1 | /*
|
---|
2 | * dlls/rsaenh/mpi.c
|
---|
3 | * Multi Precision Integer functions
|
---|
4 | *
|
---|
5 | * Copyright 2004 Michael Jung
|
---|
6 | * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
|
---|
7 | *
|
---|
8 | * This library is free software; you can redistribute it and/or
|
---|
9 | * modify it under the terms of the GNU Lesser General Public
|
---|
10 | * License as published by the Free Software Foundation; either
|
---|
11 | * version 2.1 of the License, or (at your option) any later version.
|
---|
12 | *
|
---|
13 | * This library is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
16 | * Lesser General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU Lesser General Public
|
---|
19 | * License along with this library; if not, write to the Free Software
|
---|
20 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
---|
21 | */
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * This file contains code from the LibTomCrypt cryptographic
|
---|
25 | * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
|
---|
26 | * is in the public domain. The code in this file is tailored to
|
---|
27 | * special requirements. Take a look at http://libtomcrypt.org for the
|
---|
28 | * original version.
|
---|
29 | */
|
---|
30 |
|
---|
31 | #include <stdarg.h>
|
---|
32 | #include "tomcrypt.h"
|
---|
33 |
|
---|
34 | /* Known optimal configurations
|
---|
35 | CPU /Compiler /MUL CUTOFF/SQR CUTOFF
|
---|
36 | -------------------------------------------------------------
|
---|
37 | Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
|
---|
38 | */
|
---|
39 | static const int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
|
---|
40 | KARATSUBA_SQR_CUTOFF = 128; /* Min. number of digits before Karatsuba squaring is used. */
|
---|
41 |
|
---|
42 | static void bn_reverse(unsigned char *s, int len);
|
---|
43 | static int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
|
---|
44 | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y);
|
---|
45 | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
|
---|
46 | static int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
---|
47 | static int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
---|
48 | static int s_mp_sqr(const mp_int *a, mp_int *b);
|
---|
49 | static int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
|
---|
50 | static int mp_exptmod_fast(const mp_int *G, const mp_int *X, mp_int *P, mp_int *Y, int mode);
|
---|
51 | static int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c);
|
---|
52 | static int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
|
---|
53 | static int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
|
---|
54 |
|
---|
55 | /* computes the modular inverse via binary extended euclidean algorithm,
|
---|
56 | * that is c = 1/a mod b
|
---|
57 | *
|
---|
58 | * Based on slow invmod except this is optimized for the case where b is
|
---|
59 | * odd as per HAC Note 14.64 on pp. 610
|
---|
60 | */
|
---|
61 | static int
|
---|
62 | fast_mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
63 | {
|
---|
64 | mp_int x, y, u, v, B, D;
|
---|
65 | int res, neg;
|
---|
66 |
|
---|
67 | /* 2. [modified] b must be odd */
|
---|
68 | if (mp_iseven (b) == 1) {
|
---|
69 | return MP_VAL;
|
---|
70 | }
|
---|
71 |
|
---|
72 | /* init all our temps */
|
---|
73 | if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
---|
74 | return res;
|
---|
75 | }
|
---|
76 |
|
---|
77 | /* x == modulus, y == value to invert */
|
---|
78 | if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
---|
79 | goto __ERR;
|
---|
80 | }
|
---|
81 |
|
---|
82 | /* we need y = |a| */
|
---|
83 | if ((res = mp_abs (a, &y)) != MP_OKAY) {
|
---|
84 | goto __ERR;
|
---|
85 | }
|
---|
86 |
|
---|
87 | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
---|
88 | if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
---|
89 | goto __ERR;
|
---|
90 | }
|
---|
91 | if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
---|
92 | goto __ERR;
|
---|
93 | }
|
---|
94 | mp_set (&D, 1);
|
---|
95 |
|
---|
96 | top:
|
---|
97 | /* 4. while u is even do */
|
---|
98 | while (mp_iseven (&u) == 1) {
|
---|
99 | /* 4.1 u = u/2 */
|
---|
100 | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
---|
101 | goto __ERR;
|
---|
102 | }
|
---|
103 | /* 4.2 if B is odd then */
|
---|
104 | if (mp_isodd (&B) == 1) {
|
---|
105 | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
---|
106 | goto __ERR;
|
---|
107 | }
|
---|
108 | }
|
---|
109 | /* B = B/2 */
|
---|
110 | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
---|
111 | goto __ERR;
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | /* 5. while v is even do */
|
---|
116 | while (mp_iseven (&v) == 1) {
|
---|
117 | /* 5.1 v = v/2 */
|
---|
118 | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
---|
119 | goto __ERR;
|
---|
120 | }
|
---|
121 | /* 5.2 if D is odd then */
|
---|
122 | if (mp_isodd (&D) == 1) {
|
---|
123 | /* D = (D-x)/2 */
|
---|
124 | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
---|
125 | goto __ERR;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | /* D = D/2 */
|
---|
129 | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
---|
130 | goto __ERR;
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | /* 6. if u >= v then */
|
---|
135 | if (mp_cmp (&u, &v) != MP_LT) {
|
---|
136 | /* u = u - v, B = B - D */
|
---|
137 | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
---|
138 | goto __ERR;
|
---|
139 | }
|
---|
140 |
|
---|
141 | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
---|
142 | goto __ERR;
|
---|
143 | }
|
---|
144 | } else {
|
---|
145 | /* v - v - u, D = D - B */
|
---|
146 | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
---|
147 | goto __ERR;
|
---|
148 | }
|
---|
149 |
|
---|
150 | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
---|
151 | goto __ERR;
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | /* if not zero goto step 4 */
|
---|
156 | if (mp_iszero (&u) == 0) {
|
---|
157 | goto top;
|
---|
158 | }
|
---|
159 |
|
---|
160 | /* now a = C, b = D, gcd == g*v */
|
---|
161 |
|
---|
162 | /* if v != 1 then there is no inverse */
|
---|
163 | if (mp_cmp_d (&v, 1) != MP_EQ) {
|
---|
164 | res = MP_VAL;
|
---|
165 | goto __ERR;
|
---|
166 | }
|
---|
167 |
|
---|
168 | /* b is now the inverse */
|
---|
169 | neg = a->sign;
|
---|
170 | while (D.sign == MP_NEG) {
|
---|
171 | if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
---|
172 | goto __ERR;
|
---|
173 | }
|
---|
174 | }
|
---|
175 | mp_exch (&D, c);
|
---|
176 | c->sign = neg;
|
---|
177 | res = MP_OKAY;
|
---|
178 |
|
---|
179 | __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
|
---|
180 | return res;
|
---|
181 | }
|
---|
182 |
|
---|
183 | /* computes xR**-1 == x (mod N) via Montgomery Reduction
|
---|
184 | *
|
---|
185 | * This is an optimized implementation of montgomery_reduce
|
---|
186 | * which uses the comba method to quickly calculate the columns of the
|
---|
187 | * reduction.
|
---|
188 | *
|
---|
189 | * Based on Algorithm 14.32 on pp.601 of HAC.
|
---|
190 | */
|
---|
191 | static int
|
---|
192 | fast_mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
|
---|
193 | {
|
---|
194 | int ix, res, olduse;
|
---|
195 | mp_word W[MP_WARRAY];
|
---|
196 |
|
---|
197 | /* get old used count */
|
---|
198 | olduse = x->used;
|
---|
199 |
|
---|
200 | /* grow a as required */
|
---|
201 | if (x->alloc < n->used + 1) {
|
---|
202 | if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
---|
203 | return res;
|
---|
204 | }
|
---|
205 | }
|
---|
206 |
|
---|
207 | /* first we have to get the digits of the input into
|
---|
208 | * an array of double precision words W[...]
|
---|
209 | */
|
---|
210 | {
|
---|
211 | register mp_word *_W;
|
---|
212 | register mp_digit *tmpx;
|
---|
213 |
|
---|
214 | /* alias for the W[] array */
|
---|
215 | _W = W;
|
---|
216 |
|
---|
217 | /* alias for the digits of x*/
|
---|
218 | tmpx = x->dp;
|
---|
219 |
|
---|
220 | /* copy the digits of a into W[0..a->used-1] */
|
---|
221 | for (ix = 0; ix < x->used; ix++) {
|
---|
222 | *_W++ = *tmpx++;
|
---|
223 | }
|
---|
224 |
|
---|
225 | /* zero the high words of W[a->used..m->used*2] */
|
---|
226 | for (; ix < n->used * 2 + 1; ix++) {
|
---|
227 | *_W++ = 0;
|
---|
228 | }
|
---|
229 | }
|
---|
230 |
|
---|
231 | /* now we proceed to zero successive digits
|
---|
232 | * from the least significant upwards
|
---|
233 | */
|
---|
234 | for (ix = 0; ix < n->used; ix++) {
|
---|
235 | /* mu = ai * m' mod b
|
---|
236 | *
|
---|
237 | * We avoid a double precision multiplication (which isn't required)
|
---|
238 | * by casting the value down to a mp_digit. Note this requires
|
---|
239 | * that W[ix-1] have the carry cleared (see after the inner loop)
|
---|
240 | */
|
---|
241 | register mp_digit mu;
|
---|
242 | mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
|
---|
243 |
|
---|
244 | /* a = a + mu * m * b**i
|
---|
245 | *
|
---|
246 | * This is computed in place and on the fly. The multiplication
|
---|
247 | * by b**i is handled by offsetting which columns the results
|
---|
248 | * are added to.
|
---|
249 | *
|
---|
250 | * Note the comba method normally doesn't handle carries in the
|
---|
251 | * inner loop In this case we fix the carry from the previous
|
---|
252 | * column since the Montgomery reduction requires digits of the
|
---|
253 | * result (so far) [see above] to work. This is
|
---|
254 | * handled by fixing up one carry after the inner loop. The
|
---|
255 | * carry fixups are done in order so after these loops the
|
---|
256 | * first m->used words of W[] have the carries fixed
|
---|
257 | */
|
---|
258 | {
|
---|
259 | register int iy;
|
---|
260 | register mp_digit *tmpn;
|
---|
261 | register mp_word *_W;
|
---|
262 |
|
---|
263 | /* alias for the digits of the modulus */
|
---|
264 | tmpn = n->dp;
|
---|
265 |
|
---|
266 | /* Alias for the columns set by an offset of ix */
|
---|
267 | _W = W + ix;
|
---|
268 |
|
---|
269 | /* inner loop */
|
---|
270 | for (iy = 0; iy < n->used; iy++) {
|
---|
271 | *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
|
---|
272 | }
|
---|
273 | }
|
---|
274 |
|
---|
275 | /* now fix carry for next digit, W[ix+1] */
|
---|
276 | W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
---|
277 | }
|
---|
278 |
|
---|
279 | /* now we have to propagate the carries and
|
---|
280 | * shift the words downward [all those least
|
---|
281 | * significant digits we zeroed].
