1 | /*
|
---|
2 | ** 2003 Feb 4
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** $Id: btree_rb.c,v 1.24.2.1 2004/06/26 14:40:05 drh Exp $
|
---|
13 | **
|
---|
14 | ** This file implements an in-core database using Red-Black balanced
|
---|
15 | ** binary trees.
|
---|
16 | **
|
---|
17 | ** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC.
|
---|
18 | */
|
---|
19 | #include "btree.h"
|
---|
20 | #include "sqliteInt.h"
|
---|
21 | #include <assert.h>
|
---|
22 |
|
---|
23 | /*
|
---|
24 | ** Omit this whole file if the SQLITE_OMIT_INMEMORYDB macro is
|
---|
25 | ** defined. This allows a lot of code to be omitted for installations
|
---|
26 | ** that do not need it.
|
---|
27 | */
|
---|
28 | #ifndef SQLITE_OMIT_INMEMORYDB
|
---|
29 |
|
---|
30 |
|
---|
31 | typedef struct BtRbTree BtRbTree;
|
---|
32 | typedef struct BtRbNode BtRbNode;
|
---|
33 | typedef struct BtRollbackOp BtRollbackOp;
|
---|
34 | typedef struct Rbtree Rbtree;
|
---|
35 | typedef struct RbtCursor RbtCursor;
|
---|
36 |
|
---|
37 | /* Forward declarations */
|
---|
38 | static BtOps sqliteRbtreeOps;
|
---|
39 | static BtCursorOps sqliteRbtreeCursorOps;
|
---|
40 |
|
---|
41 | /*
|
---|
42 | * During each transaction (or checkpoint), a linked-list of
|
---|
43 | * "rollback-operations" is accumulated. If the transaction is rolled back,
|
---|
44 | * then the list of operations must be executed (to restore the database to
|
---|
45 | * it's state before the transaction started). If the transaction is to be
|
---|
46 | * committed, just delete the list.
|
---|
47 | *
|
---|
48 | * Each operation is represented as follows, depending on the value of eOp:
|
---|
49 | *
|
---|
50 | * ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab.
|
---|
51 | * ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab.
|
---|
52 | * ROLLBACK_CREATE -> Need to create table iTab.
|
---|
53 | * ROLLBACK_DROP -> Need to drop table iTab.
|
---|
54 | */
|
---|
55 | struct BtRollbackOp {
|
---|
56 | u8 eOp;
|
---|
57 | int iTab;
|
---|
58 | int nKey;
|
---|
59 | void *pKey;
|
---|
60 | int nData;
|
---|
61 | void *pData;
|
---|
62 | BtRollbackOp *pNext;
|
---|
63 | };
|
---|
64 |
|
---|
65 | /*
|
---|
66 | ** Legal values for BtRollbackOp.eOp:
|
---|
67 | */
|
---|
68 | #define ROLLBACK_INSERT 1 /* Insert a record */
|
---|
69 | #define ROLLBACK_DELETE 2 /* Delete a record */
|
---|
70 | #define ROLLBACK_CREATE 3 /* Create a table */
|
---|
71 | #define ROLLBACK_DROP 4 /* Drop a table */
|
---|
72 |
|
---|
73 | struct Rbtree {
|
---|
74 | BtOps *pOps; /* Function table */
|
---|
75 | int aMetaData[SQLITE_N_BTREE_META];
|
---|
76 |
|
---|
77 | int next_idx; /* next available table index */
|
---|
78 | Hash tblHash; /* All created tables, by index */
|
---|
79 | u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */
|
---|
80 | u8 eTransState; /* State of this Rbtree wrt transactions */
|
---|
81 |
|
---|
82 | BtRollbackOp *pTransRollback;
|
---|
83 | BtRollbackOp *pCheckRollback;
|
---|
84 | BtRollbackOp *pCheckRollbackTail;
|
---|
85 | };
|
---|
86 |
|
---|
87 | /*
|
---|
88 | ** Legal values for Rbtree.eTransState.
|
---|
89 | */
|
---|
90 | #define TRANS_NONE 0 /* No transaction is in progress */
|
---|
91 | #define TRANS_INTRANSACTION 1 /* A transaction is in progress */
|
---|
92 | #define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */
|
---|
93 | #define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or
|
---|
94 | * transaction. */
|
---|
95 |
|
---|
96 | struct RbtCursor {
|
---|
97 | BtCursorOps *pOps; /* Function table */
|
---|
98 | Rbtree *pRbtree;
|
---|
99 | BtRbTree *pTree;
|
---|
100 | int iTree; /* Index of pTree in pRbtree */
|
---|
101 | BtRbNode *pNode;
|
---|
102 | RbtCursor *pShared; /* List of all cursors on the same Rbtree */
|
---|
103 | u8 eSkip; /* Determines if next step operation is a no-op */
|
---|
104 | u8 wrFlag; /* True if this cursor is open for writing */
|
---|
105 | };
|
---|
106 |
|
---|
107 | /*
|
---|
108 | ** Legal values for RbtCursor.eSkip.
|
---|
109 | */
|
---|
110 | #define SKIP_NONE 0 /* Always step the cursor */
|
---|
111 | #define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */
|
---|
112 | #define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */
|
---|
113 | #define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
|
---|
114 |
|
---|
115 | struct BtRbTree {
|
---|
116 | RbtCursor *pCursors; /* All cursors pointing to this tree */
|
---|
117 | BtRbNode *pHead; /* Head of the tree, or NULL */
|
---|
118 | };
|
---|
119 |
|
---|
120 | struct BtRbNode {
|
---|
121 | int nKey;
|
---|
122 | void *pKey;
|
---|
123 | int nData;
|
---|
124 | void *pData;
|
---|
125 | u8 isBlack; /* true for a black node, 0 for a red node */
|
---|
126 | BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */
|
---|
127 | BtRbNode *pLeft; /* Nodes left child, or NULL */
|
---|
128 | BtRbNode *pRight; /* Nodes right child, or NULL */
|
---|
129 |
|
---|
130 | int nBlackHeight; /* Only used during the red-black integrity check */
|
---|
131 | };
|
---|
132 |
|
---|
133 | /* Forward declarations */
|
---|
134 | static int memRbtreeMoveto(
|
---|
135 | RbtCursor* pCur,
|
---|
136 | const void *pKey,
|
---|
137 | int nKey,
|
---|
138 | int *pRes
|
---|
139 | );
|
---|
140 | static int memRbtreeClearTable(Rbtree* tree, int n);
|
---|
141 | static int memRbtreeNext(RbtCursor* pCur, int *pRes);
|
---|
142 | static int memRbtreeLast(RbtCursor* pCur, int *pRes);
|
---|
143 | static int memRbtreePrevious(RbtCursor* pCur, int *pRes);
|
---|
144 |
|
---|
145 |
|
---|
146 | /*
|
---|
147 | ** This routine checks all cursors that point to the same table
|
---|
148 | ** as pCur points to. If any of those cursors were opened with
|
---|
149 | ** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
|
---|
150 | ** cursors point to the same table were opened with wrFlag==1
|
---|
151 | ** then this routine returns SQLITE_OK.
|
---|
152 | **
|
---|
153 | ** In addition to checking for read-locks (where a read-lock
|
---|
154 | ** means a cursor opened with wrFlag==0) this routine also NULLs
|
---|
155 | ** out the pNode field of all other cursors.
|
---|
156 | ** This is necessary because an insert
|
---|
157 | ** or delete might change erase the node out from under
|
---|
158 | ** another cursor.
|
---|
159 | */
|
---|
160 | static int checkReadLocks(RbtCursor *pCur){
|
---|
161 | RbtCursor *p;
|
---|
162 | assert( pCur->wrFlag );
|
---|
163 | for(p=pCur->pTree->pCursors; p; p=p->pShared){
|
---|
164 | if( p!=pCur ){
|
---|
165 | if( p->wrFlag==0 ) return SQLITE_LOCKED;
|
---|
166 | p->pNode = 0;
|
---|
167 | }
|
---|
168 | }
|
---|
169 | return SQLITE_OK;
|
---|
170 | }
|
---|
171 |
|
---|
172 | /*
|
---|
173 | * The key-compare function for the red-black trees. Returns as follows:
|
---|
174 | *
|
---|
175 | * (key1 < key2) -1
|
---|
176 | * (key1 == key2) 0
|
---|
177 | * (key1 > key2) 1
|
---|
178 | *
|
---|
179 | * Keys are compared using memcmp(). If one key is an exact prefix of the
|
---|
180 | * other, then the shorter key is less than the longer key.
