nId; i++){
|
---|
696 | for(iCol=0; iCol<pTab->nCol; iCol++){
|
---|
697 | if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
|
---|
698 | }
|
---|
699 | if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
|
---|
700 | }
|
---|
701 | if( pList->nId>1 ) iCol = -1;
|
---|
702 | }
|
---|
703 | if( iCol>=0 && iCol<pTab->nCol ){
|
---|
704 | zType = pTab->aCol[iCol].zType;
|
---|
705 | }
|
---|
706 | if( pParse->db->file_format>=1 &&
|
---|
707 | zType && sqliteStrICmp(zType, "INTEGER")==0 ){
|
---|
708 | pTab->iPKey = iCol;
|
---|
709 | pTab->keyConf = onError;
|
---|
710 | }else{
|
---|
711 | sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
|
---|
712 | pList = 0;
|
---|
713 | }
|
---|
714 |
|
---|
715 | primary_key_exit:
|
---|
716 | sqliteIdListDelete(pList);
|
---|
717 | return;
|
---|
718 | }
|
---|
719 |
|
---|
720 | /*
|
---|
721 | ** Return the appropriate collating type given a type name.
|
---|
722 | **
|
---|
723 | ** The collation type is text (SQLITE_SO_TEXT) if the type
|
---|
724 | ** name contains the character stream "text" or "blob" or
|
---|
725 | ** "clob". Any other type name is collated as numeric
|
---|
726 | ** (SQLITE_SO_NUM).
|
---|
727 | */
|
---|
728 | int sqliteCollateType(const char *zType, int nType){
|
---|
729 | int i;
|
---|
730 | for(i=0; i<nType-3; i++){
|
---|
731 | int c = *(zType++) | 0x60;
|
---|
732 | if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
|
---|
733 | return SQLITE_SO_TEXT;
|
---|
734 | }
|
---|
735 | if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
|
---|
736 | return SQLITE_SO_TEXT;
|
---|
737 | }
|
---|
738 | if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
|
---|
739 | return SQLITE_SO_TEXT;
|
---|
740 | }
|
---|
741 | }
|
---|
742 | return SQLITE_SO_NUM;
|
---|
743 | }
|
---|
744 |
|
---|
745 | /*
|
---|
746 | ** This routine is called by the parser while in the middle of
|
---|
747 | ** parsing a CREATE TABLE statement. A "COLLATE" clause has
|
---|
748 | ** been seen on a column. This routine sets the Column.sortOrder on
|
---|
749 | ** the column currently under construction.
|
---|
750 | */
|
---|
751 | void sqliteAddCollateType(Parse *pParse, int collType){
|
---|
752 | Table *p;
|
---|
753 | int i;
|
---|
754 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
755 | i = p->nCol-1;
|
---|
756 | if( i>=0 ) p->aCol[i].sortOrder = collType;
|
---|
757 | }
|
---|
758 |
|
---|
759 | /*
|
---|
760 | ** Come up with a new random value for the schema cookie. Make sure
|
---|
761 | ** the new value is different from the old.
|
---|
762 | **
|
---|
763 | ** The schema cookie is used to determine when the schema for the
|
---|
764 | ** database changes. After each schema change, the cookie value
|
---|
765 | ** changes. When a process first reads the schema it records the
|
---|
766 | ** cookie. Thereafter, whenever it goes to access the database,
|
---|
767 | ** it checks the cookie to make sure the schema has not changed
|
---|
768 | ** since it was last read.
|
---|
769 | **
|
---|
770 | ** This plan is not completely bullet-proof. It is possible for
|
---|
771 | ** the schema to change multiple times and for the cookie to be
|
---|
772 | ** set back to prior value. But schema changes are infrequent
|
---|
773 | ** and the probability of hitting the same cookie value is only
|
---|
774 | ** 1 chance in 2^32. So we're safe enough.
|
---|
775 | */
|
---|
776 | void sqliteChangeCookie(sqlite *db, Vdbe *v){
|
---|
777 | if( db->next_cookie==db->aDb[0].schema_cookie ){
|
---|
778 | unsigned char r;
|
---|
779 | sqliteRandomness(1, &r);
|
---|
780 | db->next_cookie = db->aDb[0].schema_cookie + r + 1;
|
---|
781 | db->flags |= SQLITE_InternChanges;
|
---|
782 | sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
|
---|
783 | sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
|
---|
784 | }
|
---|
785 | }
|
---|
786 |
|
---|
787 | /*
|
---|
788 | ** Measure the number of characters needed to output the given
|
---|
789 | ** identifier. The number returned includes any quotes used
|
---|
790 | ** but does not include the null terminator.
|
---|
791 | */
|
---|
792 | static int identLength(const char *z){
|
---|
793 | int n;
|
---|
794 | int needQuote = 0;
|
---|
795 | for(n=0; *z; n++, z++){
|
---|
796 | if( *z=='\'' ){ n++; needQuote=1; }
|
---|
797 | }
|
---|
798 | return n + needQuote*2;
|
---|
799 | }
|
---|
800 |
|
---|
801 | /*
|
---|
802 | ** Write an identifier onto the end of the given string. Add
|
---|
803 | ** quote characters as needed.
|
---|
804 | */
|
---|
805 | static void identPut(char *z, int *pIdx, char *zIdent){
|
---|
806 | int i, j, needQuote;
|
---|
807 | i = *pIdx;
|
---|
808 | for(j=0; zIdent[j]; j++){
|
---|
809 | if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
---|
810 | }
|
---|
811 | needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
---|
812 | || sqliteKeywordCode(zIdent, j)!=TK_ID;
|
---|
813 | if( needQuote ) z[i++] = '\'';
|
---|
814 | for(j=0; zIdent[j]; j++){
|
---|
815 | z[i++] = zIdent[j];
|
---|
816 | if( zIdent[j]=='\'' ) z[i++] = '\'';
|
---|
817 | }
|
---|
818 | if( needQuote ) z[i++] = '\'';
|
---|
819 | z[i] = 0;
|
---|
820 | *pIdx = i;
|
---|
821 | }
|
---|
822 |
|
---|
823 | /*
|
---|
824 | ** Generate a CREATE TABLE statement appropriate for the given
|
---|
825 | ** table. Memory to hold the text of the statement is obtained
|
---|
826 | ** from sqliteMalloc() and must be freed by the calling function.
|
---|
827 | */
|
---|
828 | static char *createTableStmt(Table *p){
|
---|
829 | int i, k, n;
|
---|
830 | char *zStmt;
|
---|
831 | char *zSep, *zSep2, *zEnd;
|
---|
832 | n = 0;
|
---|
833 | for(i=0; i<p->nCol; i++){
|
---|
834 | n += identLength(p->aCol[i].zName);
|
---|
835 | }
|
---|
836 | n += identLength(p->zName);
|
---|
837 | if( n<40 ){
|
---|
838 | zSep = "";
|
---|
839 | zSep2 = ",";
|
---|
840 | zEnd = ")";
|
---|
841 | }else{
|
---|
842 | zSep = "\n ";
|
---|
843 | zSep2 = ",\n ";
|
---|
844 | zEnd = "\n)";
|
---|
845 | }
|
---|
846 | n += 35 + 6*p->nCol;
|
---|
847 | zStmt = sqliteMallocRaw( n );
|
---|
848 | if( zStmt==0 ) return 0;
|
---|
849 | strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
|
---|
850 | k = strlen(zStmt);
|
---|
851 | identPut(zStmt, &k, p->zName);
|
---|
852 | zStmt[k++] = '(';
|
---|
853 | for(i=0; i<p->nCol; i++){
|
---|
854 | strcpy(&zStmt[k], zSep);
|
---|
855 | k += strlen(&zStmt[k]);
|
---|
856 | zSep = zSep2;
|
---|
857 | identPut(zStmt, &k, p->aCol[i].zName);
|
---|
858 | }
|
---|
859 | strcpy(&zStmt[k], zEnd);
|
---|
860 | return zStmt;
|
---|
861 | }
|
---|
862 |
|
---|
863 | /*
|
---|
864 | ** This routine is called to report the final ")" that terminates
|
---|
865 | ** a CREATE TABLE statement.
|
---|
866 | **
|
---|
867 | ** The table structure that other action routines have been building
|
---|
868 | ** is added to the internal hash tables, assuming no errors have
|
---|
869 | ** occurred.
|
---|
870 | **
|
---|
871 | ** An entry for the table is made in the master table on disk, unless
|
---|
872 | ** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
---|
873 | ** it means we are reading the sqlite_master table because we just
|
---|
874 | ** connected to the database or because the sqlite_master table has
|
---|
875 | ** recently changes, so the entry for this table already exists in
|
---|
876 | ** the sqlite_master table. We do not want to create it again.