|
---|
282 | */
|
---|
283 | {
|
---|
284 | register mp_digit *tmpx;
|
---|
285 | register mp_word *_W, *_W1;
|
---|
286 |
|
---|
287 | /* nox fix rest of carries */
|
---|
288 |
|
---|
289 | /* alias for current word */
|
---|
290 | _W1 = W + ix;
|
---|
291 |
|
---|
292 | /* alias for next word, where the carry goes */
|
---|
293 | _W = W + ++ix;
|
---|
294 |
|
---|
295 | for (; ix <= n->used * 2 + 1; ix++) {
|
---|
296 | *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
---|
297 | }
|
---|
298 |
|
---|
299 | /* copy out, A = A/b**n
|
---|
300 | *
|
---|
301 | * The result is A/b**n but instead of converting from an
|
---|
302 | * array of mp_word to mp_digit than calling mp_rshd
|
---|
303 | * we just copy them in the right order
|
---|
304 | */
|
---|
305 |
|
---|
306 | /* alias for destination word */
|
---|
307 | tmpx = x->dp;
|
---|
308 |
|
---|
309 | /* alias for shifted double precision result */
|
---|
310 | _W = W + n->used;
|
---|
311 |
|
---|
312 | for (ix = 0; ix < n->used + 1; ix++) {
|
---|
313 | *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
|
---|
314 | }
|
---|
315 |
|
---|
316 | /* zero oldused digits, if the input a was larger than
|
---|
317 | * m->used+1 we'll have to clear the digits
|
---|
318 | */
|
---|
319 | for (; ix < olduse; ix++) {
|
---|
320 | *tmpx++ = 0;
|
---|
321 | }
|
---|
322 | }
|
---|
323 |
|
---|
324 | /* set the max used and clamp */
|
---|
325 | x->used = n->used + 1;
|
---|
326 | mp_clamp (x);
|
---|
327 |
|
---|
328 | /* if A >= m then A = A - m */
|
---|
329 | if (mp_cmp_mag (x, n) != MP_LT) {
|
---|
330 | return s_mp_sub (x, n, x);
|
---|
331 | }
|
---|
332 | return MP_OKAY;
|
---|
333 | }
|
---|
334 |
|
---|
335 | /* Fast (comba) multiplier
|
---|
336 | *
|
---|
337 | * This is the fast column-array [comba] multiplier. It is
|
---|
338 | * designed to compute the columns of the product first
|
---|
339 | * then handle the carries afterwards. This has the effect
|
---|
340 | * of making the nested loops that compute the columns very
|
---|
341 | * simple and schedulable on super-scalar processors.
|
---|
342 | *
|
---|
343 | * This has been modified to produce a variable number of
|
---|
344 | * digits of output so if say only a half-product is required
|
---|
345 | * you don't have to compute the upper half (a feature
|
---|
346 | * required for fast Barrett reduction).
|
---|
347 | *
|
---|
348 | * Based on Algorithm 14.12 on pp.595 of HAC.
|
---|
349 | *
|
---|
350 | */
|
---|
351 | static int
|
---|
352 | fast_s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
353 | {
|
---|
354 | int olduse, res, pa, ix, iz;
|
---|
355 | mp_digit W[MP_WARRAY];
|
---|
356 | register mp_word _W;
|
---|
357 |
|
---|
358 | /* grow the destination as required */
|
---|
359 | if (c->alloc < digs) {
|
---|
360 | if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
---|
361 | return res;
|
---|
362 | }
|
---|
363 | }
|
---|
364 |
|
---|
365 | /* number of output digits to produce */
|
---|
366 | pa = MIN(digs, a->used + b->used);
|
---|
367 |
|
---|
368 | /* clear the carry */
|
---|
369 | _W = 0;
|
---|
370 | for (ix = 0; ix <= pa; ix++) {
|
---|
371 | int tx, ty;
|
---|
372 | int iy;
|
---|
373 | mp_digit *tmpx, *tmpy;
|
---|
374 |
|
---|
375 | /* get offsets into the two bignums */
|
---|
376 | ty = MIN(b->used-1, ix);
|
---|
377 | tx = ix - ty;
|
---|
378 |
|
---|
379 | /* setup temp aliases */
|
---|
380 | tmpx = a->dp + tx;
|
---|
381 | tmpy = b->dp + ty;
|
---|
382 |
|
---|
383 | /* This is the number of times the loop will iterate, essentially it's
|
---|
384 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
385 | */
|
---|
386 | iy = MIN(a->used-tx, ty+1);
|
---|
387 |
|
---|
388 | /* execute loop */
|
---|
389 | for (iz = 0; iz < iy; ++iz) {
|
---|
390 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
391 | }
|
---|
392 |
|
---|
393 | /* store term */
|
---|
394 | W[ix] = ((mp_digit)_W) & MP_MASK;
|
---|
395 |
|
---|
396 | /* make next carry */
|
---|
397 | _W = _W >> ((mp_word)DIGIT_BIT);
|
---|
398 | }
|
---|
399 |
|
---|
400 | /* setup dest */
|
---|
401 | olduse = c->used;
|
---|
402 | c->used = digs;
|
---|
403 |
|
---|
404 | {
|
---|
405 | register mp_digit *tmpc;
|
---|
406 | tmpc = c->dp;
|
---|
407 | for (ix = 0; ix < digs; ix++) {
|
---|
408 | /* now extract the previous digit [below the carry] */
|
---|
409 | *tmpc++ = W[ix];
|
---|
410 | }
|
---|
411 |
|
---|
412 | /* clear unused digits [that existed in the old copy of c] */
|
---|
413 | for (; ix < olduse; ix++) {
|
---|
414 | *tmpc++ = 0;
|
---|
415 | }
|
---|
416 | }
|
---|
417 | mp_clamp (c);
|
---|
418 | return MP_OKAY;
|
---|
419 | }
|
---|
420 |
|
---|
421 | /* this is a modified version of fast_s_mul_digs that only produces
|
---|
422 | * output digits *above* digs. See the comments for fast_s_mul_digs
|
---|
423 | * to see how it works.
|
---|
424 | *
|
---|
425 | * This is used in the Barrett reduction since for one of the multiplications
|
---|
426 | * only the higher digits were needed. This essentially halves the work.
|
---|
427 | *
|
---|
428 | * Based on Algorithm 14.12 on pp.595 of HAC.
|
---|
429 | */
|
---|
430 | static int
|
---|
431 | fast_s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
432 | {
|
---|
433 | int olduse, res, pa, ix, iz;
|
---|
434 | mp_digit W[MP_WARRAY];
|
---|
435 | mp_word _W;
|
---|
436 |
|
---|
437 | /* grow the destination as required */
|
---|
438 | pa = a->used + b->used;
|
---|
439 | if (c->alloc < pa) {
|
---|
440 | if ((res = mp_grow (c, pa)) != MP_OKAY) {
|
---|
441 | return res;
|
---|
442 | }
|
---|
443 | }
|
---|
444 |
|
---|
445 | /* number of output digits to produce */
|
---|
446 | pa = a->used + b->used;
|
---|
447 | _W = 0;
|
---|
448 | for (ix = digs; ix <= pa; ix++) {
|
---|
449 | int tx, ty, iy;
|
---|
450 | mp_digit *tmpx, *tmpy;
|
---|
451 |
|
---|
452 | /* get offsets into the two bignums */
|
---|
453 | ty = MIN(b->used-1, ix);
|
---|
454 | tx = ix - ty;
|
---|
455 |
|
---|
456 | /* setup temp aliases */
|
---|
457 | tmpx = a->dp + tx;
|
---|
458 | tmpy = b->dp + ty;
|
---|
459 |
|
---|
460 | /* This is the number of times the loop will iterate, essentially it's
|
---|
461 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
462 | */
|
---|
463 | iy = MIN(a->used-tx, ty+1);
|
---|
464 |
|
---|
465 | /* execute loop */
|
---|
466 | for (iz = 0; iz < iy; iz++) {
|
---|
467 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
468 | }
|
---|
469 |
|
---|
470 | /* store term */
|
---|
471 | W[ix] = ((mp_digit)_W) & MP_MASK;
|
---|
472 |
|
---|
473 | /* make next carry */
|
---|
474 | _W = _W >> ((mp_word)DIGIT_BIT);
|
---|
475 | }
|
---|
476 |
|
---|
477 | /* setup dest */
|
---|
478 | olduse = c->used;
|
---|
479 | c->used = pa;
|
---|
480 |
|
---|
481 | {
|
---|
482 | register mp_digit *tmpc;
|
---|
483 |
|
---|
484 | tmpc = c->dp + digs;
|
---|
485 | for (ix = digs; ix <= pa; ix++) {
|
---|
486 | /* now extract the previous digit [below the carry] */
|
---|
487 | *tmpc++ = W[ix];
|
---|
488 | }
|
---|
489 |
|
---|
490 | /* clear unused digits [that existed in the old copy of c] */
|
---|
491 | for (; ix < olduse; ix++) {
|
---|
492 | *tmpc++ = 0;
|
---|
493 | }
|
---|
494 | }
|
---|
495 | mp_clamp (c);
|
---|
496 | return MP_OKAY;
|
---|
497 | }
|
---|
498 |
|
---|
499 | /* fast squaring
|
---|
500 | *
|
---|
501 | * This is the comba method where the columns of the product
|
---|
502 | * are computed first then the carries are computed. This
|
---|
503 | * has the effect of making a very simple inner loop that
|
---|
504 | * is executed the most
|
---|
505 | *
|
---|
506 | * W2 represents the outer products and W the inner.
|
---|
507 | *
|
---|
508 | * A further optimizations is made because the inner
|
---|
509 | * products are of the form "A * B * 2". The *2 part does
|
---|
510 | * not need to be computed until the end which is good
|
---|
511 | * because 64-bit shifts are slow!
|
---|
512 | *
|
---|
513 | * Based on Algorithm 14.16 on pp.597 of HAC.
|
---|
514 | *
|
---|
515 | */
|
---|
516 | /* the jist of squaring...
|
---|
517 |
|
---|
518 | you do like mult except the offset of the tmpx [one that starts closer to zero]
|
---|
519 | can't equal the offset of tmpy. So basically you set up iy like before then you min it with
|
---|
520 | (ty-tx) so that it never happens. You double all those you add in the inner loop
|
---|
521 |
|
---|
522 | After that loop you do the squares and add them in.