|
---|
181 | */
|
---|
182 | static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2)
|
---|
183 | {
|
---|
184 | int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2);
|
---|
185 | if( mcmp == 0){
|
---|
186 | if( nKey1 == nKey2 ) return 0;
|
---|
187 | return ((nKey1 < nKey2)?-1:1);
|
---|
188 | }
|
---|
189 | return ((mcmp>0)?1:-1);
|
---|
190 | }
|
---|
191 |
|
---|
192 | /*
|
---|
193 | * Perform the LEFT-rotate transformation on node X of tree pTree. This
|
---|
194 | * transform is part of the red-black balancing code.
|
---|
195 | *
|
---|
196 | * | |
|
---|
197 | * X Y
|
---|
198 | * / \ / \
|
---|
199 | * a Y X c
|
---|
200 | * / \ / \
|
---|
201 | * b c a b
|
---|
202 | *
|
---|
203 | * BEFORE AFTER
|
---|
204 | */
|
---|
205 | static void leftRotate(BtRbTree *pTree, BtRbNode *pX)
|
---|
206 | {
|
---|
207 | BtRbNode *pY;
|
---|
208 | BtRbNode *pb;
|
---|
209 | pY = pX->pRight;
|
---|
210 | pb = pY->pLeft;
|
---|
211 |
|
---|
212 | pY->pParent = pX->pParent;
|
---|
213 | if( pX->pParent ){
|
---|
214 | if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
|
---|
215 | else pX->pParent->pRight = pY;
|
---|
216 | }
|
---|
217 | pY->pLeft = pX;
|
---|
218 | pX->pParent = pY;
|
---|
219 | pX->pRight = pb;
|
---|
220 | if( pb ) pb->pParent = pX;
|
---|
221 | if( pTree->pHead == pX ) pTree->pHead = pY;
|
---|
222 | }
|
---|
223 |
|
---|
224 | /*
|
---|
225 | * Perform the RIGHT-rotate transformation on node X of tree pTree. This
|
---|
226 | * transform is part of the red-black balancing code.
|
---|
227 | *
|
---|
228 | * | |
|
---|
229 | * X Y
|
---|
230 | * / \ / \
|
---|
231 | * Y c a X
|
---|
232 | * / \ / \
|
---|
233 | * a b b c
|
---|
234 | *
|
---|
235 | * BEFORE AFTER
|
---|
236 | */
|
---|
237 | static void rightRotate(BtRbTree *pTree, BtRbNode *pX)
|
---|
238 | {
|
---|
239 | BtRbNode *pY;
|
---|
240 | BtRbNode *pb;
|
---|
241 | pY = pX->pLeft;
|
---|
242 | pb = pY->pRight;
|
---|
243 |
|
---|
244 | pY->pParent = pX->pParent;
|
---|
245 | if( pX->pParent ){
|
---|
246 | if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
|
---|
247 | else pX->pParent->pRight = pY;
|
---|
248 | }
|
---|
249 | pY->pRight = pX;
|
---|
250 | pX->pParent = pY;
|
---|
251 | pX->pLeft = pb;
|
---|
252 | if( pb ) pb->pParent = pX;
|
---|
253 | if( pTree->pHead == pX ) pTree->pHead = pY;
|
---|
254 | }
|
---|
255 |
|
---|
256 | /*
|
---|
257 | * A string-manipulation helper function for check_redblack_tree(). If (orig ==
|
---|
258 | * NULL) a copy of val is returned. If (orig != NULL) then a copy of the *
|
---|
259 | * concatenation of orig and val is returned. The original orig is deleted
|
---|
260 | * (using sqliteFree()).
|
---|
261 | */
|
---|
262 | static char *append_val(char * orig, char const * val){
|
---|
263 | char *z;
|
---|
264 | if( !orig ){
|
---|
265 | z = sqliteStrDup( val );
|
---|
266 | } else{
|
---|
267 | z = 0;
|
---|
268 | sqliteSetString(&z, orig, val, (char*)0);
|
---|
269 | sqliteFree( orig );
|
---|
270 | }
|
---|
271 | return z;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /*
|
---|
275 | * Append a string representation of the entire node to orig and return it.
|
---|
276 | * This is used to produce debugging information if check_redblack_tree() finds
|
---|
277 | * a problem with a red-black binary tree.
|
---|
278 | */
|
---|
279 | static char *append_node(char * orig, BtRbNode *pNode, int indent)
|
---|
280 | {
|
---|
281 | char buf[128];
|
---|
282 | int i;
|
---|
283 |
|
---|
284 | for( i=0; i<indent; i++ ){
|
---|
285 | orig = append_val(orig, " ");
|
---|
286 | }
|
---|
287 |
|
---|
288 | sprintf(buf, "%p", pNode);
|
---|
289 | orig = append_val(orig, buf);
|
---|
290 |
|
---|
291 | if( pNode ){
|
---|
292 | indent += 3;
|
---|
293 | if( pNode->isBlack ){
|
---|
294 | orig = append_val(orig, " B \n");
|
---|
295 | }else{
|
---|
296 | orig = append_val(orig, " R \n");
|
---|
297 | }
|
---|
298 | orig = append_node( orig, pNode->pLeft, indent );
|
---|
299 | orig = append_node( orig, pNode->pRight, indent );
|
---|
300 | }else{
|
---|
301 | orig = append_val(orig, "\n");
|
---|
302 | }
|
---|
303 | return orig;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /*
|
---|
307 | * Print a representation of a node to stdout. This function is only included
|
---|
308 | * so you can call it from within a debugger if things get really bad. It
|
---|
309 | * is not called from anyplace in the code.
|
---|
310 | */
|
---|
311 | static void print_node(BtRbNode *pNode)
|
---|
312 | {
|
---|
313 | char * str = append_node(0, pNode, 0);
|
---|
314 | printf("%s", str);
|
---|
315 |
|
---|
316 | /* Suppress a warning message about print_node() being unused */
|
---|
317 | (void)print_node;
|
---|
318 | }
|
---|
319 |
|
---|
320 | /*
|
---|
321 | * Check the following properties of the red-black tree:
|
---|
322 | * (1) - If a node is red, both of it's children are black
|
---|
323 | * (2) - Each path from a given node to a leaf (NULL) node passes thru the
|
---|
324 | * same number of black nodes
|
---|
325 | *
|
---|
326 | * If there is a problem, append a description (using append_val() ) to *msg.
|
---|
327 | */
|
---|
328 | static void check_redblack_tree(BtRbTree * tree, char ** msg)
|
---|
329 | {
|
---|
330 | BtRbNode *pNode;
|
---|
331 |
|
---|
332 | /* 0 -> came from parent
|
---|
333 | * 1 -> came from left
|
---|
334 | * 2 -> came from right */
|
---|
335 | int prev_step = 0;
|
---|
336 |
|
---|
337 | pNode = tree->pHead;
|
---|
338 | while( pNode ){
|
---|
339 | switch( prev_step ){
|
---|
340 | case 0:
|
---|
341 | if( pNode->pLeft ){
|
---|
342 | pNode = pNode->pLeft;
|
---|
343 | }else{
|
---|
344 | prev_step = 1;
|
---|
345 | }
|
---|
346 | break;
|
---|
347 | case 1:
|
---|
348 | if( pNode->pRight ){
|
---|
349 | pNode = pNode->pRight;
|
---|
350 | prev_step = 0;
|
---|
351 | }else{
|
---|
352 | prev_step = 2;
|
---|
353 | }
|
---|
354 | break;
|
---|
355 | case 2:
|
---|
356 | /* Check red-black property (1) */
|
---|
357 | if( !pNode->isBlack &&
|
---|
358 | ( (pNode->pLeft && !pNode->pLeft->isBlack) ||
|
---|
359 | (pNode->pRight && !pNode->pRight->isBlack) )
|
---|
360 | ){
|
---|
361 | char buf[128];
|
---|
362 | sprintf(buf, "Red node with red child at %p\n", pNode);
|
---|
363 | *msg = append_val(*msg, buf);
|
---|
364 | *msg = append_node(*msg, tree->pHead, 0);
|
---|
365 | *msg = append_val(*msg, "\n");
|
---|
366 | }
|
---|
367 |
|
---|
368 | /* Check red-black property (2) */
|
---|
369 | {
|
---|
370 | int leftHeight = 0;
|
---|
371 | int rightHeight = 0;
|
---|
372 | if( pNode->pLeft ){
|
---|
373 | leftHeight += pNode->pLeft->nBlackHeight;
|
---|
374 | leftHeight += (pNode->pLeft->isBlack?1:0);
|
---|
375 | }
|
---|
376 | if( pNode->pRight ){
|
---|
377 | rightHeight += pNode->pRight->nBlackHeight;
|
---|
378 | rightHeight += (pNode->pRight->isBlack?1:0);
|
---|
379 | }
|
---|
380 | if( leftHeight != rightHeight ){
|
---|
381 | char buf[128];
|
---|
382 | sprintf(buf, "Different black-heights at %p\n", pNode);
|
---|
383 | *msg = append_val(*msg, buf);
|
---|
384 | *msg = append_node(*msg, tree->pHead, 0);
|
---|
385 | *msg = append_val(*msg, "\n");
|
---|
386 | }
|
---|
387 | pNode->nBlackHeight = leftHeight;
|
---|
388 | }
|
---|
389 |
|
---|
390 | if( pNode->pParent ){
|
---|
391 | if( pNode == pNode->pParent->pLeft ) prev_step = 1;
|
---|
392 | else prev_step = 2;
|
---|
393 | }
|
---|
394 | pNode = pNode->pParent;
|
---|
395 | break;
|
---|
396 | default: assert(0);
|
---|
397 | }
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 | /*
|
---|
402 | * Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()).