|
---|
877 | **
|
---|
878 | ** If the pSelect argument is not NULL, it means that this routine
|
---|
879 | ** was called to create a table generated from a
|
---|
880 | ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
---|
881 | ** the new table will match the result set of the SELECT.
|
---|
882 | */
|
---|
883 | void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
|
---|
884 | Table *p;
|
---|
885 | sqlite *db = pParse->db;
|
---|
886 |
|
---|
887 | if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
|
---|
888 | p = pParse->pNewTable;
|
---|
889 | if( p==0 ) return;
|
---|
890 |
|
---|
891 | /* If the table is generated from a SELECT, then construct the
|
---|
892 | ** list of columns and the text of the table.
|
---|
893 | */
|
---|
894 | if( pSelect ){
|
---|
895 | Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
|
---|
896 | if( pSelTab==0 ) return;
|
---|
897 | assert( p->aCol==0 );
|
---|
898 | p->nCol = pSelTab->nCol;
|
---|
899 | p->aCol = pSelTab->aCol;
|
---|
900 | pSelTab->nCol = 0;
|
---|
901 | pSelTab->aCol = 0;
|
---|
902 | sqliteDeleteTable(0, pSelTab);
|
---|
903 | }
|
---|
904 |
|
---|
905 | /* If the db->init.busy is 1 it means we are reading the SQL off the
|
---|
906 | ** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
---|
907 | ** So do not write to the disk again. Extract the root page number
|
---|
908 | ** for the table from the db->init.newTnum field. (The page number
|
---|
909 | ** should have been put there by the sqliteOpenCb routine.)
|
---|
910 | */
|
---|
911 | if( db->init.busy ){
|
---|
912 | p->tnum = db->init.newTnum;
|
---|
913 | }
|
---|
914 |
|
---|
915 | /* If not initializing, then create a record for the new table
|
---|
916 | ** in the SQLITE_MASTER table of the database. The record number
|
---|
917 | ** for the new table entry should already be on the stack.
|
---|
918 | **
|
---|
919 | ** If this is a TEMPORARY table, write the entry into the auxiliary
|
---|
920 | ** file instead of into the main database file.
|
---|
921 | */
|
---|
922 | if( !db->init.busy ){
|
---|
923 | int n;
|
---|
924 | Vdbe *v;
|
---|
925 |
|
---|
926 | v = sqliteGetVdbe(pParse);
|
---|
927 | if( v==0 ) return;
|
---|
928 | if( p->pSelect==0 ){
|
---|
929 | /* A regular table */
|
---|
930 | sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
|
---|
931 | }else{
|
---|
932 | /* A view */
|
---|
933 | sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
---|
934 | }
|
---|
935 | p->tnum = 0;
|
---|
936 | sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
---|
937 | sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
|
---|
938 | sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
---|
939 | sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
---|
940 | sqliteVdbeAddOp(v, OP_Dup, 4, 0);
|
---|
941 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
942 | if( pSelect ){
|
---|
943 | char *z = createTableStmt(p);
|
---|
944 | n = z ? strlen(z) : 0;
|
---|
945 | sqliteVdbeChangeP3(v, -1, z, n);
|
---|
946 | sqliteFree(z);
|
---|
947 | }else{
|
---|
948 | assert( pEnd!=0 );
|
---|
949 | n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
|
---|
950 | sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
|
---|
951 | }
|
---|
952 | sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
---|
953 | sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
---|
954 | if( !p->iDb ){
|
---|
955 | sqliteChangeCookie(db, v);
|
---|
956 | }
|
---|
957 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
958 | if( pSelect ){
|
---|
959 | sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
|
---|
960 | sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
|
---|
961 | pParse->nTab = 2;
|
---|
962 | sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
|
---|
963 | }
|
---|
964 | sqliteEndWriteOperation(pParse);
|
---|
965 | }
|
---|
966 |
|
---|
967 | /* Add the table to the in-memory representation of the database.
|
---|
968 | */
|
---|
969 | if( pParse->explain==0 && pParse->nErr==0 ){
|
---|
970 | Table *pOld;
|
---|
971 | FKey *pFKey;
|
---|
972 | pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
|
---|
973 | p->zName, strlen(p->zName)+1, p);
|
---|
974 | if( pOld ){
|
---|
975 | assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
---|
976 | return;
|
---|
977 | }
|
---|
978 | for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
---|
979 | int nTo = strlen(pFKey->zTo) + 1;
|
---|
980 | pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
|
---|
981 | sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
|
---|
982 | }
|
---|
983 | pParse->pNewTable = 0;
|
---|
984 | db->nTable++;
|
---|
985 | db->flags |= SQLITE_InternChanges;
|
---|
986 | }
|
---|
987 | }
|
---|
988 |
|
---|
989 | /*
|
---|
990 | ** The parser calls this routine in order to create a new VIEW
|
---|
991 | */
|
---|
992 | void sqliteCreateView(
|
---|
993 | Parse *pParse, /* The parsing context */
|
---|
994 | Token *pBegin, /* The CREATE token that begins the statement */
|
---|
995 | Token *pName, /* The token that holds the name of the view */
|
---|
996 | Select *pSelect, /* A SELECT statement that will become the new view */
|
---|
997 | int isTemp /* TRUE for a TEMPORARY view */
|
---|
998 | ){
|
---|
999 | Table *p;
|
---|
1000 | int n;
|
---|
1001 | const char *z;
|
---|
1002 | Token sEnd;
|
---|
1003 | DbFixer sFix;
|
---|
1004 |
|
---|
1005 | sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
|
---|
1006 | p = pParse->pNewTable;
|
---|
1007 | if( p==0 || pParse->nErr ){
|
---|
1008 | sqliteSelectDelete(pSelect);
|
---|
1009 | return;
|
---|
1010 | }
|
---|
1011 | if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
|
---|
1012 | && sqliteFixSelect(&sFix, pSelect)
|
---|
1013 | ){
|
---|
1014 | sqliteSelectDelete(pSelect);
|
---|
1015 | return;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | /* Make a copy of the entire SELECT statement that defines the view.
|
---|
1019 | ** This will force all the Expr.token.z values to be dynamically
|
---|
1020 | ** allocated rather than point to the input string - which means that
|
---|
1021 | ** they will persist after the current sqlite_exec() call returns.
|
---|
1022 | */
|
---|
1023 | p->pSelect = sqliteSelectDup(pSelect);
|
---|
1024 | sqliteSelectDelete(pSelect);
|
---|
1025 | if( !pParse->db->init.busy ){
|
---|
1026 | sqliteViewGetColumnNames(pParse, p);
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | /* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
---|
1030 | ** the end.
|
---|
1031 | */
|
---|
1032 | sEnd = pParse->sLastToken;
|
---|
1033 | if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
---|
1034 | sEnd.z += sEnd.n;
|
---|
1035 | }
|
---|
1036 | sEnd.n = 0;
|
---|
1037 | n = sEnd.z - pBegin->z;
|
---|
1038 | z = pBegin->z;
|
---|
1039 | while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
---|
1040 | sEnd.z = &z[n-1];
|
---|
1041 | sEnd.n = 1;
|
---|
1042 |
|
---|
1043 | /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
|
---|
1044 | sqliteEndTable(pParse, &sEnd, 0);
|
---|
1045 | return;
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | /*
|
---|
1049 | ** The Table structure pTable is really a VIEW. Fill in the names of
|
---|
1050 | ** the columns of the view in the pTable structure. Return the number
|
---|
1051 | ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
---|
1052 | */
|
---|
1053 | int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
|
---|
1054 | ExprList *pEList;
|
---|
1055 | Select *pSel;
|
---|
1056 | Table *pSelTab;
|
---|
1057 | int nErr = 0;
|
---|
1058 |
|
---|
1059 | assert( pTable );
|
---|
1060 |
|
---|
1061 | /* A positive nCol means the columns names for this view are
|
---|
1062 | ** already known.
|
---|
1063 | */
|
---|
1064 | if( pTable->nCol>0 ) return 0;
|
---|
1065 |
|
---|
1066 | /* A negative nCol is a special marker meaning that we are currently
|
---|
1067 | ** trying to compute the column names. If we enter this routine with
|
---|
1068 | ** a negative nCol, it means two or more views form a loop, like this:
|
---|
1069 | **
|
---|
1070 | ** CREATE VIEW one AS SELECT * FROM two;
|
---|
1071 | ** CREATE VIEW two AS SELECT * FROM one;
|
---|
1072 | **
|
---|
1073 | ** Actually, this error is caught previously and so the following test
|
---|
1074 | ** should always fail. But we will leave it in place just to be safe.