|
---|
523 |
|
---|
524 | Remove W2 and don't memset W
|
---|
525 |
|
---|
526 | */
|
---|
527 |
|
---|
528 | static int fast_s_mp_sqr (const mp_int * a, mp_int * b)
|
---|
529 | {
|
---|
530 | int olduse, res, pa, ix, iz;
|
---|
531 | mp_digit W[MP_WARRAY], *tmpx;
|
---|
532 | mp_word W1;
|
---|
533 |
|
---|
534 | /* grow the destination as required */
|
---|
535 | pa = a->used + a->used;
|
---|
536 | if (b->alloc < pa) {
|
---|
537 | if ((res = mp_grow (b, pa)) != MP_OKAY) {
|
---|
538 | return res;
|
---|
539 | }
|
---|
540 | }
|
---|
541 |
|
---|
542 | /* number of output digits to produce */
|
---|
543 | W1 = 0;
|
---|
544 | for (ix = 0; ix <= pa; ix++) {
|
---|
545 | int tx, ty, iy;
|
---|
546 | mp_word _W;
|
---|
547 | mp_digit *tmpy;
|
---|
548 |
|
---|
549 | /* clear counter */
|
---|
550 | _W = 0;
|
---|
551 |
|
---|
552 | /* get offsets into the two bignums */
|
---|
553 | ty = MIN(a->used-1, ix);
|
---|
554 | tx = ix - ty;
|
---|
555 |
|
---|
556 | /* setup temp aliases */
|
---|
557 | tmpx = a->dp + tx;
|
---|
558 | tmpy = a->dp + ty;
|
---|
559 |
|
---|
560 | /* This is the number of times the loop will iterate, essentially it's
|
---|
561 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
562 | */
|
---|
563 | iy = MIN(a->used-tx, ty+1);
|
---|
564 |
|
---|
565 | /* now for squaring tx can never equal ty
|
---|
566 | * we halve the distance since they approach at a rate of 2x
|
---|
567 | * and we have to round because odd cases need to be executed
|
---|
568 | */
|
---|
569 | iy = MIN(iy, (ty-tx+1)>>1);
|
---|
570 |
|
---|
571 | /* execute loop */
|
---|
572 | for (iz = 0; iz < iy; iz++) {
|
---|
573 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
574 | }
|
---|
575 |
|
---|
576 | /* double the inner product and add carry */
|
---|
577 | _W = _W + _W + W1;
|
---|
578 |
|
---|
579 | /* even columns have the square term in them */
|
---|
580 | if ((ix&1) == 0) {
|
---|
581 | _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
|
---|
582 | }
|
---|
583 |
|
---|
584 | /* store it */
|
---|
585 | W[ix] = _W;
|
---|
586 |
|
---|
587 | /* make next carry */
|
---|
588 | W1 = _W >> ((mp_word)DIGIT_BIT);
|
---|
589 | }
|
---|
590 |
|
---|
591 | /* setup dest */
|
---|
592 | olduse = b->used;
|
---|
593 | b->used = a->used+a->used;
|
---|
594 |
|
---|
595 | {
|
---|
596 | mp_digit *tmpb;
|
---|
597 | tmpb = b->dp;
|
---|
598 | for (ix = 0; ix < pa; ix++) {
|
---|
599 | *tmpb++ = W[ix] & MP_MASK;
|
---|
600 | }
|
---|
601 |
|
---|
602 | /* clear unused digits [that existed in the old copy of c] */
|
---|
603 | for (; ix < olduse; ix++) {
|
---|
604 | *tmpb++ = 0;
|
---|
605 | }
|
---|
606 | }
|
---|
607 | mp_clamp (b);
|
---|
608 | return MP_OKAY;
|
---|
609 | }
|
---|
610 |
|
---|
611 | /* computes a = 2**b
|
---|
612 | *
|
---|
613 | * Simple algorithm which zeroes the int, grows it then just sets one bit
|
---|
614 | * as required.
|
---|
615 | */
|
---|
616 | int
|
---|
617 | mp_2expt (mp_int * a, int b)
|
---|
618 | {
|
---|
619 | int res;
|
---|
620 |
|
---|
621 | /* zero a as per default */
|
---|
622 | mp_zero (a);
|
---|
623 |
|
---|
624 | /* grow a to accommodate the single bit */
|
---|
625 | if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
---|
626 | return res;
|
---|
627 | }
|
---|
628 |
|
---|
629 | /* set the used count of where the bit will go */
|
---|
630 | a->used = b / DIGIT_BIT + 1;
|
---|
631 |
|
---|
632 | /* put the single bit in its place */
|
---|
633 | a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
|
---|
634 |
|
---|
635 | return MP_OKAY;
|
---|
636 | }
|
---|
637 |
|
---|
638 | /* b = |a|
|
---|
639 | *
|
---|
640 | * Simple function copies the input and fixes the sign to positive
|
---|
641 | */
|
---|
642 | int
|
---|
643 | mp_abs (const mp_int * a, mp_int * b)
|
---|
644 | {
|
---|
645 | int res;
|
---|
646 |
|
---|
647 | /* copy a to b */
|
---|
648 | if (a != b) {
|
---|
649 | if ((res = mp_copy (a, b)) != MP_OKAY) {
|
---|
650 | return res;
|
---|
651 | }
|
---|
652 | }
|
---|
653 |
|
---|
654 | /* force the sign of b to positive */
|
---|
655 | b->sign = MP_ZPOS;
|
---|
656 |
|
---|
657 | return MP_OKAY;
|
---|
658 | }
|
---|
659 |
|
---|
660 | /* high level addition (handles signs) */
|
---|
661 | int mp_add (mp_int * a, mp_int * b, mp_int * c)
|
---|
662 | {
|
---|
663 | int sa, sb, res;
|
---|
664 |
|
---|
665 | /* get sign of both inputs */
|
---|
666 | sa = a->sign;
|
---|
667 | sb = b->sign;
|
---|
668 |
|
---|
669 | /* handle two cases, not four */
|
---|
670 | if (sa == sb) {
|
---|
671 | /* both positive or both negative */
|
---|
672 | /* add their magnitudes, copy the sign */
|
---|
673 | c->sign = sa;
|
---|
674 | res = s_mp_add (a, b, c);
|
---|
675 | } else {
|
---|
676 | /* one positive, the other negative */
|
---|
677 | /* subtract the one with the greater magnitude from */
|
---|
678 | /* the one of the lesser magnitude. The result gets */
|
---|
679 | /* the sign of the one with the greater magnitude. */
|
---|
680 | if (mp_cmp_mag (a, b) == MP_LT) {
|
---|
681 | c->sign = sb;
|
---|
682 | res = s_mp_sub (b, a, c);
|
---|
683 | } else {
|
---|
684 | c->sign = sa;
|
---|
685 | res = s_mp_sub (a, b, c);
|
---|
686 | }
|
---|
687 | }
|
---|
688 | return res;
|
---|
689 | }
|
---|
690 |
|
---|
691 |
|
---|
692 | /* single digit addition */
|
---|
693 | int
|
---|
694 | mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
---|
695 | {
|
---|
696 | int res, ix, oldused;
|
---|
697 | mp_digit *tmpa, *tmpc, mu;
|
---|
698 |
|
---|
699 | /* grow c as required */
|
---|
700 | if (c->alloc < a->used + 1) {
|
---|
701 | if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
---|
702 | return res;
|
---|
703 | }
|
---|
704 | }
|
---|
705 |
|
---|
706 | /* if a is negative and |a| >= b, call c = |a| - b */
|
---|
707 | if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
|
---|
708 | /* temporarily fix sign of a */
|
---|
709 | a->sign = MP_ZPOS;
|
---|
710 |
|
---|
711 | /* c = |a| - b */
|
---|
712 | res = mp_sub_d(a, b, c);
|
---|
713 |
|
---|
714 | /* fix sign */
|
---|
715 | a->sign = c->sign = MP_NEG;
|
---|
716 |
|
---|
717 | return res;
|
---|
718 | }
|
---|
719 |
|
---|
720 | /* old number of used digits in c */
|
---|
721 | oldused = c->used;
|
---|
722 |
|
---|
723 | /* sign always positive */
|
---|
724 | c->sign = MP_ZPOS;
|
---|
725 |
|
---|
726 | /* source alias */
|
---|
727 | tmpa = a->dp;
|
---|
728 |
|
---|
729 | /* destination alias */
|
---|
730 | tmpc = c->dp;
|
---|
731 |
|
---|
732 | /* if a is positive */
|
---|
733 | if (a->sign == MP_ZPOS) {
|
---|
734 | /* add digit, after this we're propagating
|
---|
735 | * the carry.
|
---|
736 | */
|
---|
737 | *tmpc = *tmpa++ + b;
|
---|
738 | mu = *tmpc >> DIGIT_BIT;
|
---|
739 | *tmpc++ &= MP_MASK;
|
---|
740 |
|
---|
741 | /* now handle rest of the digits */
|
---|
742 | for (ix = 1; ix < a->used; ix++) {
|
---|
743 | *tmpc = *tmpa++ + mu;
|
---|
744 | mu = *tmpc >> DIGIT_BIT;
|
---|
745 | *tmpc++ &= MP_MASK;
|
---|
746 | }
|
---|
747 | /* set final carry */
|
---|
748 | ix++;
|
---|
749 | *tmpc++ = mu;
|
---|
750 |
|
---|
751 | /* setup size */
|
---|
752 | c->used = a->used + 1;
|
---|
753 | } else {
|
---|
754 | /* a was negative and |a| < b */
|
---|
755 | c->used = 1;
|
---|
756 |
|
---|
757 | /* the result is a single digit */
|
---|
758 | if (a->used == 1) {
|
---|
759 | *tmpc++ = b - a->dp[0];
|
---|
760 | } else {
|
---|
761 | *tmpc++ = b;
|
---|
762 | }
|
---|
763 |
|
---|
764 | /* setup count so the clearing of oldused
|
---|
765 | * can fall through correctly
|
---|
766 | */
|
---|
767 | ix = 1;
|
---|
768 | }
|
---|
769 |
|
---|
770 | /* now zero to oldused */
|
---|
771 | while (ix++ < oldused) {
|
---|
772 | *tmpc++ = 0;
|
---|
773 | }
|
---|
774 | mp_clamp(c);
|
---|
775 |
|
---|
776 | return MP_OKAY;
|
---|
777 | }
|
---|
778 |
|
---|
779 | /* trim unused digits
|
---|
780 | *
|
---|
781 | * This is used to ensure that leading zero digits are
|
---|
782 | * trimed and the leading "used" digit will be non-zero
|
---|
783 | * Typically very fast. Also fixes the sign if there
|
---|
784 | * are no more leading digits
|
---|
785 | */
|
---|
786 | void
|
---|
787 | mp_clamp (mp_int * a)
|
---|
788 | {
|
---|
789 | /* decrease used while the most significant digit is
|
---|
790 | * zero.
