[205] | 1 | /*
|
---|
| 2 | ** 2001 September 15
|
---|
| 3 | **
|
---|
| 4 | ** The author disclaims copyright to this source code. In place of
|
---|
| 5 | ** a legal notice, here is a blessing:
|
---|
| 6 | **
|
---|
| 7 | ** May you do good and not evil.
|
---|
| 8 | ** May you find forgiveness for yourself and forgive others.
|
---|
| 9 | ** May you share freely, never taking more than you give.
|
---|
| 10 | **
|
---|
| 11 | *************************************************************************
|
---|
| 12 | ** This file contains C code routines that are called by the SQLite parser
|
---|
| 13 | ** when syntax rules are reduced. The routines in this file handle the
|
---|
| 14 | ** following kinds of SQL syntax:
|
---|
| 15 | **
|
---|
| 16 | ** CREATE TABLE
|
---|
| 17 | ** DROP TABLE
|
---|
| 18 | ** CREATE INDEX
|
---|
| 19 | ** DROP INDEX
|
---|
| 20 | ** creating ID lists
|
---|
| 21 | ** BEGIN TRANSACTION
|
---|
| 22 | ** COMMIT
|
---|
| 23 | ** ROLLBACK
|
---|
| 24 | ** PRAGMA
|
---|
| 25 | **
|
---|
| 26 | ** $Id: build.c,v 1.176.2.3 2004/08/28 14:53:34 drh Exp $
|
---|
| 27 | */
|
---|
| 28 | #include "sqliteInt.h"
|
---|
| 29 | #include <ctype.h>
|
---|
| 30 |
|
---|
| 31 | /*
|
---|
| 32 | ** This routine is called when a new SQL statement is beginning to
|
---|
| 33 | ** be parsed. Check to see if the schema for the database needs
|
---|
| 34 | ** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
|
---|
| 35 | ** If it does, then read it.
|
---|
| 36 | */
|
---|
| 37 | void sqliteBeginParse(Parse *pParse, int explainFlag){
|
---|
| 38 | sqlite *db = pParse->db;
|
---|
| 39 | int i;
|
---|
| 40 | pParse->explain = explainFlag;
|
---|
| 41 | if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
|
---|
| 42 | int rc = sqliteInit(db, &pParse->zErrMsg);
|
---|
| 43 | if( rc!=SQLITE_OK ){
|
---|
| 44 | pParse->rc = rc;
|
---|
| 45 | pParse->nErr++;
|
---|
| 46 | }
|
---|
| 47 | }
|
---|
| 48 | for(i=0; i<db->nDb; i++){
|
---|
| 49 | DbClearProperty(db, i, DB_Locked);
|
---|
| 50 | if( !db->aDb[i].inTrans ){
|
---|
| 51 | DbClearProperty(db, i, DB_Cookie);
|
---|
| 52 | }
|
---|
| 53 | }
|
---|
| 54 | pParse->nVar = 0;
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | /*
|
---|
| 58 | ** This routine is called after a single SQL statement has been
|
---|
| 59 | ** parsed and we want to execute the VDBE code to implement
|
---|
| 60 | ** that statement. Prior action routines should have already
|
---|
| 61 | ** constructed VDBE code to do the work of the SQL statement.
|
---|
| 62 | ** This routine just has to execute the VDBE code.
|
---|
| 63 | **
|
---|
| 64 | ** Note that if an error occurred, it might be the case that
|
---|
| 65 | ** no VDBE code was generated.
|
---|
| 66 | */
|
---|
| 67 | void sqliteExec(Parse *pParse){
|
---|
| 68 | sqlite *db = pParse->db;
|
---|
| 69 | Vdbe *v = pParse->pVdbe;
|
---|
| 70 |
|
---|
| 71 | if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
|
---|
| 72 | sqliteVdbeAddOp(v, OP_Halt, 0, 0);
|
---|
| 73 | }
|
---|
| 74 | if( sqlite_malloc_failed ) return;
|
---|
| 75 | if( v && pParse->nErr==0 ){
|
---|
| 76 | FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
---|
| 77 | sqliteVdbeTrace(v, trace);
|
---|
| 78 | sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
|
---|
| 79 | pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
|
---|
| 80 | pParse->colNamesSet = 0;
|
---|
| 81 | }else if( pParse->rc==SQLITE_OK ){
|
---|
| 82 | pParse->rc = SQLITE_ERROR;
|
---|
| 83 | }
|
---|
| 84 | pParse->nTab = 0;
|
---|
| 85 | pParse->nMem = 0;
|
---|
| 86 | pParse->nSet = 0;
|
---|
| 87 | pParse->nAgg = 0;
|
---|
| 88 | pParse->nVar = 0;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | /*
|
---|
| 92 | ** Locate the in-memory structure that describes
|
---|
| 93 | ** a particular database table given the name
|
---|
| 94 | ** of that table and (optionally) the name of the database
|
---|
| 95 | ** containing the table. Return NULL if not found.
|
---|
| 96 | **
|
---|
| 97 | ** If zDatabase is 0, all databases are searched for the
|
---|
| 98 | ** table and the first matching table is returned. (No checking
|
---|
| 99 | ** for duplicate table names is done.) The search order is
|
---|
| 100 | ** TEMP first, then MAIN, then any auxiliary databases added
|
---|
| 101 | ** using the ATTACH command.
|
---|
| 102 | **
|
---|
| 103 | ** See also sqliteLocateTable().
|
---|
| 104 | */
|
---|
| 105 | Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
|
---|
| 106 | Table *p = 0;
|
---|
| 107 | int i;
|
---|
| 108 | for(i=0; i<db->nDb; i++){
|
---|
| 109 | int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
---|
| 110 | if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
---|
| 111 | p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
|
---|
| 112 | if( p ) break;
|
---|
| 113 | }
|
---|
| 114 | return p;
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | /*
|
---|
| 118 | ** Locate the in-memory structure that describes
|
---|
| 119 | ** a particular database table given the name
|
---|
| 120 | ** of that table and (optionally) the name of the database
|
---|
| 121 | ** containing the table. Return NULL if not found.
|
---|
| 122 | ** Also leave an error message in pParse->zErrMsg.
|
---|
| 123 | **
|
---|
| 124 | ** The difference between this routine and sqliteFindTable()
|
---|
| 125 | ** is that this routine leaves an error message in pParse->zErrMsg
|
---|
| 126 | ** where sqliteFindTable() does not.
|
---|
| 127 | */
|
---|
| 128 | Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
|
---|
| 129 | Table *p;
|
---|
| 130 |
|
---|
| 131 | p = sqliteFindTable(pParse->db, zName, zDbase);
|
---|
| 132 | if( p==0 ){
|
---|
| 133 | if( zDbase ){
|
---|
| 134 | sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
|
---|
| 135 | }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
|
---|
| 136 | sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
|
---|
| 137 | zName, zDbase);
|
---|
| 138 | }else{
|
---|
| 139 | sqliteErrorMsg(pParse, "no such table: %s", zName);
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 | return p;
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | /*
|
---|
| 146 | ** Locate the in-memory structure that describes
|
---|
| 147 | ** a particular index given the name of that index
|
---|
| 148 | ** and the name of the database that contains the index.
|
---|
| 149 | ** Return NULL if not found.
|
---|
| 150 | **
|
---|
| 151 | ** If zDatabase is 0, all databases are searched for the
|
---|
| 152 | ** table and the first matching index is returned. (No checking
|
---|
| 153 | ** for duplicate index names is done.) The search order is
|
---|
| 154 | ** TEMP first, then MAIN, then any auxiliary databases added
|
---|
| 155 | ** using the ATTACH command.
|
---|
| 156 | */
|
---|
| 157 | Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
|
---|
| 158 | Index *p = 0;
|
---|
| 159 | int i;
|
---|
| 160 | for(i=0; i<db->nDb; i++){
|
---|
| 161 | int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
---|
| 162 | if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
|
---|
| 163 | p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
|
---|
| 164 | if( p ) break;
|
---|
| 165 | }
|
---|
| 166 | return p;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | /*
|
---|
| 170 | ** Remove the given index from the index hash table, and free
|
---|
| 171 | ** its memory structures.
|
---|
| 172 | **
|
---|
| 173 | ** The index is removed from the database hash tables but
|
---|
| 174 | ** it is not unlinked from the Table that it indexes.
|
---|
| 175 | ** Unlinking from the Table must be done by the calling function.
|
---|
| 176 | */
|
---|
| 177 | static void sqliteDeleteIndex(sqlite *db, Index *p){
|
---|
| 178 | Index *pOld;
|
---|
| 179 |
|
---|
| 180 | assert( db!=0 && p->zName!=0 );
|
---|
| 181 | pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
|
---|
| 182 | strlen(p->zName)+1, 0);
|
---|
| 183 | if( pOld!=0 && pOld!=p ){
|
---|
| 184 | sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
|
---|
| 185 | strlen(pOld->zName)+1, pOld);
|
---|
| 186 | }
|
---|
| 187 | sqliteFree(p);
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | /*
|
---|
| 191 | ** Unlink the given index from its table, then remove
|
---|
| 192 | ** the index from the index hash table and free its memory
|
---|
| 193 | ** structures.
|
---|
| 194 | */
|
---|
| 195 | void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
|
---|
| 196 | if( pIndex->pTable->pIndex==pIndex ){
|
---|
| 197 | pIndex->pTable->pIndex = pIndex->pNext;
|
---|
| 198 | }else{
|
---|
| 199 | Index *p;
|
---|
| 200 | for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
---|
| 201 | if( p && p->pNext==pIndex ){
|
---|
| 202 | p->pNext = pIndex->pNext;
|
---|
| 203 | }
|
---|
| 204 | }
|
---|
| 205 | sqliteDeleteIndex(db, pIndex);
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | /*
|
---|
| 209 | ** Erase all schema information from the in-memory hash tables of
|
---|
| 210 | ** database connection. This routine is called to reclaim memory
|
---|
| 211 | ** before the connection closes. It is also called during a rollback
|
---|
| 212 | ** if there were schema changes during the transaction.
|
---|
| 213 | **
|
---|
| 214 | ** If iDb<=0 then reset the internal schema tables for all database
|
---|
| 215 | ** files. If iDb>=2 then reset the internal schema for only the
|
---|
| 216 | ** single file indicated.
|
---|
| 217 | */
|
---|
| 218 | void sqliteResetInternalSchema(sqlite *db, int iDb){
|
---|
| 219 | HashElem *pElem;
|
---|
| 220 | Hash temp1;
|
---|
| 221 | Hash temp2;
|
---|
| 222 | int i, j;
|
---|
| 223 |
|
---|
| 224 | assert( iDb>=0 && iDb<db->nDb );
|
---|
| 225 | db->flags &= ~SQLITE_Initialized;
|
---|
| 226 | for(i=iDb; i<db->nDb; i++){
|
---|
| 227 | Db *pDb = &db->aDb[i];
|
---|
| 228 | temp1 = pDb->tblHash;
|
---|
| 229 | temp2 = pDb->trigHash;
|
---|
| 230 | sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
|
---|
| 231 | sqliteHashClear(&pDb->aFKey);
|
---|
| 232 | sqliteHashClear(&pDb->idxHash);
|
---|
| 233 | for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
---|
| 234 | Trigger *pTrigger = sqliteHashData(pElem);
|
---|
| 235 | sqliteDeleteTrigger(pTrigger);
|
---|
| 236 | }
|
---|
| 237 | sqliteHashClear(&temp2);
|
---|
| 238 | sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
|
---|
| 239 | for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
---|
| 240 | Table *pTab = sqliteHashData(pElem);
|
---|
| 241 | sqliteDeleteTable(db, pTab);
|
---|
| 242 | }
|
---|
| 243 | sqliteHashClear(&temp1);
|
---|
| 244 | DbClearProperty(db, i, DB_SchemaLoaded);
|
---|
| 245 | if( iDb>0 ) return;
|
---|
| 246 | }
|
---|
| 247 | assert( iDb==0 );
|
---|
| 248 | db->flags &= ~SQLITE_InternChanges;
|
---|
| 249 |
|
---|
| 250 | /* If one or more of the auxiliary database files has been closed,
|
---|
| 251 | ** then remove then from the auxiliary database list. We take the
|
---|
| 252 | ** opportunity to do this here since we have just deleted all of the
|
---|
| 253 | ** schema hash tables and therefore do not have to make any changes
|
---|
| 254 | ** to any of those tables.
|
---|
| 255 | */
|
---|
| 256 | for(i=0; i<db->nDb; i++){
|
---|
| 257 | struct Db *pDb = &db->aDb[i];
|
---|
| 258 | if( pDb->pBt==0 ){
|
---|
| 259 | if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
---|
| 260 | pDb->pAux = 0;
|
---|
| 261 | }
|
---|
| 262 | }
|
---|
| 263 | for(i=j=2; i<db->nDb; i++){
|
---|
| 264 | struct Db *pDb = &db->aDb[i];
|
---|
| 265 | if( pDb->pBt==0 ){
|
---|
| 266 | sqliteFree(pDb->zName);
|
---|
| 267 | pDb->zName = 0;
|
---|
| 268 | continue;
|
---|
| 269 | }
|
---|
| 270 | if( j<i ){
|
---|
| 271 | db->aDb[j] = db->aDb[i];
|
---|
| 272 | }
|
---|
| 273 | j++;
|
---|
| 274 | }
|
---|
| 275 | memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
---|
| 276 | db->nDb = j;
|
---|
| 277 | if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
---|
| 278 | memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
---|
| 279 | sqliteFree(db->aDb);
|
---|
| 280 | db->aDb = db->aDbStatic;
|
---|
| 281 | }
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | /*
|
---|
| 285 | ** This routine is called whenever a rollback occurs. If there were
|
---|
| 286 | ** schema changes during the transaction, then we have to reset the
|
---|
| 287 | ** internal hash tables and reload them from disk.
