| 1 | /* | 
|---|
| 2 | * jfdctfst.c | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (C) 1994-1996, Thomas G. Lane. | 
|---|
| 5 | * This file is part of the Independent JPEG Group's software. | 
|---|
| 6 | * For conditions of distribution and use, see the accompanying README file. | 
|---|
| 7 | * | 
|---|
| 8 | * This file contains a fast, not so accurate integer implementation of the | 
|---|
| 9 | * forward DCT (Discrete Cosine Transform). | 
|---|
| 10 | * | 
|---|
| 11 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | 
|---|
| 12 | * on each column.  Direct algorithms are also available, but they are | 
|---|
| 13 | * much more complex and seem not to be any faster when reduced to code. | 
|---|
| 14 | * | 
|---|
| 15 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for | 
|---|
| 16 | * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in | 
|---|
| 17 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell | 
|---|
| 18 | * JPEG textbook (see REFERENCES section in file README).  The following code | 
|---|
| 19 | * is based directly on figure 4-8 in P&M. | 
|---|
| 20 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is | 
|---|
| 21 | * possible to arrange the computation so that many of the multiplies are | 
|---|
| 22 | * simple scalings of the final outputs.  These multiplies can then be | 
|---|
| 23 | * folded into the multiplications or divisions by the JPEG quantization | 
|---|
| 24 | * table entries.  The AA&N method leaves only 5 multiplies and 29 adds | 
|---|
| 25 | * to be done in the DCT itself. | 
|---|
| 26 | * The primary disadvantage of this method is that with fixed-point math, | 
|---|
| 27 | * accuracy is lost due to imprecise representation of the scaled | 
|---|
| 28 | * quantization values.  The smaller the quantization table entry, the less | 
|---|
| 29 | * precise the scaled value, so this implementation does worse with high- | 
|---|
| 30 | * quality-setting files than with low-quality ones. | 
|---|
| 31 | */ | 
|---|
| 32 |  | 
|---|
| 33 | #define JPEG_INTERNALS | 
|---|
| 34 | #include "jinclude.h" | 
|---|
| 35 | #include "jpeglib.h" | 
|---|
| 36 | #include "jdct.h"               /* Private declarations for DCT subsystem */ | 
|---|
| 37 |  | 
|---|
| 38 | #ifdef DCT_IFAST_SUPPORTED | 
|---|
| 39 |  | 
|---|
| 40 |  | 
|---|
| 41 | /* | 
|---|
| 42 | * This module is specialized to the case DCTSIZE = 8. | 
|---|
| 43 | */ | 
|---|
| 44 |  | 
|---|
| 45 | #if DCTSIZE != 8 | 
|---|
| 46 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | 
|---|
| 47 | #endif | 
|---|
| 48 |  | 
|---|
| 49 |  | 
|---|
| 50 | /* Scaling decisions are generally the same as in the LL&M algorithm; | 
|---|
| 51 | * see jfdctint.c for more details.  However, we choose to descale | 
|---|
| 52 | * (right shift) multiplication products as soon as they are formed, | 
|---|
| 53 | * rather than carrying additional fractional bits into subsequent additions. | 
|---|
| 54 | * This compromises accuracy slightly, but it lets us save a few shifts. | 
|---|
| 55 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | 
|---|
| 56 | * everywhere except in the multiplications proper; this saves a good deal | 
|---|
| 57 | * of work on 16-bit-int machines. | 
|---|
| 58 | * | 
|---|
| 59 | * Again to save a few shifts, the intermediate results between pass 1 and | 
|---|
| 60 | * pass 2 are not upscaled, but are represented only to integral precision. | 
|---|
| 61 | * | 
|---|
| 62 | * A final compromise is to represent the multiplicative constants to only | 
|---|