|
---|
791 | */
|
---|
792 | while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
---|
793 | --(a->used);
|
---|
794 | }
|
---|
795 |
|
---|
796 | /* reset the sign flag if used == 0 */
|
---|
797 | if (a->used == 0) {
|
---|
798 | a->sign = MP_ZPOS;
|
---|
799 | }
|
---|
800 | }
|
---|
801 |
|
---|
802 | /* clear one (frees) */
|
---|
803 | void
|
---|
804 | mp_clear (mp_int * a)
|
---|
805 | {
|
---|
806 | int i;
|
---|
807 |
|
---|
808 | /* only do anything if a hasn't been freed previously */
|
---|
809 | if (a->dp != NULL) {
|
---|
810 | /* first zero the digits */
|
---|
811 | for (i = 0; i < a->used; i++) {
|
---|
812 | a->dp[i] = 0;
|
---|
813 | }
|
---|
814 |
|
---|
815 | /* free ram */
|
---|
816 | free(a->dp);
|
---|
817 |
|
---|
818 | /* reset members to make debugging easier */
|
---|
819 | a->dp = NULL;
|
---|
820 | a->alloc = a->used = 0;
|
---|
821 | a->sign = MP_ZPOS;
|
---|
822 | }
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | void mp_clear_multi(mp_int *mp, ...)
|
---|
827 | {
|
---|
828 | mp_int* next_mp = mp;
|
---|
829 | va_list args;
|
---|
830 | va_start(args, mp);
|
---|
831 | while (next_mp != NULL) {
|
---|
832 | mp_clear(next_mp);
|
---|
833 | next_mp = va_arg(args, mp_int*);
|
---|
834 | }
|
---|
835 | va_end(args);
|
---|
836 | }
|
---|
837 |
|
---|
838 | /* compare two ints (signed)*/
|
---|
839 | int
|
---|
840 | mp_cmp (const mp_int * a, const mp_int * b)
|
---|
841 | {
|
---|
842 | /* compare based on sign */
|
---|
843 | if (a->sign != b->sign) {
|
---|
844 | if (a->sign == MP_NEG) {
|
---|
845 | return MP_LT;
|
---|
846 | } else {
|
---|
847 | return MP_GT;
|
---|
848 | }
|
---|
849 | }
|
---|
850 |
|
---|
851 | /* compare digits */
|
---|
852 | if (a->sign == MP_NEG) {
|
---|
853 | /* if negative compare opposite direction */
|
---|
854 | return mp_cmp_mag(b, a);
|
---|
855 | } else {
|
---|
856 | return mp_cmp_mag(a, b);
|
---|
857 | }
|
---|
858 | }
|
---|
859 |
|
---|
860 | /* compare a digit */
|
---|
861 | int mp_cmp_d(const mp_int * a, mp_digit b)
|
---|
862 | {
|
---|
863 | /* compare based on sign */
|
---|
864 | if (a->sign == MP_NEG) {
|
---|
865 | return MP_LT;
|
---|
866 | }
|
---|
867 |
|
---|
868 | /* compare based on magnitude */
|
---|
869 | if (a->used > 1) {
|
---|
870 | return MP_GT;
|
---|
871 | }
|
---|
872 |
|
---|
873 | /* compare the only digit of a to b */
|
---|
874 | if (a->dp[0] > b) {
|
---|
875 | return MP_GT;
|
---|
876 | } else if (a->dp[0] < b) {
|
---|
877 | return MP_LT;
|
---|
878 | } else {
|
---|
879 | return MP_EQ;
|
---|
880 | }
|
---|
881 | }
|
---|
882 |
|
---|
883 | /* compare maginitude of two ints (unsigned) */
|
---|
884 | int mp_cmp_mag (const mp_int * a, const mp_int * b)
|
---|
885 | {
|
---|
886 | int n;
|
---|
887 | mp_digit *tmpa, *tmpb;
|
---|
888 |
|
---|
889 | /* compare based on # of non-zero digits */
|
---|
890 | if (a->used > b->used) {
|
---|
891 | return MP_GT;
|
---|
892 | }
|
---|
893 |
|
---|
894 | if (a->used < b->used) {
|
---|
895 | return MP_LT;
|
---|
896 | }
|
---|
897 |
|
---|
898 | /* alias for a */
|
---|
899 | tmpa = a->dp + (a->used - 1);
|
---|
900 |
|
---|
901 | /* alias for b */
|
---|
902 | tmpb = b->dp + (a->used - 1);
|
---|
903 |
|
---|
904 | /* compare based on digits */
|
---|
905 | for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
---|
906 | if (*tmpa > *tmpb) {
|
---|
907 | return MP_GT;
|
---|
908 | }
|
---|
909 |
|
---|
910 | if (*tmpa < *tmpb) {
|
---|
911 | return MP_LT;
|
---|
912 | }
|
---|
913 | }
|
---|
914 | return MP_EQ;
|
---|
915 | }
|
---|
916 |
|
---|
917 | static const int lnz[16] = {
|
---|
918 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
---|
919 | };
|
---|
920 |
|
---|
921 | /* Counts the number of lsbs which are zero before the first zero bit */
|
---|
922 | int mp_cnt_lsb(const mp_int *a)
|
---|
923 | {
|
---|
924 | int x;
|
---|
925 | mp_digit q, qq;
|
---|
926 |
|
---|
927 | /* easy out */
|
---|
928 | if (mp_iszero(a) == 1) {
|
---|
929 | return 0;
|
---|
930 | }
|
---|
931 |
|
---|
932 | /* scan lower digits until non-zero */
|
---|
933 | for (x = 0; x < a->used && a->dp[x] == 0; x++);
|
---|
934 | q = a->dp[x];
|
---|
935 | x *= DIGIT_BIT;
|
---|
936 |
|
---|
937 | /* now scan this digit until a 1 is found */
|
---|
938 | if ((q & 1) == 0) {
|
---|
939 | do {
|
---|
940 | qq = q & 15;
|
---|
941 | x += lnz[qq];
|
---|
942 | q >>= 4;
|
---|
943 | } while (qq == 0);
|
---|
944 | }
|
---|
945 | return x;
|
---|
946 | }
|
---|
947 |
|
---|
948 | /* copy, b = a */
|
---|
949 | int
|
---|
950 | mp_copy (const mp_int * a, mp_int * b)
|
---|
951 | {
|
---|
952 | int res, n;
|
---|
953 |
|
---|
954 | /* if dst == src do nothing */
|
---|
955 | if (a == b) {
|
---|
956 | return MP_OKAY;
|
---|
957 | }
|
---|
958 |
|
---|
959 | /* grow dest */
|
---|
960 | if (b->alloc < a->used) {
|
---|
961 | if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
---|
962 | return res;
|
---|
963 | }
|
---|
964 | }
|
---|
965 |
|
---|
966 | /* zero b and copy the parameters over */
|
---|
967 | {
|
---|
968 | register mp_digit *tmpa, *tmpb;
|
---|
969 |
|
---|
970 | /* pointer aliases */
|
---|
971 |
|
---|
972 | /* source */
|
---|
973 | tmpa = a->dp;
|
---|
974 |
|
---|
975 | /* destination */
|
---|
976 | tmpb = b->dp;
|
---|
977 |
|
---|
978 | /* copy all the digits */
|
---|
979 | for (n = 0; n < a->used; n++) {
|
---|
980 | *tmpb++ = *tmpa++;
|
---|
981 | }
|
---|
982 |
|
---|
983 | /* clear high digits */
|
---|
984 | for (; n < b->used; n++) {
|
---|
985 | *tmpb++ = 0;
|
---|
986 | }
|
---|
987 | }
|
---|
988 |
|
---|
989 | /* copy used count and sign */
|
---|
990 | b->used = a->used;
|
---|
991 | b->sign = a->sign;
|
---|
992 | return MP_OKAY;
|
---|
993 | }
|
---|
994 |
|
---|
995 | /* returns the number of bits in an int */
|
---|
996 | int
|
---|
997 | mp_count_bits (const mp_int * a)
|
---|
998 | {
|
---|
999 | int r;
|
---|
1000 | mp_digit q;
|
---|
1001 |
|
---|
1002 | /* shortcut */
|
---|
1003 | if (a->used == 0) {
|
---|
1004 | return 0;
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | /* get number of digits and add that */
|
---|
1008 | r = (a->used - 1) * DIGIT_BIT;
|
---|
1009 |
|
---|
1010 | /* take the last digit and count the bits in it */
|
---|
1011 | q = a->dp[a->used - 1];
|
---|
1012 | while (q > ((mp_digit) 0)) {
|
---|
1013 | ++r;
|
---|
1014 | q >>= ((mp_digit) 1);
|
---|
1015 | }
|
---|
1016 | return r;
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | /* integer signed division.
|
---|
1020 | * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
---|
1021 | * HAC pp.598 Algorithm 14.20
|
---|
1022 | *
|
---|
1023 | * Note that the description in HAC is horribly
|
---|
1024 | * incomplete. For example, it doesn't consider
|
---|
1025 | * the case where digits are removed from 'x' in
|
---|
1026 | * the inner loop. It also doesn't consider the
|
---|
1027 | * case that y has fewer than three digits, etc..
|
---|
1028 | *
|
---|
1029 | * The overall algorithm is as described as
|
---|
1030 | * 14.20 from HAC but fixed to treat these cases.