|
---|
1075 | */
|
---|
1076 | if( pTable->nCol<0 ){
|
---|
1077 | sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
---|
1078 | return 1;
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | /* If we get this far, it means we need to compute the table names.
|
---|
1082 | */
|
---|
1083 | assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
|
---|
1084 | pSel = pTable->pSelect;
|
---|
1085 |
|
---|
1086 | /* Note that the call to sqliteResultSetOfSelect() will expand any
|
---|
1087 | ** "*" elements in this list. But we will need to restore the list
|
---|
1088 | ** back to its original configuration afterwards, so we save a copy of
|
---|
1089 | ** the original in pEList.
|
---|
1090 | */
|
---|
1091 | pEList = pSel->pEList;
|
---|
1092 | pSel->pEList = sqliteExprListDup(pEList);
|
---|
1093 | if( pSel->pEList==0 ){
|
---|
1094 | pSel->pEList = pEList;
|
---|
1095 | return 1; /* Malloc failed */
|
---|
1096 | }
|
---|
1097 | pTable->nCol = -1;
|
---|
1098 | pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
|
---|
1099 | if( pSelTab ){
|
---|
1100 | assert( pTable->aCol==0 );
|
---|
1101 | pTable->nCol = pSelTab->nCol;
|
---|
1102 | pTable->aCol = pSelTab->aCol;
|
---|
1103 | pSelTab->nCol = 0;
|
---|
1104 | pSelTab->aCol = 0;
|
---|
1105 | sqliteDeleteTable(0, pSelTab);
|
---|
1106 | DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
|
---|
1107 | }else{
|
---|
1108 | pTable->nCol = 0;
|
---|
1109 | nErr++;
|
---|
1110 | }
|
---|
1111 | sqliteSelectUnbind(pSel);
|
---|
1112 | sqliteExprListDelete(pSel->pEList);
|
---|
1113 | pSel->pEList = pEList;
|
---|
1114 | return nErr;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | /*
|
---|
1118 | ** Clear the column names from the VIEW pTable.
|
---|
1119 | **
|
---|
1120 | ** This routine is called whenever any other table or view is modified.
|
---|
1121 | ** The view passed into this routine might depend directly or indirectly
|
---|
1122 | ** on the modified or deleted table so we need to clear the old column
|
---|
1123 | ** names so that they will be recomputed.
|
---|
1124 | */
|
---|
1125 | static void sqliteViewResetColumnNames(Table *pTable){
|
---|
1126 | int i;
|
---|
1127 | Column *pCol;
|
---|
1128 | assert( pTable!=0 && pTable->pSelect!=0 );
|
---|
1129 | for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
|
---|
1130 | sqliteFree(pCol->zName);
|
---|
1131 | sqliteFree(pCol->zDflt);
|
---|
1132 | sqliteFree(pCol->zType);
|
---|
1133 | }
|
---|
1134 | sqliteFree(pTable->aCol);
|
---|
1135 | pTable->aCol = 0;
|
---|
1136 | pTable->nCol = 0;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | /*
|
---|
1140 | ** Clear the column names from every VIEW in database idx.
|
---|
1141 | */
|
---|
1142 | static void sqliteViewResetAll(sqlite *db, int idx){
|
---|
1143 | HashElem *i;
|
---|
1144 | if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
---|
1145 | for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
|
---|
1146 | Table *pTab = sqliteHashData(i);
|
---|
1147 | if( pTab->pSelect ){
|
---|
1148 | sqliteViewResetColumnNames(pTab);
|
---|
1149 | }
|
---|
1150 | }
|
---|
1151 | DbClearProperty(db, idx, DB_UnresetViews);
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | /*
|
---|
1155 | ** Given a token, look up a table with that name. If not found, leave
|
---|
1156 | ** an error for the parser to find and return NULL.
|
---|
1157 | */
|
---|
1158 | Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
|
---|
1159 | char *zName;
|
---|
1160 | Table *pTab;
|
---|
1161 | zName = sqliteTableNameFromToken(pTok);
|
---|
1162 | if( zName==0 ) return 0;
|
---|
1163 | pTab = sqliteFindTable(pParse->db, zName, 0);
|
---|
1164 | sqliteFree(zName);
|
---|
1165 | if( pTab==0 ){
|
---|
1166 | sqliteErrorMsg(pParse, "no such table: %T", pTok);
|
---|
1167 | }
|
---|
1168 | return pTab;
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | /*
|
---|
1172 | ** This routine is called to do the work of a DROP TABLE statement.
|
---|
1173 | ** pName is the name of the table to be dropped.
|
---|
1174 | */
|
---|
1175 | void sqliteDropTable(Parse *pParse, Token *pName, int isView){
|
---|
1176 | Table *pTable;
|
---|
1177 | Vdbe *v;
|
---|
1178 | int base;
|
---|
1179 | sqlite *db = pParse->db;
|
---|
1180 | int iDb;
|
---|
1181 |
|
---|
1182 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
1183 | pTable = sqliteTableFromToken(pParse, pName);
|
---|
1184 | if( pTable==0 ) return;
|
---|
1185 | iDb = pTable->iDb;
|
---|
1186 | assert( iDb>=0 && iDb<db->nDb );
|
---|
1187 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
1188 | {
|
---|
1189 | int code;
|
---|
1190 | const char *zTab = SCHEMA_TABLE(pTable->iDb);
|
---|
1191 | const char *zDb = db->aDb[pTable->iDb].zName;
|
---|
1192 | if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
---|
1193 | return;
|
---|
1194 | }
|
---|
1195 | if( isView ){
|
---|
1196 | if( iDb==1 ){
|
---|
1197 | code = SQLITE_DROP_TEMP_VIEW;
|
---|
1198 | }else{
|
---|
1199 | code = SQLITE_DROP_VIEW;
|
---|
1200 | }
|
---|
1201 | }else{
|
---|
1202 | if( iDb==1 ){
|
---|
1203 | code = SQLITE_DROP_TEMP_TABLE;
|
---|
1204 | }else{
|
---|
1205 | code = SQLITE_DROP_TABLE;
|
---|
1206 | }
|
---|
1207 | }
|
---|
1208 | if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
|
---|
1209 | return;
|
---|
1210 | }
|
---|
1211 | if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
|
---|
1212 | return;
|
---|
1213 | }
|
---|
1214 | }
|
---|
1215 | #endif
|
---|
1216 | if( pTable->readOnly ){
|
---|
1217 | sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
|
---|
1218 | pParse->nErr++;
|
---|
1219 | return;
|
---|
1220 | }
|
---|
1221 | if( isView && pTable->pSelect==0 ){
|
---|
1222 | sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
|
---|
1223 | return;
|
---|
1224 | }
|
---|
1225 | if( !isView && pTable->pSelect ){
|
---|
1226 | sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
|
---|
1227 | return;
|
---|
1228 | }
|
---|
1229 |
|
---|
1230 | /* Generate code to remove the table from the master table
|
---|
1231 | ** on disk.
|
---|
1232 | */
|
---|
1233 | v = sqliteGetVdbe(pParse);
|
---|
1234 | if( v ){
|
---|
1235 | static VdbeOpList dropTable[] = {
|
---|
1236 | { OP_Rewind, 0, ADDR(8), 0},
|
---|
1237 | { OP_String, 0, 0, 0}, /* 1 */
|
---|
1238 | { OP_MemStore, 1, 1, 0},
|
---|
1239 | { OP_MemLoad, 1, 0, 0}, /* 3 */
|
---|
1240 | { OP_Column, 0, 2, 0},
|
---|
1241 | { OP_Ne, 0, ADDR(7), 0},
|
---|
1242 | { OP_Delete, 0, 0, 0},
|
---|
1243 | { OP_Next, 0, ADDR(3), 0}, /* 7 */
|
---|
1244 | };
|
---|
1245 | Index *pIdx;
|
---|
1246 | Trigger *pTrigger;
|
---|
1247 | sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
|
---|
1248 |
|
---|
1249 | /* Drop all triggers associated with the table being dropped */
|
---|
1250 | pTrigger = pTable->pTrigger;
|
---|
1251 | while( pTrigger ){
|
---|
1252 | assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
|
---|
1253 | sqliteDropTriggerPtr(pParse, pTrigger, 1);
|
---|
1254 | if( pParse->explain ){
|
---|
1255 | pTrigger = pTrigger->pNext;
|
---|
1256 | }else{
|
---|
1257 | pTrigger = pTable->pTrigger;
|
---|
1258 | }
|
---|
1259 | }
|
---|
1260 |
|
---|
1261 | /* Drop all SQLITE_MASTER entries that refer to the table */
|
---|
1262 | sqliteOpenMasterTable(v, pTable->iDb);
|
---|
1263 | base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
---|
1264 | sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
---|
1265 |
|
---|
1266 | /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
|
---|
1267 | if( pTable->iDb!=1 ){
|
---|
1268 | sqliteOpenMasterTable(v, 1);
|
---|
1269 | base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
---|
1270 | sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
---|
1271 | }
|
---|
1272 |
|
---|
1273 | if( pTable->iDb==0 ){
|
---|
1274 | sqliteChangeCookie(db, v);
|
---|
1275 | }
|
---|
1276 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
1277 | if( !isView ){
|
---|
1278 | sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
|
---|
1279 | for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
|
---|
1280 | sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
|
---|
1281 | }
|
---|
1282 | }
|
---|
1283 | sqliteEndWriteOperation(pParse);
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | /* Delete the in-memory description of the table.