| 63 | * 8 fractional bits, rather than 13.  This saves some shifting work on some | 
|---|
| 64 | * machines, and may also reduce the cost of multiplication (since there | 
|---|
| 65 | * are fewer one-bits in the constants). | 
|---|
| 66 | */ | 
|---|
| 67 |  | 
|---|
| 68 | #define CONST_BITS  8 | 
|---|
| 69 |  | 
|---|
| 70 |  | 
|---|
| 71 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | 
|---|
| 72 | * causing a lot of useless floating-point operations at run time. | 
|---|
| 73 | * To get around this we use the following pre-calculated constants. | 
|---|
| 74 | * If you change CONST_BITS you may want to add appropriate values. | 
|---|
| 75 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | 
|---|
| 76 | */ | 
|---|
| 77 |  | 
|---|
| 78 | #if CONST_BITS == 8 | 
|---|
| 79 | #define FIX_0_382683433  ((INT32)   98)         /* FIX(0.382683433) */ | 
|---|
| 80 | #define FIX_0_541196100  ((INT32)  139)         /* FIX(0.541196100) */ | 
|---|
| 81 | #define FIX_0_707106781  ((INT32)  181)         /* FIX(0.707106781) */ | 
|---|
| 82 | #define FIX_1_306562965  ((INT32)  334)         /* FIX(1.306562965) */ | 
|---|
| 83 | #else | 
|---|
| 84 | #define FIX_0_382683433  FIX(0.382683433) | 
|---|
| 85 | #define FIX_0_541196100  FIX(0.541196100) | 
|---|
| 86 | #define FIX_0_707106781  FIX(0.707106781) | 
|---|
| 87 | #define FIX_1_306562965  FIX(1.306562965) | 
|---|
| 88 | #endif | 
|---|
| 89 |  | 
|---|
| 90 |  | 
|---|
| 91 | /* We can gain a little more speed, with a further compromise in accuracy, | 
|---|
| 92 | * by omitting the addition in a descaling shift.  This yields an incorrectly | 
|---|
| 93 | * rounded result half the time... | 
|---|
| 94 | */ | 
|---|
| 95 |  | 
|---|
| 96 | #ifndef USE_ACCURATE_ROUNDING | 
|---|
| 97 | #undef DESCALE | 
|---|
| 98 | #define DESCALE(x,n)  RIGHT_SHIFT(x, n) | 
|---|
| 99 | #endif | 
|---|
| 100 |  | 
|---|
| 101 |  | 
|---|
| 102 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately | 
|---|
| 103 | * descale to yield a DCTELEM result. | 
|---|
| 104 | */ | 
|---|
| 105 |  | 
|---|
| 106 | #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | 
|---|
| 107 |  | 
|---|
| 108 |  | 
|---|
| 109 | /* | 
|---|
| 110 | * Perform the forward DCT on one block of samples. | 
|---|
| 111 | */ | 
|---|
| 112 |  | 
|---|
| 113 | GLOBAL(void) | 
|---|
| 114 | jpeg_fdct_ifast (DCTELEM * data) | 
|---|
| 115 | { | 
|---|
| 116 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | 
|---|
| 117 | DCTELEM tmp10, tmp11, tmp12, tmp13; | 
|---|
| 118 | DCTELEM z1, z2, z3, z4, z5, z11, z13; | 
|---|
| 119 | DCTELEM *dataptr; | 
|---|
| 120 | int ctr; | 
|---|
| 121 | SHIFT_TEMPS | 
|---|
| 122 |  | 
|---|
| 123 | /* Pass 1: process rows. */ | 
|---|
| 124 |  | 
|---|
| 125 | dataptr = data; | 
|---|
| 126 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
|---|
| 127 | tmp0 = dataptr[0] + dataptr[7]; | 
|---|
| 128 | tmp7 = dataptr[0] - dataptr[7]; | 
|---|
| 129 | tmp1 = dataptr[1] + dataptr[6]; | 
|---|
| 130 | tmp6 = dataptr[1] - dataptr[6]; | 
|---|
| 131 | tmp2 = dataptr[2] + dataptr[5]; | 
|---|
| 132 | tmp5 = dataptr[2] - dataptr[5]; | 
|---|
| 133 | tmp3 = dataptr[3] + dataptr[4]; | 
|---|
| 134 | tmp4 = dataptr[3] - dataptr[4]; | 
|---|
| 135 |  | 
|---|
| 136 | /* Even part */ | 
|---|
| 137 |  | 
|---|
| 138 | tmp10 = tmp0 + tmp3;        /* phase 2 */ | 
|---|
| 139 | tmp13 = tmp0 - tmp3; | 
|---|
| 140 | tmp11 = tmp1 + tmp2; | 
|---|
| 141 | tmp12 = tmp1 - tmp2; | 
|---|
| 142 |  | 
|---|
| 143 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ | 
|---|
| 144 | dataptr[4] = tmp10 - tmp11; | 
|---|