|
---|
| 288 | */
|
---|
| 289 | void sqliteRollbackInternalChanges(sqlite *db){
|
---|
| 290 | if( db->flags & SQLITE_InternChanges ){
|
---|
| 291 | sqliteResetInternalSchema(db, 0);
|
---|
| 292 | }
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | /*
|
---|
| 296 | ** This routine is called when a commit occurs.
|
---|
| 297 | */
|
---|
| 298 | void sqliteCommitInternalChanges(sqlite *db){
|
---|
| 299 | db->aDb[0].schema_cookie = db->next_cookie;
|
---|
| 300 | db->flags &= ~SQLITE_InternChanges;
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | /*
|
---|
| 304 | ** Remove the memory data structures associated with the given
|
---|
| 305 | ** Table. No changes are made to disk by this routine.
|
---|
| 306 | **
|
---|
| 307 | ** This routine just deletes the data structure. It does not unlink
|
---|
| 308 | ** the table data structure from the hash table. Nor does it remove
|
---|
| 309 | ** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
---|
| 310 | ** memory structures of the indices and foreign keys associated with
|
---|
| 311 | ** the table.
|
---|
| 312 | **
|
---|
| 313 | ** Indices associated with the table are unlinked from the "db"
|
---|
| 314 | ** data structure if db!=NULL. If db==NULL, indices attached to
|
---|
| 315 | ** the table are deleted, but it is assumed they have already been
|
---|
| 316 | ** unlinked.
|
---|
| 317 | */
|
---|
| 318 | void sqliteDeleteTable(sqlite *db, Table *pTable){
|
---|
| 319 | int i;
|
---|
| 320 | Index *pIndex, *pNext;
|
---|
| 321 | FKey *pFKey, *pNextFKey;
|
---|
| 322 |
|
---|
| 323 | if( pTable==0 ) return;
|
---|
| 324 |
|
---|
| 325 | /* Delete all indices associated with this table
|
---|
| 326 | */
|
---|
| 327 | for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
---|
| 328 | pNext = pIndex->pNext;
|
---|
| 329 | assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
|
---|
| 330 | sqliteDeleteIndex(db, pIndex);
|
---|
| 331 | }
|
---|
| 332 |
|
---|
| 333 | /* Delete all foreign keys associated with this table. The keys
|
---|
| 334 | ** should have already been unlinked from the db->aFKey hash table
|
---|
| 335 | */
|
---|
| 336 | for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
---|
| 337 | pNextFKey = pFKey->pNextFrom;
|
---|
| 338 | assert( pTable->iDb<db->nDb );
|
---|
| 339 | assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
|
---|
| 340 | pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
---|
| 341 | sqliteFree(pFKey);
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | /* Delete the Table structure itself.
|
---|
| 345 | */
|
---|
| 346 | for(i=0; i<pTable->nCol; i++){
|
---|
| 347 | sqliteFree(pTable->aCol[i].zName);
|
---|
| 348 | sqliteFree(pTable->aCol[i].zDflt);
|
---|
| 349 | sqliteFree(pTable->aCol[i].zType);
|
---|
| 350 | }
|
---|
| 351 | sqliteFree(pTable->zName);
|
---|
| 352 | sqliteFree(pTable->aCol);
|
---|
| 353 | sqliteSelectDelete(pTable->pSelect);
|
---|
| 354 | sqliteFree(pTable);
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | /*
|
---|
| 358 | ** Unlink the given table from the hash tables and the delete the
|
---|
| 359 | ** table structure with all its indices and foreign keys.
|
---|
| 360 | */
|
---|
| 361 | static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
|
---|
| 362 | Table *pOld;
|
---|
| 363 | FKey *pF1, *pF2;
|
---|
| 364 | int i = p->iDb;
|
---|
| 365 | assert( db!=0 );
|
---|
| 366 | pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
|
---|
| 367 | assert( pOld==0 || pOld==p );
|
---|
| 368 | for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
---|
| 369 | int nTo = strlen(pF1->zTo) + 1;
|
---|
| 370 | pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
|
---|
| 371 | if( pF2==pF1 ){
|
---|
| 372 | sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
---|
| 373 | }else{
|
---|
| 374 | while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
---|
| 375 | if( pF2 ){
|
---|
| 376 | pF2->pNextTo = pF1->pNextTo;
|
---|
| 377 | }
|
---|
| 378 | }
|
---|
| 379 | }
|
---|
| 380 | sqliteDeleteTable(db, p);
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | /*
|
---|
| 384 | ** Construct the name of a user table or index from a token.
|
---|
| 385 | **
|
---|
| 386 | ** Space to hold the name is obtained from sqliteMalloc() and must
|
---|
| 387 | ** be freed by the calling function.
|
---|
| 388 | */
|
---|
| 389 | char *sqliteTableNameFromToken(Token *pName){
|
---|
| 390 | char *zName = sqliteStrNDup(pName->z, pName->n);
|
---|
| 391 | sqliteDequote(zName);
|
---|
| 392 | return zName;
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 | /*
|
---|
| 396 | ** Generate code to open the appropriate master table. The table
|
---|
| 397 | ** opened will be SQLITE_MASTER for persistent tables and
|
---|
| 398 | ** SQLITE_TEMP_MASTER for temporary tables. The table is opened
|
---|
| 399 | ** on cursor 0.
|
---|
| 400 | */
|
---|
| 401 | void sqliteOpenMasterTable(Vdbe *v, int isTemp){
|
---|
| 402 | sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
|
---|
| 403 | sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
|
---|
| 404 | }
|
---|
| 405 |
|
---|
| 406 | /*
|
---|
| 407 | ** Begin constructing a new table representation in memory. This is
|
---|
| 408 | ** the first of several action routines that get called in response
|
---|
| 409 | ** to a CREATE TABLE statement. In particular, this routine is called
|
---|
| 410 | ** after seeing tokens "CREATE" and "TABLE" and the table name. The
|
---|
| 411 | ** pStart token is the CREATE and pName is the table name. The isTemp
|
---|
| 412 | ** flag is true if the table should be stored in the auxiliary database
|
---|
| 413 | ** file instead of in the main database file. This is normally the case
|
---|
| 414 | ** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
---|
| 415 | ** CREATE and TABLE.
|
---|
| 416 | **
|
---|
| 417 | ** The new table record is initialized and put in pParse->pNewTable.
|
---|
| 418 | ** As more of the CREATE TABLE statement is parsed, additional action
|
---|
| 419 | ** routines will be called to add more information to this record.
|
---|
| 420 | ** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
|
---|
| 421 | ** is called to complete the construction of the new table record.
|
---|
| 422 | */
|
---|
| 423 | void sqliteStartTable(
|
---|
| 424 | Parse *pParse, /* Parser context */
|
---|
| 425 | Token *pStart, /* The "CREATE" token */
|
---|
| 426 | Token *pName, /* Name of table or view to create */
|
---|
| 427 | int isTemp, /* True if this is a TEMP table */
|
---|
| 428 | int isView /* True if this is a VIEW */
|
---|
| 429 | ){
|
---|
| 430 | Table *pTable;
|
---|
| 431 | Index *pIdx;
|
---|
| 432 | char *zName;
|
---|
| 433 | sqlite *db = pParse->db;
|
---|
| 434 | Vdbe *v;
|
---|
| 435 | int iDb;
|
---|
| 436 |
|
---|
| 437 | pParse->sFirstToken = *pStart;
|
---|
| 438 | zName = sqliteTableNameFromToken(pName);
|
---|
| 439 | if( zName==0 ) return;
|
---|
| 440 | if( db->init.iDb==1 ) isTemp = 1;
|
---|
| 441 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
| 442 | assert( (isTemp & 1)==isTemp );
|
---|
| 443 | {
|
---|
| 444 | int code;
|
---|
| 445 | char *zDb = isTemp ? "temp" : "main";
|
---|
| 446 | if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
---|
| 447 | sqliteFree(zName);
|
---|
| 448 | return;
|
---|
| 449 | }
|
---|
| 450 | if( isView ){
|
---|
| 451 | if( isTemp ){
|
---|
| 452 | code = SQLITE_CREATE_TEMP_VIEW;
|
---|
| 453 | }else{
|
---|
| 454 | code = SQLITE_CREATE_VIEW;
|
---|
| 455 | }
|
---|
| 456 | }else{
|
---|
| 457 | if( isTemp ){
|
---|
| 458 | code = SQLITE_CREATE_TEMP_TABLE;
|
---|
| 459 | }else{
|
---|
| 460 | code = SQLITE_CREATE_TABLE;
|
---|
| 461 | }
|
---|
| 462 | }
|
---|
| 463 | if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
|
---|
| 464 | sqliteFree(zName);
|
---|
| 465 | return;
|
---|
| 466 | }
|
---|
| 467 | }
|
---|
| 468 | #endif
|
---|
| 469 |
|
---|
| 470 |
|
---|
| 471 | /* Before trying to create a temporary table, make sure the Btree for
|
---|
| 472 | ** holding temporary tables is open.
|
---|
| 473 | */
|
---|
| 474 | if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
|
---|
| 475 | int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
|
---|
| 476 | if( rc!=SQLITE_OK ){
|
---|
| 477 | sqliteErrorMsg(pParse, "unable to open a temporary database "
|
---|
| 478 | "file for storing temporary tables");
|
---|
| 479 | pParse->nErr++;
|
---|
| 480 | return;
|
---|
| 481 | }
|
---|
| 482 | if( db->flags & SQLITE_InTrans ){
|
---|
| 483 | rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
|
---|
| 484 | if( rc!=SQLITE_OK ){
|
---|
| 485 | sqliteErrorMsg(pParse, "unable to get a write lock on "
|
---|
| 486 | "the temporary database file");
|
---|
| 487 | return;
|
---|
| 488 | }
|
---|
| 489 | }
|
---|
| 490 | }
|
---|
| 491 |
|
---|
| 492 | /* Make sure the new table name does not collide with an existing
|
---|
| 493 | ** index or table name. Issue an error message if it does.
|
---|
| 494 | **
|
---|
| 495 | ** If we are re-reading the sqlite_master table because of a schema
|
---|
| 496 | ** change and a new permanent table is found whose name collides with
|
---|
| 497 | ** an existing temporary table, that is not an error.
|
---|
| 498 | */
|
---|
| 499 | pTable = sqliteFindTable(db, zName, 0);
|
---|
| 500 | iDb = isTemp ? 1 : db->init.iDb;
|
---|
| 501 | if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
|
---|
| 502 | sqliteErrorMsg(pParse, "table %T already exists", pName);
|
---|
| 503 | sqliteFree(zName);
|
---|
| 504 | return;
|
---|
| 505 | }
|
---|
| 506 | if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
|
---|
| 507 | (pIdx->iDb==0 || !db->init.busy) ){
|
---|
| 508 | sqliteErrorMsg(pParse, "there is already an index named %s", zName);
|
---|
| 509 | sqliteFree(zName);
|
---|
| 510 | return;
|
---|
| 511 | }
|
---|
| 512 | pTable = sqliteMalloc( sizeof(Table) );
|
---|
| 513 | if( pTable==0 ){
|
---|
| 514 | sqliteFree(zName);
|
---|
| 515 | return;
|
---|
| 516 | }
|
---|
| 517 | pTable->zName = zName;
|
---|
| 518 | pTable->nCol = 0;
|
---|
| 519 | pTable->aCol = 0;
|
---|
| 520 | pTable->iPKey = -1;
|
---|
| 521 | pTable->pIndex = 0;
|
---|
| 522 | pTable->iDb = iDb;
|
---|
| 523 | if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
|
---|
| 524 | pParse->pNewTable = pTable;
|
---|
| 525 |
|
---|
| 526 | /* Begin generating the code that will insert the table record into
|
---|
| 527 | ** the SQLITE_MASTER table. Note in particular that we must go ahead
|
---|
| 528 | ** and allocate the record number for the table entry now. Before any
|
---|
| 529 | ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
---|
| 530 | ** indices to be created and the table record must come before the
|
---|
| 531 | ** indices. Hence, the record number for the table must be allocated
|
---|
| 532 | ** now.
|
---|
| 533 | */
|
---|
| 534 | if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
|
---|
| 535 | sqliteBeginWriteOperation(pParse, 0, isTemp);
|
---|
| 536 | if( !isTemp ){
|
---|
| 537 | sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
|
---|
| 538 | sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
|
---|
| 539 | }
|
---|
| 540 | sqliteOpenMasterTable(v, isTemp);
|
---|
| 541 | sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
---|
| 542 | sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
---|
| 543 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
| 544 | sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
---|
| 545 | }
|
---|
| 546 | }
|
---|
| 547 |
|
---|
| 548 | /*
|
---|
| 549 | ** Add a new column to the table currently being constructed.
|
---|
| 550 | **
|
---|
| 551 | ** The parser calls this routine once for each column declaration
|
---|
| 552 | ** in a CREATE TABLE statement. sqliteStartTable() gets called
|
---|
| 553 | ** first to get things going. Then this routine is called for each
|
---|
| 554 | ** column.
|
---|
| 555 | */
|
---|
| 556 | void sqliteAddColumn(Parse *pParse, Token *pName){
|
---|
| 557 | Table *p;
|
---|
| 558 | int i;
|
---|
| 559 | char *z = 0;
|
---|
| 560 | Column *pCol;
|
---|
| 561 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
| 562 | sqliteSetNString(&z, pName->z, pName->n, 0);
|
---|
| 563 | if( z==0 ) return;
|
---|
| 564 | sqliteDequote(z);
|
---|
| 565 | for(i=0; i<p->nCol; i++){
|
---|
| 566 | if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
|
---|
| 567 | sqliteErrorMsg(pParse, "duplicate column name: %s", z);
|
---|
| 568 | sqliteFree(z);
|
---|
| 569 | return;
|
---|
| 570 | }
|
---|
| 571 | }
|
---|
| 572 | if( (p->nCol & 0x7)==0 ){
|
---|
| 573 | Column *aNew;
|
---|
| 574 | aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
|
---|
| 575 | if( aNew==0 ) return;
|
---|
| 576 | p->aCol = aNew;
|
---|
| 577 | }
|
---|
| 578 | pCol = &p->aCol[p->nCol];
|
---|
| 579 | memset(pCol, 0, sizeof(p->aCol[0]));
|
---|
| 580 | pCol->zName = z;
|
---|
| 581 | pCol->sortOrder = SQLITE_SO_NUM;
|
---|
| 582 | p->nCol++;
|
---|
| 583 | }
|
---|
| 584 |
|
---|
| 585 | /*
|
---|
| 586 | ** This routine is called by the parser while in the middle of
|
---|
| 587 | ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
---|
| 588 | ** been seen on a column. This routine sets the notNull flag on
|
---|
| 589 | ** the column currently under construction.