|
---|
403 | * It is possible that pX is a red node with a red parent, which is a violation
|
---|
404 | * of the red-black tree properties. This function performs rotations and
|
---|
405 | * color changes to rebalance the tree
|
---|
406 | */
|
---|
407 | static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX)
|
---|
408 | {
|
---|
409 | /* In the first iteration of this loop, pX points to the red node just
|
---|
410 | * inserted in the tree. If the parent of pX exists (pX is not the root
|
---|
411 | * node) and is red, then the properties of the red-black tree are
|
---|
412 | * violated.
|
---|
413 | *
|
---|
414 | * At the start of any subsequent iterations, pX points to a red node
|
---|
415 | * with a red parent. In all other respects the tree is a legal red-black
|
---|
416 | * binary tree. */
|
---|
417 | while( pX != pTree->pHead && !pX->pParent->isBlack ){
|
---|
418 | BtRbNode *pUncle;
|
---|
419 | BtRbNode *pGrandparent;
|
---|
420 |
|
---|
421 | /* Grandparent of pX must exist and must be black. */
|
---|
422 | pGrandparent = pX->pParent->pParent;
|
---|
423 | assert( pGrandparent );
|
---|
424 | assert( pGrandparent->isBlack );
|
---|
425 |
|
---|
426 | /* Uncle of pX may or may not exist. */
|
---|
427 | if( pX->pParent == pGrandparent->pLeft )
|
---|
428 | pUncle = pGrandparent->pRight;
|
---|
429 | else
|
---|
430 | pUncle = pGrandparent->pLeft;
|
---|
431 |
|
---|
432 | /* If the uncle of pX exists and is red, we do the following:
|
---|
433 | * | |
|
---|
434 | * G(b) G(r)
|
---|
435 | * / \ / \
|
---|
436 | * U(r) P(r) U(b) P(b)
|
---|
437 | * \ \
|
---|
438 | * X(r) X(r)
|
---|
439 | *
|
---|
440 | * BEFORE AFTER
|
---|
441 | * pX is then set to G. If the parent of G is red, then the while loop
|
---|
442 | * will run again. */
|
---|
443 | if( pUncle && !pUncle->isBlack ){
|
---|
444 | pGrandparent->isBlack = 0;
|
---|
445 | pUncle->isBlack = 1;
|
---|
446 | pX->pParent->isBlack = 1;
|
---|
447 | pX = pGrandparent;
|
---|
448 | }else{
|
---|
449 |
|
---|
450 | if( pX->pParent == pGrandparent->pLeft ){
|
---|
451 | if( pX == pX->pParent->pRight ){
|
---|
452 | /* If pX is a right-child, do the following transform, essentially
|
---|
453 | * to change pX into a left-child:
|
---|
454 | * | |
|
---|
455 | * G(b) G(b)
|
---|
456 | * / \ / \
|
---|
457 | * P(r) U(b) X(r) U(b)
|
---|
458 | * \ /
|
---|
459 | * X(r) P(r) <-- new X
|
---|
460 | *
|
---|
461 | * BEFORE AFTER
|
---|
462 | */
|
---|
463 | pX = pX->pParent;
|
---|
464 | leftRotate(pTree, pX);
|
---|
465 | }
|
---|
466 |
|
---|
467 | /* Do the following transform, which balances the tree :)
|
---|
468 | * | |
|
---|
469 | * G(b) P(b)
|
---|
470 | * / \ / \
|
---|
471 | * P(r) U(b) X(r) G(r)
|
---|
472 | * / \
|
---|
473 | * X(r) U(b)
|
---|
474 | *
|
---|
475 | * BEFORE AFTER
|
---|
476 | */
|
---|
477 | assert( pGrandparent == pX->pParent->pParent );
|
---|
478 | pGrandparent->isBlack = 0;
|
---|
479 | pX->pParent->isBlack = 1;
|
---|
480 | rightRotate( pTree, pGrandparent );
|
---|
481 |
|
---|
482 | }else{
|
---|
483 | /* This code is symetric to the illustrated case above. */
|
---|
484 | if( pX == pX->pParent->pLeft ){
|
---|
485 | pX = pX->pParent;
|
---|
486 | rightRotate(pTree, pX);
|
---|
487 | }
|
---|
488 | assert( pGrandparent == pX->pParent->pParent );
|
---|
489 | pGrandparent->isBlack = 0;
|
---|
490 | pX->pParent->isBlack = 1;
|
---|
491 | leftRotate( pTree, pGrandparent );
|
---|
492 | }
|
---|
493 | }
|
---|
494 | }
|
---|
495 | pTree->pHead->isBlack = 1;
|
---|
496 | }
|
---|
497 |
|
---|
498 | /*
|
---|
499 | * A child of pParent, which in turn had child pX, has just been removed from
|
---|
500 | * pTree (the figure below depicts the operation, Z is being removed). pParent
|
---|
501 | * or pX, or both may be NULL.
|
---|
502 | * | |
|
---|
503 | * P P
|
---|
504 | * / \ / \
|
---|
505 | * Z X
|
---|
506 | * / \
|
---|
507 | * X nil
|
---|
508 | *
|
---|
509 | * This function is only called if Z was black. In this case the red-black tree
|
---|
510 | * properties have been violated, and pX has an "extra black". This function
|
---|
511 | * performs rotations and color-changes to re-balance the tree.
|
---|
512 | */
|
---|
513 | static
|
---|
514 | void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
|
---|
515 | {
|
---|
516 | BtRbNode *pSib;
|
---|
517 |
|
---|
518 | /* TODO: Comment this code! */
|
---|
519 | while( pX != pTree->pHead && (!pX || pX->isBlack) ){
|
---|
520 | if( pX == pParent->pLeft ){
|
---|
521 | pSib = pParent->pRight;
|
---|
522 | if( pSib && !(pSib->isBlack) ){
|
---|
523 | pSib->isBlack = 1;
|
---|
524 | pParent->isBlack = 0;
|
---|
525 | leftRotate(pTree, pParent);
|
---|
526 | pSib = pParent->pRight;
|
---|
527 | }
|
---|
528 | if( !pSib ){
|
---|
529 | pX = pParent;
|
---|
530 | }else if(
|
---|
531 | (!pSib->pLeft || pSib->pLeft->isBlack) &&
|
---|
532 | (!pSib->pRight || pSib->pRight->isBlack) ) {
|
---|
533 | pSib->isBlack = 0;
|
---|
534 | pX = pParent;
|
---|
535 | }else{
|
---|
536 | if( (!pSib->pRight || pSib->pRight->isBlack) ){
|
---|
537 | if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
|
---|
538 | pSib->isBlack = 0;
|
---|
539 | rightRotate( pTree, pSib );
|
---|
540 | pSib = pParent->pRight;
|
---|
541 | }
|
---|
542 | pSib->isBlack = pParent->isBlack;
|
---|
543 | pParent->isBlack = 1;
|
---|
544 | if( pSib->pRight ) pSib->pRight->isBlack = 1;
|
---|
545 | leftRotate(pTree, pParent);
|
---|
546 | pX = pTree->pHead;
|
---|
547 | }
|
---|
548 | }else{
|
---|
549 | pSib = pParent->pLeft;
|
---|
550 | if( pSib && !(pSib->isBlack) ){
|
---|
551 | pSib->isBlack = 1;
|
---|
552 | pParent->isBlack = 0;
|
---|
553 | rightRotate(pTree, pParent);
|
---|
554 | pSib = pParent->pLeft;
|
---|
555 | }
|
---|
556 | if( !pSib ){
|
---|
557 | pX = pParent;
|
---|
558 | }else if(
|
---|
559 | (!pSib->pLeft || pSib->pLeft->isBlack) &&
|
---|
560 | (!pSib->pRight || pSib->pRight->isBlack) ){
|
---|
561 | pSib->isBlack = 0;
|
---|
562 | pX = pParent;
|
---|
563 | }else{
|
---|
564 | if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
|
---|
565 | if( pSib->pRight ) pSib->pRight->isBlack = 1;
|
---|
566 | pSib->isBlack = 0;
|
---|
567 | leftRotate( pTree, pSib );
|
---|
568 | pSib = pParent->pLeft;
|
---|
569 | }
|
---|
570 | pSib->isBlack = pParent->isBlack;
|
---|
571 | pParent->isBlack = 1;
|
---|
572 | if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
|
---|
573 | rightRotate(pTree, pParent);
|
---|
574 | pX = pTree->pHead;
|
---|
575 | }
|
---|
576 | }
|
---|
577 | pParent = pX->pParent;
|
---|
578 | }
|
---|
579 | if( pX ) pX->isBlack = 1;
|
---|
580 | }
|
---|
581 |
|
---|
582 | /*
|
---|
583 | * Create table n in tree pRbtree. Table n must not exist.