|
---|
1031 | */
|
---|
1032 | int mp_div (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
|
---|
1033 | {
|
---|
1034 | mp_int q, x, y, t1, t2;
|
---|
1035 | int res, n, t, i, norm, neg;
|
---|
1036 |
|
---|
1037 | /* is divisor zero ? */
|
---|
1038 | if (mp_iszero (b) == 1) {
|
---|
1039 | return MP_VAL;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | /* if a < b then q=0, r = a */
|
---|
1043 | if (mp_cmp_mag (a, b) == MP_LT) {
|
---|
1044 | if (d != NULL) {
|
---|
1045 | res = mp_copy (a, d);
|
---|
1046 | } else {
|
---|
1047 | res = MP_OKAY;
|
---|
1048 | }
|
---|
1049 | if (c != NULL) {
|
---|
1050 | mp_zero (c);
|
---|
1051 | }
|
---|
1052 | return res;
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 | if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
---|
1056 | return res;
|
---|
1057 | }
|
---|
1058 | q.used = a->used + 2;
|
---|
1059 |
|
---|
1060 | if ((res = mp_init (&t1)) != MP_OKAY) {
|
---|
1061 | goto __Q;
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 | if ((res = mp_init (&t2)) != MP_OKAY) {
|
---|
1065 | goto __T1;
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
---|
1069 | goto __T2;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
---|
1073 | goto __X;
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | /* fix the sign */
|
---|
1077 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
---|
1078 | x.sign = y.sign = MP_ZPOS;
|
---|
1079 |
|
---|
1080 | /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
|
---|
1081 | norm = mp_count_bits(&y) % DIGIT_BIT;
|
---|
1082 | if (norm < DIGIT_BIT-1) {
|
---|
1083 | norm = (DIGIT_BIT-1) - norm;
|
---|
1084 | if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
|
---|
1085 | goto __Y;
|
---|
1086 | }
|
---|
1087 | if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
|
---|
1088 | goto __Y;
|
---|
1089 | }
|
---|
1090 | } else {
|
---|
1091 | norm = 0;
|
---|
1092 | }
|
---|
1093 |
|
---|
1094 | /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
---|
1095 | n = x.used - 1;
|
---|
1096 | t = y.used - 1;
|
---|
1097 |
|
---|
1098 | /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
|
---|
1099 | if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
|
---|
1100 | goto __Y;
|
---|
1101 | }
|
---|
1102 |
|
---|
1103 | while (mp_cmp (&x, &y) != MP_LT) {
|
---|
1104 | ++(q.dp[n - t]);
|
---|
1105 | if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
---|
1106 | goto __Y;
|
---|
1107 | }
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | /* reset y by shifting it back down */
|
---|
1111 | mp_rshd (&y, n - t);
|
---|
1112 |
|
---|
1113 | /* step 3. for i from n down to (t + 1) */
|
---|
1114 | for (i = n; i >= (t + 1); i--) {
|
---|
1115 | if (i > x.used) {
|
---|
1116 | continue;
|
---|
1117 | }
|
---|
1118 |
|
---|
1119 | /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
---|
1120 | * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
---|
1121 | if (x.dp[i] == y.dp[t]) {
|
---|
1122 | q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
---|
1123 | } else {
|
---|
1124 | mp_word tmp;
|
---|
1125 | tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
---|
1126 | tmp |= ((mp_word) x.dp[i - 1]);
|
---|
1127 | tmp /= ((mp_word) y.dp[t]);
|
---|
1128 | if (tmp > (mp_word) MP_MASK)
|
---|
1129 | tmp = MP_MASK;
|
---|
1130 | q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 | /* while (q{i-t-1} * (yt * b + y{t-1})) >
|
---|
1134 | xi * b**2 + xi-1 * b + xi-2
|
---|
1135 |
|
---|
1136 | do q{i-t-1} -= 1;
|
---|
1137 | */
|
---|
1138 | q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
---|
1139 | do {
|
---|
1140 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
---|
1141 |
|
---|
1142 | /* find left hand */
|
---|
1143 | mp_zero (&t1);
|
---|
1144 | t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
---|
1145 | t1.dp[1] = y.dp[t];
|
---|
1146 | t1.used = 2;
|
---|
1147 | if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
---|
1148 | goto __Y;
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 | /* find right hand */
|
---|
1152 | t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
---|
1153 | t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
---|
1154 | t2.dp[2] = x.dp[i];
|
---|
1155 | t2.used = 3;
|
---|
1156 | } while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
---|
1157 |
|
---|
1158 | /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
---|
1159 | if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
---|
1160 | goto __Y;
|
---|
1161 | }
|
---|
1162 |
|
---|
1163 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
---|
1164 | goto __Y;
|
---|
1165 | }
|
---|
1166 |
|
---|
1167 | if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
---|
1168 | goto __Y;
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
|
---|
1172 | if (x.sign == MP_NEG) {
|
---|
1173 | if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
---|
1174 | goto __Y;
|
---|
1175 | }
|
---|
1176 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
---|
1177 | goto __Y;
|
---|
1178 | }
|
---|
1179 | if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
---|
1180 | goto __Y;
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
---|
1184 | }
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | /* now q is the quotient and x is the remainder
|
---|
1188 | * [which we have to normalize]
|
---|
1189 | */
|
---|
1190 |
|
---|
1191 | /* get sign before writing to c */
|
---|
1192 | x.sign = x.used == 0 ? MP_ZPOS : a->sign;
|
---|
1193 |
|
---|
1194 | if (c != NULL) {
|
---|
1195 | mp_clamp (&q);
|
---|
1196 | mp_exch (&q, c);
|
---|
1197 | c->sign = neg;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | if (d != NULL) {
|
---|
1201 | mp_div_2d (&x, norm, &x, NULL);
|
---|
1202 | mp_exch (&x, d);
|
---|
1203 | }
|
---|
1204 |
|
---|
1205 | res = MP_OKAY;
|
---|
1206 |
|
---|
1207 | __Y:mp_clear (&y);
|
---|
1208 | __X:mp_clear (&x);
|
---|
1209 | __T2:mp_clear (&t2);
|
---|
1210 | __T1:mp_clear (&t1);
|
---|
1211 | __Q:mp_clear (&q);
|
---|
1212 | return res;
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 | /* b = a/2 */
|
---|
1216 | int mp_div_2(const mp_int * a, mp_int * b)
|
---|
1217 | {
|
---|
1218 | int x, res, oldused;
|
---|
1219 |
|
---|
1220 | /* copy */
|
---|
1221 | if (b->alloc < a->used) {
|
---|
1222 | if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
---|
1223 | return res;
|
---|
1224 | }
|
---|
1225 | }
|
---|
1226 |
|
---|
1227 | oldused = b->used;
|
---|
1228 | b->used = a->used;
|
---|
1229 | {
|
---|
1230 | register mp_digit r, rr, *tmpa, *tmpb;
|
---|
1231 |
|
---|
1232 | /* source alias */
|
---|
1233 | tmpa = a->dp + b->used - 1;
|
---|
1234 |
|
---|
1235 | /* dest alias */
|
---|
1236 | tmpb = b->dp + b->used - 1;
|
---|
1237 |
|
---|
1238 | /* carry */
|
---|
1239 | r = 0;
|
---|
1240 | for (x = b->used - 1; x >= 0; x--) {
|
---|
1241 | /* get the carry for the next iteration */
|
---|
1242 | rr = *tmpa & 1;
|
---|
1243 |
|
---|
1244 | /* shift the current digit, add in carry and store */
|
---|
1245 | *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
---|
1246 |
|
---|
1247 | /* forward carry to next iteration */
|
---|
1248 | r = rr;
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 | /* zero excess digits */
|
---|
1252 | tmpb = b->dp + b->used;
|
---|
1253 | for (x = b->used; x < oldused; x++) {
|
---|
1254 | *tmpb++ = 0;
|
---|
1255 | }
|
---|
1256 | }
|
---|
1257 | b->sign = a->sign;
|
---|
1258 | mp_clamp (b);
|
---|
1259 | return MP_OKAY;
|
---|
1260 | }
|
---|
1261 |
|
---|
1262 | /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
|
---|
1263 | int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
|
---|
1264 | {
|
---|
1265 | mp_digit D, r, rr;
|
---|
1266 | int x, res;
|
---|
1267 | mp_int t;
|
---|
1268 |
|
---|
1269 |
|
---|
1270 | /* if the shift count is <= 0 then we do no work */
|
---|
1271 | if (b <= 0) {
|
---|
1272 | res = mp_copy (a, c);
|
---|
1273 | if (d != NULL) {
|
---|
1274 | mp_zero (d);
|
---|
1275 | }
|
---|
1276 | return res;
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
1280 | return res;
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | /* get the remainder */
|
---|
1284 | if (d != NULL) {
|
---|
1285 | if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
|
---|
1286 | mp_clear (&t);
|
---|
1287 | return res;
|
---|
1288 | }
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | /* copy */
|
---|
1292 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
1293 | mp_clear (&t);
|
---|
1294 | return res;
|
---|
1295 | }
|
---|
1296 |
|
---|
1297 | /* shift by as many digits in the bit count */
|
---|
1298 | if (b >= DIGIT_BIT) {
|
---|
1299 | mp_rshd (c, b / DIGIT_BIT);
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 | /* shift any bit count < DIGIT_BIT */
|
---|
1303 | D = (mp_digit) (b % DIGIT_BIT);
|
---|
1304 | if (D != 0) {
|
---|
1305 | register mp_digit *tmpc, mask, shift;
|
---|
1306 |
|
---|
1307 | /* mask */
|
---|
1308 | mask = (((mp_digit)1) << D) - 1;
|
---|
1309 |
|
---|
1310 | /* shift for lsb */
|
---|
1311 | shift = DIGIT_BIT - D;
|
---|
1312 |
|
---|
1313 | /* alias */
|
---|
1314 | tmpc = c->dp + (c->used - 1);
|
---|
1315 |
|
---|
1316 | /* carry */
|
---|
1317 | r = 0;
|
---|
1318 | for (x = c->used - 1; x >= 0; x--) {
|
---|
1319 | /* get the lower bits of this word in a temp */
|
---|
1320 | rr = *tmpc & mask;
|
---|
1321 |
|
---|
1322 | /* shift the current word and mix in the carry bits from the previous word */
|
---|
1323 | *tmpc = (*tmpc >> D) | (r << shift);
|
---|
1324 | --tmpc;
|
---|
1325 |
|
---|
1326 | /* set the carry to the carry bits of the current word found above */
|
---|
1327 | r = rr;
|
---|
1328 | }
|
---|
1329 | }
|
---|
1330 | mp_clamp (c);
|
---|
1331 | if (d != NULL) {
|
---|
1332 | mp_exch (&t, d);
|
---|
1333 | }
|
---|
1334 | mp_clear (&t);
|
---|
1335 | return MP_OKAY;
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 | static int s_is_power_of_two(mp_digit b, int *p)
|
---|
1339 | {
|
---|
1340 | int x;
|
---|
1341 |
|
---|
1342 | for (x = 1; x < DIGIT_BIT; x++) {
|
---|
1343 | if (b == (((mp_digit)1)<<x)) {
|
---|
1344 | *p = x;
|
---|
1345 | return 1;
|
---|
1346 | }
|
---|
1347 | }
|
---|
1348 | return 0;
|
---|
1349 | }
|
---|
1350 |
|
---|
1351 | /* single digit division (based on routine from MPI) */
|
---|
1352 | int mp_div_d (const mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
|
---|
1353 | {
|
---|
1354 | mp_int q;
|
---|
1355 | mp_word w;
|
---|
1356 | mp_digit t;
|
---|
1357 | int res, ix;
|
---|
1358 |
|
---|
1359 | /* cannot divide by zero */
|
---|
1360 | if (b == 0) {
|
---|
1361 | return MP_VAL;
|
---|
1362 | }
|
---|
1363 |
|
---|
1364 | /* quick outs */
|
---|
1365 | if (b == 1 || mp_iszero(a) == 1) {
|
---|
1366 | if (d != NULL) {
|
---|
1367 | *d = 0;
|
---|
1368 | }
|
---|
1369 | if (c != NULL) {
|
---|
1370 | return mp_copy(a, c);
|
---|
1371 | }
|
---|
1372 | return MP_OKAY;
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | /* power of two ? */
|
---|
1376 | if (s_is_power_of_two(b, &ix) == 1) {
|
---|
1377 | if (d != NULL) {
|
---|
1378 | *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
|
---|
1379 | }
|
---|
1380 | if (c != NULL) {
|
---|
1381 | return mp_div_2d(a, ix, c, NULL);
|
---|
1382 | }
|
---|
1383 | return MP_OKAY;
|
---|
1384 | }
|
---|
1385 |
|
---|
1386 | /* no easy answer [c'est la vie]. Just division */
|
---|
1387 | if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
---|
1388 | return res;
|
---|
1389 | }
|
---|
1390 |
|
---|
1391 | q.used = a->used;
|
---|
1392 | q.sign = a->sign;
|
---|
1393 | w = 0;
|
---|
1394 | for (ix = a->used - 1; ix >= 0; ix--) {
|
---|
1395 | w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
|
---|
1396 |
|
---|
1397 | if (w >= b) {
|
---|
1398 | t = (mp_digit)(w / b);
|
---|
1399 | w -= ((mp_word)t) * ((mp_word)b);
|
---|
1400 | } else {
|
---|
1401 | t = 0;
|
---|
1402 | }
|
---|
1403 | q.dp[ix] = t;
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 | if (d != NULL) {
|
---|
1407 | *d = (mp_digit)w;
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 | if (c != NULL) {
|
---|
1411 | mp_clamp(&q);
|
---|
1412 | mp_exch(&q, c);
|
---|
1413 | }
|
---|
1414 | mp_clear(&q);
|
---|
1415 |
|
---|
1416 | return res;
|
---|
1417 | }
|
---|
1418 |
|
---|
1419 | /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
|
---|
1420 | *
|
---|
1421 | * Based on algorithm from the paper
|
---|
1422 | *
|
---|
1423 | * "Generating Efficient Primes for Discrete Log Cryptosystems"
|
---|
1424 | * Chae Hoon Lim, Pil Loong Lee,
|
---|
1425 | * POSTECH Information Research Laboratories
|
---|
1426 | *
|
---|
1427 | * The modulus must be of a special format [see manual]
|
---|
1428 | *
|
---|
1429 | * Has been modified to use algorithm 7.10 from the LTM book instead
|
---|
1430 | *
|
---|
1431 | * Input x must be in the range 0 <= x <= (n-1)**2
|
---|
1432 | */
|
---|
1433 | int
|
---|
1434 | mp_dr_reduce (mp_int * x, const mp_int * n, mp_digit k)
|
---|
1435 | {
|
---|
1436 | int err, i, m;
|
---|
1437 | mp_word r;
|
---|
1438 | mp_digit mu, *tmpx1, *tmpx2;
|
---|
1439 |
|
---|
1440 | /* m = digits in modulus */
|
---|
1441 | m = n->used;
|
---|
1442 |
|
---|
1443 | /* ensure that "x" has at least 2m digits */
|
---|
1444 | if (x->alloc < m + m) {
|
---|
1445 | if ((err = mp_grow (x, m + m)) != MP_OKAY) {
|
---|
1446 | return err;
|
---|
1447 | }
|
---|
1448 | }
|
---|
1449 |
|
---|
1450 | /* top of loop, this is where the code resumes if
|
---|
1451 | * another reduction pass is required.