|
---|
| 590 | */
|
---|
| 591 | void sqliteAddNotNull(Parse *pParse, int onError){
|
---|
| 592 | Table *p;
|
---|
| 593 | int i;
|
---|
| 594 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
| 595 | i = p->nCol-1;
|
---|
| 596 | if( i>=0 ) p->aCol[i].notNull = onError;
|
---|
| 597 | }
|
---|
| 598 |
|
---|
| 599 | /*
|
---|
| 600 | ** This routine is called by the parser while in the middle of
|
---|
| 601 | ** parsing a CREATE TABLE statement. The pFirst token is the first
|
---|
| 602 | ** token in the sequence of tokens that describe the type of the
|
---|
| 603 | ** column currently under construction. pLast is the last token
|
---|
| 604 | ** in the sequence. Use this information to construct a string
|
---|
| 605 | ** that contains the typename of the column and store that string
|
---|
| 606 | ** in zType.
|
---|
| 607 | */
|
---|
| 608 | void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
|
---|
| 609 | Table *p;
|
---|
| 610 | int i, j;
|
---|
| 611 | int n;
|
---|
| 612 | char *z, **pz;
|
---|
| 613 | Column *pCol;
|
---|
| 614 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
| 615 | i = p->nCol-1;
|
---|
| 616 | if( i<0 ) return;
|
---|
| 617 | pCol = &p->aCol[i];
|
---|
| 618 | pz = &pCol->zType;
|
---|
| 619 | n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
|
---|
| 620 | sqliteSetNString(pz, pFirst->z, n, 0);
|
---|
| 621 | z = *pz;
|
---|
| 622 | if( z==0 ) return;
|
---|
| 623 | for(i=j=0; z[i]; i++){
|
---|
| 624 | int c = z[i];
|
---|
| 625 | if( isspace(c) ) continue;
|
---|
| 626 | z[j++] = c;
|
---|
| 627 | }
|
---|
| 628 | z[j] = 0;
|
---|
| 629 | if( pParse->db->file_format>=4 ){
|
---|
| 630 | pCol->sortOrder = sqliteCollateType(z, n);
|
---|
| 631 | }else{
|
---|
| 632 | pCol->sortOrder = SQLITE_SO_NUM;
|
---|
| 633 | }
|
---|
| 634 | }
|
---|
| 635 |
|
---|
| 636 | /*
|
---|
| 637 | ** The given token is the default value for the last column added to
|
---|
| 638 | ** the table currently under construction. If "minusFlag" is true, it
|
---|
| 639 | ** means the value token was preceded by a minus sign.
|
---|
| 640 | **
|
---|
| 641 | ** This routine is called by the parser while in the middle of
|
---|
| 642 | ** parsing a CREATE TABLE statement.
|
---|
| 643 | */
|
---|
| 644 | void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
|
---|
| 645 | Table *p;
|
---|
| 646 | int i;
|
---|
| 647 | char **pz;
|
---|
| 648 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
| 649 | i = p->nCol-1;
|
---|
| 650 | if( i<0 ) return;
|
---|
| 651 | pz = &p->aCol[i].zDflt;
|
---|
| 652 | if( minusFlag ){
|
---|
| 653 | sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
|
---|
| 654 | }else{
|
---|
| 655 | sqliteSetNString(pz, pVal->z, pVal->n, 0);
|
---|
| 656 | }
|
---|
| 657 | sqliteDequote(*pz);
|
---|
| 658 | }
|
---|
| 659 |
|
---|
| 660 | /*
|
---|
| 661 | ** Designate the PRIMARY KEY for the table. pList is a list of names
|
---|
| 662 | ** of columns that form the primary key. If pList is NULL, then the
|
---|
| 663 | ** most recently added column of the table is the primary key.
|
---|
| 664 | **
|
---|
| 665 | ** A table can have at most one primary key. If the table already has
|
---|
| 666 | ** a primary key (and this is the second primary key) then create an
|
---|
| 667 | ** error.
|
---|
| 668 | **
|
---|
| 669 | ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
---|
| 670 | ** then we will try to use that column as the row id. (Exception:
|
---|
| 671 | ** For backwards compatibility with older databases, do not do this
|
---|
| 672 | ** if the file format version number is less than 1.) Set the Table.iPKey
|
---|
| 673 | ** field of the table under construction to be the index of the
|
---|
| 674 | ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
---|
| 675 | ** no INTEGER PRIMARY KEY.
|
---|
| 676 | **
|
---|
| 677 | ** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
---|
| 678 | ** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
---|
| 679 | */
|
---|
| 680 | void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
|
---|
| 681 | Table *pTab = pParse->pNewTable;
|
---|
| 682 | char *zType = 0;
|
---|
| 683 | int iCol = -1, i;
|
---|
| 684 | if( pTab==0 ) goto primary_key_exit;
|
---|
| 685 | if( pTab->hasPrimKey ){
|
---|
| 686 | sqliteErrorMsg(pParse,
|
---|
| 687 | "table \"%s\" has more than one primary key", pTab->zName);
|
---|
| 688 | goto primary_key_exit;
|
---|
| 689 | }
|
---|
| 690 | pTab->hasPrimKey = 1;
|
---|
| 691 | if( pList==0 ){
|
---|
| 692 | iCol = pTab->nCol - 1;
|
---|
| 693 | pTab->aCol[iCol].isPrimKey = 1;
|
---|
| 694 | }else{
|
---|
| 695 | for(i=0; i<pList->nId; i++){
|
---|
| 696 | for(iCol=0; iCol<pTab->nCol; iCol++){
|
---|
| 697 | if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
|
---|
| 698 | }
|
---|
| 699 | if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
|
---|
| 700 | }
|
---|
| 701 | if( pList->nId>1 ) iCol = -1;
|
---|
| 702 | }
|
---|
| 703 | if( iCol>=0 && iCol<pTab->nCol ){
|
---|
| 704 | zType = pTab->aCol[iCol].zType;
|
---|
| 705 | }
|
---|
| 706 | if( pParse->db->file_format>=1 &&
|
---|
| 707 | zType && sqliteStrICmp(zType, "INTEGER")==0 ){
|
---|
| 708 | pTab->iPKey = iCol;
|
---|
| 709 | pTab->keyConf = onError;
|
---|
| 710 | }else{
|
---|
| 711 | sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
|
---|
| 712 | pList = 0;
|
---|
| 713 | }
|
---|
| 714 |
|
---|
| 715 | primary_key_exit:
|
---|
| 716 | sqliteIdListDelete(pList);
|
---|
| 717 | return;
|
---|
| 718 | }
|
---|
| 719 |
|
---|
| 720 | /*
|
---|
| 721 | ** Return the appropriate collating type given a type name.
|
---|
| 722 | **
|
---|
| 723 | ** The collation type is text (SQLITE_SO_TEXT) if the type
|
---|
| 724 | ** name contains the character stream "text" or "blob" or
|
---|
| 725 | ** "clob". Any other type name is collated as numeric
|
---|
| 726 | ** (SQLITE_SO_NUM).
|
---|
| 727 | */
|
---|
| 728 | int sqliteCollateType(const char *zType, int nType){
|
---|
| 729 | int i;
|
---|
| 730 | for(i=0; i<nType-3; i++){
|
---|
| 731 | int c = *(zType++) | 0x60;
|
---|
| 732 | if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
|
---|
| 733 | return SQLITE_SO_TEXT;
|
---|
| 734 | }
|
---|
| 735 | if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
|
---|
| 736 | return SQLITE_SO_TEXT;
|
---|
| 737 | }
|
---|
| 738 | if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
|
---|
| 739 | return SQLITE_SO_TEXT;
|
---|
| 740 | }
|
---|
| 741 | }
|
---|
| 742 | return SQLITE_SO_NUM;
|
---|
| 743 | }
|
---|
| 744 |
|
---|
| 745 | /*
|
---|
| 746 | ** This routine is called by the parser while in the middle of
|
---|
| 747 | ** parsing a CREATE TABLE statement. A "COLLATE" clause has
|
---|
| 748 | ** been seen on a column. This routine sets the Column.sortOrder on
|
---|
| 749 | ** the column currently under construction.
|
---|
| 750 | */
|
---|
| 751 | void sqliteAddCollateType(Parse *pParse, int collType){
|
---|
| 752 | Table *p;
|
---|
| 753 | int i;
|
---|
| 754 | if( (p = pParse->pNewTable)==0 ) return;
|
---|
| 755 | i = p->nCol-1;
|
---|
| 756 | if( i>=0 ) p->aCol[i].sortOrder = collType;
|
---|
| 757 | }
|
---|
| 758 |
|
---|
| 759 | /*
|
---|
| 760 | ** Come up with a new random value for the schema cookie. Make sure
|
---|
| 761 | ** the new value is different from the old.
|
---|
| 762 | **
|
---|
| 763 | ** The schema cookie is used to determine when the schema for the
|
---|
| 764 | ** database changes. After each schema change, the cookie value
|
---|
| 765 | ** changes. When a process first reads the schema it records the
|
---|
| 766 | ** cookie. Thereafter, whenever it goes to access the database,
|
---|
| 767 | ** it checks the cookie to make sure the schema has not changed
|
---|
| 768 | ** since it was last read.
|
---|
| 769 | **
|
---|
| 770 | ** This plan is not completely bullet-proof. It is possible for
|
---|
| 771 | ** the schema to change multiple times and for the cookie to be
|
---|
| 772 | ** set back to prior value. But schema changes are infrequent
|
---|
| 773 | ** and the probability of hitting the same cookie value is only
|
---|
| 774 | ** 1 chance in 2^32. So we're safe enough.
|
---|
| 775 | */
|
---|
| 776 | void sqliteChangeCookie(sqlite *db, Vdbe *v){
|
---|
| 777 | if( db->next_cookie==db->aDb[0].schema_cookie ){
|
---|
| 778 | unsigned char r;
|
---|
| 779 | sqliteRandomness(1, &r);
|
---|
| 780 | db->next_cookie = db->aDb[0].schema_cookie + r + 1;
|
---|
| 781 | db->flags |= SQLITE_InternChanges;
|
---|
| 782 | sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
|
---|
| 783 | sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
|
---|
| 784 | }
|
---|
| 785 | }
|
---|
| 786 |
|
---|
| 787 | /*
|
---|
| 788 | ** Measure the number of characters needed to output the given
|
---|
| 789 | ** identifier. The number returned includes any quotes used
|
---|
| 790 | ** but does not include the null terminator.
|
---|
| 791 | */
|
---|
| 792 | static int identLength(const char *z){
|
---|
| 793 | int n;
|
---|
| 794 | int needQuote = 0;
|
---|
| 795 | for(n=0; *z; n++, z++){
|
---|
| 796 | if( *z=='\'' ){ n++; needQuote=1; }
|
---|
| 797 | }
|
---|
| 798 | return n + needQuote*2;
|
---|
| 799 | }
|
---|
| 800 |
|
---|
| 801 | /*
|
---|
| 802 | ** Write an identifier onto the end of the given string. Add
|
---|
| 803 | ** quote characters as needed.
|
---|
| 804 | */
|
---|
| 805 | static void identPut(char *z, int *pIdx, char *zIdent){
|
---|
| 806 | int i, j, needQuote;
|
---|
| 807 | i = *pIdx;
|
---|
| 808 | for(j=0; zIdent[j]; j++){
|
---|
| 809 | if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
---|
| 810 | }
|
---|
| 811 | needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
---|
| 812 | || sqliteKeywordCode(zIdent, j)!=TK_ID;
|
---|
| 813 | if( needQuote ) z[i++] = '\'';
|
---|
| 814 | for(j=0; zIdent[j]; j++){
|
---|
| 815 | z[i++] = zIdent[j];
|
---|
| 816 | if( zIdent[j]=='\'' ) z[i++] = '\'';
|
---|
| 817 | }
|
---|
| 818 | if( needQuote ) z[i++] = '\'';
|
---|
| 819 | z[i] = 0;
|
---|
| 820 | *pIdx = i;
|
---|
| 821 | }
|
---|
| 822 |
|
---|
| 823 | /*
|
---|
| 824 | ** Generate a CREATE TABLE statement appropriate for the given
|
---|
| 825 | ** table. Memory to hold the text of the statement is obtained
|
---|
| 826 | ** from sqliteMalloc() and must be freed by the calling function.