|
---|
584 | */
|
---|
585 | static void btreeCreateTable(Rbtree* pRbtree, int n)
|
---|
586 | {
|
---|
587 | BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree));
|
---|
588 | sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl);
|
---|
589 | }
|
---|
590 |
|
---|
591 | /*
|
---|
592 | * Log a single "rollback-op" for the given Rbtree. See comments for struct
|
---|
593 | * BtRollbackOp.
|
---|
594 | */
|
---|
595 | static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp)
|
---|
596 | {
|
---|
597 | assert( pRbtree->eTransState == TRANS_INCHECKPOINT ||
|
---|
598 | pRbtree->eTransState == TRANS_INTRANSACTION );
|
---|
599 | if( pRbtree->eTransState == TRANS_INTRANSACTION ){
|
---|
600 | pRollbackOp->pNext = pRbtree->pTransRollback;
|
---|
601 | pRbtree->pTransRollback = pRollbackOp;
|
---|
602 | }
|
---|
603 | if( pRbtree->eTransState == TRANS_INCHECKPOINT ){
|
---|
604 | if( !pRbtree->pCheckRollback ){
|
---|
605 | pRbtree->pCheckRollbackTail = pRollbackOp;
|
---|
606 | }
|
---|
607 | pRollbackOp->pNext = pRbtree->pCheckRollback;
|
---|
608 | pRbtree->pCheckRollback = pRollbackOp;
|
---|
609 | }
|
---|
610 | }
|
---|
611 |
|
---|
612 | int sqliteRbtreeOpen(
|
---|
613 | const char *zFilename,
|
---|
614 | int mode,
|
---|
615 | int nPg,
|
---|
616 | Btree **ppBtree
|
---|
617 | ){
|
---|
618 | Rbtree **ppRbtree = (Rbtree**)ppBtree;
|
---|
619 | *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree));
|
---|
620 | if( sqlite_malloc_failed ) goto open_no_mem;
|
---|
621 | sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0);
|
---|
622 |
|
---|
623 | /* Create a binary tree for the SQLITE_MASTER table at location 2 */
|
---|
624 | btreeCreateTable(*ppRbtree, 2);
|
---|
625 | if( sqlite_malloc_failed ) goto open_no_mem;
|
---|
626 | (*ppRbtree)->next_idx = 3;
|
---|
627 | (*ppRbtree)->pOps = &sqliteRbtreeOps;
|
---|
628 | /* Set file type to 4; this is so that "attach ':memory:' as ...." does not
|
---|
629 | ** think that the database in uninitialised and refuse to attach
|
---|
630 | */
|
---|
631 | (*ppRbtree)->aMetaData[2] = 4;
|
---|
632 |
|
---|
633 | return SQLITE_OK;
|
---|
634 |
|
---|
635 | open_no_mem:
|
---|
636 | *ppBtree = 0;
|
---|
637 | return SQLITE_NOMEM;
|
---|
638 | }
|
---|
639 |
|
---|
640 | /*
|
---|
641 | * Create a new table in the supplied Rbtree. Set *n to the new table number.
|
---|
642 | * Return SQLITE_OK if the operation is a success.
|
---|
643 | */
|
---|
644 | static int memRbtreeCreateTable(Rbtree* tree, int* n)
|
---|
645 | {
|
---|
646 | assert( tree->eTransState != TRANS_NONE );
|
---|
647 |
|
---|
648 | *n = tree->next_idx++;
|
---|
649 | btreeCreateTable(tree, *n);
|
---|
650 | if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
---|
651 |
|
---|
652 | /* Set up the rollback structure (if we are not doing this as part of a
|
---|
653 | * rollback) */
|
---|
654 | if( tree->eTransState != TRANS_ROLLBACK ){
|
---|
655 | BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
|
---|
656 | if( pRollbackOp==0 ) return SQLITE_NOMEM;
|
---|
657 | pRollbackOp->eOp = ROLLBACK_DROP;
|
---|
658 | pRollbackOp->iTab = *n;
|
---|
659 | btreeLogRollbackOp(tree, pRollbackOp);
|
---|
660 | }
|
---|
661 |
|
---|
662 | return SQLITE_OK;
|
---|
663 | }
|
---|
664 |
|
---|
665 | /*
|
---|
666 | * Delete table n from the supplied Rbtree.
|
---|
667 | */
|
---|
668 | static int memRbtreeDropTable(Rbtree* tree, int n)
|
---|
669 | {
|
---|
670 | BtRbTree *pTree;
|
---|
671 | assert( tree->eTransState != TRANS_NONE );
|
---|
672 |
|
---|
673 | memRbtreeClearTable(tree, n);
|
---|
674 | pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0);
|
---|
675 | assert(pTree);
|
---|
676 | assert( pTree->pCursors==0 );
|
---|
677 | sqliteFree(pTree);
|
---|
678 |
|
---|
679 | if( tree->eTransState != TRANS_ROLLBACK ){
|
---|
680 | BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
|
---|
681 | if( pRollbackOp==0 ) return SQLITE_NOMEM;
|
---|
682 | pRollbackOp->eOp = ROLLBACK_CREATE;
|
---|
683 | pRollbackOp->iTab = n;
|
---|
684 | btreeLogRollbackOp(tree, pRollbackOp);
|
---|
685 | }
|
---|
686 |
|
---|
687 | return SQLITE_OK;
|
---|
688 | }
|
---|
689 |
|
---|
690 | static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey,
|
---|
691 | int nIgnore, int *pRes)
|
---|
692 | {
|
---|
693 | assert(pCur);
|
---|
694 |
|
---|
695 | if( !pCur->pNode ) {
|
---|
696 | *pRes = -1;
|
---|
697 | } else {
|
---|
698 | if( (pCur->pNode->nKey - nIgnore) < 0 ){
|
---|
699 | *pRes = -1;
|
---|
700 | }else{
|
---|
701 | *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore,
|
---|
702 | pKey, nKey);
|
---|
703 | }
|
---|
704 | }
|
---|
705 | return SQLITE_OK;
|
---|
706 | }
|
---|
707 |
|
---|
708 | /*
|
---|
709 | * Get a new cursor for table iTable of the supplied Rbtree. The wrFlag
|
---|
710 | * parameter indicates that the cursor is open for writing.
|
---|
711 | *
|
---|
712 | * Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0.
|
---|
713 | */
|
---|
714 | static int memRbtreeCursor(
|
---|
715 | Rbtree* tree,
|
---|
716 | int iTable,
|
---|
717 | int wrFlag,
|
---|
718 | RbtCursor **ppCur
|
---|
719 | ){
|
---|
720 | RbtCursor *pCur;
|
---|
721 | assert(tree);
|
---|
722 | pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor));
|
---|
723 | if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
---|
724 | pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable);
|
---|
725 | assert( pCur->pTree );
|
---|
726 | pCur->pRbtree = tree;
|
---|
727 | pCur->iTree = iTable;
|
---|
728 | pCur->pOps = &sqliteRbtreeCursorOps;
|
---|
729 | pCur->wrFlag = wrFlag;
|
---|
730 | pCur->pShared = pCur->pTree->pCursors;
|
---|
731 | pCur->pTree->pCursors = pCur;
|
---|
732 |
|
---|
733 | assert( (*ppCur)->pTree );
|
---|
734 | return SQLITE_OK;
|
---|
735 | }
|
---|
736 |
|
---|
737 | /*
|
---|
738 | * Insert a new record into the Rbtree. The key is given by (pKey,nKey)
|
---|
739 | * and the data is given by (pData,nData). The cursor is used only to
|
---|
740 | * define what database the record should be inserted into. The cursor
|
---|
741 | * is left pointing at the new record.
|
---|
742 | *
|
---|
743 | * If the key exists already in the tree, just replace the data.