|
---|
1287 | **
|
---|
1288 | ** Exception: if the SQL statement began with the EXPLAIN keyword,
|
---|
1289 | ** then no changes should be made.
|
---|
1290 | */
|
---|
1291 | if( !pParse->explain ){
|
---|
1292 | sqliteUnlinkAndDeleteTable(db, pTable);
|
---|
1293 | db->flags |= SQLITE_InternChanges;
|
---|
1294 | }
|
---|
1295 | sqliteViewResetAll(db, iDb);
|
---|
1296 | }
|
---|
1297 |
|
---|
1298 | /*
|
---|
1299 | ** This routine constructs a P3 string suitable for an OP_MakeIdxKey
|
---|
1300 | ** opcode and adds that P3 string to the most recently inserted instruction
|
---|
1301 | ** in the virtual machine. The P3 string consists of a single character
|
---|
1302 | ** for each column in the index pIdx of table pTab. If the column uses
|
---|
1303 | ** a numeric sort order, then the P3 string character corresponding to
|
---|
1304 | ** that column is 'n'. If the column uses a text sort order, then the
|
---|
1305 | ** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
|
---|
1306 | ** additional information. See also the sqliteAddKeyType() routine.
|
---|
1307 | */
|
---|
1308 | void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
|
---|
1309 | char *zType;
|
---|
1310 | Table *pTab;
|
---|
1311 | int i, n;
|
---|
1312 | assert( pIdx!=0 && pIdx->pTable!=0 );
|
---|
1313 | pTab = pIdx->pTable;
|
---|
1314 | n = pIdx->nColumn;
|
---|
1315 | zType = sqliteMallocRaw( n+1 );
|
---|
1316 | if( zType==0 ) return;
|
---|
1317 | for(i=0; i<n; i++){
|
---|
1318 | int iCol = pIdx->aiColumn[i];
|
---|
1319 | assert( iCol>=0 && iCol<pTab->nCol );
|
---|
1320 | if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
|
---|
1321 | zType[i] = 't';
|
---|
1322 | }else{
|
---|
1323 | zType[i] = 'n';
|
---|
1324 | }
|
---|
1325 | }
|
---|
1326 | zType[n] = 0;
|
---|
1327 | sqliteVdbeChangeP3(v, -1, zType, n);
|
---|
1328 | sqliteFree(zType);
|
---|
1329 | }
|
---|
1330 |
|
---|
1331 | /*
|
---|
1332 | ** This routine is called to create a new foreign key on the table
|
---|
1333 | ** currently under construction. pFromCol determines which columns
|
---|
1334 | ** in the current table point to the foreign key. If pFromCol==0 then
|
---|
1335 | ** connect the key to the last column inserted. pTo is the name of
|
---|
1336 | ** the table referred to. pToCol is a list of tables in the other
|
---|
1337 | ** pTo table that the foreign key points to. flags contains all
|
---|
1338 | ** information about the conflict resolution algorithms specified
|
---|
1339 | ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
---|
1340 | **
|
---|
1341 | ** An FKey structure is created and added to the table currently
|
---|
1342 | ** under construction in the pParse->pNewTable field. The new FKey
|
---|
1343 | ** is not linked into db->aFKey at this point - that does not happen
|
---|
1344 | ** until sqliteEndTable().
|
---|
1345 | **
|
---|
1346 | ** The foreign key is set for IMMEDIATE processing. A subsequent call
|
---|
1347 | ** to sqliteDeferForeignKey() might change this to DEFERRED.
|
---|
1348 | */
|
---|
1349 | void sqliteCreateForeignKey(
|
---|
1350 | Parse *pParse, /* Parsing context */
|
---|
1351 | IdList *pFromCol, /* Columns in this table that point to other table */
|
---|
1352 | Token *pTo, /* Name of the other table */
|
---|
1353 | IdList *pToCol, /* Columns in the other table */
|
---|
1354 | int flags /* Conflict resolution algorithms. */
|
---|
1355 | ){
|
---|
1356 | Table *p = pParse->pNewTable;
|
---|
1357 | int nByte;
|
---|
1358 | int i;
|
---|
1359 | int nCol;
|
---|
1360 | char *z;
|
---|
1361 | FKey *pFKey = 0;
|
---|
1362 |
|
---|
1363 | assert( pTo!=0 );
|
---|
1364 | if( p==0 || pParse->nErr ) goto fk_end;
|
---|
1365 | if( pFromCol==0 ){
|
---|
1366 | int iCol = p->nCol-1;
|
---|
1367 | if( iCol<0 ) goto fk_end;
|
---|
1368 | if( pToCol && pToCol->nId!=1 ){
|
---|
1369 | sqliteErrorMsg(pParse, "foreign key on %s"
|
---|
1370 | " should reference only one column of table %T",
|
---|
1371 | p->aCol[iCol].zName, pTo);
|
---|
1372 | goto fk_end;
|
---|
1373 | }
|
---|
1374 | nCol = 1;
|
---|
1375 | }else if( pToCol && pToCol->nId!=pFromCol->nId ){
|
---|
1376 | sqliteErrorMsg(pParse,
|
---|
1377 | "number of columns in foreign key does not match the number of "
|
---|
1378 | "columns in the referenced table");
|
---|
1379 | goto fk_end;
|
---|
1380 | }else{
|
---|
1381 | nCol = pFromCol->nId;
|
---|
1382 | }
|
---|
1383 | nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
---|
1384 | if( pToCol ){
|
---|
1385 | for(i=0; i<pToCol->nId; i++){
|
---|
1386 | nByte += strlen(pToCol->a[i].zName) + 1;
|
---|
1387 | }
|
---|
1388 | }
|
---|
1389 | pFKey = sqliteMalloc( nByte );
|
---|
1390 | if( pFKey==0 ) goto fk_end;
|
---|
1391 | pFKey->pFrom = p;
|
---|
1392 | pFKey->pNextFrom = p->pFKey;
|
---|
1393 | z = (char*)&pFKey[1];
|
---|
1394 | pFKey->aCol = (struct sColMap*)z;
|
---|
1395 | z += sizeof(struct sColMap)*nCol;
|
---|
1396 | pFKey->zTo = z;
|
---|
1397 | memcpy(z, pTo->z, pTo->n);
|
---|
1398 | z[pTo->n] = 0;
|
---|
1399 | z += pTo->n+1;
|
---|
1400 | pFKey->pNextTo = 0;
|
---|
1401 | pFKey->nCol = nCol;
|
---|
1402 | if( pFromCol==0 ){
|
---|
1403 | pFKey->aCol[0].iFrom = p->nCol-1;
|
---|
1404 | }else{
|
---|
1405 | for(i=0; i<nCol; i++){
|
---|
1406 | int j;
|
---|
1407 | for(j=0; j<p->nCol; j++){
|
---|
1408 | if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
---|
1409 | pFKey->aCol[i].iFrom = j;
|
---|
1410 | break;
|
---|
1411 | }
|
---|
1412 | }
|
---|
1413 | if( j>=p->nCol ){
|
---|
1414 | sqliteErrorMsg(pParse,
|
---|
1415 | "unknown column \"%s\" in foreign key definition",
|
---|
1416 | pFromCol->a[i].zName);
|
---|
1417 | goto fk_end;
|
---|
1418 | }
|
---|
1419 | }
|
---|
1420 | }
|
---|
1421 | if( pToCol ){
|
---|
1422 | for(i=0; i<nCol; i++){
|
---|
1423 | int n = strlen(pToCol->a[i].zName);
|
---|
1424 | pFKey->aCol[i].zCol = z;
|
---|
1425 | memcpy(z, pToCol->a[i].zName, n);
|
---|
1426 | z[n] = 0;
|
---|
1427 | z += n+1;
|
---|
1428 | }
|
---|
1429 | }
|
---|
1430 | pFKey->isDeferred = 0;
|
---|
1431 | pFKey->deleteConf = flags & 0xff;
|
---|
1432 | pFKey->updateConf = (flags >> 8 ) & 0xff;
|
---|
1433 | pFKey->insertConf = (flags >> 16 ) & 0xff;
|
---|
1434 |
|
---|
1435 | /* Link the foreign key to the table as the last step.