|
---|
| 827 | */
|
---|
| 828 | static char *createTableStmt(Table *p){
|
---|
| 829 | int i, k, n;
|
---|
| 830 | char *zStmt;
|
---|
| 831 | char *zSep, *zSep2, *zEnd;
|
---|
| 832 | n = 0;
|
---|
| 833 | for(i=0; i<p->nCol; i++){
|
---|
| 834 | n += identLength(p->aCol[i].zName);
|
---|
| 835 | }
|
---|
| 836 | n += identLength(p->zName);
|
---|
| 837 | if( n<40 ){
|
---|
| 838 | zSep = "";
|
---|
| 839 | zSep2 = ",";
|
---|
| 840 | zEnd = ")";
|
---|
| 841 | }else{
|
---|
| 842 | zSep = "\n ";
|
---|
| 843 | zSep2 = ",\n ";
|
---|
| 844 | zEnd = "\n)";
|
---|
| 845 | }
|
---|
| 846 | n += 35 + 6*p->nCol;
|
---|
| 847 | zStmt = sqliteMallocRaw( n );
|
---|
| 848 | if( zStmt==0 ) return 0;
|
---|
| 849 | strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
|
---|
| 850 | k = strlen(zStmt);
|
---|
| 851 | identPut(zStmt, &k, p->zName);
|
---|
| 852 | zStmt[k++] = '(';
|
---|
| 853 | for(i=0; i<p->nCol; i++){
|
---|
| 854 | strcpy(&zStmt[k], zSep);
|
---|
| 855 | k += strlen(&zStmt[k]);
|
---|
| 856 | zSep = zSep2;
|
---|
| 857 | identPut(zStmt, &k, p->aCol[i].zName);
|
---|
| 858 | }
|
---|
| 859 | strcpy(&zStmt[k], zEnd);
|
---|
| 860 | return zStmt;
|
---|
| 861 | }
|
---|
| 862 |
|
---|
| 863 | /*
|
---|
| 864 | ** This routine is called to report the final ")" that terminates
|
---|
| 865 | ** a CREATE TABLE statement.
|
---|
| 866 | **
|
---|
| 867 | ** The table structure that other action routines have been building
|
---|
| 868 | ** is added to the internal hash tables, assuming no errors have
|
---|
| 869 | ** occurred.
|
---|
| 870 | **
|
---|
| 871 | ** An entry for the table is made in the master table on disk, unless
|
---|
| 872 | ** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
---|
| 873 | ** it means we are reading the sqlite_master table because we just
|
---|
| 874 | ** connected to the database or because the sqlite_master table has
|
---|
| 875 | ** recently changes, so the entry for this table already exists in
|
---|
| 876 | ** the sqlite_master table. We do not want to create it again.
|
---|
| 877 | **
|
---|
| 878 | ** If the pSelect argument is not NULL, it means that this routine
|
---|
| 879 | ** was called to create a table generated from a
|
---|
| 880 | ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
---|
| 881 | ** the new table will match the result set of the SELECT.
|
---|
| 882 | */
|
---|
| 883 | void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
|
---|
| 884 | Table *p;
|
---|
| 885 | sqlite *db = pParse->db;
|
---|
| 886 |
|
---|
| 887 | if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
|
---|
| 888 | p = pParse->pNewTable;
|
---|
| 889 | if( p==0 ) return;
|
---|
| 890 |
|
---|
| 891 | /* If the table is generated from a SELECT, then construct the
|
---|
| 892 | ** list of columns and the text of the table.
|
---|
| 893 | */
|
---|
| 894 | if( pSelect ){
|
---|
| 895 | Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
|
---|
| 896 | if( pSelTab==0 ) return;
|
---|
| 897 | assert( p->aCol==0 );
|
---|
| 898 | p->nCol = pSelTab->nCol;
|
---|
| 899 | p->aCol = pSelTab->aCol;
|
---|
| 900 | pSelTab->nCol = 0;
|
---|
| 901 | pSelTab->aCol = 0;
|
---|
| 902 | sqliteDeleteTable(0, pSelTab);
|
---|
| 903 | }
|
---|
| 904 |
|
---|
| 905 | /* If the db->init.busy is 1 it means we are reading the SQL off the
|
---|
| 906 | ** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
---|
| 907 | ** So do not write to the disk again. Extract the root page number
|
---|
| 908 | ** for the table from the db->init.newTnum field. (The page number
|
---|
| 909 | ** should have been put there by the sqliteOpenCb routine.)
|
---|
| 910 | */
|
---|
| 911 | if( db->init.busy ){
|
---|
| 912 | p->tnum = db->init.newTnum;
|
---|
| 913 | }
|
---|
| 914 |
|
---|
| 915 | /* If not initializing, then create a record for the new table
|
---|
| 916 | ** in the SQLITE_MASTER table of the database. The record number
|
---|
| 917 | ** for the new table entry should already be on the stack.
|
---|
| 918 | **
|
---|
| 919 | ** If this is a TEMPORARY table, write the entry into the auxiliary
|
---|
| 920 | ** file instead of into the main database file.
|
---|
| 921 | */
|
---|
| 922 | if( !db->init.busy ){
|
---|
| 923 | int n;
|
---|
| 924 | Vdbe *v;
|
---|
| 925 |
|
---|
| 926 | v = sqliteGetVdbe(pParse);
|
---|
| 927 | if( v==0 ) return;
|
---|
| 928 | if( p->pSelect==0 ){
|
---|
| 929 | /* A regular table */
|
---|
| 930 | sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
|
---|
| 931 | }else{
|
---|
| 932 | /* A view */
|
---|
| 933 | sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
---|
| 934 | }
|
---|
| 935 | p->tnum = 0;
|
---|
| 936 | sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
---|
| 937 | sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
|
---|
| 938 | sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
---|
| 939 | sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
---|
| 940 | sqliteVdbeAddOp(v, OP_Dup, 4, 0);
|
---|
| 941 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
| 942 | if( pSelect ){
|
---|
| 943 | char *z = createTableStmt(p);
|
---|
| 944 | n = z ? strlen(z) : 0;
|
---|
| 945 | sqliteVdbeChangeP3(v, -1, z, n);
|
---|
| 946 | sqliteFree(z);
|
---|
| 947 | }else{
|
---|
| 948 | assert( pEnd!=0 );
|
---|
| 949 | n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
|
---|
| 950 | sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
|
---|
| 951 | }
|
---|
| 952 | sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
---|
| 953 | sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
---|
| 954 | if( !p->iDb ){
|
---|
| 955 | sqliteChangeCookie(db, v);
|
---|
| 956 | }
|
---|
| 957 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
| 958 | if( pSelect ){
|
---|
| 959 | sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
|
---|
| 960 | sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
|
---|
| 961 | pParse->nTab = 2;
|
---|
| 962 | sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
|
---|
| 963 | }
|
---|
| 964 | sqliteEndWriteOperation(pParse);
|
---|
| 965 | }
|
---|
| 966 |
|
---|
| 967 | /* Add the table to the in-memory representation of the database.
|
---|
| 968 | */
|
---|
| 969 | if( pParse->explain==0 && pParse->nErr==0 ){
|
---|
| 970 | Table *pOld;
|
---|
| 971 | FKey *pFKey;
|
---|
| 972 | pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
|
---|
| 973 | p->zName, strlen(p->zName)+1, p);
|
---|
| 974 | if( pOld ){
|
---|
| 975 | assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
---|
| 976 | return;
|
---|
| 977 | }
|
---|
| 978 | for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
---|
| 979 | int nTo = strlen(pFKey->zTo) + 1;
|
---|
| 980 | pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
|
---|
| 981 | sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
|
---|
| 982 | }
|
---|
| 983 | pParse->pNewTable = 0;
|
---|
| 984 | db->nTable++;
|
---|
| 985 | db->flags |= SQLITE_InternChanges;
|
---|
| 986 | }
|
---|
| 987 | }
|
---|
| 988 |
|
---|
| 989 | /*
|
---|
| 990 | ** The parser calls this routine in order to create a new VIEW
|
---|
| 991 | */
|
---|
| 992 | void sqliteCreateView(
|
---|
| 993 | Parse *pParse, /* The parsing context */
|
---|
| 994 | Token *pBegin, /* The CREATE token that begins the statement */
|
---|
| 995 | Token *pName, /* The token that holds the name of the view */
|
---|
| 996 | Select *pSelect, /* A SELECT statement that will become the new view */
|
---|
| 997 | int isTemp /* TRUE for a TEMPORARY view */
|
---|
| 998 | ){
|
---|
| 999 | Table *p;
|
---|
| 1000 | int n;
|
---|
| 1001 | const char *z;
|
---|
| 1002 | Token sEnd;
|
---|
| 1003 | DbFixer sFix;
|
---|
| 1004 |
|
---|
| 1005 | sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
|
---|
| 1006 | p = pParse->pNewTable;
|
---|
| 1007 | if( p==0 || pParse->nErr ){
|
---|
| 1008 | sqliteSelectDelete(pSelect);
|
---|
| 1009 | return;
|
---|
| 1010 | }
|
---|
| 1011 | if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
|
---|
| 1012 | && sqliteFixSelect(&sFix, pSelect)
|
---|
| 1013 | ){
|
---|
| 1014 | sqliteSelectDelete(pSelect);
|
---|
| 1015 | return;
|
---|
| 1016 | }
|
---|
| 1017 |
|
---|
| 1018 | /* Make a copy of the entire SELECT statement that defines the view.
|
---|
| 1019 | ** This will force all the Expr.token.z values to be dynamically
|
---|
| 1020 | ** allocated rather than point to the input string - which means that
|
---|
| 1021 | ** they will persist after the current sqlite_exec() call returns.
|
---|
| 1022 | */
|
---|
| 1023 | p->pSelect = sqliteSelectDup(pSelect);
|
---|
| 1024 | sqliteSelectDelete(pSelect);
|
---|
| 1025 | if( !pParse->db->init.busy ){
|
---|
| 1026 | sqliteViewGetColumnNames(pParse, p);
|
---|
| 1027 | }
|
---|
| 1028 |
|
---|
| 1029 | /* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
---|
| 1030 | ** the end.
|
---|
| 1031 | */
|
---|
| 1032 | sEnd = pParse->sLastToken;
|
---|
| 1033 | if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
---|
| 1034 | sEnd.z += sEnd.n;
|
---|
| 1035 | }
|
---|
| 1036 | sEnd.n = 0;
|
---|
| 1037 | n = sEnd.z - pBegin->z;
|
---|
| 1038 | z = pBegin->z;
|
---|
| 1039 | while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
---|
| 1040 | sEnd.z = &z[n-1];
|
---|
| 1041 | sEnd.n = 1;
|
---|
| 1042 |
|
---|
| 1043 | /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
|
---|
| 1044 | sqliteEndTable(pParse, &sEnd, 0);
|
---|
| 1045 | return;
|
---|
| 1046 | }
|
---|
| 1047 |
|
---|
| 1048 | /*
|
---|
| 1049 | ** The Table structure pTable is really a VIEW. Fill in the names of
|
---|
| 1050 | ** the columns of the view in the pTable structure. Return the number
|
---|
| 1051 | ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
---|
| 1052 | */
|
---|
| 1053 | int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
|
---|
| 1054 | ExprList *pEList;
|
---|
| 1055 | Select *pSel;
|
---|
| 1056 | Table *pSelTab;
|
---|
| 1057 | int nErr = 0;
|
---|
| 1058 |
|
---|
| 1059 | assert( pTable );
|
---|
| 1060 |
|
---|
| 1061 | /* A positive nCol means the columns names for this view are
|
---|
| 1062 | ** already known.
|
---|
| 1063 | */
|
---|
| 1064 | if( pTable->nCol>0 ) return 0;
|
---|
| 1065 |
|
---|
| 1066 | /* A negative nCol is a special marker meaning that we are currently
|
---|
| 1067 | ** trying to compute the column names. If we enter this routine with
|
---|
| 1068 | ** a negative nCol, it means two or more views form a loop, like this:
|
---|
| 1069 | **
|
---|
| 1070 | ** CREATE VIEW one AS SELECT * FROM two;
|
---|
| 1071 | ** CREATE VIEW two AS SELECT * FROM one;
|
---|
| 1072 | **
|
---|
| 1073 | ** Actually, this error is caught previously and so the following test
|
---|
| 1074 | ** should always fail. But we will leave it in place just to be safe.
|
---|
| 1075 | */
|
---|
| 1076 | if( pTable->nCol<0 ){
|
---|
| 1077 | sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
---|
| 1078 | return 1;
|
---|
| 1079 | }
|
---|
| 1080 |
|
---|
| 1081 | /* If we get this far, it means we need to compute the table names.
|
---|
| 1082 | */
|
---|
| 1083 | assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
|
---|
| 1084 | pSel = pTable->pSelect;
|
---|
| 1085 |
|
---|
| 1086 | /* Note that the call to sqliteResultSetOfSelect() will expand any
|
---|
| 1087 | ** "*" elements in this list. But we will need to restore the list
|
---|
| 1088 | ** back to its original configuration afterwards, so we save a copy of
|
---|
| 1089 | ** the original in pEList.
|
---|
| 1090 | */
|
---|
| 1091 | pEList = pSel->pEList;
|
---|
| 1092 | pSel->pEList = sqliteExprListDup(pEList);
|
---|
| 1093 | if( pSel->pEList==0 ){
|
---|
| 1094 | pSel->pEList = pEList;
|
---|
| 1095 | return 1; /* Malloc failed */
|
---|
| 1096 | }
|
---|
| 1097 | pTable->nCol = -1;
|
---|
| 1098 | pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
|
---|
| 1099 | if( pSelTab ){
|
---|
| 1100 | assert( pTable->aCol==0 );
|
---|
| 1101 | pTable->nCol = pSelTab->nCol;
|
---|
| 1102 | pTable->aCol = pSelTab->aCol;
|
---|
| 1103 | pSelTab->nCol = 0;
|
---|
| 1104 | pSelTab->aCol = 0;
|
---|
| 1105 | sqliteDeleteTable(0, pSelTab);
|
---|
| 1106 | DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
|
---|
| 1107 | }else{
|
---|
| 1108 | pTable->nCol = 0;
|
---|
| 1109 | nErr++;
|
---|
| 1110 | }
|
---|
| 1111 | sqliteSelectUnbind(pSel);
|
---|
| 1112 | sqliteExprListDelete(pSel->pEList);
|
---|
| 1113 | pSel->pEList = pEList;
|
---|
| 1114 | return nErr;
|
---|
| 1115 | }
|
---|
| 1116 |
|
---|
| 1117 | /*
|
---|
| 1118 | ** Clear the column names from the VIEW pTable.
|
---|
| 1119 | **
|
---|
| 1120 | ** This routine is called whenever any other table or view is modified.