|
---|
744 | */
|
---|
745 | static int memRbtreeInsert(
|
---|
746 | RbtCursor* pCur,
|
---|
747 | const void *pKey,
|
---|
748 | int nKey,
|
---|
749 | const void *pDataInput,
|
---|
750 | int nData
|
---|
751 | ){
|
---|
752 | void * pData;
|
---|
753 | int match;
|
---|
754 |
|
---|
755 | /* It is illegal to call sqliteRbtreeInsert() if we are
|
---|
756 | ** not in a transaction */
|
---|
757 | assert( pCur->pRbtree->eTransState != TRANS_NONE );
|
---|
758 |
|
---|
759 | /* Make sure some other cursor isn't trying to read this same table */
|
---|
760 | if( checkReadLocks(pCur) ){
|
---|
761 | return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
---|
762 | }
|
---|
763 |
|
---|
764 | /* Take a copy of the input data now, in case we need it for the
|
---|
765 | * replace case */
|
---|
766 | pData = sqliteMallocRaw(nData);
|
---|
767 | if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
---|
768 | memcpy(pData, pDataInput, nData);
|
---|
769 |
|
---|
770 | /* Move the cursor to a node near the key to be inserted. If the key already
|
---|
771 | * exists in the table, then (match == 0). In this case we can just replace
|
---|
772 | * the data associated with the entry, we don't need to manipulate the tree.
|
---|
773 | *
|
---|
774 | * If there is no exact match, then the cursor points at what would be either
|
---|
775 | * the predecessor (match == -1) or successor (match == 1) of the
|
---|
776 | * searched-for key, were it to be inserted. The new node becomes a child of
|
---|
777 | * this node.
|
---|
778 | *
|
---|
779 | * The new node is initially red.
|
---|
780 | */
|
---|
781 | memRbtreeMoveto( pCur, pKey, nKey, &match);
|
---|
782 | if( match ){
|
---|
783 | BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
|
---|
784 | if( pNode==0 ) return SQLITE_NOMEM;
|
---|
785 | pNode->nKey = nKey;
|
---|
786 | pNode->pKey = sqliteMallocRaw(nKey);
|
---|
787 | if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
---|
788 | memcpy(pNode->pKey, pKey, nKey);
|
---|
789 | pNode->nData = nData;
|
---|
790 | pNode->pData = pData;
|
---|
791 | if( pCur->pNode ){
|
---|
792 | switch( match ){
|
---|
793 | case -1:
|
---|
794 | assert( !pCur->pNode->pRight );
|
---|
795 | pNode->pParent = pCur->pNode;
|
---|
796 | pCur->pNode->pRight = pNode;
|
---|
797 | break;
|
---|
798 | case 1:
|
---|
799 | assert( !pCur->pNode->pLeft );
|
---|
800 | pNode->pParent = pCur->pNode;
|
---|
801 | pCur->pNode->pLeft = pNode;
|
---|
802 | break;
|
---|
803 | default:
|
---|
804 | assert(0);
|
---|
805 | }
|
---|
806 | }else{
|
---|
807 | pCur->pTree->pHead = pNode;
|
---|
808 | }
|
---|
809 |
|
---|
810 | /* Point the cursor at the node just inserted, as per SQLite requirements */
|
---|
811 | pCur->pNode = pNode;
|
---|
812 |
|
---|
813 | /* A new node has just been inserted, so run the balancing code */
|
---|
814 | do_insert_balancing(pCur->pTree, pNode);
|
---|
815 |
|
---|
816 | /* Set up a rollback-op in case we have to roll this operation back */
|
---|
817 | if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
|
---|
818 | BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
|
---|
819 | if( pOp==0 ) return SQLITE_NOMEM;
|
---|
820 | pOp->eOp = ROLLBACK_DELETE;
|
---|
821 | pOp->iTab = pCur->iTree;
|
---|
822 | pOp->nKey = pNode->nKey;
|
---|
823 | pOp->pKey = sqliteMallocRaw( pOp->nKey );
|
---|
824 | if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
---|
825 | memcpy( pOp->pKey, pNode->pKey, pOp->nKey );
|
---|
826 | btreeLogRollbackOp(pCur->pRbtree, pOp);
|
---|
827 | }
|
---|
828 |
|
---|
829 | }else{
|
---|
830 | /* No need to insert a new node in the tree, as the key already exists.
|
---|
831 | * Just clobber the current nodes data. */
|
---|
832 |
|
---|
833 | /* Set up a rollback-op in case we have to roll this operation back */
|
---|
834 | if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
|
---|
835 | BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
|
---|
836 | if( pOp==0 ) return SQLITE_NOMEM;
|
---|
837 | pOp->iTab = pCur->iTree;
|
---|
838 | pOp->nKey = pCur->pNode->nKey;
|
---|
839 | pOp->pKey = sqliteMallocRaw( pOp->nKey );
|
---|
840 | if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
---|
841 | memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey );
|
---|
842 | pOp->nData = pCur->pNode->nData;
|
---|
843 | pOp->pData = pCur->pNode->pData;
|
---|
844 | pOp->eOp = ROLLBACK_INSERT;
|
---|
845 | btreeLogRollbackOp(pCur->pRbtree, pOp);
|
---|
846 | }else{
|
---|
847 | sqliteFree( pCur->pNode->pData );
|
---|
848 | }
|
---|
849 |
|
---|
850 | /* Actually clobber the nodes data */
|
---|
851 | pCur->pNode->pData = pData;
|
---|
852 | pCur->pNode->nData = nData;
|
---|
853 | }
|
---|
854 |
|
---|
855 | return SQLITE_OK;
|
---|
856 | }
|
---|
857 |
|
---|
858 | /* Move the cursor so that it points to an entry near pKey.
|
---|
859 | ** Return a success code.
|
---|
860 | **
|
---|
861 | ** *pRes<0 The cursor is left pointing at an entry that
|
---|
862 | ** is smaller than pKey or if the table is empty
|
---|
863 | ** and the cursor is therefore left point to nothing.
|
---|
864 | **
|
---|
865 | ** *pRes==0 The cursor is left pointing at an entry that
|
---|
866 | ** exactly matches pKey.
|
---|
867 | **
|
---|
868 | ** *pRes>0 The cursor is left pointing at an entry that
|
---|
869 | ** is larger than pKey.
|
---|
870 | */
|
---|
871 | static int memRbtreeMoveto(
|
---|
872 | RbtCursor* pCur,
|
---|
873 | const void *pKey,
|
---|
874 | int nKey,
|
---|
875 | int *pRes
|
---|
876 | ){
|
---|
877 | BtRbNode *pTmp = 0;
|
---|
878 |
|
---|
879 | pCur->pNode = pCur->pTree->pHead;
|
---|
880 | *pRes = -1;
|
---|
881 | while( pCur->pNode && *pRes ) {
|
---|
882 | *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
|
---|
883 | pTmp = pCur->pNode;
|
---|
884 | switch( *pRes ){
|
---|
885 | case 1: /* cursor > key */
|
---|
886 | pCur->pNode = pCur->pNode->pLeft;
|
---|
887 | break;
|
---|
888 | case -1: /* cursor < key */
|
---|
889 | pCur->pNode = pCur->pNode->pRight;
|
---|
890 | break;
|
---|
891 | }
|
---|
892 | }
|
---|
893 |
|
---|
894 | /* If (pCur->pNode == NULL), then we have failed to find a match. Set
|
---|
895 | * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
|
---|
896 | * last node traversed in the search. In either case the relation ship
|
---|
897 | * between pTmp and the searched for key is already stored in *pRes. pTmp is
|
---|
898 | * either the successor or predecessor of the key we tried to move to. */
|
---|
899 | if( !pCur->pNode ) pCur->pNode = pTmp;
|
---|
900 | pCur->eSkip = SKIP_NONE;
|
---|
901 |
|
---|
902 | return SQLITE_OK;
|
---|
903 | }
|
---|
904 |
|
---|
905 |
|
---|
906 | /*
|
---|
907 | ** Delete the entry that the cursor is pointing to.
|
---|
908 | **
|
---|
909 | ** The cursor is left pointing at either the next or the previous
|
---|
910 | ** entry. If the cursor is left pointing to the next entry, then
|
---|
911 | ** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
|
---|
912 | ** sqliteRbtreeNext() to be a no-op. That way, you can always call
|
---|
913 | ** sqliteRbtreeNext() after a delete and the cursor will be left
|
---|
914 | ** pointing to the first entry after the deleted entry. Similarly,
|
---|
915 | ** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
|
---|
916 | ** the entry prior to the deleted entry so that a subsequent call to
|
---|
917 | ** sqliteRbtreePrevious() will always leave the cursor pointing at the
|
---|
918 | ** entry immediately before the one that was deleted.