|
---|
1452 | */
|
---|
1453 | top:
|
---|
1454 | /* aliases for digits */
|
---|
1455 | /* alias for lower half of x */
|
---|
1456 | tmpx1 = x->dp;
|
---|
1457 |
|
---|
1458 | /* alias for upper half of x, or x/B**m */
|
---|
1459 | tmpx2 = x->dp + m;
|
---|
1460 |
|
---|
1461 | /* set carry to zero */
|
---|
1462 | mu = 0;
|
---|
1463 |
|
---|
1464 | /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
|
---|
1465 | for (i = 0; i < m; i++) {
|
---|
1466 | r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
|
---|
1467 | *tmpx1++ = (mp_digit)(r & MP_MASK);
|
---|
1468 | mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 | /* set final carry */
|
---|
1472 | *tmpx1++ = mu;
|
---|
1473 |
|
---|
1474 | /* zero words above m */
|
---|
1475 | for (i = m + 1; i < x->used; i++) {
|
---|
1476 | *tmpx1++ = 0;
|
---|
1477 | }
|
---|
1478 |
|
---|
1479 | /* clamp, sub and return */
|
---|
1480 | mp_clamp (x);
|
---|
1481 |
|
---|
1482 | /* if x >= n then subtract and reduce again
|
---|
1483 | * Each successive "recursion" makes the input smaller and smaller.
|
---|
1484 | */
|
---|
1485 | if (mp_cmp_mag (x, n) != MP_LT) {
|
---|
1486 | s_mp_sub(x, n, x);
|
---|
1487 | goto top;
|
---|
1488 | }
|
---|
1489 | return MP_OKAY;
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | /* determines the setup value */
|
---|
1493 | void mp_dr_setup(const mp_int *a, mp_digit *d)
|
---|
1494 | {
|
---|
1495 | /* the casts are required if DIGIT_BIT is one less than
|
---|
1496 | * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
|
---|
1497 | */
|
---|
1498 | *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
|
---|
1499 | ((mp_word)a->dp[0]));
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | /* swap the elements of two integers, for cases where you can't simply swap the
|
---|
1503 | * mp_int pointers around
|
---|
1504 | */
|
---|
1505 | void
|
---|
1506 | mp_exch (mp_int * a, mp_int * b)
|
---|
1507 | {
|
---|
1508 | mp_int t;
|
---|
1509 |
|
---|
1510 | t = *a;
|
---|
1511 | *a = *b;
|
---|
1512 | *b = t;
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | /* this is a shell function that calls either the normal or Montgomery
|
---|
1516 | * exptmod functions. Originally the call to the montgomery code was
|
---|
1517 | * embedded in the normal function but that wasted a lot of stack space
|
---|
1518 | * for nothing (since 99% of the time the Montgomery code would be called)
|
---|
1519 | */
|
---|
1520 | int mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
|
---|
1521 | {
|
---|
1522 | int dr;
|
---|
1523 |
|
---|
1524 | /* modulus P must be positive */
|
---|
1525 | if (P->sign == MP_NEG) {
|
---|
1526 | return MP_VAL;
|
---|
1527 | }
|
---|
1528 |
|
---|
1529 | /* if exponent X is negative we have to recurse */
|
---|
1530 | if (X->sign == MP_NEG) {
|
---|
1531 | mp_int tmpG, tmpX;
|
---|
1532 | int err;
|
---|
1533 |
|
---|
1534 | /* first compute 1/G mod P */
|
---|
1535 | if ((err = mp_init(&tmpG)) != MP_OKAY) {
|
---|
1536 | return err;
|
---|
1537 | }
|
---|
1538 | if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
---|
1539 | mp_clear(&tmpG);
|
---|
1540 | return err;
|
---|
1541 | }
|
---|
1542 |
|
---|
1543 | /* now get |X| */
|
---|
1544 | if ((err = mp_init(&tmpX)) != MP_OKAY) {
|
---|
1545 | mp_clear(&tmpG);
|
---|
1546 | return err;
|
---|
1547 | }
|
---|
1548 | if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
---|
1549 | mp_clear_multi(&tmpG, &tmpX, NULL);
|
---|
1550 | return err;
|
---|
1551 | }
|
---|
1552 |
|
---|
1553 | /* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
---|
1554 | err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
---|
1555 | mp_clear_multi(&tmpG, &tmpX, NULL);
|
---|
1556 | return err;
|
---|
1557 | }
|
---|
1558 |
|
---|
1559 | dr = 0;
|
---|
1560 |
|
---|
1561 | /* if the modulus is odd or dr != 0 use the fast method */
|
---|
1562 | if (mp_isodd (P) == 1 || dr != 0) {
|
---|
1563 | return mp_exptmod_fast (G, X, P, Y, dr);
|
---|
1564 | } else {
|
---|
1565 | /* otherwise use the generic Barrett reduction technique */
|
---|
1566 | return s_mp_exptmod (G, X, P, Y);
|
---|
1567 | }
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 | /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
|
---|
1571 | *
|
---|
1572 | * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
---|
1573 | * The value of k changes based on the size of the exponent.
|
---|
1574 | *
|
---|
1575 | * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
---|
1576 | */
|
---|
1577 |
|
---|
1578 | int
|
---|
1579 | mp_exptmod_fast (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
---|
1580 | {
|
---|
1581 | mp_int M[256], res;
|
---|
1582 | mp_digit buf, mp;
|
---|
1583 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
---|
1584 |
|
---|
1585 | /* use a pointer to the reduction algorithm. This allows us to use
|
---|
1586 | * one of many reduction algorithms without modding the guts of
|
---|
1587 | * the code with if statements everywhere.