|
---|
1436 | */
|
---|
1437 | p->pFKey = pFKey;
|
---|
1438 | pFKey = 0;
|
---|
1439 |
|
---|
1440 | fk_end:
|
---|
1441 | sqliteFree(pFKey);
|
---|
1442 | sqliteIdListDelete(pFromCol);
|
---|
1443 | sqliteIdListDelete(pToCol);
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | /*
|
---|
1447 | ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
---|
1448 | ** clause is seen as part of a foreign key definition. The isDeferred
|
---|
1449 | ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
---|
1450 | ** The behavior of the most recently created foreign key is adjusted
|
---|
1451 | ** accordingly.
|
---|
1452 | */
|
---|
1453 | void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
|
---|
1454 | Table *pTab;
|
---|
1455 | FKey *pFKey;
|
---|
1456 | if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
---|
1457 | pFKey->isDeferred = isDeferred;
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 | /*
|
---|
1461 | ** Create a new index for an SQL table. pIndex is the name of the index
|
---|
1462 | ** and pTable is the name of the table that is to be indexed. Both will
|
---|
1463 | ** be NULL for a primary key or an index that is created to satisfy a
|
---|
1464 | ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
---|
1465 | ** as the table to be indexed. pParse->pNewTable is a table that is
|
---|
1466 | ** currently being constructed by a CREATE TABLE statement.
|
---|
1467 | **
|
---|
1468 | ** pList is a list of columns to be indexed. pList will be NULL if this
|
---|
1469 | ** is a primary key or unique-constraint on the most recent column added
|
---|
1470 | ** to the table currently under construction.
|
---|
1471 | */
|
---|
1472 | void sqliteCreateIndex(
|
---|
1473 | Parse *pParse, /* All information about this parse */
|
---|
1474 | Token *pName, /* Name of the index. May be NULL */
|
---|
1475 | SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
|
---|
1476 | IdList *pList, /* A list of columns to be indexed */
|
---|
1477 | int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
---|
1478 | Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
|
---|
1479 | Token *pEnd /* The ")" that closes the CREATE INDEX statement */
|
---|
1480 | ){
|
---|
1481 | Table *pTab; /* Table to be indexed */
|
---|
1482 | Index *pIndex; /* The index to be created */
|
---|
1483 | char *zName = 0;
|
---|
1484 | int i, j;
|
---|
1485 | Token nullId; /* Fake token for an empty ID list */
|
---|
1486 | DbFixer sFix; /* For assigning database names to pTable */
|
---|
1487 | int isTemp; /* True for a temporary index */
|
---|
1488 | sqlite *db = pParse->db;
|
---|
1489 |
|
---|
1490 | if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
|
---|
1491 | if( db->init.busy
|
---|
1492 | && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
|
---|
1493 | && sqliteFixSrcList(&sFix, pTable)
|
---|
1494 | ){
|
---|
1495 | goto exit_create_index;
|
---|
1496 | }
|
---|
1497 |
|
---|
1498 | /*
|
---|
1499 | ** Find the table that is to be indexed. Return early if not found.
|
---|
1500 | */
|
---|
1501 | if( pTable!=0 ){
|
---|
1502 | assert( pName!=0 );
|
---|
1503 | assert( pTable->nSrc==1 );
|
---|
1504 | pTab = sqliteSrcListLookup(pParse, pTable);
|
---|
1505 | }else{
|
---|
1506 | assert( pName==0 );
|
---|
1507 | pTab = pParse->pNewTable;
|
---|
1508 | }
|
---|
1509 | if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
---|
1510 | if( pTab->readOnly ){
|
---|
1511 | sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
---|
1512 | goto exit_create_index;
|
---|
1513 | }
|
---|
1514 | if( pTab->iDb>=2 && db->init.busy==0 ){
|
---|
1515 | sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
|
---|
1516 | goto exit_create_index;
|
---|
1517 | }
|
---|
1518 | if( pTab->pSelect ){
|
---|
1519 | sqliteErrorMsg(pParse, "views may not be indexed");
|
---|
1520 | goto exit_create_index;
|
---|
1521 | }
|
---|
1522 | isTemp = pTab->iDb==1;
|
---|
1523 |
|
---|
1524 | /*
|
---|
1525 | ** Find the name of the index. Make sure there is not already another
|
---|
1526 | ** index or table with the same name.
|
---|
1527 | **
|
---|
1528 | ** Exception: If we are reading the names of permanent indices from the
|
---|
1529 | ** sqlite_master table (because some other process changed the schema) and
|
---|
1530 | ** one of the index names collides with the name of a temporary table or
|
---|
1531 | ** index, then we will continue to process this index.
|
---|
1532 | **
|
---|
1533 | ** If pName==0 it means that we are
|
---|
1534 | ** dealing with a primary key or UNIQUE constraint. We have to invent our
|
---|
1535 | ** own name.
|
---|
1536 | */
|
---|
1537 | if( pName && !db->init.busy ){
|
---|
1538 | Index *pISameName; /* Another index with the same name */
|
---|
1539 | Table *pTSameName; /* A table with same name as the index */
|
---|
1540 | zName = sqliteTableNameFromToken(pName);
|
---|
1541 | if( zName==0 ) goto exit_create_index;
|
---|
1542 | if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
|
---|
1543 | sqliteErrorMsg(pParse, "index %s already exists", zName);
|
---|
1544 | goto exit_create_index;
|
---|
1545 | }
|
---|
1546 | if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
|
---|
1547 | sqliteErrorMsg(pParse, "there is already a table named %s", zName);
|
---|
1548 | goto exit_create_index;
|
---|
1549 | }
|
---|
1550 | }else if( pName==0 ){
|
---|
1551 | char zBuf[30];
|
---|
1552 | int n;
|
---|
1553 | Index *pLoop;
|
---|
1554 | for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
---|
1555 | sprintf(zBuf,"%d)",n);
|
---|
1556 | zName = 0;
|
---|
1557 | sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
|
---|
1558 | if( zName==0 ) goto exit_create_index;
|
---|
1559 | }else{
|
---|
1560 | zName = sqliteTableNameFromToken(pName);
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 | /* Check for authorization to create an index.
|
---|
1564 | */
|
---|
1565 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
1566 | {
|
---|
1567 | const char *zDb = db->aDb[pTab->iDb].zName;
|
---|
1568 |
|
---|
1569 | assert( pTab->iDb==db->init.iDb || isTemp );
|
---|
1570 | if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
---|
1571 | goto exit_create_index;
|
---|
1572 | }
|
---|
1573 | i = SQLITE_CREATE_INDEX;
|
---|
1574 | if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
|
---|
1575 | if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
---|
1576 | goto exit_create_index;
|
---|
1577 | }
|
---|
1578 | }
|
---|
1579 | #endif
|
---|
1580 |
|
---|
1581 | /* If pList==0, it means this routine was called to make a primary
|
---|
1582 | ** key out of the last column added to the table under construction.
|
---|
1583 | ** So create a fake list to simulate this.
|
---|
1584 | */
|
---|
1585 | if( pList==0 ){
|
---|
1586 | nullId.z = pTab->aCol[pTab->nCol-1].zName;
|
---|
1587 | nullId.n = strlen(nullId.z);
|
---|
1588 | pList = sqliteIdListAppend(0, &nullId);
|
---|
1589 | if( pList==0 ) goto exit_create_index;
|
---|
1590 | }
|
---|
1591 |
|
---|
1592 | /*
|
---|
1593 | ** Allocate the index structure.
|
---|
1594 | */
|
---|
1595 | pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
|
---|
1596 | sizeof(int)*pList->nId );
|
---|
1597 | if( pIndex==0 ) goto exit_create_index;
|
---|
1598 | pIndex->aiColumn = (int*)&pIndex[1];
|
---|
1599 | pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
|
---|
1600 | strcpy(pIndex->zName, zName);
|
---|
1601 | pIndex->pTable = pTab;
|
---|
1602 | pIndex->nColumn = pList->nId;
|
---|
1603 | pIndex->onError = onError;
|
---|
1604 | pIndex->autoIndex = pName==0;
|
---|
1605 | pIndex->iDb = isTemp ? 1 : db->init.iDb;
|
---|
1606 |
|
---|
1607 | /* Scan the names of the columns of the table to be indexed and
|
---|
1608 | ** load the column indices into the Index structure. Report an error
|
---|
1609 | ** if any column is not found.