|
---|
919 | */
|
---|
920 | static int memRbtreeDelete(RbtCursor* pCur)
|
---|
921 | {
|
---|
922 | BtRbNode *pZ; /* The one being deleted */
|
---|
923 | BtRbNode *pChild; /* The child of the spliced out node */
|
---|
924 |
|
---|
925 | /* It is illegal to call sqliteRbtreeDelete() if we are
|
---|
926 | ** not in a transaction */
|
---|
927 | assert( pCur->pRbtree->eTransState != TRANS_NONE );
|
---|
928 |
|
---|
929 | /* Make sure some other cursor isn't trying to read this same table */
|
---|
930 | if( checkReadLocks(pCur) ){
|
---|
931 | return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
---|
932 | }
|
---|
933 |
|
---|
934 | pZ = pCur->pNode;
|
---|
935 | if( !pZ ){
|
---|
936 | return SQLITE_OK;
|
---|
937 | }
|
---|
938 |
|
---|
939 | /* If we are not currently doing a rollback, set up a rollback op for this
|
---|
940 | * deletion */
|
---|
941 | if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
|
---|
942 | BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
|
---|
943 | if( pOp==0 ) return SQLITE_NOMEM;
|
---|
944 | pOp->iTab = pCur->iTree;
|
---|
945 | pOp->nKey = pZ->nKey;
|
---|
946 | pOp->pKey = pZ->pKey;
|
---|
947 | pOp->nData = pZ->nData;
|
---|
948 | pOp->pData = pZ->pData;
|
---|
949 | pOp->eOp = ROLLBACK_INSERT;
|
---|
950 | btreeLogRollbackOp(pCur->pRbtree, pOp);
|
---|
951 | }
|
---|
952 |
|
---|
953 | /* First do a standard binary-tree delete (node pZ is to be deleted). How
|
---|
954 | * to do this depends on how many children pZ has:
|
---|
955 | *
|
---|
956 | * If pZ has no children or one child, then splice out pZ. If pZ has two
|
---|
957 | * children, splice out the successor of pZ and replace the key and data of
|
---|
958 | * pZ with the key and data of the spliced out successor. */
|
---|
959 | if( pZ->pLeft && pZ->pRight ){
|
---|
960 | BtRbNode *pTmp;
|
---|
961 | int dummy;
|
---|
962 | pCur->eSkip = SKIP_NONE;
|
---|
963 | memRbtreeNext(pCur, &dummy);
|
---|
964 | assert( dummy == 0 );
|
---|
965 | if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
|
---|
966 | sqliteFree(pZ->pKey);
|
---|
967 | sqliteFree(pZ->pData);
|
---|
968 | }
|
---|
969 | pZ->pData = pCur->pNode->pData;
|
---|
970 | pZ->nData = pCur->pNode->nData;
|
---|
971 | pZ->pKey = pCur->pNode->pKey;
|
---|
972 | pZ->nKey = pCur->pNode->nKey;
|
---|
973 | pTmp = pZ;
|
---|
974 | pZ = pCur->pNode;
|
---|
975 | pCur->pNode = pTmp;
|
---|
976 | pCur->eSkip = SKIP_NEXT;
|
---|
977 | }else{
|
---|
978 | int res;
|
---|
979 | pCur->eSkip = SKIP_NONE;
|
---|
980 | memRbtreeNext(pCur, &res);
|
---|
981 | pCur->eSkip = SKIP_NEXT;
|
---|
982 | if( res ){
|
---|
983 | memRbtreeLast(pCur, &res);
|
---|
984 | memRbtreePrevious(pCur, &res);
|
---|
985 | pCur->eSkip = SKIP_PREV;
|
---|
986 | }
|
---|
987 | if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
|
---|
988 | sqliteFree(pZ->pKey);
|
---|
989 | sqliteFree(pZ->pData);
|
---|
990 | }
|
---|
991 | }
|
---|
992 |
|
---|
993 | /* pZ now points at the node to be spliced out. This block does the
|
---|
994 | * splicing. */
|
---|
995 | {
|
---|
996 | BtRbNode **ppParentSlot = 0;
|
---|
997 | assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
|
---|
998 | pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
|
---|
999 | if( pZ->pParent ){
|
---|
1000 | assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
|
---|
1001 | ppParentSlot = ((pZ == pZ->pParent->pLeft)
|
---|
1002 | ?&pZ->pParent->pLeft:&pZ->pParent->pRight);
|
---|
1003 | *ppParentSlot = pChild;
|
---|
1004 | }else{
|
---|
1005 | pCur->pTree->pHead = pChild;
|
---|
1006 | }
|
---|
1007 | if( pChild ) pChild->pParent = pZ->pParent;
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 | /* pZ now points at the spliced out node. pChild is the only child of pZ, or
|
---|
1011 | * NULL if pZ has no children. If pZ is black, and not the tree root, then we
|
---|
1012 | * will have violated the "same number of black nodes in every path to a
|
---|
1013 | * leaf" property of the red-black tree. The code in do_delete_balancing()
|
---|
1014 | * repairs this. */
|
---|
1015 | if( pZ->isBlack ){
|
---|
1016 | do_delete_balancing(pCur->pTree, pChild, pZ->pParent);
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | sqliteFree(pZ);
|
---|
1020 | return SQLITE_OK;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | /*
|
---|
1024 | * Empty table n of the Rbtree.
|
---|
1025 | */
|
---|
1026 | static int memRbtreeClearTable(Rbtree* tree, int n)
|
---|
1027 | {
|
---|
1028 | BtRbTree *pTree;
|
---|
1029 | BtRbNode *pNode;
|
---|
1030 |
|
---|
1031 | pTree = sqliteHashFind(&tree->tblHash, 0, n);
|
---|
1032 | assert(pTree);
|
---|
1033 |
|
---|
1034 | pNode = pTree->pHead;
|
---|
1035 | while( pNode ){
|
---|
1036 | if( pNode->pLeft ){
|
---|
1037 | pNode = pNode->pLeft;
|
---|
1038 | }
|
---|
1039 | else if( pNode->pRight ){
|
---|
1040 | pNode = pNode->pRight;
|
---|
1041 | }
|
---|
1042 | else {
|
---|
1043 | BtRbNode *pTmp = pNode->pParent;
|
---|
1044 | if( tree->eTransState == TRANS_ROLLBACK ){
|
---|
1045 | sqliteFree( pNode->pKey );
|
---|
1046 | sqliteFree( pNode->pData );
|
---|
1047 | }else{
|
---|
1048 | BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp));
|
---|
1049 | if( pRollbackOp==0 ) return SQLITE_NOMEM;
|
---|
1050 | pRollbackOp->eOp = ROLLBACK_INSERT;
|
---|
1051 | pRollbackOp->iTab = n;
|
---|
1052 | pRollbackOp->nKey = pNode->nKey;
|
---|
1053 | pRollbackOp->pKey = pNode->pKey;
|
---|
1054 | pRollbackOp->nData = pNode->nData;
|
---|
1055 | pRollbackOp->pData = pNode->pData;
|
---|
1056 | btreeLogRollbackOp(tree, pRollbackOp);
|
---|
1057 | }
|
---|
1058 | sqliteFree( pNode );
|
---|
1059 | if( pTmp ){
|
---|
1060 | if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
|
---|
1061 | else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
|
---|
1062 | }
|
---|
1063 | pNode = pTmp;
|
---|
1064 | }
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | pTree->pHead = 0;
|
---|
1068 | return SQLITE_OK;
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | static int memRbtreeFirst(RbtCursor* pCur, int *pRes)
|
---|
1072 | {
|
---|
1073 | if( pCur->pTree->pHead ){
|
---|
1074 | pCur->pNode = pCur->pTree->pHead;
|
---|
1075 | while( pCur->pNode->pLeft ){
|
---|
1076 | pCur->pNode = pCur->pNode->pLeft;
|
---|
1077 | }
|
---|
1078 | }
|
---|
1079 | if( pCur->pNode ){
|
---|
1080 | *pRes = 0;
|
---|
1081 | }else{
|
---|
1082 | *pRes = 1;
|
---|
1083 | }
|
---|
1084 | pCur->eSkip = SKIP_NONE;
|
---|
1085 | return SQLITE_OK;
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | static int memRbtreeLast(RbtCursor* pCur, int *pRes)
|
---|
1089 | {
|
---|
1090 | if( pCur->pTree->pHead ){
|
---|
1091 | pCur->pNode = pCur->pTree->pHead;
|
---|
1092 | while( pCur->pNode->pRight ){
|
---|
1093 | pCur->pNode = pCur->pNode->pRight;
|
---|
1094 | }
|
---|
1095 | }
|
---|
1096 | if( pCur->pNode ){
|
---|
1097 | *pRes = 0;
|
---|
1098 | }else{
|
---|
1099 | *pRes = 1;
|
---|
1100 | }
|
---|
1101 | pCur->eSkip = SKIP_NONE;
|
---|
1102 | return SQLITE_OK;
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | /*
|
---|
1106 | ** Advance the cursor to the next entry in the database. If
|
---|
1107 | ** successful then set *pRes=0. If the cursor
|
---|
1108 | ** was already pointing to the last entry in the database before
|
---|
1109 | ** this routine was called, then set *pRes=1.