|
---|
1588 | */
|
---|
1589 | int (*redux)(mp_int*,const mp_int*,mp_digit);
|
---|
1590 |
|
---|
1591 | /* find window size */
|
---|
1592 | x = mp_count_bits (X);
|
---|
1593 | if (x <= 7) {
|
---|
1594 | winsize = 2;
|
---|
1595 | } else if (x <= 36) {
|
---|
1596 | winsize = 3;
|
---|
1597 | } else if (x <= 140) {
|
---|
1598 | winsize = 4;
|
---|
1599 | } else if (x <= 450) {
|
---|
1600 | winsize = 5;
|
---|
1601 | } else if (x <= 1303) {
|
---|
1602 | winsize = 6;
|
---|
1603 | } else if (x <= 3529) {
|
---|
1604 | winsize = 7;
|
---|
1605 | } else {
|
---|
1606 | winsize = 8;
|
---|
1607 | }
|
---|
1608 |
|
---|
1609 | /* init M array */
|
---|
1610 | /* init first cell */
|
---|
1611 | if ((err = mp_init(&M[1])) != MP_OKAY) {
|
---|
1612 | return err;
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 | /* now init the second half of the array */
|
---|
1616 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
1617 | if ((err = mp_init(&M[x])) != MP_OKAY) {
|
---|
1618 | for (y = 1<<(winsize-1); y < x; y++) {
|
---|
1619 | mp_clear (&M[y]);
|
---|
1620 | }
|
---|
1621 | mp_clear(&M[1]);
|
---|
1622 | return err;
|
---|
1623 | }
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | /* determine and setup reduction code */
|
---|
1627 | if (redmode == 0) {
|
---|
1628 | /* now setup montgomery */
|
---|
1629 | if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
---|
1630 | goto __M;
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 | /* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
---|
1634 | if (((P->used * 2 + 1) < MP_WARRAY) &&
|
---|
1635 | P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
1636 | redux = fast_mp_montgomery_reduce;
|
---|
1637 | } else {
|
---|
1638 | /* use slower baseline Montgomery method */
|
---|
1639 | redux = mp_montgomery_reduce;
|
---|
1640 | }
|
---|
1641 | } else if (redmode == 1) {
|
---|
1642 | /* setup DR reduction for moduli of the form B**k - b */
|
---|
1643 | mp_dr_setup(P, &mp);
|
---|
1644 | redux = mp_dr_reduce;
|
---|
1645 | } else {
|
---|
1646 | /* setup DR reduction for moduli of the form 2**k - b */
|
---|
1647 | if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
---|
1648 | goto __M;
|
---|
1649 | }
|
---|
1650 | redux = mp_reduce_2k;
|
---|
1651 | }
|
---|
1652 |
|
---|
1653 | /* setup result */
|
---|
1654 | if ((err = mp_init (&res)) != MP_OKAY) {
|
---|
1655 | goto __M;
|
---|
1656 | }
|
---|
1657 |
|
---|
1658 | /* create M table
|
---|
1659 | *
|
---|
1660 |
|
---|
1661 | *
|
---|
1662 | * The first half of the table is not computed though accept for M[0] and M[1]
|
---|
1663 | */
|
---|
1664 |
|
---|
1665 | if (redmode == 0) {
|
---|
1666 | /* now we need R mod m */
|
---|
1667 | if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
---|
1668 | goto __RES;
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 | /* now set M[1] to G * R mod m */
|
---|
1672 | if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
---|
1673 | goto __RES;
|
---|
1674 | }
|
---|
1675 | } else {
|
---|
1676 | mp_set(&res, 1);
|
---|
1677 | if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
---|
1678 | goto __RES;
|
---|
1679 | }
|
---|
1680 | }
|
---|
1681 |
|
---|
1682 | /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
---|
1683 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
1684 | goto __RES;
|
---|
1685 | }
|
---|
1686 |
|
---|
1687 | for (x = 0; x < (winsize - 1); x++) {
|
---|
1688 | if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
1689 | goto __RES;
|
---|
1690 | }
|
---|
1691 | if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
---|
1692 | goto __RES;
|
---|
1693 | }
|
---|
1694 | }
|
---|
1695 |
|
---|
1696 | /* create upper table */
|
---|
1697 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
---|
1698 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
---|
1699 | goto __RES;
|
---|
1700 | }
|
---|
1701 | if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
---|
1702 | goto __RES;
|
---|
1703 | }
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | /* set initial mode and bit cnt */
|
---|
1707 | mode = 0;
|
---|
1708 | bitcnt = 1;
|
---|
1709 | buf = 0;
|
---|
1710 | digidx = X->used - 1;
|
---|
1711 | bitcpy = 0;
|
---|
1712 | bitbuf = 0;
|
---|
1713 |
|
---|
1714 | for (;;) {
|
---|
1715 | /* grab next digit as required */
|
---|
1716 | if (--bitcnt == 0) {
|
---|
1717 | /* if digidx == -1 we are out of digits so break */
|
---|
1718 | if (digidx == -1) {
|
---|
1719 | break;
|
---|
1720 | }
|
---|
1721 | /* read next digit and reset bitcnt */
|
---|
1722 | buf = X->dp[digidx--];
|
---|
1723 | bitcnt = DIGIT_BIT;
|
---|
1724 | }
|
---|
1725 |
|
---|
1726 | /* grab the next msb from the exponent */
|
---|
1727 | y = (buf >> (DIGIT_BIT - 1)) & 1;
|
---|
1728 | buf <<= (mp_digit)1;
|
---|
1729 |
|
---|
1730 | /* if the bit is zero and mode == 0 then we ignore it
|
---|
1731 | * These represent the leading zero bits before the first 1 bit
|
---|
1732 | * in the exponent. Technically this opt is not required but it
|
---|
1733 | * does lower the # of trivial squaring/reductions used
|
---|
1734 | */
|
---|
1735 | if (mode == 0 && y == 0) {
|
---|
1736 | continue;
|
---|
1737 | }
|
---|
1738 |
|
---|
1739 | /* if the bit is zero and mode == 1 then we square */
|
---|
1740 | if (mode == 1 && y == 0) {
|
---|
1741 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
1742 | goto __RES;
|
---|
1743 | }
|
---|
1744 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
1745 | goto __RES;
|
---|
1746 | }
|
---|
1747 | continue;
|
---|
1748 | }
|
---|
1749 |
|
---|
1750 | /* else we add it to the window */
|
---|
1751 | bitbuf |= (y << (winsize - ++bitcpy));
|
---|
1752 | mode = 2;
|
---|
1753 |
|
---|
1754 | if (bitcpy == winsize) {
|
---|
1755 | /* ok window is filled so square as required and multiply */
|
---|
1756 | /* square first */
|
---|
1757 | for (x = 0; x < winsize; x++) {
|
---|
1758 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
1759 | goto __RES;
|
---|
1760 | }
|
---|
1761 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
1762 | goto __RES;
|
---|
1763 | }
|
---|
1764 | }
|
---|
1765 |
|
---|
1766 | /* then multiply */
|
---|
1767 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
---|
1768 | goto __RES;
|
---|
1769 | }
|
---|
1770 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
1771 | goto __RES;
|
---|
1772 | }
|
---|
1773 |
|
---|
1774 | /* empty window and reset */
|
---|
1775 | bitcpy = 0;
|
---|
1776 | bitbuf = 0;
|
---|
1777 | mode = 1;
|
---|
1778 | }
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | /* if bits remain then square/multiply */
|
---|
1782 | if (mode == 2 && bitcpy > 0) {
|
---|
1783 | /* square then multiply if the bit is set */
|
---|
1784 | for (x = 0; x < bitcpy; x++) {
|
---|
1785 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
1786 | goto __RES;
|
---|
1787 | }
|
---|
1788 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
1789 | goto __RES;
|
---|
1790 | }
|
---|
1791 |
|
---|
1792 | /* get next bit of the window */
|
---|
1793 | bitbuf <<= 1;
|
---|
1794 | if ((bitbuf & (1 << winsize)) != 0) {
|
---|
1795 | /* then multiply */
|
---|
1796 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
---|
1797 | goto __RES;
|
---|
1798 | }
|
---|
1799 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
1800 | goto __RES;
|
---|
1801 | }
|
---|
1802 | }
|
---|
1803 | }
|
---|
1804 | }
|
---|
1805 |
|
---|
1806 | if (redmode == 0) {
|
---|
1807 | /* fixup result if Montgomery reduction is used
|
---|
1808 | * recall that any value in a Montgomery system is
|
---|
1809 | * actually multiplied by R mod n. So we have
|
---|
1810 | * to reduce one more time to cancel out the factor
|
---|
1811 | * of R.
|
---|
1812 | */
|
---|
1813 | if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
---|
1814 | goto __RES;
|
---|
1815 | }
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | /* swap res with Y */
|
---|
1819 | mp_exch (&res, Y);
|
---|
1820 | err = MP_OKAY;
|
---|
1821 | __RES:mp_clear (&res);
|
---|
1822 | __M:
|
---|
1823 | mp_clear(&M[1]);
|
---|
1824 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
1825 | mp_clear (&M[x]);
|
---|
1826 | }
|
---|
1827 | return err;
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 | /* Greatest Common Divisor using the binary method */
|
---|
1831 | int mp_gcd (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
1832 | {
|
---|
1833 | mp_int u, v;
|
---|
1834 | int k, u_lsb, v_lsb, res;
|
---|
1835 |
|
---|
1836 | /* either zero than gcd is the largest */
|
---|
1837 | if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
|
---|
1838 | return mp_abs (b, c);
|
---|
1839 | }
|
---|
1840 | if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
|
---|
1841 | return mp_abs (a, c);
|
---|
1842 | }
|
---|
1843 |
|
---|
1844 | /* optimized. At this point if a == 0 then
|
---|
1845 | * b must equal zero too
|
---|
1846 | */
|
---|
1847 | if (mp_iszero (a) == 1) {
|
---|
1848 | mp_zero(c);
|
---|
1849 | return MP_OKAY;
|
---|
1850 | }
|
---|
1851 |
|
---|
1852 | /* get copies of a and b we can modify */
|
---|
1853 | if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
|
---|
1854 | return res;
|
---|
1855 | }
|
---|
1856 |
|
---|
1857 | if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
|
---|
1858 | goto __U;
|
---|
1859 | }
|
---|
1860 |
|
---|
1861 | /* must be positive for the remainder of the algorithm */
|
---|
1862 | u.sign = v.sign = MP_ZPOS;
|
---|
1863 |
|
---|
1864 | /* B1. Find the common power of two for u and v */
|
---|
1865 | u_lsb = mp_cnt_lsb(&u);
|
---|
1866 | v_lsb = mp_cnt_lsb(&v);
|
---|
1867 | k = MIN(u_lsb, v_lsb);
|
---|
1868 |
|
---|
1869 | if (k > 0) {
|
---|
1870 | /* divide the power of two out */
|
---|
1871 | if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
|
---|
1872 | goto __V;
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
|
---|
1876 | goto __V;
|
---|
1877 | }
|
---|
1878 | }
|
---|
1879 |
|
---|
1880 | /* divide any remaining factors of two out */
|
---|
1881 | if (u_lsb != k) {
|
---|
1882 | if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
|
---|
1883 | goto __V;
|
---|
1884 | }
|
---|
1885 | }
|
---|
1886 |
|
---|
1887 | if (v_lsb != k) {
|
---|
1888 | if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
|
---|
1889 | goto __V;
|
---|
1890 | }
|
---|
1891 | }
|
---|
1892 |
|
---|
1893 | while (mp_iszero(&v) == 0) {
|
---|
1894 | /* make sure v is the largest */
|
---|
1895 | if (mp_cmp_mag(&u, &v) == MP_GT) {
|
---|
1896 | /* swap u and v to make sure v is >= u */
|
---|
1897 | mp_exch(&u, &v);
|
---|
1898 | }
|
---|
1899 |
|
---|
1900 | /* subtract smallest from largest */
|
---|
1901 | if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
|
---|
1902 | goto __V;
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | /* Divide out all factors of two */
|
---|
1906 | if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
|
---|
1907 | goto __V;
|
---|
1908 | }
|
---|
1909 | }
|
---|
1910 |
|
---|
1911 | /* multiply by 2**k which we divided out at the beginning */
|
---|
1912 | if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
|
---|
1913 | goto __V;
|
---|
1914 | }
|
---|
1915 | c->sign = MP_ZPOS;
|
---|
1916 | res = MP_OKAY;
|
---|
1917 | __V:mp_clear (&u);
|
---|
1918 | __U:mp_clear (&v);
|
---|
1919 | return res;
|
---|
1920 | }
|
---|
1921 |
|
---|
1922 | /* get the lower 32-bits of an mp_int */
|
---|
1923 | unsigned long mp_get_int(const mp_int * a)
|
---|
1924 | {
|
---|
1925 | int i;
|
---|
1926 | unsigned long res;
|
---|
1927 |
|
---|
1928 | if (a->used == 0) {
|
---|
1929 | return 0;
|
---|
1930 | }
|
---|
1931 |
|
---|
1932 | /* get number of digits of the lsb we have to read */
|
---|
1933 | i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
---|
1934 |
|
---|
1935 | /* get most significant digit of result */
|
---|
1936 | res = DIGIT(a,i);
|
---|
1937 |
|
---|
1938 | while (--i >= 0) {
|
---|
1939 | res = (res << DIGIT_BIT) | DIGIT(a,i);
|
---|
1940 | }
|
---|
1941 |
|
---|
1942 | /* force result to 32-bits always so it is consistent on non 32-bit platforms */
|
---|
1943 | return res & 0xFFFFFFFFUL;
|
---|
1944 | }
|
---|
1945 |
|
---|
1946 | /* grow as required */
|
---|
1947 | int mp_grow (mp_int * a, int size)
|
---|
1948 | {
|
---|
1949 | int i;
|
---|
1950 | mp_digit *tmp;
|
---|
1951 |
|
---|
1952 | /* if the alloc size is smaller alloc more ram */
|
---|
1953 | if (a->alloc < size) {
|
---|
1954 | /* ensure there are always at least MP_PREC digits extra on top */
|
---|
1955 | size += (MP_PREC * 2) - (size % MP_PREC);
|
---|
1956 |
|
---|
1957 | /* reallocate the array a->dp
|
---|
1958 | *
|
---|
1959 | * We store the return in a temporary variable
|
---|
1960 | * in case the operation failed we don't want
|
---|
1961 | * to overwrite the dp member of a.