|
---|
1610 | */
|
---|
1611 | for(i=0; i<pList->nId; i++){
|
---|
1612 | for(j=0; j<pTab->nCol; j++){
|
---|
1613 | if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
|
---|
1614 | }
|
---|
1615 | if( j>=pTab->nCol ){
|
---|
1616 | sqliteErrorMsg(pParse, "table %s has no column named %s",
|
---|
1617 | pTab->zName, pList->a[i].zName);
|
---|
1618 | sqliteFree(pIndex);
|
---|
1619 | goto exit_create_index;
|
---|
1620 | }
|
---|
1621 | pIndex->aiColumn[i] = j;
|
---|
1622 | }
|
---|
1623 |
|
---|
1624 | /* Link the new Index structure to its table and to the other
|
---|
1625 | ** in-memory database structures.
|
---|
1626 | */
|
---|
1627 | if( !pParse->explain ){
|
---|
1628 | Index *p;
|
---|
1629 | p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
|
---|
1630 | pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
---|
1631 | if( p ){
|
---|
1632 | assert( p==pIndex ); /* Malloc must have failed */
|
---|
1633 | sqliteFree(pIndex);
|
---|
1634 | goto exit_create_index;
|
---|
1635 | }
|
---|
1636 | db->flags |= SQLITE_InternChanges;
|
---|
1637 | }
|
---|
1638 |
|
---|
1639 | /* When adding an index to the list of indices for a table, make
|
---|
1640 | ** sure all indices labeled OE_Replace come after all those labeled
|
---|
1641 | ** OE_Ignore. This is necessary for the correct operation of UPDATE
|
---|
1642 | ** and INSERT.
|
---|
1643 | */
|
---|
1644 | if( onError!=OE_Replace || pTab->pIndex==0
|
---|
1645 | || pTab->pIndex->onError==OE_Replace){
|
---|
1646 | pIndex->pNext = pTab->pIndex;
|
---|
1647 | pTab->pIndex = pIndex;
|
---|
1648 | }else{
|
---|
1649 | Index *pOther = pTab->pIndex;
|
---|
1650 | while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
---|
1651 | pOther = pOther->pNext;
|
---|
1652 | }
|
---|
1653 | pIndex->pNext = pOther->pNext;
|
---|
1654 | pOther->pNext = pIndex;
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | /* If the db->init.busy is 1 it means we are reading the SQL off the
|
---|
1658 | ** "sqlite_master" table on the disk. So do not write to the disk
|
---|
1659 | ** again. Extract the table number from the db->init.newTnum field.
|
---|
1660 | */
|
---|
1661 | if( db->init.busy && pTable!=0 ){
|
---|
1662 | pIndex->tnum = db->init.newTnum;
|
---|
1663 | }
|
---|
1664 |
|
---|
1665 | /* If the db->init.busy is 0 then create the index on disk. This
|
---|
1666 | ** involves writing the index into the master table and filling in the
|
---|
1667 | ** index with the current table contents.
|
---|
1668 | **
|
---|
1669 | ** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
---|
1670 | ** command. db->init.busy is 1 when a database is opened and
|
---|
1671 | ** CREATE INDEX statements are read out of the master table. In
|
---|
1672 | ** the latter case the index already exists on disk, which is why
|
---|
1673 | ** we don't want to recreate it.
|
---|
1674 | **
|
---|
1675 | ** If pTable==0 it means this index is generated as a primary key
|
---|
1676 | ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
---|
1677 | ** has just been created, it contains no data and the index initialization
|
---|
1678 | ** step can be skipped.
|
---|
1679 | */
|
---|
1680 | else if( db->init.busy==0 ){
|
---|
1681 | int n;
|
---|
1682 | Vdbe *v;
|
---|
1683 | int lbl1, lbl2;
|
---|
1684 | int i;
|
---|
1685 | int addr;
|
---|
1686 |
|
---|
1687 | v = sqliteGetVdbe(pParse);
|
---|
1688 | if( v==0 ) goto exit_create_index;
|
---|
1689 | if( pTable!=0 ){
|
---|
1690 | sqliteBeginWriteOperation(pParse, 0, isTemp);
|
---|
1691 | sqliteOpenMasterTable(v, isTemp);
|
---|
1692 | }
|
---|
1693 | sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
---|
1694 | sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
|
---|
1695 | sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
|
---|
1696 | sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
|
---|
1697 | sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
|
---|
1698 | pIndex->tnum = 0;
|
---|
1699 | if( pTable ){
|
---|
1700 | sqliteVdbeCode(v,
|
---|
1701 | OP_Dup, 0, 0,
|
---|
1702 | OP_Integer, isTemp, 0,
|
---|
1703 | OP_OpenWrite, 1, 0,
|
---|
1704 | 0);
|
---|
1705 | }
|
---|
1706 | addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
1707 | if( pStart && pEnd ){
|
---|
1708 | n = Addr(pEnd->z) - Addr(pStart->z) + 1;
|
---|
1709 | sqliteVdbeChangeP3(v, addr, pStart->z, n);
|
---|
1710 | }
|
---|
1711 | sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
---|
1712 | sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
---|
1713 | if( pTable ){
|
---|
1714 | sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
---|
1715 | sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
|
---|
1716 | lbl2 = sqliteVdbeMakeLabel(v);
|
---|
1717 | sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
|
---|
1718 | lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
|
---|
1719 | for(i=0; i<pIndex->nColumn; i++){
|
---|
1720 | int iCol = pIndex->aiColumn[i];
|
---|
1721 | if( pTab->iPKey==iCol ){
|
---|
1722 | sqliteVdbeAddOp(v, OP_Dup, i, 0);
|
---|
1723 | }else{
|
---|
1724 | sqliteVdbeAddOp(v, OP_Column, 2, iCol);
|
---|
1725 | }
|
---|
1726 | }
|
---|
1727 | sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
|
---|
1728 | if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
|
---|
1729 | sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
|
---|
1730 | "indexed columns are not unique", P3_STATIC);
|
---|
1731 | sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
|
---|
1732 | sqliteVdbeResolveLabel(v, lbl2);
|
---|
1733 | sqliteVdbeAddOp(v, OP_Close, 2, 0);
|
---|
1734 | sqliteVdbeAddOp(v, OP_Close, 1, 0);
|
---|
1735 | }
|
---|
1736 | if( pTable!=0 ){
|
---|
1737 | if( !isTemp ){
|
---|
1738 | sqliteChangeCookie(db, v);
|
---|
1739 | }
|
---|
1740 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
1741 | sqliteEndWriteOperation(pParse);
|
---|
1742 | }
|
---|
1743 | }
|
---|
1744 |
|
---|
1745 | /* Clean up before exiting */
|
---|
1746 | exit_create_index:
|
---|
1747 | sqliteIdListDelete(pList);
|
---|
1748 | sqliteSrcListDelete(pTable);
|
---|
1749 | sqliteFree(zName);
|
---|
1750 | return;
|
---|
1751 | }
|
---|
1752 |
|
---|
1753 | /*
|
---|
1754 | ** This routine will drop an existing named index. This routine
|
---|
1755 | ** implements the DROP INDEX statement.
|
---|
1756 | */
|
---|
1757 | void sqliteDropIndex(Parse *pParse, SrcList *pName){
|
---|
1758 | Index *pIndex;
|
---|
1759 | Vdbe *v;
|
---|
1760 | sqlite *db = pParse->db;
|
---|
1761 |
|
---|
1762 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
1763 | assert( pName->nSrc==1 );
|
---|
1764 | pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
---|
1765 | if( pIndex==0 ){
|
---|
1766 | sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
|
---|
1767 | goto exit_drop_index;
|
---|
1768 | }
|
---|
1769 | if( pIndex->autoIndex ){
|
---|
1770 | sqliteErrorMsg(pParse, "index associated with UNIQUE "
|
---|
1771 | "or PRIMARY KEY constraint cannot be dropped", 0);
|
---|
1772 | goto exit_drop_index;
|
---|
1773 | }
|
---|
1774 | if( pIndex->iDb>1 ){
|
---|
1775 | sqliteErrorMsg(pParse, "cannot alter schema of attached "
|
---|
1776 | "databases", 0);
|
---|
1777 | goto exit_drop_index;
|
---|
1778 | }
|
---|
1779 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
1780 | {
|
---|
1781 | int code = SQLITE_DROP_INDEX;
|
---|
1782 | Table *pTab = pIndex->pTable;
|
---|
1783 | const char *zDb = db->aDb[pIndex->iDb].zName;
|
---|
1784 | const char *zTab = SCHEMA_TABLE(pIndex->iDb);
|
---|
1785 | if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
---|
1786 | goto exit_drop_index;
|
---|
1787 | }
|
---|
1788 | if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
---|
1789 | if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
---|
1790 | goto exit_drop_index;
|
---|
1791 | }
|
---|
1792 | }
|
---|
1793 | #endif
|
---|
1794 |
|
---|
1795 | /* Generate code to remove the index and from the master table */
|
---|
1796 | v = sqliteGetVdbe(pParse);
|
---|
1797 | if( v ){
|
---|
1798 | static VdbeOpList dropIndex[] = {
|
---|
1799 | { OP_Rewind, 0, ADDR(9), 0},
|
---|
1800 | { OP_String, 0, 0, 0}, /* 1 */
|
---|
1801 | { OP_MemStore, 1, 1, 0},
|
---|
1802 | { OP_MemLoad, 1, 0, 0}, /* 3 */
|
---|
1803 | { OP_Column, 0, 1, 0},
|
---|
1804 | { OP_Eq, 0, ADDR(8), 0},
|
---|
1805 | { OP_Next, 0, ADDR(3), 0},
|
---|
1806 | { OP_Goto, 0, ADDR(9), 0},
|
---|
1807 | { OP_Delete, 0, 0, 0}, /* 8 */
|
---|
1808 | };
|
---|
1809 | int base;
|
---|
1810 |
|
---|
1811 | sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
|
---|
1812 | sqliteOpenMasterTable(v, pIndex->iDb);
|
---|
1813 | base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
|
---|
1814 | sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
|
---|
1815 | if( pIndex->iDb==0 ){
|
---|
1816 | sqliteChangeCookie(db, v);
|
---|
1817 | }
|
---|
1818 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
1819 | sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
|
---|
1820 | sqliteEndWriteOperation(pParse);
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 | /* Delete the in-memory description of this index.