|
---|
| 1121 | ** The view passed into this routine might depend directly or indirectly
|
---|
| 1122 | ** on the modified or deleted table so we need to clear the old column
|
---|
| 1123 | ** names so that they will be recomputed.
|
---|
| 1124 | */
|
---|
| 1125 | static void sqliteViewResetColumnNames(Table *pTable){
|
---|
| 1126 | int i;
|
---|
| 1127 | Column *pCol;
|
---|
| 1128 | assert( pTable!=0 && pTable->pSelect!=0 );
|
---|
| 1129 | for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
|
---|
| 1130 | sqliteFree(pCol->zName);
|
---|
| 1131 | sqliteFree(pCol->zDflt);
|
---|
| 1132 | sqliteFree(pCol->zType);
|
---|
| 1133 | }
|
---|
| 1134 | sqliteFree(pTable->aCol);
|
---|
| 1135 | pTable->aCol = 0;
|
---|
| 1136 | pTable->nCol = 0;
|
---|
| 1137 | }
|
---|
| 1138 |
|
---|
| 1139 | /*
|
---|
| 1140 | ** Clear the column names from every VIEW in database idx.
|
---|
| 1141 | */
|
---|
| 1142 | static void sqliteViewResetAll(sqlite *db, int idx){
|
---|
| 1143 | HashElem *i;
|
---|
| 1144 | if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
---|
| 1145 | for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
|
---|
| 1146 | Table *pTab = sqliteHashData(i);
|
---|
| 1147 | if( pTab->pSelect ){
|
---|
| 1148 | sqliteViewResetColumnNames(pTab);
|
---|
| 1149 | }
|
---|
| 1150 | }
|
---|
| 1151 | DbClearProperty(db, idx, DB_UnresetViews);
|
---|
| 1152 | }
|
---|
| 1153 |
|
---|
| 1154 | /*
|
---|
| 1155 | ** Given a token, look up a table with that name. If not found, leave
|
---|
| 1156 | ** an error for the parser to find and return NULL.
|
---|
| 1157 | */
|
---|
| 1158 | Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
|
---|
| 1159 | char *zName;
|
---|
| 1160 | Table *pTab;
|
---|
| 1161 | zName = sqliteTableNameFromToken(pTok);
|
---|
| 1162 | if( zName==0 ) return 0;
|
---|
| 1163 | pTab = sqliteFindTable(pParse->db, zName, 0);
|
---|
| 1164 | sqliteFree(zName);
|
---|
| 1165 | if( pTab==0 ){
|
---|
| 1166 | sqliteErrorMsg(pParse, "no such table: %T", pTok);
|
---|
| 1167 | }
|
---|
| 1168 | return pTab;
|
---|
| 1169 | }
|
---|
| 1170 |
|
---|
| 1171 | /*
|
---|
| 1172 | ** This routine is called to do the work of a DROP TABLE statement.
|
---|
| 1173 | ** pName is the name of the table to be dropped.
|
---|
| 1174 | */
|
---|
| 1175 | void sqliteDropTable(Parse *pParse, Token *pName, int isView){
|
---|
| 1176 | Table *pTable;
|
---|
| 1177 | Vdbe *v;
|
---|
| 1178 | int base;
|
---|
| 1179 | sqlite *db = pParse->db;
|
---|
| 1180 | int iDb;
|
---|
| 1181 |
|
---|
| 1182 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
| 1183 | pTable = sqliteTableFromToken(pParse, pName);
|
---|
| 1184 | if( pTable==0 ) return;
|
---|
| 1185 | iDb = pTable->iDb;
|
---|
| 1186 | assert( iDb>=0 && iDb<db->nDb );
|
---|
| 1187 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
| 1188 | {
|
---|
| 1189 | int code;
|
---|
| 1190 | const char *zTab = SCHEMA_TABLE(pTable->iDb);
|
---|
| 1191 | const char *zDb = db->aDb[pTable->iDb].zName;
|
---|
| 1192 | if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
---|
| 1193 | return;
|
---|
| 1194 | }
|
---|
| 1195 | if( isView ){
|
---|
| 1196 | if( iDb==1 ){
|
---|
| 1197 | code = SQLITE_DROP_TEMP_VIEW;
|
---|
| 1198 | }else{
|
---|
| 1199 | code = SQLITE_DROP_VIEW;
|
---|
| 1200 | }
|
---|
| 1201 | }else{
|
---|
| 1202 | if( iDb==1 ){
|
---|
| 1203 | code = SQLITE_DROP_TEMP_TABLE;
|
---|
| 1204 | }else{
|
---|
| 1205 | code = SQLITE_DROP_TABLE;
|
---|
| 1206 | }
|
---|
| 1207 | }
|
---|
| 1208 | if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
|
---|
| 1209 | return;
|
---|
| 1210 | }
|
---|
| 1211 | if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
|
---|
| 1212 | return;
|
---|
| 1213 | }
|
---|
| 1214 | }
|
---|
| 1215 | #endif
|
---|
| 1216 | if( pTable->readOnly ){
|
---|
| 1217 | sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
|
---|
| 1218 | pParse->nErr++;
|
---|
| 1219 | return;
|
---|
| 1220 | }
|
---|
| 1221 | if( isView && pTable->pSelect==0 ){
|
---|
| 1222 | sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
|
---|
| 1223 | return;
|
---|
| 1224 | }
|
---|
| 1225 | if( !isView && pTable->pSelect ){
|
---|
| 1226 | sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
|
---|
| 1227 | return;
|
---|
| 1228 | }
|
---|
| 1229 |
|
---|
| 1230 | /* Generate code to remove the table from the master table
|
---|
| 1231 | ** on disk.
|
---|
| 1232 | */
|
---|
| 1233 | v = sqliteGetVdbe(pParse);
|
---|
| 1234 | if( v ){
|
---|
| 1235 | static VdbeOpList dropTable[] = {
|
---|
| 1236 | { OP_Rewind, 0, ADDR(8), 0},
|
---|
| 1237 | { OP_String, 0, 0, 0}, /* 1 */
|
---|
| 1238 | { OP_MemStore, 1, 1, 0},
|
---|
| 1239 | { OP_MemLoad, 1, 0, 0}, /* 3 */
|
---|
| 1240 | { OP_Column, 0, 2, 0},
|
---|
| 1241 | { OP_Ne, 0, ADDR(7), 0},
|
---|
| 1242 | { OP_Delete, 0, 0, 0},
|
---|
| 1243 | { OP_Next, 0, ADDR(3), 0}, /* 7 */
|
---|
| 1244 | };
|
---|
| 1245 | Index *pIdx;
|
---|
| 1246 | Trigger *pTrigger;
|
---|
| 1247 | sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
|
---|
| 1248 |
|
---|
| 1249 | /* Drop all triggers associated with the table being dropped */
|
---|
| 1250 | pTrigger = pTable->pTrigger;
|
---|
| 1251 | while( pTrigger ){
|
---|
| 1252 | assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
|
---|
| 1253 | sqliteDropTriggerPtr(pParse, pTrigger, 1);
|
---|
| 1254 | if( pParse->explain ){
|
---|
| 1255 | pTrigger = pTrigger->pNext;
|
---|
| 1256 | }else{
|
---|
| 1257 | pTrigger = pTable->pTrigger;
|
---|
| 1258 | }
|
---|
| 1259 | }
|
---|
| 1260 |
|
---|
| 1261 | /* Drop all SQLITE_MASTER entries that refer to the table */
|
---|
| 1262 | sqliteOpenMasterTable(v, pTable->iDb);
|
---|
| 1263 | base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
---|
| 1264 | sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
---|
| 1265 |
|
---|
| 1266 | /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
|
---|
| 1267 | if( pTable->iDb!=1 ){
|
---|
| 1268 | sqliteOpenMasterTable(v, 1);
|
---|
| 1269 | base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
---|
| 1270 | sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
---|
| 1271 | }
|
---|
| 1272 |
|
---|
| 1273 | if( pTable->iDb==0 ){
|
---|
| 1274 | sqliteChangeCookie(db, v);
|
---|
| 1275 | }
|
---|
| 1276 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
| 1277 | if( !isView ){
|
---|
| 1278 | sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
|
---|
| 1279 | for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
|
---|
| 1280 | sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
|
---|
| 1281 | }
|
---|
| 1282 | }
|
---|
| 1283 | sqliteEndWriteOperation(pParse);
|
---|
| 1284 | }
|
---|
| 1285 |
|
---|
| 1286 | /* Delete the in-memory description of the table.
|
---|
| 1287 | **
|
---|
| 1288 | ** Exception: if the SQL statement began with the EXPLAIN keyword,
|
---|
| 1289 | ** then no changes should be made.
|
---|
| 1290 | */
|
---|
| 1291 | if( !pParse->explain ){
|
---|
| 1292 | sqliteUnlinkAndDeleteTable(db, pTable);
|
---|
| 1293 | db->flags |= SQLITE_InternChanges;
|
---|
| 1294 | }
|
---|
| 1295 | sqliteViewResetAll(db, iDb);
|
---|
| 1296 | }
|
---|
| 1297 |
|
---|
| 1298 | /*
|
---|
| 1299 | ** This routine constructs a P3 string suitable for an OP_MakeIdxKey
|
---|
| 1300 | ** opcode and adds that P3 string to the most recently inserted instruction
|
---|
| 1301 | ** in the virtual machine. The P3 string consists of a single character
|
---|
| 1302 | ** for each column in the index pIdx of table pTab. If the column uses
|
---|
| 1303 | ** a numeric sort order, then the P3 string character corresponding to
|
---|
| 1304 | ** that column is 'n'. If the column uses a text sort order, then the
|
---|
| 1305 | ** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
|
---|
| 1306 | ** additional information. See also the sqliteAddKeyType() routine.
|
---|
| 1307 | */
|
---|
| 1308 | void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
|
---|
| 1309 | char *zType;
|
---|
| 1310 | Table *pTab;
|
---|
| 1311 | int i, n;
|
---|
| 1312 | assert( pIdx!=0 && pIdx->pTable!=0 );
|
---|
| 1313 | pTab = pIdx->pTable;
|
---|
| 1314 | n = pIdx->nColumn;
|
---|
| 1315 | zType = sqliteMallocRaw( n+1 );
|
---|
| 1316 | if( zType==0 ) return;
|
---|
| 1317 | for(i=0; i<n; i++){
|
---|
| 1318 | int iCol = pIdx->aiColumn[i];
|
---|
| 1319 | assert( iCol>=0 && iCol<pTab->nCol );
|
---|
| 1320 | if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
|
---|
| 1321 | zType[i] = 't';
|
---|
| 1322 | }else{
|
---|
| 1323 | zType[i] = 'n';
|
---|
| 1324 | }
|
---|
| 1325 | }
|
---|
| 1326 | zType[n] = 0;
|
---|
| 1327 | sqliteVdbeChangeP3(v, -1, zType, n);
|
---|
| 1328 | sqliteFree(zType);
|
---|
| 1329 | }
|
---|
| 1330 |
|
---|
| 1331 | /*
|
---|
| 1332 | ** This routine is called to create a new foreign key on the table
|
---|
| 1333 | ** currently under construction. pFromCol determines which columns
|
---|
| 1334 | ** in the current table point to the foreign key. If pFromCol==0 then
|
---|
| 1335 | ** connect the key to the last column inserted. pTo is the name of
|
---|
| 1336 | ** the table referred to. pToCol is a list of tables in the other
|
---|
| 1337 | ** pTo table that the foreign key points to. flags contains all
|
---|
| 1338 | ** information about the conflict resolution algorithms specified
|
---|
| 1339 | ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
---|
| 1340 | **
|
---|
| 1341 | ** An FKey structure is created and added to the table currently
|
---|
| 1342 | ** under construction in the pParse->pNewTable field. The new FKey
|
---|
| 1343 | ** is not linked into db->aFKey at this point - that does not happen
|
---|
| 1344 | ** until sqliteEndTable().
|
---|
| 1345 | **
|
---|
| 1346 | ** The foreign key is set for IMMEDIATE processing. A subsequent call
|
---|
| 1347 | ** to sqliteDeferForeignKey() might change this to DEFERRED.
