| 1 | /* | 
|---|
| 2 | * jfdctflt.c | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (C) 1994-1996, Thomas G. Lane. | 
|---|
| 5 | * This file is part of the Independent JPEG Group's software. | 
|---|
| 6 | * For conditions of distribution and use, see the accompanying README file. | 
|---|
| 7 | * | 
|---|
| 8 | * This file contains a floating-point implementation of the | 
|---|
| 9 | * forward DCT (Discrete Cosine Transform). | 
|---|
| 10 | * | 
|---|
| 11 | * This implementation should be more accurate than either of the integer | 
|---|
| 12 | * DCT implementations.  However, it may not give the same results on all | 
|---|
| 13 | * machines because of differences in roundoff behavior.  Speed will depend | 
|---|
| 14 | * on the hardware's floating point capacity. | 
|---|
| 15 | * | 
|---|
| 16 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | 
|---|
| 17 | * on each column.  Direct algorithms are also available, but they are | 
|---|
| 18 | * much more complex and seem not to be any faster when reduced to code. | 
|---|
| 19 | * | 
|---|
| 20 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for | 
|---|
| 21 | * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in | 
|---|
| 22 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell | 
|---|
| 23 | * JPEG textbook (see REFERENCES section in file README).  The following code | 
|---|
| 24 | * is based directly on figure 4-8 in P&M. | 
|---|
| 25 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is | 
|---|
| 26 | * possible to arrange the computation so that many of the multiplies are | 
|---|
| 27 | * simple scalings of the final outputs.  These multiplies can then be | 
|---|
| 28 | * folded into the multiplications or divisions by the JPEG quantization | 
|---|
| 29 | * table entries.  The AA&N method leaves only 5 multiplies and 29 adds | 
|---|
| 30 | * to be done in the DCT itself. | 
|---|
| 31 | * The primary disadvantage of this method is that with a fixed-point | 
|---|
| 32 | * implementation, accuracy is lost due to imprecise representation of the | 
|---|
| 33 | * scaled quantization values.  However, that problem does not arise if | 
|---|
| 34 | * we use floating point arithmetic. | 
|---|
| 35 | */ | 
|---|
| 36 |  | 
|---|
| 37 | #define JPEG_INTERNALS | 
|---|
| 38 | #include "jinclude.h" | 
|---|
| 39 | #include "jpeglib.h" | 
|---|
| 40 | #include "jdct.h"               /* Private declarations for DCT subsystem */ | 
|---|
| 41 |  | 
|---|
| 42 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 43 |  | 
|---|
| 44 |  | 
|---|
| 45 | /* | 
|---|
| 46 | * This module is specialized to the case DCTSIZE = 8. | 
|---|
| 47 | */ | 
|---|
| 48 |  | 
|---|
| 49 | #if DCTSIZE != 8 | 
|---|
| 50 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | 
|---|
| 51 | #endif | 
|---|
| 52 |  | 
|---|
| 53 |  | 
|---|
| 54 | /* | 
|---|
| 55 | * Perform the forward DCT on one block of samples. | 
|---|
| 56 | */ | 
|---|
| 57 |  | 
|---|
| 58 | GLOBAL(void) | 
|---|
| 59 | jpeg_fdct_float (FAST_FLOAT * data) | 
|---|
| 60 | { | 
|---|
| 61 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | 
|---|
| 62 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | 
|---|
| 63 | FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; | 
|---|
| 64 | FAST_FLOAT *dataptr; | 
|---|
| 65 | int ctr; | 
|---|
| 66 |  | 
|---|
| 67 | /* Pass 1: process rows. */ | 
|---|
| 68 |  | 
|---|
| 69 | dataptr = data; | 
|---|
| 70 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
|---|
| 71 | tmp0 = dataptr[0] + dataptr[7]; | 
|---|
| 72 | tmp7 = dataptr[0] - dataptr[7]; | 
|---|
| 73 | tmp1 = dataptr[1] + dataptr[6]; | 
|---|
| 74 | tmp6 = dataptr[1] - dataptr[6]; | 
|---|
| 75 | tmp2 = dataptr[2] + dataptr[5]; | 
|---|
| 76 | tmp5 = dataptr[2] - dataptr[5]; | 
|---|
| 77 | tmp3 = dataptr[3] + dataptr[4]; | 
|---|
| 78 | tmp4 = dataptr[3] - dataptr[4]; | 
|---|
| 79 |  | 
|---|