|
---|
1824 | */
|
---|
1825 | if( !pParse->explain ){
|
---|
1826 | sqliteUnlinkAndDeleteIndex(db, pIndex);
|
---|
1827 | db->flags |= SQLITE_InternChanges;
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 | exit_drop_index:
|
---|
1831 | sqliteSrcListDelete(pName);
|
---|
1832 | }
|
---|
1833 |
|
---|
1834 | /*
|
---|
1835 | ** Append a new element to the given IdList. Create a new IdList if
|
---|
1836 | ** need be.
|
---|
1837 | **
|
---|
1838 | ** A new IdList is returned, or NULL if malloc() fails.
|
---|
1839 | */
|
---|
1840 | IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
|
---|
1841 | if( pList==0 ){
|
---|
1842 | pList = sqliteMalloc( sizeof(IdList) );
|
---|
1843 | if( pList==0 ) return 0;
|
---|
1844 | pList->nAlloc = 0;
|
---|
1845 | }
|
---|
1846 | if( pList->nId>=pList->nAlloc ){
|
---|
1847 | struct IdList_item *a;
|
---|
1848 | pList->nAlloc = pList->nAlloc*2 + 5;
|
---|
1849 | a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
|
---|
1850 | if( a==0 ){
|
---|
1851 | sqliteIdListDelete(pList);
|
---|
1852 | return 0;
|
---|
1853 | }
|
---|
1854 | pList->a = a;
|
---|
1855 | }
|
---|
1856 | memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
|
---|
1857 | if( pToken ){
|
---|
1858 | char **pz = &pList->a[pList->nId].zName;
|
---|
1859 | sqliteSetNString(pz, pToken->z, pToken->n, 0);
|
---|
1860 | if( *pz==0 ){
|
---|
1861 | sqliteIdListDelete(pList);
|
---|
1862 | return 0;
|
---|
1863 | }else{
|
---|
1864 | sqliteDequote(*pz);
|
---|
1865 | }
|
---|
1866 | }
|
---|
1867 | pList->nId++;
|
---|
1868 | return pList;
|
---|
1869 | }
|
---|
1870 |
|
---|
1871 | /*
|
---|
1872 | ** Append a new table name to the given SrcList. Create a new SrcList if
|
---|
1873 | ** need be. A new entry is created in the SrcList even if pToken is NULL.
|
---|
1874 | **
|
---|
1875 | ** A new SrcList is returned, or NULL if malloc() fails.
|
---|
1876 | **
|
---|
1877 | ** If pDatabase is not null, it means that the table has an optional
|
---|
1878 | ** database name prefix. Like this: "database.table". The pDatabase
|
---|
1879 | ** points to the table name and the pTable points to the database name.
|
---|
1880 | ** The SrcList.a[].zName field is filled with the table name which might
|
---|
1881 | ** come from pTable (if pDatabase is NULL) or from pDatabase.
|
---|
1882 | ** SrcList.a[].zDatabase is filled with the database name from pTable,
|
---|
1883 | ** or with NULL if no database is specified.
|
---|
1884 | **
|
---|
1885 | ** In other words, if call like this:
|
---|
1886 | **
|
---|
1887 | ** sqliteSrcListAppend(A,B,0);
|
---|
1888 | **
|
---|
1889 | ** Then B is a table name and the database name is unspecified. If called
|
---|
1890 | ** like this:
|
---|
1891 | **
|
---|
1892 | ** sqliteSrcListAppend(A,B,C);
|
---|
1893 | **
|
---|
1894 | ** Then C is the table name and B is the database name.
|
---|
1895 | */
|
---|
1896 | SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
|
---|
1897 | if( pList==0 ){
|
---|
1898 | pList = sqliteMalloc( sizeof(SrcList) );
|
---|
1899 | if( pList==0 ) return 0;
|
---|
1900 | pList->nAlloc = 1;
|
---|
1901 | }
|
---|
1902 | if( pList->nSrc>=pList->nAlloc ){
|
---|
1903 | SrcList *pNew;
|
---|
1904 | pList->nAlloc *= 2;
|
---|
1905 | pNew = sqliteRealloc(pList,
|
---|
1906 | sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
---|
1907 | if( pNew==0 ){
|
---|
1908 | sqliteSrcListDelete(pList);
|
---|
1909 | return 0;
|
---|
1910 | }
|
---|
1911 | pList = pNew;
|
---|
1912 | }
|
---|
1913 | memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
|
---|
1914 | if( pDatabase && pDatabase->z==0 ){
|
---|
1915 | pDatabase = 0;
|
---|
1916 | }
|
---|
1917 | if( pDatabase && pTable ){
|
---|
1918 | Token *pTemp = pDatabase;
|
---|
1919 | pDatabase = pTable;
|
---|
1920 | pTable = pTemp;
|
---|
1921 | }
|
---|
1922 | if( pTable ){
|
---|
1923 | char **pz = &pList->a[pList->nSrc].zName;
|
---|
1924 | sqliteSetNString(pz, pTable->z, pTable->n, 0);
|
---|
1925 | if( *pz==0 ){
|
---|
1926 | sqliteSrcListDelete(pList);
|
---|
1927 | return 0;
|
---|
1928 | }else{
|
---|
1929 | sqliteDequote(*pz);
|
---|
1930 | }
|
---|
1931 | }
|
---|
1932 | if( pDatabase ){
|
---|
1933 | char **pz = &pList->a[pList->nSrc].zDatabase;
|
---|
1934 | sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
|
---|
1935 | if( *pz==0 ){
|
---|
1936 | sqliteSrcListDelete(pList);
|
---|
1937 | return 0;
|
---|
1938 | }else{
|
---|
1939 | sqliteDequote(*pz);
|
---|
1940 | }
|
---|
1941 | }
|
---|
1942 | pList->a[pList->nSrc].iCursor = -1;
|
---|
1943 | pList->nSrc++;
|
---|
1944 | return pList;
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 | /*
|
---|
1948 | ** Assign cursors to all tables in a SrcList
|
---|
1949 | */
|
---|
1950 | void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
|
---|
1951 | int i;
|
---|
1952 | for(i=0; i<pList->nSrc; i++){
|
---|
1953 | if( pList->a[i].iCursor<0 ){
|
---|
1954 | pList->a[i].iCursor = pParse->nTab++;
|
---|
1955 | }
|
---|
1956 | }
|
---|
1957 | }
|
---|
1958 |
|
---|
1959 | /*
|
---|
1960 | ** Add an alias to the last identifier on the given identifier list.
|
---|
1961 | */
|
---|
1962 | void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
|
---|
1963 | if( pList && pList->nSrc>0 ){
|
---|
1964 | int i = pList->nSrc - 1;
|
---|
1965 | sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
|
---|
1966 | sqliteDequote(pList->a[i].zAlias);
|
---|
1967 | }
|
---|
1968 | }
|
---|
1969 |
|
---|
1970 | /*
|
---|
1971 | ** Delete an IdList.