|
---|
| 1348 | */
|
---|
| 1349 | void sqliteCreateForeignKey(
|
---|
| 1350 | Parse *pParse, /* Parsing context */
|
---|
| 1351 | IdList *pFromCol, /* Columns in this table that point to other table */
|
---|
| 1352 | Token *pTo, /* Name of the other table */
|
---|
| 1353 | IdList *pToCol, /* Columns in the other table */
|
---|
| 1354 | int flags /* Conflict resolution algorithms. */
|
---|
| 1355 | ){
|
---|
| 1356 | Table *p = pParse->pNewTable;
|
---|
| 1357 | int nByte;
|
---|
| 1358 | int i;
|
---|
| 1359 | int nCol;
|
---|
| 1360 | char *z;
|
---|
| 1361 | FKey *pFKey = 0;
|
---|
| 1362 |
|
---|
| 1363 | assert( pTo!=0 );
|
---|
| 1364 | if( p==0 || pParse->nErr ) goto fk_end;
|
---|
| 1365 | if( pFromCol==0 ){
|
---|
| 1366 | int iCol = p->nCol-1;
|
---|
| 1367 | if( iCol<0 ) goto fk_end;
|
---|
| 1368 | if( pToCol && pToCol->nId!=1 ){
|
---|
| 1369 | sqliteErrorMsg(pParse, "foreign key on %s"
|
---|
| 1370 | " should reference only one column of table %T",
|
---|
| 1371 | p->aCol[iCol].zName, pTo);
|
---|
| 1372 | goto fk_end;
|
---|
| 1373 | }
|
---|
| 1374 | nCol = 1;
|
---|
| 1375 | }else if( pToCol && pToCol->nId!=pFromCol->nId ){
|
---|
| 1376 | sqliteErrorMsg(pParse,
|
---|
| 1377 | "number of columns in foreign key does not match the number of "
|
---|
| 1378 | "columns in the referenced table");
|
---|
| 1379 | goto fk_end;
|
---|
| 1380 | }else{
|
---|
| 1381 | nCol = pFromCol->nId;
|
---|
| 1382 | }
|
---|
| 1383 | nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
---|
| 1384 | if( pToCol ){
|
---|
| 1385 | for(i=0; i<pToCol->nId; i++){
|
---|
| 1386 | nByte += strlen(pToCol->a[i].zName) + 1;
|
---|
| 1387 | }
|
---|
| 1388 | }
|
---|
| 1389 | pFKey = sqliteMalloc( nByte );
|
---|
| 1390 | if( pFKey==0 ) goto fk_end;
|
---|
| 1391 | pFKey->pFrom = p;
|
---|
| 1392 | pFKey->pNextFrom = p->pFKey;
|
---|
| 1393 | z = (char*)&pFKey[1];
|
---|
| 1394 | pFKey->aCol = (struct sColMap*)z;
|
---|
| 1395 | z += sizeof(struct sColMap)*nCol;
|
---|
| 1396 | pFKey->zTo = z;
|
---|
| 1397 | memcpy(z, pTo->z, pTo->n);
|
---|
| 1398 | z[pTo->n] = 0;
|
---|
| 1399 | z += pTo->n+1;
|
---|
| 1400 | pFKey->pNextTo = 0;
|
---|
| 1401 | pFKey->nCol = nCol;
|
---|
| 1402 | if( pFromCol==0 ){
|
---|
| 1403 | pFKey->aCol[0].iFrom = p->nCol-1;
|
---|
| 1404 | }else{
|
---|
| 1405 | for(i=0; i<nCol; i++){
|
---|
| 1406 | int j;
|
---|
| 1407 | for(j=0; j<p->nCol; j++){
|
---|
| 1408 | if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
---|
| 1409 | pFKey->aCol[i].iFrom = j;
|
---|
| 1410 | break;
|
---|
| 1411 | }
|
---|
| 1412 | }
|
---|
| 1413 | if( j>=p->nCol ){
|
---|
| 1414 | sqliteErrorMsg(pParse,
|
---|
| 1415 | "unknown column \"%s\" in foreign key definition",
|
---|
| 1416 | pFromCol->a[i].zName);
|
---|
| 1417 | goto fk_end;
|
---|
| 1418 | }
|
---|
| 1419 | }
|
---|
| 1420 | }
|
---|
| 1421 | if( pToCol ){
|
---|
| 1422 | for(i=0; i<nCol; i++){
|
---|
| 1423 | int n = strlen(pToCol->a[i].zName);
|
---|
| 1424 | pFKey->aCol[i].zCol = z;
|
---|
| 1425 | memcpy(z, pToCol->a[i].zName, n);
|
---|
| 1426 | z[n] = 0;
|
---|
| 1427 | z += n+1;
|
---|
| 1428 | }
|
---|
| 1429 | }
|
---|
| 1430 | pFKey->isDeferred = 0;
|
---|
| 1431 | pFKey->deleteConf = flags & 0xff;
|
---|
| 1432 | pFKey->updateConf = (flags >> 8 ) & 0xff;
|
---|
| 1433 | pFKey->insertConf = (flags >> 16 ) & 0xff;
|
---|
| 1434 |
|
---|
| 1435 | /* Link the foreign key to the table as the last step.
|
---|
| 1436 | */
|
---|
| 1437 | p->pFKey = pFKey;
|
---|
| 1438 | pFKey = 0;
|
---|
| 1439 |
|
---|
| 1440 | fk_end:
|
---|
| 1441 | sqliteFree(pFKey);
|
---|
| 1442 | sqliteIdListDelete(pFromCol);
|
---|
| 1443 | sqliteIdListDelete(pToCol);
|
---|
| 1444 | }
|
---|
| 1445 |
|
---|
| 1446 | /*
|
---|
| 1447 | ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
---|
| 1448 | ** clause is seen as part of a foreign key definition. The isDeferred
|
---|
| 1449 | ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
---|
| 1450 | ** The behavior of the most recently created foreign key is adjusted
|
---|
| 1451 | ** accordingly.
|
---|
| 1452 | */
|
---|
| 1453 | void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
|
---|
| 1454 | Table *pTab;
|
---|
| 1455 | FKey *pFKey;
|
---|
| 1456 | if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
---|
| 1457 | pFKey->isDeferred = isDeferred;
|
---|
| 1458 | }
|
---|
| 1459 |
|
---|
| 1460 | /*
|
---|
| 1461 | ** Create a new index for an SQL table. pIndex is the name of the index
|
---|
| 1462 | ** and pTable is the name of the table that is to be indexed. Both will
|
---|
| 1463 | ** be NULL for a primary key or an index that is created to satisfy a
|
---|
| 1464 | ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
---|
| 1465 | ** as the table to be indexed. pParse->pNewTable is a table that is
|
---|
| 1466 | ** currently being constructed by a CREATE TABLE statement.
|
---|
| 1467 | **
|
---|
| 1468 | ** pList is a list of columns to be indexed. pList will be NULL if this
|
---|
| 1469 | ** is a primary key or unique-constraint on the most recent column added
|
---|
| 1470 | ** to the table currently under construction.
|
---|
| 1471 | */
|
---|
| 1472 | void sqliteCreateIndex(
|
---|
| 1473 | Parse *pParse, /* All information about this parse */
|
---|
| 1474 | Token *pName, /* Name of the index. May be NULL */
|
---|
| 1475 | SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
|
---|
| 1476 | IdList *pList, /* A list of columns to be indexed */
|
---|
| 1477 | int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
---|
| 1478 | Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
|
---|
| 1479 | Token *pEnd /* The ")" that closes the CREATE INDEX statement */
|
---|
| 1480 | ){
|
---|
| 1481 | Table *pTab; /* Table to be indexed */
|
---|
| 1482 | Index *pIndex; /* The index to be created */
|
---|
| 1483 | char *zName = 0;
|
---|
| 1484 | int i, j;
|
---|
| 1485 | Token nullId; /* Fake token for an empty ID list */
|
---|
| 1486 | DbFixer sFix; /* For assigning database names to pTable */
|
---|
| 1487 | int isTemp; /* True for a temporary index */
|
---|
| 1488 | sqlite *db = pParse->db;
|
---|
| 1489 |
|
---|
| 1490 | if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
|
---|
| 1491 | if( db->init.busy
|
---|
| 1492 | && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
|
---|
| 1493 | && sqliteFixSrcList(&sFix, pTable)
|
---|
| 1494 | ){
|
---|
| 1495 | goto exit_create_index;
|
---|
| 1496 | }
|
---|
| 1497 |
|
---|
| 1498 | /*
|
---|
| 1499 | ** Find the table that is to be indexed. Return early if not found.
|
---|
| 1500 | */
|
---|
| 1501 | if( pTable!=0 ){
|
---|
| 1502 | assert( pName!=0 );
|
---|
| 1503 | assert( pTable->nSrc==1 );
|
---|
| 1504 | pTab = sqliteSrcListLookup(pParse, pTable);
|
---|
| 1505 | }else{
|
---|
| 1506 | assert( pName==0 );
|
---|
| 1507 | pTab = pParse->pNewTable;
|
---|
| 1508 | }
|
---|
| 1509 | if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
---|
| 1510 | if( pTab->readOnly ){
|
---|
| 1511 | sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
---|
| 1512 | goto exit_create_index;
|
---|
| 1513 | }
|
---|
| 1514 | if( pTab->iDb>=2 && db->init.busy==0 ){
|
---|
| 1515 | sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
|
---|
| 1516 | goto exit_create_index;
|
---|
| 1517 | }
|
---|
| 1518 | if( pTab->pSelect ){
|
---|
| 1519 | sqliteErrorMsg(pParse, "views may not be indexed");
|
---|
| 1520 | goto exit_create_index;
|
---|
| 1521 | }
|
---|
| 1522 | isTemp = pTab->iDb==1;
|
---|
| 1523 |
|
---|
| 1524 | /*
|
---|
| 1525 | ** Find the name of the index. Make sure there is not already another
|
---|
| 1526 | ** index or table with the same name.
|
---|
| 1527 | **
|
---|
| 1528 | ** Exception: If we are reading the names of permanent indices from the
|
---|
| 1529 | ** sqlite_master table (because some other process changed the schema) and
|
---|
| 1530 | ** one of the index names collides with the name of a temporary table or
|
---|
| 1531 | ** index, then we will continue to process this index.
|
---|
| 1532 | **
|
---|
| 1533 | ** If pName==0 it means that we are
|
---|
| 1534 | ** dealing with a primary key or UNIQUE constraint. We have to invent our
|
---|
| 1535 | ** own name.
|
---|
| 1536 | */
|
---|
| 1537 | if( pName && !db->init.busy ){
|
---|
| 1538 | Index *pISameName; /* Another index with the same name */
|
---|
| 1539 | Table *pTSameName; /* A table with same name as the index */
|
---|
| 1540 | zName = sqliteTableNameFromToken(pName);
|
---|
| 1541 | if( zName==0 ) goto exit_create_index;
|
---|
| 1542 | if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
|
---|
| 1543 | sqliteErrorMsg(pParse, "index %s already exists", zName);
|
---|
| 1544 | goto exit_create_index;
|
---|
| 1545 | }
|
---|
| 1546 | if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
|
---|
| 1547 | sqliteErrorMsg(pParse, "there is already a table named %s", zName);
|
---|
| 1548 | goto exit_create_index;
|
---|
| 1549 | }
|
---|
| 1550 | }else if( pName==0 ){
|
---|
| 1551 | char zBuf[30];
|
---|
| 1552 | int n;
|
---|
| 1553 | Index *pLoop;
|
---|
| 1554 | for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
---|
| 1555 | sprintf(zBuf,"%d)",n);
|
---|
| 1556 | zName = 0;
|
---|
| 1557 | sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
|
---|
| 1558 | if( zName==0 ) goto exit_create_index;
|
---|
| 1559 | }else{
|
---|
| 1560 | zName = sqliteTableNameFromToken(pName);
|
---|
| 1561 | }
|
---|
| 1562 |
|
---|
| 1563 | /* Check for authorization to create an index.
|
---|
| 1564 | */
|
---|
| 1565 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
| 1566 | {
|
---|
| 1567 | const char *zDb = db->aDb[pTab->iDb].zName;
|
---|
| 1568 |
|
---|
| 1569 | assert( pTab->iDb==db->init.iDb || isTemp );
|
---|
| 1570 | if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
---|
| 1571 | goto exit_create_index;
|
---|
| 1572 | }
|
---|
| 1573 | i = SQLITE_CREATE_INDEX;
|
---|
| 1574 | if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
|
---|
| 1575 | if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
---|
| 1576 | goto exit_create_index;
|
---|
| 1577 | }
|
---|
| 1578 | }
|
---|
| 1579 | #endif
|
---|
| 1580 |
|
---|
| 1581 | /* If pList==0, it means this routine was called to make a primary
|
---|
| 1582 | ** key out of the last column added to the table under construction.
|
---|
| 1583 | ** So create a fake list to simulate this.
|
---|
| 1584 | */
|
---|
| 1585 | if( pList==0 ){
|
---|
| 1586 | nullId.z = pTab->aCol[pTab->nCol-1].zName;
|
---|
| 1587 | nullId.n = strlen(nullId.z);
|
---|
| 1588 | pList = sqliteIdListAppend(0, &nullId);
|
---|
| 1589 | if( pList==0 ) goto exit_create_index;
|
---|
| 1590 | }
|
---|
| 1591 |
|
---|
| 1592 | /*
|
---|
| 1593 | ** Allocate the index structure.
|
---|
| 1594 | */
|
---|
| 1595 | pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
|
---|
| 1596 | sizeof(int)*pList->nId );
|
---|
| 1597 | if( pIndex==0 ) goto exit_create_index;
|
---|
| 1598 | pIndex->aiColumn = (int*)&pIndex[1];
|
---|
| 1599 | pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
|
---|
| 1600 | strcpy(pIndex->zName, zName);
|
---|
| 1601 | pIndex->pTable = pTab;
|
---|
| 1602 | pIndex->nColumn = pList->nId;
|
---|
| 1603 | pIndex->onError = onError;
|
---|
| 1604 | pIndex->autoIndex = pName==0;
|
---|
| 1605 | pIndex->iDb = isTemp ? 1 : db->init.iDb;
|
---|
| 1606 |
|
---|
| 1607 | /* Scan the names of the columns of the table to be indexed and
|
---|
| 1608 | ** load the column indices into the Index structure. Report an error
|
---|
| 1609 | ** if any column is not found.
|
---|
| 1610 | */
|
---|
| 1611 | for(i=0; i<pList->nId; i++){
|
---|
| 1612 | for(j=0; j<pTab->nCol; j++){
|
---|
| 1613 | if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
|
---|
| 1614 | }
|
---|
| 1615 | if( j>=pTab->nCol ){
|
---|
| 1616 | sqliteErrorMsg(pParse, "table %s has no column named %s",
|
---|
| 1617 | pTab->zName, pList->a[i].zName);
|
---|
| 1618 | sqliteFree(pIndex);
|
---|
| 1619 | goto exit_create_index;
|
---|
| 1620 | }
|
---|
| 1621 | pIndex->aiColumn[i] = j;
|
---|
| 1622 | }
|
---|
| 1623 |
|
---|
| 1624 | /* Link the new Index structure to its table and to the other
|
---|
| 1625 | ** in-memory database structures.
|
---|
| 1626 | */
|
---|
| 1627 | if( !pParse->explain ){
|
---|
| 1628 | Index *p;
|
---|
| 1629 | p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
|
---|
| 1630 | pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
---|
| 1631 | if( p ){
|
---|
| 1632 | assert( p==pIndex ); /* Malloc must have failed */
|
---|
| 1633 | sqliteFree(pIndex);
|
---|
| 1634 | goto exit_create_index;
|
---|
| 1635 | }
|
---|
| 1636 | db->flags |= SQLITE_InternChanges;
|
---|
| 1637 | }
|
---|
| 1638 |
|
---|
| 1639 | /* When adding an index to the list of indices for a table, make
|
---|
| 1640 | ** sure all indices labeled OE_Replace come after all those labeled
|
---|
| 1641 | ** OE_Ignore. This is necessary for the correct operation of UPDATE
|
---|
| 1642 | ** and INSERT.