| 80 | /* Even part */ | 
|---|
| 81 |  | 
|---|
| 82 | tmp10 = tmp0 + tmp3;        /* phase 2 */ | 
|---|
| 83 | tmp13 = tmp0 - tmp3; | 
|---|
| 84 | tmp11 = tmp1 + tmp2; | 
|---|
| 85 | tmp12 = tmp1 - tmp2; | 
|---|
| 86 |  | 
|---|
| 87 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ | 
|---|
| 88 | dataptr[4] = tmp10 - tmp11; | 
|---|
| 89 |  | 
|---|
| 90 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | 
|---|
| 91 | dataptr[2] = tmp13 + z1;    /* phase 5 */ | 
|---|
| 92 | dataptr[6] = tmp13 - z1; | 
|---|
| 93 |  | 
|---|
| 94 | /* Odd part */ | 
|---|
| 95 |  | 
|---|
| 96 | tmp10 = tmp4 + tmp5;        /* phase 2 */ | 
|---|
| 97 | tmp11 = tmp5 + tmp6; | 
|---|
| 98 | tmp12 = tmp6 + tmp7; | 
|---|
| 99 |  | 
|---|
| 100 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | 
|---|
| 101 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | 
|---|
| 102 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | 
|---|
| 103 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | 
|---|
| 104 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | 
|---|
| 105 |  | 
|---|
| 106 | z11 = tmp7 + z3;            /* phase 5 */ | 
|---|
| 107 | z13 = tmp7 - z3; | 
|---|
| 108 |  | 
|---|
| 109 | dataptr[5] = z13 + z2;      /* phase 6 */ | 
|---|
| 110 | dataptr[3] = z13 - z2; | 
|---|
| 111 | dataptr[1] = z11 + z4; | 
|---|
| 112 | dataptr[7] = z11 - z4; | 
|---|
| 113 |  | 
|---|
| 114 | dataptr += DCTSIZE;         /* advance pointer to next row */ | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | /* Pass 2: process columns. */ | 
|---|
| 118 |  | 
|---|
| 119 | dataptr = data; | 
|---|
| 120 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
|---|
| 121 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | 
|---|
| 122 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | 
|---|
| 123 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | 
|---|
| 124 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | 
|---|
| 125 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | 
|---|
| 126 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | 
|---|
| 127 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | 
|---|
| 128 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | 
|---|
| 129 |  | 
|---|
| 130 | /* Even part */ | 
|---|
| 131 |  | 
|---|
| 132 | tmp10 = tmp0 + tmp3;        /* phase 2 */ | 
|---|
| 133 | tmp13 = tmp0 - tmp3; | 
|---|
| 134 | tmp11 = tmp1 + tmp2; | 
|---|
| 135 | tmp12 = tmp1 - tmp2; | 
|---|
| 136 |  | 
|---|
| 137 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | 
|---|
| 138 | dataptr[DCTSIZE*4] = tmp10 - tmp11; | 
|---|
| 139 |  | 
|---|
| 140 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | 
|---|
| 141 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | 
|---|
| 142 | dataptr[DCTSIZE*6] = tmp13 - z1; | 
|---|
| 143 |  | 
|---|
| 144 | /* Odd part */ | 
|---|
| 145 |  | 
|---|
| 146 | tmp10 = tmp4 + tmp5;        /* phase 2 */ | 
|---|
| 147 | tmp11 = tmp5 + tmp6; | 
|---|
| 148 | tmp12 = tmp6 + tmp7; | 
|---|
| 149 |  | 
|---|
| 150 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | 
|---|
| 151 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | 
|---|
| 152 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | 
|---|
| 153 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | 
|---|
| 154 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | 
|---|
| 155 |  | 
|---|
| 156 | z11 = tmp7 + z3;            /* phase 5 */ | 
|---|
| 157 | z13 = tmp7 - z3; | 
|---|
| 158 |  | 
|---|
| 159 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | 
|---|
| 160 | dataptr[DCTSIZE*3] = z13 - z2; | 
|---|
| 161 | dataptr[DCTSIZE*1] = z11 + z4; | 
|---|
| 162 | dataptr[DCTSIZE*7] = z11 - z4; | 
|---|
| 163 |  | 
|---|
| 164 | dataptr++;                  /* advance pointer to next column */ | 
|---|
| 165 | } | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 | #endif /* DCT_FLOAT_SUPPORTED */ | 
|---|