|
---|
1110 | */
|
---|
1111 | static int memRbtreeNext(RbtCursor* pCur, int *pRes)
|
---|
1112 | {
|
---|
1113 | if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
|
---|
1114 | if( pCur->pNode->pRight ){
|
---|
1115 | pCur->pNode = pCur->pNode->pRight;
|
---|
1116 | while( pCur->pNode->pLeft )
|
---|
1117 | pCur->pNode = pCur->pNode->pLeft;
|
---|
1118 | }else{
|
---|
1119 | BtRbNode * pX = pCur->pNode;
|
---|
1120 | pCur->pNode = pX->pParent;
|
---|
1121 | while( pCur->pNode && (pCur->pNode->pRight == pX) ){
|
---|
1122 | pX = pCur->pNode;
|
---|
1123 | pCur->pNode = pX->pParent;
|
---|
1124 | }
|
---|
1125 | }
|
---|
1126 | }
|
---|
1127 | pCur->eSkip = SKIP_NONE;
|
---|
1128 |
|
---|
1129 | if( !pCur->pNode ){
|
---|
1130 | *pRes = 1;
|
---|
1131 | }else{
|
---|
1132 | *pRes = 0;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | return SQLITE_OK;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | static int memRbtreePrevious(RbtCursor* pCur, int *pRes)
|
---|
1139 | {
|
---|
1140 | if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
|
---|
1141 | if( pCur->pNode->pLeft ){
|
---|
1142 | pCur->pNode = pCur->pNode->pLeft;
|
---|
1143 | while( pCur->pNode->pRight )
|
---|
1144 | pCur->pNode = pCur->pNode->pRight;
|
---|
1145 | }else{
|
---|
1146 | BtRbNode * pX = pCur->pNode;
|
---|
1147 | pCur->pNode = pX->pParent;
|
---|
1148 | while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
|
---|
1149 | pX = pCur->pNode;
|
---|
1150 | pCur->pNode = pX->pParent;
|
---|
1151 | }
|
---|
1152 | }
|
---|
1153 | }
|
---|
1154 | pCur->eSkip = SKIP_NONE;
|
---|
1155 |
|
---|
1156 | if( !pCur->pNode ){
|
---|
1157 | *pRes = 1;
|
---|
1158 | }else{
|
---|
1159 | *pRes = 0;
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | return SQLITE_OK;
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | static int memRbtreeKeySize(RbtCursor* pCur, int *pSize)
|
---|
1166 | {
|
---|
1167 | if( pCur->pNode ){
|
---|
1168 | *pSize = pCur->pNode->nKey;
|
---|
1169 | }else{
|
---|
1170 | *pSize = 0;
|
---|
1171 | }
|
---|
1172 | return SQLITE_OK;
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf)
|
---|
1176 | {
|
---|
1177 | if( !pCur->pNode ) return 0;
|
---|
1178 | if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){
|
---|
1179 | memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt);
|
---|
1180 | }else{
|
---|
1181 | memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset);
|
---|
1182 | amt = pCur->pNode->nKey-offset;
|
---|
1183 | }
|
---|
1184 | return amt;
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | static int memRbtreeDataSize(RbtCursor* pCur, int *pSize)
|
---|
1188 | {
|
---|
1189 | if( pCur->pNode ){
|
---|
1190 | *pSize = pCur->pNode->nData;
|
---|
1191 | }else{
|
---|
1192 | *pSize = 0;
|
---|
1193 | }
|
---|
1194 | return SQLITE_OK;
|
---|
1195 | }
|
---|
1196 |
|
---|
1197 | static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf)
|
---|
1198 | {
|
---|
1199 | if( !pCur->pNode ) return 0;
|
---|
1200 | if( (amt + offset) <= pCur->pNode->nData ){
|
---|
1201 | memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt);
|
---|
1202 | }else{
|
---|
1203 | memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset);
|
---|
1204 | amt = pCur->pNode->nData-offset;
|
---|
1205 | }
|
---|
1206 | return amt;
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | static int memRbtreeCloseCursor(RbtCursor* pCur)
|
---|
1210 | {
|
---|
1211 | if( pCur->pTree->pCursors==pCur ){
|
---|
1212 | pCur->pTree->pCursors = pCur->pShared;
|
---|
1213 | }else{
|
---|
1214 | RbtCursor *p = pCur->pTree->pCursors;
|
---|
1215 | while( p && p->pShared!=pCur ){ p = p->pShared; }
|
---|
1216 | assert( p!=0 );
|
---|
1217 | if( p ){
|
---|
1218 | p->pShared = pCur->pShared;
|
---|
1219 | }
|
---|
1220 | }
|
---|
1221 | sqliteFree(pCur);
|
---|
1222 | return SQLITE_OK;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | static int memRbtreeGetMeta(Rbtree* tree, int* aMeta)
|
---|
1226 | {
|
---|
1227 | memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META );
|
---|
1228 | return SQLITE_OK;
|
---|
1229 | }
|
---|
1230 |
|
---|
1231 | static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta)
|
---|
1232 | {
|
---|
1233 | memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META );
|
---|
1234 | return SQLITE_OK;
|
---|
1235 | }
|
---|
1236 |
|
---|
1237 | /*
|
---|
1238 | * Check that each table in the Rbtree meets the requirements for a red-black
|
---|
1239 | * binary tree. If an error is found, return an explanation of the problem in
|
---|
1240 | * memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored.
|
---|
1241 | */
|
---|
1242 | static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
|
---|
1243 | {
|
---|
1244 | char * msg = 0;
|
---|
1245 | HashElem *p;
|
---|
1246 |
|
---|
1247 | for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){
|
---|
1248 | BtRbTree *pTree = sqliteHashData(p);
|
---|
1249 | check_redblack_tree(pTree, &msg);
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 | return msg;
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 | static int memRbtreeSetCacheSize(Rbtree* tree, int sz)
|
---|
1256 | {
|
---|
1257 | return SQLITE_OK;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){
|
---|
1261 | return SQLITE_OK;
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | static int memRbtreeBeginTrans(Rbtree* tree)
|
---|
1265 | {
|
---|
1266 | if( tree->eTransState != TRANS_NONE )
|
---|
1267 | return SQLITE_ERROR;
|
---|
1268 |
|
---|
1269 | assert( tree->pTransRollback == 0 );
|
---|
1270 | tree->eTransState = TRANS_INTRANSACTION;
|
---|
1271 | return SQLITE_OK;
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 | /*
|
---|
1275 | ** Delete a linked list of BtRollbackOp structures.
|
---|
1276 | */
|
---|
1277 | static void deleteRollbackList(BtRollbackOp *pOp){
|
---|
1278 | while( pOp ){
|
---|
1279 | BtRollbackOp *pTmp = pOp->pNext;
|
---|
1280 | sqliteFree(pOp->pData);
|
---|
1281 | sqliteFree(pOp->pKey);
|
---|
1282 | sqliteFree(pOp);
|
---|
1283 | pOp = pTmp;
|
---|
1284 | }
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 | static int memRbtreeCommit(Rbtree* tree){
|
---|
1288 | /* Just delete pTransRollback and pCheckRollback */
|
---|
1289 | deleteRollbackList(tree->pCheckRollback);
|
---|
1290 | deleteRollbackList(tree->pTransRollback);
|
---|
1291 | tree->pTransRollback = 0;
|
---|
1292 | tree->pCheckRollback = 0;
|
---|
1293 | tree->pCheckRollbackTail = 0;
|
---|
1294 | tree->eTransState = TRANS_NONE;
|
---|
1295 | return SQLITE_OK;
|
---|
1296 | }
|
---|
1297 |
|
---|
1298 | /*
|
---|
1299 | * Close the supplied Rbtree. Delete everything associated with it.
|
---|
1300 | */
|
---|
1301 | static int memRbtreeClose(Rbtree* tree)
|
---|
1302 | {
|
---|
1303 | HashElem *p;
|
---|
1304 | memRbtreeCommit(tree);
|
---|
1305 | while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){
|
---|
1306 | tree->eTransState = TRANS_ROLLBACK;
|
---|
1307 | memRbtreeDropTable(tree, sqliteHashKeysize(p));
|
---|
1308 | }
|
---|
1309 | sqliteHashClear(&tree->tblHash);
|
---|
1310 | sqliteFree(tree);
|
---|
1311 | return SQLITE_OK;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /*
|
---|
1315 | * Execute and delete the supplied rollback-list on pRbtree.