|
---|
1972 | */
|
---|
1973 | void sqliteIdListDelete(IdList *pList){
|
---|
1974 | int i;
|
---|
1975 | if( pList==0 ) return;
|
---|
1976 | for(i=0; i<pList->nId; i++){
|
---|
1977 | sqliteFree(pList->a[i].zName);
|
---|
1978 | }
|
---|
1979 | sqliteFree(pList->a);
|
---|
1980 | sqliteFree(pList);
|
---|
1981 | }
|
---|
1982 |
|
---|
1983 | /*
|
---|
1984 | ** Return the index in pList of the identifier named zId. Return -1
|
---|
1985 | ** if not found.
|
---|
1986 | */
|
---|
1987 | int sqliteIdListIndex(IdList *pList, const char *zName){
|
---|
1988 | int i;
|
---|
1989 | if( pList==0 ) return -1;
|
---|
1990 | for(i=0; i<pList->nId; i++){
|
---|
1991 | if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
|
---|
1992 | }
|
---|
1993 | return -1;
|
---|
1994 | }
|
---|
1995 |
|
---|
1996 | /*
|
---|
1997 | ** Delete an entire SrcList including all its substructure.
|
---|
1998 | */
|
---|
1999 | void sqliteSrcListDelete(SrcList *pList){
|
---|
2000 | int i;
|
---|
2001 | if( pList==0 ) return;
|
---|
2002 | for(i=0; i<pList->nSrc; i++){
|
---|
2003 | sqliteFree(pList->a[i].zDatabase);
|
---|
2004 | sqliteFree(pList->a[i].zName);
|
---|
2005 | sqliteFree(pList->a[i].zAlias);
|
---|
2006 | if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
|
---|
2007 | sqliteDeleteTable(0, pList->a[i].pTab);
|
---|
2008 | }
|
---|
2009 | sqliteSelectDelete(pList->a[i].pSelect);
|
---|
2010 | sqliteExprDelete(pList->a[i].pOn);
|
---|
2011 | sqliteIdListDelete(pList->a[i].pUsing);
|
---|
2012 | }
|
---|
2013 | sqliteFree(pList);
|
---|
2014 | }
|
---|
2015 |
|
---|
2016 | /*
|
---|
2017 | ** Begin a transaction
|
---|
2018 | */
|
---|
2019 | void sqliteBeginTransaction(Parse *pParse, int onError){
|
---|
2020 | sqlite *db;
|
---|
2021 |
|
---|
2022 | if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
---|
2023 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
2024 | if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
---|
2025 | if( db->flags & SQLITE_InTrans ){
|
---|
2026 | sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
|
---|
2027 | return;
|
---|
2028 | }
|
---|
2029 | sqliteBeginWriteOperation(pParse, 0, 0);
|
---|
2030 | if( !pParse->explain ){
|
---|
2031 | db->flags |= SQLITE_InTrans;
|
---|
2032 | db->onError = onError;
|
---|
2033 | }
|
---|
2034 | }
|
---|
2035 |
|
---|
2036 | /*
|
---|
2037 | ** Commit a transaction
|
---|
2038 | */
|
---|
2039 | void sqliteCommitTransaction(Parse *pParse){
|
---|
2040 | sqlite *db;
|
---|
2041 |
|
---|
2042 | if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
---|
2043 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
2044 | if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
---|
2045 | if( (db->flags & SQLITE_InTrans)==0 ){
|
---|
2046 | sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
|
---|
2047 | return;
|
---|
2048 | }
|
---|
2049 | if( !pParse->explain ){
|
---|
2050 | db->flags &= ~SQLITE_InTrans;
|
---|
2051 | }
|
---|
2052 | sqliteEndWriteOperation(pParse);
|
---|
2053 | if( !pParse->explain ){
|
---|
2054 | db->onError = OE_Default;
|
---|
2055 | }
|
---|
2056 | }
|
---|
2057 |
|
---|
2058 | /*
|
---|
2059 | ** Rollback a transaction
|
---|
2060 | */
|
---|
2061 | void sqliteRollbackTransaction(Parse *pParse){
|
---|
2062 | sqlite *db;
|
---|
2063 | Vdbe *v;
|
---|
2064 |
|
---|
2065 | if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
---|
2066 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
2067 | if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
---|
2068 | if( (db->flags & SQLITE_InTrans)==0 ){
|
---|
2069 | sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
|
---|
2070 | return;
|
---|
2071 | }
|
---|
2072 | v = sqliteGetVdbe(pParse);
|
---|
2073 | if( v ){
|
---|
2074 | sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
|
---|
2075 | }
|
---|
2076 | if( !pParse->explain ){
|
---|
2077 | db->flags &= ~SQLITE_InTrans;
|
---|
2078 | db->onError = OE_Default;
|
---|
2079 | }
|
---|
2080 | }
|
---|
2081 |
|
---|
2082 | /*
|
---|
2083 | ** Generate VDBE code that will verify the schema cookie for all
|
---|
2084 | ** named database files.
|
---|
2085 | */
|
---|
2086 | void sqliteCodeVerifySchema(Parse *pParse, int iDb){
|
---|
2087 | sqlite *db = pParse->db;
|
---|
2088 | Vdbe *v = sqliteGetVdbe(pParse);
|
---|
2089 | assert( iDb>=0 && iDb<db->nDb );
|
---|
2090 | assert( db->aDb[iDb].pBt!=0 );
|
---|
2091 | if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
|
---|
2092 | sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
|
---|
2093 | DbSetProperty(db, iDb, DB_Cookie);
|
---|
2094 | }
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 | /*
|
---|
2098 | ** Generate VDBE code that prepares for doing an operation that
|
---|
2099 | ** might change the database.
|
---|
2100 | **
|
---|
2101 | ** This routine starts a new transaction if we are not already within
|
---|
2102 | ** a transaction. If we are already within a transaction, then a checkpoint
|
---|
2103 | ** is set if the setCheckpoint parameter is true. A checkpoint should
|
---|
2104 | ** be set for operations that might fail (due to a constraint) part of
|
---|
2105 | ** the way through and which will need to undo some writes without having to
|
---|
2106 | ** rollback the whole transaction. For operations where all constraints
|
---|
2107 | ** can be checked before any changes are made to the database, it is never
|
---|
2108 | ** necessary to undo a write and the checkpoint should not be set.
|
---|
2109 | **
|
---|
2110 | ** Only database iDb and the temp database are made writable by this call.
|
---|
2111 | ** If iDb==0, then the main and temp databases are made writable. If
|
---|
2112 | ** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
---|
2113 | ** specified auxiliary database and the temp database are made writable.
|
---|
2114 | */
|
---|
2115 | void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
|
---|
2116 | Vdbe *v;
|
---|
2117 | sqlite *db = pParse->db;
|
---|
2118 | if( DbHasProperty(db, iDb, DB_Locked) ) return;
|
---|
2119 | v = sqliteGetVdbe(pParse);
|
---|
2120 | if( v==0 ) return;
|
---|
2121 | if( !db->aDb[iDb].inTrans ){
|
---|
2122 | sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
|
---|
2123 | DbSetProperty(db, iDb, DB_Locked);
|
---|
2124 | sqliteCodeVerifySchema(pParse, iDb);
|
---|
2125 | if( iDb!=1 ){
|
---|
2126 | sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
|
---|
2127 | }
|
---|
2128 | }else if( setCheckpoint ){
|
---|
2129 | sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
|
---|
2130 | DbSetProperty(db, iDb, DB_Locked);
|
---|
2131 | }
|
---|
2132 | }
|
---|
2133 |
|
---|
2134 | /*
|
---|
2135 | ** Generate code that concludes an operation that may have changed
|
---|
2136 | ** the database. If a statement transaction was started, then emit
|
---|
2137 | ** an OP_Commit that will cause the changes to be committed to disk.
|
---|
2138 | **
|
---|
2139 | ** Note that checkpoints are automatically committed at the end of
|
---|
2140 | ** a statement. Note also that there can be multiple calls to
|
---|
2141 | ** sqliteBeginWriteOperation() but there should only be a single
|
---|
2142 | ** call to sqliteEndWriteOperation() at the conclusion of the statement.
|
---|
2143 | */
|
---|
2144 | void sqliteEndWriteOperation(Parse *pParse){
|
---|
2145 | Vdbe *v;
|
---|
2146 | sqlite *db = pParse->db;
|
---|
2147 | if( pParse->trigStack ) return; /* if this is in a trigger */
|
---|
2148 | v = sqliteGetVdbe(pParse);
|
---|
2149 | if( v==0 ) return;
|
---|
2150 | if( db->flags & SQLITE_InTrans ){
|
---|
2151 | /* A BEGIN has executed. Do not commit until we see an explicit
|
---|
2152 | ** COMMIT statement. */
|
---|
2153 | }else{
|
---|
2154 | sqliteVdbeAddOp(v, OP_Commit, 0, 0);
|
---|
2155 | }
|
---|
2156 | }
|
---|