|
---|
| 1643 | */
|
---|
| 1644 | if( onError!=OE_Replace || pTab->pIndex==0
|
---|
| 1645 | || pTab->pIndex->onError==OE_Replace){
|
---|
| 1646 | pIndex->pNext = pTab->pIndex;
|
---|
| 1647 | pTab->pIndex = pIndex;
|
---|
| 1648 | }else{
|
---|
| 1649 | Index *pOther = pTab->pIndex;
|
---|
| 1650 | while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
---|
| 1651 | pOther = pOther->pNext;
|
---|
| 1652 | }
|
---|
| 1653 | pIndex->pNext = pOther->pNext;
|
---|
| 1654 | pOther->pNext = pIndex;
|
---|
| 1655 | }
|
---|
| 1656 |
|
---|
| 1657 | /* If the db->init.busy is 1 it means we are reading the SQL off the
|
---|
| 1658 | ** "sqlite_master" table on the disk. So do not write to the disk
|
---|
| 1659 | ** again. Extract the table number from the db->init.newTnum field.
|
---|
| 1660 | */
|
---|
| 1661 | if( db->init.busy && pTable!=0 ){
|
---|
| 1662 | pIndex->tnum = db->init.newTnum;
|
---|
| 1663 | }
|
---|
| 1664 |
|
---|
| 1665 | /* If the db->init.busy is 0 then create the index on disk. This
|
---|
| 1666 | ** involves writing the index into the master table and filling in the
|
---|
| 1667 | ** index with the current table contents.
|
---|
| 1668 | **
|
---|
| 1669 | ** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
---|
| 1670 | ** command. db->init.busy is 1 when a database is opened and
|
---|
| 1671 | ** CREATE INDEX statements are read out of the master table. In
|
---|
| 1672 | ** the latter case the index already exists on disk, which is why
|
---|
| 1673 | ** we don't want to recreate it.
|
---|
| 1674 | **
|
---|
| 1675 | ** If pTable==0 it means this index is generated as a primary key
|
---|
| 1676 | ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
---|
| 1677 | ** has just been created, it contains no data and the index initialization
|
---|
| 1678 | ** step can be skipped.
|
---|
| 1679 | */
|
---|
| 1680 | else if( db->init.busy==0 ){
|
---|
| 1681 | int n;
|
---|
| 1682 | Vdbe *v;
|
---|
| 1683 | int lbl1, lbl2;
|
---|
| 1684 | int i;
|
---|
| 1685 | int addr;
|
---|
| 1686 |
|
---|
| 1687 | v = sqliteGetVdbe(pParse);
|
---|
| 1688 | if( v==0 ) goto exit_create_index;
|
---|
| 1689 | if( pTable!=0 ){
|
---|
| 1690 | sqliteBeginWriteOperation(pParse, 0, isTemp);
|
---|
| 1691 | sqliteOpenMasterTable(v, isTemp);
|
---|
| 1692 | }
|
---|
| 1693 | sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
---|
| 1694 | sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
|
---|
| 1695 | sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
|
---|
| 1696 | sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
|
---|
| 1697 | sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
|
---|
| 1698 | pIndex->tnum = 0;
|
---|
| 1699 | if( pTable ){
|
---|
| 1700 | sqliteVdbeCode(v,
|
---|
| 1701 | OP_Dup, 0, 0,
|
---|
| 1702 | OP_Integer, isTemp, 0,
|
---|
| 1703 | OP_OpenWrite, 1, 0,
|
---|
| 1704 | 0);
|
---|
| 1705 | }
|
---|
| 1706 | addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
| 1707 | if( pStart && pEnd ){
|
---|
| 1708 | n = Addr(pEnd->z) - Addr(pStart->z) + 1;
|
---|
| 1709 | sqliteVdbeChangeP3(v, addr, pStart->z, n);
|
---|
| 1710 | }
|
---|
| 1711 | sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
---|
| 1712 | sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
---|
| 1713 | if( pTable ){
|
---|
| 1714 | sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
---|
| 1715 | sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
|
---|
| 1716 | lbl2 = sqliteVdbeMakeLabel(v);
|
---|
| 1717 | sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
|
---|
| 1718 | lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
|
---|
| 1719 | for(i=0; i<pIndex->nColumn; i++){
|
---|
| 1720 | int iCol = pIndex->aiColumn[i];
|
---|
| 1721 | if( pTab->iPKey==iCol ){
|
---|
| 1722 | sqliteVdbeAddOp(v, OP_Dup, i, 0);
|
---|
| 1723 | }else{
|
---|
| 1724 | sqliteVdbeAddOp(v, OP_Column, 2, iCol);
|
---|
| 1725 | }
|
---|
| 1726 | }
|
---|
| 1727 | sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
|
---|
| 1728 | if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
|
---|
| 1729 | sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
|
---|
| 1730 | "indexed columns are not unique", P3_STATIC);
|
---|
| 1731 | sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
|
---|
| 1732 | sqliteVdbeResolveLabel(v, lbl2);
|
---|
| 1733 | sqliteVdbeAddOp(v, OP_Close, 2, 0);
|
---|
| 1734 | sqliteVdbeAddOp(v, OP_Close, 1, 0);
|
---|
| 1735 | }
|
---|
| 1736 | if( pTable!=0 ){
|
---|
| 1737 | if( !isTemp ){
|
---|
| 1738 | sqliteChangeCookie(db, v);
|
---|
| 1739 | }
|
---|
| 1740 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
| 1741 | sqliteEndWriteOperation(pParse);
|
---|
| 1742 | }
|
---|
| 1743 | }
|
---|
| 1744 |
|
---|
| 1745 | /* Clean up before exiting */
|
---|
| 1746 | exit_create_index:
|
---|
| 1747 | sqliteIdListDelete(pList);
|
---|
| 1748 | sqliteSrcListDelete(pTable);
|
---|
| 1749 | sqliteFree(zName);
|
---|
| 1750 | return;
|
---|
| 1751 | }
|
---|
| 1752 |
|
---|
| 1753 | /*
|
---|
| 1754 | ** This routine will drop an existing named index. This routine
|
---|
| 1755 | ** implements the DROP INDEX statement.
|
---|
| 1756 | */
|
---|
| 1757 | void sqliteDropIndex(Parse *pParse, SrcList *pName){
|
---|
| 1758 | Index *pIndex;
|
---|
| 1759 | Vdbe *v;
|
---|
| 1760 | sqlite *db = pParse->db;
|
---|
| 1761 |
|
---|
| 1762 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
| 1763 | assert( pName->nSrc==1 );
|
---|
| 1764 | pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
---|
| 1765 | if( pIndex==0 ){
|
---|
| 1766 | sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
|
---|
| 1767 | goto exit_drop_index;
|
---|
| 1768 | }
|
---|
| 1769 | if( pIndex->autoIndex ){
|
---|
| 1770 | sqliteErrorMsg(pParse, "index associated with UNIQUE "
|
---|
| 1771 | "or PRIMARY KEY constraint cannot be dropped", 0);
|
---|
| 1772 | goto exit_drop_index;
|
---|
| 1773 | }
|
---|
| 1774 | if( pIndex->iDb>1 ){
|
---|
| 1775 | sqliteErrorMsg(pParse, "cannot alter schema of attached "
|
---|
| 1776 | "databases", 0);
|
---|
| 1777 | goto exit_drop_index;
|
---|
| 1778 | }
|
---|
| 1779 | #ifndef SQLITE_OMIT_AUTHORIZATION
|
---|
| 1780 | {
|
---|
| 1781 | int code = SQLITE_DROP_INDEX;
|
---|
| 1782 | Table *pTab = pIndex->pTable;
|
---|
| 1783 | const char *zDb = db->aDb[pIndex->iDb].zName;
|
---|
| 1784 | const char *zTab = SCHEMA_TABLE(pIndex->iDb);
|
---|
| 1785 | if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
---|
| 1786 | goto exit_drop_index;
|
---|
| 1787 | }
|
---|
| 1788 | if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
---|
| 1789 | if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
---|
| 1790 | goto exit_drop_index;
|
---|
| 1791 | }
|
---|
| 1792 | }
|
---|
| 1793 | #endif
|
---|
| 1794 |
|
---|
| 1795 | /* Generate code to remove the index and from the master table */
|
---|
| 1796 | v = sqliteGetVdbe(pParse);
|
---|
| 1797 | if( v ){
|
---|
| 1798 | static VdbeOpList dropIndex[] = {
|
---|
| 1799 | { OP_Rewind, 0, ADDR(9), 0},
|
---|
| 1800 | { OP_String, 0, 0, 0}, /* 1 */
|
---|
| 1801 | { OP_MemStore, 1, 1, 0},
|
---|
| 1802 | { OP_MemLoad, 1, 0, 0}, /* 3 */
|
---|
| 1803 | { OP_Column, 0, 1, 0},
|
---|
| 1804 | { OP_Eq, 0, ADDR(8), 0},
|
---|
| 1805 | { OP_Next, 0, ADDR(3), 0},
|
---|
| 1806 | { OP_Goto, 0, ADDR(9), 0},
|
---|
| 1807 | { OP_Delete, 0, 0, 0}, /* 8 */
|
---|
| 1808 | };
|
---|
| 1809 | int base;
|
---|
| 1810 |
|
---|
| 1811 | sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
|
---|
| 1812 | sqliteOpenMasterTable(v, pIndex->iDb);
|
---|
| 1813 | base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
|
---|
| 1814 | sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
|
---|
| 1815 | if( pIndex->iDb==0 ){
|
---|
| 1816 | sqliteChangeCookie(db, v);
|
---|
| 1817 | }
|
---|
| 1818 | sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
---|
| 1819 | sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
|
---|
| 1820 | sqliteEndWriteOperation(pParse);
|
---|
| 1821 | }
|
---|
| 1822 |
|
---|
| 1823 | /* Delete the in-memory description of this index.
|
---|
| 1824 | */
|
---|
| 1825 | if( !pParse->explain ){
|
---|
| 1826 | sqliteUnlinkAndDeleteIndex(db, pIndex);
|
---|
| 1827 | db->flags |= SQLITE_InternChanges;
|
---|
| 1828 | }
|
---|
| 1829 |
|
---|
| 1830 | exit_drop_index:
|
---|
| 1831 | sqliteSrcListDelete(pName);
|
---|
| 1832 | }
|
---|
| 1833 |
|
---|
| 1834 | /*
|
---|
| 1835 | ** Append a new element to the given IdList. Create a new IdList if
|
---|
| 1836 | ** need be.
|
---|
| 1837 | **
|
---|
| 1838 | ** A new IdList is returned, or NULL if malloc() fails.
|
---|
| 1839 | */
|
---|
| 1840 | IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
|
---|
| 1841 | if( pList==0 ){
|
---|
| 1842 | pList = sqliteMalloc( sizeof(IdList) );
|
---|
| 1843 | if( pList==0 ) return 0;
|
---|
| 1844 | pList->nAlloc = 0;
|
---|
| 1845 | }
|
---|
| 1846 | if( pList->nId>=pList->nAlloc ){
|
---|
| 1847 | struct IdList_item *a;
|
---|
| 1848 | pList->nAlloc = pList->nAlloc*2 + 5;
|
---|
| 1849 | a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
|
---|
| 1850 | if( a==0 ){
|
---|
| 1851 | sqliteIdListDelete(pList);
|
---|
| 1852 | return 0;
|
---|
| 1853 | }
|
---|
| 1854 | pList->a = a;
|
---|
| 1855 | }
|
---|
| 1856 | memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
|
---|
| 1857 | if( pToken ){
|
---|
| 1858 | char **pz = &pList->a[pList->nId].zName;
|
---|
| 1859 | sqliteSetNString(pz, pToken->z, pToken->n, 0);
|
---|
| 1860 | if( *pz==0 ){
|
---|
| 1861 | sqliteIdListDelete(pList);
|
---|
| 1862 | return 0;
|
---|
| 1863 | }else{
|
---|
| 1864 | sqliteDequote(*pz);
|
---|
| 1865 | }
|
---|
| 1866 | }
|
---|
| 1867 | pList->nId++;
|
---|
| 1868 | return pList;
|
---|
| 1869 | }
|
---|
| 1870 |
|
---|
| 1871 | /*
|
---|
| 1872 | ** Append a new table name to the given SrcList. Create a new SrcList if
|
---|
| 1873 | ** need be. A new entry is created in the SrcList even if pToken is NULL.
|
---|
| 1874 | **
|
---|
| 1875 | ** A new SrcList is returned, or NULL if malloc() fails.
|
---|
| 1876 | **
|
---|
| 1877 | ** If pDatabase is not null, it means that the table has an optional
|
---|
| 1878 | ** database name prefix. Like this: "database.table". The pDatabase
|
---|
| 1879 | ** points to the table name and the pTable points to the database name.
|
---|
| 1880 | ** The SrcList.a[].zName field is filled with the table name which might
|
---|
| 1881 | ** come from pTable (if pDatabase is NULL) or from pDatabase.
|
---|
| 1882 | ** SrcList.a[].zDatabase is filled with the database name from pTable,
|
---|
| 1883 | ** or with NULL if no database is specified.
|
---|
| 1884 | **
|
---|
| 1885 | ** In other words, if call like this:
|
---|
| 1886 | **
|
---|
| 1887 | ** sqliteSrcListAppend(A,B,0);
|
---|
| 1888 | **
|
---|
| 1889 | ** Then B is a table name and the database name is unspecified. If called
|
---|
| 1890 | ** like this:
|
---|
| 1891 | **
|
---|
| 1892 | ** sqliteSrcListAppend(A,B,C);
|
---|
| 1893 | **
|
---|
| 1894 | ** Then C is the table name and B is the database name.