|
---|
1316 | */
|
---|
1317 | static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList)
|
---|
1318 | {
|
---|
1319 | BtRollbackOp *pTmp;
|
---|
1320 | RbtCursor cur;
|
---|
1321 | int res;
|
---|
1322 |
|
---|
1323 | cur.pRbtree = pRbtree;
|
---|
1324 | cur.wrFlag = 1;
|
---|
1325 | while( pList ){
|
---|
1326 | switch( pList->eOp ){
|
---|
1327 | case ROLLBACK_INSERT:
|
---|
1328 | cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
|
---|
1329 | assert(cur.pTree);
|
---|
1330 | cur.iTree = pList->iTab;
|
---|
1331 | cur.eSkip = SKIP_NONE;
|
---|
1332 | memRbtreeInsert( &cur, pList->pKey,
|
---|
1333 | pList->nKey, pList->pData, pList->nData );
|
---|
1334 | break;
|
---|
1335 | case ROLLBACK_DELETE:
|
---|
1336 | cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
|
---|
1337 | assert(cur.pTree);
|
---|
1338 | cur.iTree = pList->iTab;
|
---|
1339 | cur.eSkip = SKIP_NONE;
|
---|
1340 | memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
|
---|
1341 | assert(res == 0);
|
---|
1342 | memRbtreeDelete( &cur );
|
---|
1343 | break;
|
---|
1344 | case ROLLBACK_CREATE:
|
---|
1345 | btreeCreateTable(pRbtree, pList->iTab);
|
---|
1346 | break;
|
---|
1347 | case ROLLBACK_DROP:
|
---|
1348 | memRbtreeDropTable(pRbtree, pList->iTab);
|
---|
1349 | break;
|
---|
1350 | default:
|
---|
1351 | assert(0);
|
---|
1352 | }
|
---|
1353 | sqliteFree(pList->pKey);
|
---|
1354 | sqliteFree(pList->pData);
|
---|
1355 | pTmp = pList->pNext;
|
---|
1356 | sqliteFree(pList);
|
---|
1357 | pList = pTmp;
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 |
|
---|
1361 | static int memRbtreeRollback(Rbtree* tree)
|
---|
1362 | {
|
---|
1363 | tree->eTransState = TRANS_ROLLBACK;
|
---|
1364 | execute_rollback_list(tree, tree->pCheckRollback);
|
---|
1365 | execute_rollback_list(tree, tree->pTransRollback);
|
---|
1366 | tree->pTransRollback = 0;
|
---|
1367 | tree->pCheckRollback = 0;
|
---|
1368 | tree->pCheckRollbackTail = 0;
|
---|
1369 | tree->eTransState = TRANS_NONE;
|
---|
1370 | return SQLITE_OK;
|
---|
1371 | }
|
---|
1372 |
|
---|
1373 | static int memRbtreeBeginCkpt(Rbtree* tree)
|
---|
1374 | {
|
---|
1375 | if( tree->eTransState != TRANS_INTRANSACTION )
|
---|
1376 | return SQLITE_ERROR;
|
---|
1377 |
|
---|
1378 | assert( tree->pCheckRollback == 0 );
|
---|
1379 | assert( tree->pCheckRollbackTail == 0 );
|
---|
1380 | tree->eTransState = TRANS_INCHECKPOINT;
|
---|
1381 | return SQLITE_OK;
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 | static int memRbtreeCommitCkpt(Rbtree* tree)
|
---|
1385 | {
|
---|
1386 | if( tree->eTransState == TRANS_INCHECKPOINT ){
|
---|
1387 | if( tree->pCheckRollback ){
|
---|
1388 | tree->pCheckRollbackTail->pNext = tree->pTransRollback;
|
---|
1389 | tree->pTransRollback = tree->pCheckRollback;
|
---|
1390 | tree->pCheckRollback = 0;
|
---|
1391 | tree->pCheckRollbackTail = 0;
|
---|
1392 | }
|
---|
1393 | tree->eTransState = TRANS_INTRANSACTION;
|
---|
1394 | }
|
---|
1395 | return SQLITE_OK;
|
---|
1396 | }
|
---|
1397 |
|
---|
1398 | static int memRbtreeRollbackCkpt(Rbtree* tree)
|
---|
1399 | {
|
---|
1400 | if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK;
|
---|
1401 | tree->eTransState = TRANS_ROLLBACK;
|
---|
1402 | execute_rollback_list(tree, tree->pCheckRollback);
|
---|
1403 | tree->pCheckRollback = 0;
|
---|
1404 | tree->pCheckRollbackTail = 0;
|
---|
1405 | tree->eTransState = TRANS_INTRANSACTION;
|
---|
1406 | return SQLITE_OK;
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 | #ifdef SQLITE_TEST
|
---|
1410 | static int memRbtreePageDump(Rbtree* tree, int pgno, int rec)
|
---|
1411 | {
|
---|
1412 | assert(!"Cannot call sqliteRbtreePageDump");
|
---|
1413 | return SQLITE_OK;
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 | static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes)
|
---|
1417 | {
|
---|
1418 | assert(!"Cannot call sqliteRbtreeCursorDump");
|
---|
1419 | return SQLITE_OK;
|
---|
1420 | }
|
---|
1421 | #endif
|
---|
1422 |
|
---|
1423 | static struct Pager *memRbtreePager(Rbtree* tree)
|
---|
1424 | {
|
---|
1425 | return 0;
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | /*
|
---|
1429 | ** Return the full pathname of the underlying database file.
|
---|
1430 | */
|
---|
1431 | static const char *memRbtreeGetFilename(Rbtree *pBt){
|
---|
1432 | return 0; /* A NULL return indicates there is no underlying file */
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 | /*
|
---|
1436 | ** The copy file function is not implemented for the in-memory database
|
---|
1437 | */
|
---|
1438 | static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){
|
---|
1439 | return SQLITE_INTERNAL; /* Not implemented */
|
---|
1440 | }
|
---|
1441 |
|
---|
1442 | static BtOps sqliteRbtreeOps = {
|
---|
1443 | (int(*)(Btree*)) memRbtreeClose,
|
---|
1444 | (int(*)(Btree*,int)) memRbtreeSetCacheSize,
|
---|
1445 | (int(*)(Btree*,int)) memRbtreeSetSafetyLevel,
|
---|
1446 | (int(*)(Btree*)) memRbtreeBeginTrans,
|
---|
1447 | (int(*)(Btree*)) memRbtreeCommit,
|
---|
1448 | (int(*)(Btree*)) memRbtreeRollback,
|
---|
1449 | (int(*)(Btree*)) memRbtreeBeginCkpt,
|
---|
1450 | (int(*)(Btree*)) memRbtreeCommitCkpt,
|
---|
1451 | (int(*)(Btree*)) memRbtreeRollbackCkpt,
|
---|
1452 | (int(*)(Btree*,int*)) memRbtreeCreateTable,
|
---|
1453 | (int(*)(Btree*,int*)) memRbtreeCreateTable,
|
---|
1454 | (int(*)(Btree*,int)) memRbtreeDropTable,
|
---|
1455 | (int(*)(Btree*,int)) memRbtreeClearTable,
|
---|
1456 | (int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor,
|
---|
1457 | (int(*)(Btree*,int*)) memRbtreeGetMeta,
|
---|
1458 | (int(*)(Btree*,int*)) memRbtreeUpdateMeta,
|
---|
1459 | (char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck,
|
---|
1460 | (const char*(*)(Btree*)) memRbtreeGetFilename,
|
---|
1461 | (int(*)(Btree*,Btree*)) memRbtreeCopyFile,
|
---|
1462 | (struct Pager*(*)(Btree*)) memRbtreePager,
|
---|
1463 | #ifdef SQLITE_TEST
|
---|
1464 | (int(*)(Btree*,int,int)) memRbtreePageDump,
|
---|
1465 | #endif
|
---|
1466 | };
|
---|
1467 |
|
---|
1468 | static BtCursorOps sqliteRbtreeCursorOps = {
|
---|
1469 | (int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto,
|
---|
1470 | (int(*)(BtCursor*)) memRbtreeDelete,
|
---|
1471 | (int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert,
|
---|
1472 | (int(*)(BtCursor*,int*)) memRbtreeFirst,
|
---|
1473 | (int(*)(BtCursor*,int*)) memRbtreeLast,
|
---|
1474 | (int(*)(BtCursor*,int*)) memRbtreeNext,
|
---|
1475 | (int(*)(BtCursor*,int*)) memRbtreePrevious,
|
---|
1476 | (int(*)(BtCursor*,int*)) memRbtreeKeySize,
|
---|
1477 | (int(*)(BtCursor*,int,int,char*)) memRbtreeKey,
|
---|
1478 | (int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare,
|
---|
1479 | (int(*)(BtCursor*,int*)) memRbtreeDataSize,
|
---|
1480 | (int(*)(BtCursor*,int,int,char*)) memRbtreeData,
|
---|
1481 | (int(*)(BtCursor*)) memRbtreeCloseCursor,
|
---|
1482 | #ifdef SQLITE_TEST
|
---|
1483 | (int(*)(BtCursor*,int*)) memRbtreeCursorDump,
|
---|
1484 | #endif
|
---|
1485 |
|
---|
1486 | };
|
---|
1487 |
|
---|
1488 | #endif /* SQLITE_OMIT_INMEMORYDB */
|
---|