| 145 |  | 
|---|
| 146 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | 
|---|
| 147 | dataptr[2] = tmp13 + z1;    /* phase 5 */ | 
|---|
| 148 | dataptr[6] = tmp13 - z1; | 
|---|
| 149 |  | 
|---|
| 150 | /* Odd part */ | 
|---|
| 151 |  | 
|---|
| 152 | tmp10 = tmp4 + tmp5;        /* phase 2 */ | 
|---|
| 153 | tmp11 = tmp5 + tmp6; | 
|---|
| 154 | tmp12 = tmp6 + tmp7; | 
|---|
| 155 |  | 
|---|
| 156 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | 
|---|
| 157 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | 
|---|
| 158 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | 
|---|
| 159 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | 
|---|
| 160 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | 
|---|
| 161 |  | 
|---|
| 162 | z11 = tmp7 + z3;            /* phase 5 */ | 
|---|
| 163 | z13 = tmp7 - z3; | 
|---|
| 164 |  | 
|---|
| 165 | dataptr[5] = z13 + z2;      /* phase 6 */ | 
|---|
| 166 | dataptr[3] = z13 - z2; | 
|---|
| 167 | dataptr[1] = z11 + z4; | 
|---|
| 168 | dataptr[7] = z11 - z4; | 
|---|
| 169 |  | 
|---|
| 170 | dataptr += DCTSIZE;         /* advance pointer to next row */ | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | /* Pass 2: process columns. */ | 
|---|
| 174 |  | 
|---|
| 175 | dataptr = data; | 
|---|
| 176 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
|---|
| 177 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | 
|---|
| 178 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | 
|---|
| 179 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | 
|---|
| 180 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | 
|---|
| 181 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | 
|---|
| 182 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | 
|---|
| 183 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | 
|---|
| 184 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | 
|---|
| 185 |  | 
|---|
| 186 | /* Even part */ | 
|---|
| 187 |  | 
|---|
| 188 | tmp10 = tmp0 + tmp3;        /* phase 2 */ | 
|---|
| 189 | tmp13 = tmp0 - tmp3; | 
|---|
| 190 | tmp11 = tmp1 + tmp2; | 
|---|
| 191 | tmp12 = tmp1 - tmp2; | 
|---|
| 192 |  | 
|---|
| 193 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | 
|---|
| 194 | dataptr[DCTSIZE*4] = tmp10 - tmp11; | 
|---|
| 195 |  | 
|---|
| 196 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | 
|---|
| 197 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | 
|---|
| 198 | dataptr[DCTSIZE*6] = tmp13 - z1; | 
|---|
| 199 |  | 
|---|
| 200 | /* Odd part */ | 
|---|
| 201 |  | 
|---|
| 202 | tmp10 = tmp4 + tmp5;        /* phase 2 */ | 
|---|
| 203 | tmp11 = tmp5 + tmp6; | 
|---|
| 204 | tmp12 = tmp6 + tmp7; | 
|---|
| 205 |  | 
|---|
| 206 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | 
|---|
| 207 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | 
|---|
| 208 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | 
|---|
| 209 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | 
|---|
| 210 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | 
|---|
| 211 |  | 
|---|
| 212 | z11 = tmp7 + z3;            /* phase 5 */ | 
|---|
| 213 | z13 = tmp7 - z3; | 
|---|
| 214 |  | 
|---|
| 215 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | 
|---|
| 216 | dataptr[DCTSIZE*3] = z13 - z2; | 
|---|
| 217 | dataptr[DCTSIZE*1] = z11 + z4; | 
|---|
| 218 | dataptr[DCTSIZE*7] = z11 - z4; | 
|---|
| 219 |  | 
|---|
| 220 | dataptr++;                  /* advance pointer to next column */ | 
|---|
| 221 | } | 
|---|
| 222 | } | 
|---|
| 223 |  | 
|---|
| 224 | #endif /* DCT_IFAST_SUPPORTED */ | 
|---|