|
---|
| 1895 | */
|
---|
| 1896 | SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
|
---|
| 1897 | if( pList==0 ){
|
---|
| 1898 | pList = sqliteMalloc( sizeof(SrcList) );
|
---|
| 1899 | if( pList==0 ) return 0;
|
---|
| 1900 | pList->nAlloc = 1;
|
---|
| 1901 | }
|
---|
| 1902 | if( pList->nSrc>=pList->nAlloc ){
|
---|
| 1903 | SrcList *pNew;
|
---|
| 1904 | pList->nAlloc *= 2;
|
---|
| 1905 | pNew = sqliteRealloc(pList,
|
---|
| 1906 | sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
---|
| 1907 | if( pNew==0 ){
|
---|
| 1908 | sqliteSrcListDelete(pList);
|
---|
| 1909 | return 0;
|
---|
| 1910 | }
|
---|
| 1911 | pList = pNew;
|
---|
| 1912 | }
|
---|
| 1913 | memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
|
---|
| 1914 | if( pDatabase && pDatabase->z==0 ){
|
---|
| 1915 | pDatabase = 0;
|
---|
| 1916 | }
|
---|
| 1917 | if( pDatabase && pTable ){
|
---|
| 1918 | Token *pTemp = pDatabase;
|
---|
| 1919 | pDatabase = pTable;
|
---|
| 1920 | pTable = pTemp;
|
---|
| 1921 | }
|
---|
| 1922 | if( pTable ){
|
---|
| 1923 | char **pz = &pList->a[pList->nSrc].zName;
|
---|
| 1924 | sqliteSetNString(pz, pTable->z, pTable->n, 0);
|
---|
| 1925 | if( *pz==0 ){
|
---|
| 1926 | sqliteSrcListDelete(pList);
|
---|
| 1927 | return 0;
|
---|
| 1928 | }else{
|
---|
| 1929 | sqliteDequote(*pz);
|
---|
| 1930 | }
|
---|
| 1931 | }
|
---|
| 1932 | if( pDatabase ){
|
---|
| 1933 | char **pz = &pList->a[pList->nSrc].zDatabase;
|
---|
| 1934 | sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
|
---|
| 1935 | if( *pz==0 ){
|
---|
| 1936 | sqliteSrcListDelete(pList);
|
---|
| 1937 | return 0;
|
---|
| 1938 | }else{
|
---|
| 1939 | sqliteDequote(*pz);
|
---|
| 1940 | }
|
---|
| 1941 | }
|
---|
| 1942 | pList->a[pList->nSrc].iCursor = -1;
|
---|
| 1943 | pList->nSrc++;
|
---|
| 1944 | return pList;
|
---|
| 1945 | }
|
---|
| 1946 |
|
---|
| 1947 | /*
|
---|
| 1948 | ** Assign cursors to all tables in a SrcList
|
---|
| 1949 | */
|
---|
| 1950 | void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
|
---|
| 1951 | int i;
|
---|
| 1952 | for(i=0; i<pList->nSrc; i++){
|
---|
| 1953 | if( pList->a[i].iCursor<0 ){
|
---|
| 1954 | pList->a[i].iCursor = pParse->nTab++;
|
---|
| 1955 | }
|
---|
| 1956 | }
|
---|
| 1957 | }
|
---|
| 1958 |
|
---|
| 1959 | /*
|
---|
| 1960 | ** Add an alias to the last identifier on the given identifier list.
|
---|
| 1961 | */
|
---|
| 1962 | void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
|
---|
| 1963 | if( pList && pList->nSrc>0 ){
|
---|
| 1964 | int i = pList->nSrc - 1;
|
---|
| 1965 | sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
|
---|
| 1966 | sqliteDequote(pList->a[i].zAlias);
|
---|
| 1967 | }
|
---|
| 1968 | }
|
---|
| 1969 |
|
---|
| 1970 | /*
|
---|
| 1971 | ** Delete an IdList.
|
---|
| 1972 | */
|
---|
| 1973 | void sqliteIdListDelete(IdList *pList){
|
---|
| 1974 | int i;
|
---|
| 1975 | if( pList==0 ) return;
|
---|
| 1976 | for(i=0; i<pList->nId; i++){
|
---|
| 1977 | sqliteFree(pList->a[i].zName);
|
---|
| 1978 | }
|
---|
| 1979 | sqliteFree(pList->a);
|
---|
| 1980 | sqliteFree(pList);
|
---|
| 1981 | }
|
---|
| 1982 |
|
---|
| 1983 | /*
|
---|
| 1984 | ** Return the index in pList of the identifier named zId. Return -1
|
---|
| 1985 | ** if not found.
|
---|
| 1986 | */
|
---|
| 1987 | int sqliteIdListIndex(IdList *pList, const char *zName){
|
---|
| 1988 | int i;
|
---|
| 1989 | if( pList==0 ) return -1;
|
---|
| 1990 | for(i=0; i<pList->nId; i++){
|
---|
| 1991 | if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
|
---|
| 1992 | }
|
---|
| 1993 | return -1;
|
---|
| 1994 | }
|
---|
| 1995 |
|
---|
| 1996 | /*
|
---|
| 1997 | ** Delete an entire SrcList including all its substructure.
|
---|
| 1998 | */
|
---|
| 1999 | void sqliteSrcListDelete(SrcList *pList){
|
---|
| 2000 | int i;
|
---|
| 2001 | if( pList==0 ) return;
|
---|
| 2002 | for(i=0; i<pList->nSrc; i++){
|
---|
| 2003 | sqliteFree(pList->a[i].zDatabase);
|
---|
| 2004 | sqliteFree(pList->a[i].zName);
|
---|
| 2005 | sqliteFree(pList->a[i].zAlias);
|
---|
| 2006 | if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
|
---|
| 2007 | sqliteDeleteTable(0, pList->a[i].pTab);
|
---|
| 2008 | }
|
---|
| 2009 | sqliteSelectDelete(pList->a[i].pSelect);
|
---|
| 2010 | sqliteExprDelete(pList->a[i].pOn);
|
---|
| 2011 | sqliteIdListDelete(pList->a[i].pUsing);
|
---|
| 2012 | }
|
---|
| 2013 | sqliteFree(pList);
|
---|
| 2014 | }
|
---|
| 2015 |
|
---|
| 2016 | /*
|
---|
| 2017 | ** Begin a transaction
|
---|
| 2018 | */
|
---|
| 2019 | void sqliteBeginTransaction(Parse *pParse, int onError){
|
---|
| 2020 | sqlite *db;
|
---|
| 2021 |
|
---|
| 2022 | if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
---|
| 2023 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
| 2024 | if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
---|
| 2025 | if( db->flags & SQLITE_InTrans ){
|
---|
| 2026 | sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
|
---|
| 2027 | return;
|
---|
| 2028 | }
|
---|
| 2029 | sqliteBeginWriteOperation(pParse, 0, 0);
|
---|
| 2030 | if( !pParse->explain ){
|
---|
| 2031 | db->flags |= SQLITE_InTrans;
|
---|
| 2032 | db->onError = onError;
|
---|
| 2033 | }
|
---|
| 2034 | }
|
---|
| 2035 |
|
---|
| 2036 | /*
|
---|
| 2037 | ** Commit a transaction
|
---|
| 2038 | */
|
---|
| 2039 | void sqliteCommitTransaction(Parse *pParse){
|
---|
| 2040 | sqlite *db;
|
---|
| 2041 |
|
---|
| 2042 | if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
---|
| 2043 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
| 2044 | if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
---|
| 2045 | if( (db->flags & SQLITE_InTrans)==0 ){
|
---|
| 2046 | sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
|
---|
| 2047 | return;
|
---|
| 2048 | }
|
---|
| 2049 | if( !pParse->explain ){
|
---|
| 2050 | db->flags &= ~SQLITE_InTrans;
|
---|
| 2051 | }
|
---|
| 2052 | sqliteEndWriteOperation(pParse);
|
---|
| 2053 | if( !pParse->explain ){
|
---|
| 2054 | db->onError = OE_Default;
|
---|
| 2055 | }
|
---|
| 2056 | }
|
---|
| 2057 |
|
---|
| 2058 | /*
|
---|
| 2059 | ** Rollback a transaction
|
---|
| 2060 | */
|
---|
| 2061 | void sqliteRollbackTransaction(Parse *pParse){
|
---|
| 2062 | sqlite *db;
|
---|
| 2063 | Vdbe *v;
|
---|
| 2064 |
|
---|
| 2065 | if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
---|
| 2066 | if( pParse->nErr || sqlite_malloc_failed ) return;
|
---|
| 2067 | if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
---|
| 2068 | if( (db->flags & SQLITE_InTrans)==0 ){
|
---|
| 2069 | sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
|
---|
| 2070 | return;
|
---|
| 2071 | }
|
---|
| 2072 | v = sqliteGetVdbe(pParse);
|
---|
| 2073 | if( v ){
|
---|
| 2074 | sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
|
---|
| 2075 | }
|
---|
| 2076 | if( !pParse->explain ){
|
---|
| 2077 | db->flags &= ~SQLITE_InTrans;
|
---|
| 2078 | db->onError = OE_Default;
|
---|
| 2079 | }
|
---|
| 2080 | }
|
---|
| 2081 |
|
---|
| 2082 | /*
|
---|
| 2083 | ** Generate VDBE code that will verify the schema cookie for all
|
---|
| 2084 | ** named database files.
|
---|
| 2085 | */
|
---|
| 2086 | void sqliteCodeVerifySchema(Parse *pParse, int iDb){
|
---|
| 2087 | sqlite *db = pParse->db;
|
---|
| 2088 | Vdbe *v = sqliteGetVdbe(pParse);
|
---|
| 2089 | assert( iDb>=0 && iDb<db->nDb );
|
---|
| 2090 | assert( db->aDb[iDb].pBt!=0 );
|
---|
| 2091 | if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
|
---|
| 2092 | sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
|
---|
| 2093 | DbSetProperty(db, iDb, DB_Cookie);
|
---|
| 2094 | }
|
---|
| 2095 | }
|
---|
| 2096 |
|
---|
| 2097 | /*
|
---|
| 2098 | ** Generate VDBE code that prepares for doing an operation that
|
---|
| 2099 | ** might change the database.
|
---|
| 2100 | **
|
---|
| 2101 | ** This routine starts a new transaction if we are not already within
|
---|
| 2102 | ** a transaction. If we are already within a transaction, then a checkpoint
|
---|
| 2103 | ** is set if the setCheckpoint parameter is true. A checkpoint should
|
---|
| 2104 | ** be set for operations that might fail (due to a constraint) part of
|
---|
| 2105 | ** the way through and which will need to undo some writes without having to
|
---|
| 2106 | ** rollback the whole transaction. For operations where all constraints
|
---|
| 2107 | ** can be checked before any changes are made to the database, it is never
|
---|
| 2108 | ** necessary to undo a write and the checkpoint should not be set.
|
---|
| 2109 | **
|
---|
| 2110 | ** Only database iDb and the temp database are made writable by this call.
|
---|
| 2111 | ** If iDb==0, then the main and temp databases are made writable. If
|
---|
| 2112 | ** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
---|
| 2113 | ** specified auxiliary database and the temp database are made writable.
|
---|
| 2114 | */
|
---|
| 2115 | void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
|
---|
| 2116 | Vdbe *v;
|
---|
| 2117 | sqlite *db = pParse->db;
|
---|
| 2118 | if( DbHasProperty(db, iDb, DB_Locked) ) return;
|
---|
| 2119 | v = sqliteGetVdbe(pParse);
|
---|
| 2120 | if( v==0 ) return;
|
---|
| 2121 | if( !db->aDb[iDb].inTrans ){
|
---|
| 2122 | sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
|
---|
| 2123 | DbSetProperty(db, iDb, DB_Locked);
|
---|
| 2124 | sqliteCodeVerifySchema(pParse, iDb);
|
---|
| 2125 | if( iDb!=1 ){
|
---|
| 2126 | sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
|
---|
| 2127 | }
|
---|
| 2128 | }else if( setCheckpoint ){
|
---|
| 2129 | sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
|
---|
| 2130 | DbSetProperty(db, iDb, DB_Locked);
|
---|
| 2131 | }
|
---|
| 2132 | }
|
---|
| 2133 |
|
---|
| 2134 | /*
|
---|
| 2135 | ** Generate code that concludes an operation that may have changed
|
---|
| 2136 | ** the database. If a statement transaction was started, then emit
|
---|
| 2137 | ** an OP_Commit that will cause the changes to be committed to disk.
|
---|
| 2138 | **
|
---|
| 2139 | ** Note that checkpoints are automatically committed at the end of
|
---|
| 2140 | ** a statement. Note also that there can be multiple calls to
|
---|
| 2141 | ** sqliteBeginWriteOperation() but there should only be a single
|
---|
| 2142 | ** call to sqliteEndWriteOperation() at the conclusion of the statement.
|
---|
| 2143 | */
|
---|
| 2144 | void sqliteEndWriteOperation(Parse *pParse){
|
---|
| 2145 | Vdbe *v;
|
---|
| 2146 | sqlite *db = pParse->db;
|
---|
| 2147 | if( pParse->trigStack ) return; /* if this is in a trigger */
|
---|
| 2148 | v = sqliteGetVdbe(pParse);
|
---|
| 2149 | if( v==0 ) return;
|
---|
| 2150 | if( db->flags & SQLITE_InTrans ){
|
---|
| 2151 | /* A BEGIN has executed. Do not commit until we see an explicit
|
---|
| 2152 | ** COMMIT statement. */
|
---|
| 2153 | }else{
|
---|
| 2154 | sqliteVdbeAddOp(v, OP_Commit, 0, 0);
|
---|
| 2155 | }
|
---|
| 2156 | }
|
---|