|
---|
1962 | */
|
---|
1963 | tmp = realloc (a->dp, sizeof (mp_digit) * size);
|
---|
1964 | if (tmp == NULL) {
|
---|
1965 | /* reallocation failed but "a" is still valid [can be freed] */
|
---|
1966 | return MP_MEM;
|
---|
1967 | }
|
---|
1968 |
|
---|
1969 | /* reallocation succeeded so set a->dp */
|
---|
1970 | a->dp = tmp;
|
---|
1971 |
|
---|
1972 | /* zero excess digits */
|
---|
1973 | i = a->alloc;
|
---|
1974 | a->alloc = size;
|
---|
1975 | for (; i < a->alloc; i++) {
|
---|
1976 | a->dp[i] = 0;
|
---|
1977 | }
|
---|
1978 | }
|
---|
1979 | return MP_OKAY;
|
---|
1980 | }
|
---|
1981 |
|
---|
1982 | /* init a new mp_int */
|
---|
1983 | int mp_init (mp_int * a)
|
---|
1984 | {
|
---|
1985 | int i;
|
---|
1986 |
|
---|
1987 | /* allocate memory required and clear it */
|
---|
1988 | a->dp = malloc (sizeof (mp_digit) * MP_PREC);
|
---|
1989 | if (a->dp == NULL) {
|
---|
1990 | return MP_MEM;
|
---|
1991 | }
|
---|
1992 |
|
---|
1993 | /* set the digits to zero */
|
---|
1994 | for (i = 0; i < MP_PREC; i++) {
|
---|
1995 | a->dp[i] = 0;
|
---|
1996 | }
|
---|
1997 |
|
---|
1998 | /* set the used to zero, allocated digits to the default precision
|
---|
1999 | * and sign to positive */
|
---|
2000 | a->used = 0;
|
---|
2001 | a->alloc = MP_PREC;
|
---|
2002 | a->sign = MP_ZPOS;
|
---|
2003 |
|
---|
2004 | return MP_OKAY;
|
---|
2005 | }
|
---|
2006 |
|
---|
2007 | /* creates "a" then copies b into it */
|
---|
2008 | int mp_init_copy (mp_int * a, const mp_int * b)
|
---|
2009 | {
|
---|
2010 | int res;
|
---|
2011 |
|
---|
2012 | if ((res = mp_init (a)) != MP_OKAY) {
|
---|
2013 | return res;
|
---|
2014 | }
|
---|
2015 | return mp_copy (b, a);
|
---|
2016 | }
|
---|
2017 |
|
---|
2018 | int mp_init_multi(mp_int *mp, ...)
|
---|
2019 | {
|
---|
2020 | mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
---|
2021 | int n = 0; /* Number of ok inits */
|
---|
2022 | mp_int* cur_arg = mp;
|
---|
2023 | va_list args;
|
---|
2024 |
|
---|
2025 | va_start(args, mp); /* init args to next argument from caller */
|
---|
2026 | while (cur_arg != NULL) {
|
---|
2027 | if (mp_init(cur_arg) != MP_OKAY) {
|
---|
2028 | /* Oops - error! Back-track and mp_clear what we already
|
---|
2029 | succeeded in init-ing, then return error.
|
---|
2030 | */
|
---|
2031 | va_list clean_args;
|
---|
2032 |
|
---|
2033 | /* end the current list */
|
---|
2034 | va_end(args);
|
---|
2035 |
|
---|
2036 | /* now start cleaning up */
|
---|
2037 | cur_arg = mp;
|
---|
2038 | va_start(clean_args, mp);
|
---|
2039 | while (n--) {
|
---|
2040 | mp_clear(cur_arg);
|
---|
2041 | cur_arg = va_arg(clean_args, mp_int*);
|
---|
2042 | }
|
---|
2043 | va_end(clean_args);
|
---|
2044 | res = MP_MEM;
|
---|
2045 | break;
|
---|
2046 | }
|
---|
2047 | n++;
|
---|
2048 | cur_arg = va_arg(args, mp_int*);
|
---|
2049 | }
|
---|
2050 | va_end(args);
|
---|
2051 | return res; /* Assumed ok, if error flagged above. */
|
---|
2052 | }
|
---|
2053 |
|
---|
2054 | /* init an mp_init for a given size */
|
---|
2055 | int mp_init_size (mp_int * a, int size)
|
---|
2056 | {
|
---|
2057 | int x;
|
---|
2058 |
|
---|
2059 | /* pad size so there are always extra digits */
|
---|
2060 | size += (MP_PREC * 2) - (size % MP_PREC);
|
---|
2061 |
|
---|
2062 | /* alloc mem */
|
---|
2063 | a->dp = malloc (sizeof (mp_digit) * size);
|
---|
2064 | if (a->dp == NULL) {
|
---|
2065 | return MP_MEM;
|
---|
2066 | }
|
---|
2067 |
|
---|
2068 | /* set the members */
|
---|
2069 | a->used = 0;
|
---|
2070 | a->alloc = size;
|
---|
2071 | a->sign = MP_ZPOS;
|
---|
2072 |
|
---|
2073 | /* zero the digits */
|
---|
2074 | for (x = 0; x < size; x++) {
|
---|
2075 | a->dp[x] = 0;
|
---|
2076 | }
|
---|
2077 |
|
---|
2078 | return MP_OKAY;
|
---|
2079 | }
|
---|
2080 |
|
---|
2081 | /* hac 14.61, pp608 */
|
---|
2082 | int mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
2083 | {
|
---|
2084 | /* b cannot be negative */
|
---|
2085 | if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
---|
2086 | return MP_VAL;
|
---|
2087 | }
|
---|
2088 |
|
---|
2089 | /* if the modulus is odd we can use a faster routine instead */
|
---|
2090 | if (mp_isodd (b) == 1) {
|
---|
2091 | return fast_mp_invmod (a, b, c);
|
---|
2092 | }
|
---|
2093 |
|
---|
2094 | return mp_invmod_slow(a, b, c);
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 | /* hac 14.61, pp608 */
|
---|
2098 | int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c)
|
---|
2099 | {
|
---|
2100 | mp_int x, y, u, v, A, B, C, D;
|
---|
2101 | int res;
|
---|
2102 |
|
---|
2103 | /* b cannot be negative */
|
---|
2104 | if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
---|
2105 | return MP_VAL;
|
---|
2106 | }
|
---|
2107 |
|
---|
2108 | /* init temps */
|
---|
2109 | if ((res = mp_init_multi(&x, &y, &u, &v,
|
---|
2110 | &A, &B, &C, &D, NULL)) != MP_OKAY) {
|
---|
2111 | return res;
|
---|
2112 | }
|
---|
2113 |
|
---|
2114 | /* x = a, y = b */
|
---|
2115 | if ((res = mp_copy (a, &x)) != MP_OKAY) {
|
---|
2116 | goto __ERR;
|
---|
2117 | }
|
---|
2118 | if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
---|
2119 | goto __ERR;
|
---|
2120 | }
|
---|
2121 |
|
---|
2122 | /* 2. [modified] if x,y are both even then return an error! */
|
---|
2123 | if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
---|
2124 | res = MP_VAL;
|
---|
2125 | goto __ERR;
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
---|
2129 | if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
---|
2130 | goto __ERR;
|
---|
2131 | }
|
---|
2132 | if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
---|
2133 | goto __ERR;
|
---|
2134 | }
|
---|
2135 | mp_set (&A, 1);
|
---|
2136 | mp_set (&D, 1);
|
---|
2137 |
|
---|
2138 | top:
|
---|
2139 | /* 4. while u is even do */
|
---|
2140 | while (mp_iseven (&u) == 1) {
|
---|
2141 | /* 4.1 u = u/2 */
|
---|
2142 | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
---|
2143 | goto __ERR;
|
---|
2144 | }
|
---|
2145 | /* 4.2 if A or B is odd then */
|
---|
2146 | if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
|
---|
2147 | /* A = (A+y)/2, B = (B-x)/2 */
|
---|
2148 | if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
---|
2149 | goto __ERR;
|
---|
2150 | }
|
---|
2151 | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
---|
2152 | goto __ERR;
|
---|
2153 | }
|
---|
2154 | }
|
---|
2155 | /* A = A/2, B = B/2 */
|
---|
2156 | if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
---|
2157 | goto __ERR;
|
---|
2158 | }
|
---|
2159 | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
---|
2160 | goto __ERR;
|
---|
2161 | }
|
---|
2162 | }
|
---|
2163 |
|
---|
2164 | /* 5. while v is even do */
|
---|
2165 | while (mp_iseven (&v) == 1) {
|
---|
2166 | /* 5.1 v = v/2 */
|
---|
2167 | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
---|
2168 | goto __ERR;
|
---|
2169 | }
|
---|
2170 | /* 5.2 if C or D is odd then */
|
---|
2171 | if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
|
---|
2172 | /* C = (C+y)/2, D = (D-x)/2 */
|
---|
2173 | if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
---|
2174 | goto __ERR;
|
---|
2175 | }
|
---|
2176 | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
---|
2177 | goto __ERR;
|
---|
2178 | }
|
---|
2179 | }
|
---|
2180 | /* C = C/2, D = D/2 */
|
---|
2181 | if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
---|
2182 | goto __ERR;
|
---|
2183 | }
|
---|
2184 | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
---|
2185 | goto __ERR;
|
---|
2186 | }
|
---|
2187 | }
|
---|
2188 |
|
---|
2189 | /* 6. if u >= v then */
|
---|
2190 | if (mp_cmp (&u, &v) != MP_LT) {
|
---|
2191 | /* u = u - v, A = A - C, B = B - D */
|
---|
2192 | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
---|
2193 | goto __ERR;
|
---|
2194 | }
|
---|
2195 |
|
---|
2196 | if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
---|
2197 | goto __ERR;
|
---|
2198 | }
|
---|
2199 |
|
---|
2200 | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
---|
2201 | goto __ERR;
|
---|
2202 | }
|
---|
2203 | } else {
|
---|
2204 | /* v - v - u, C = C - A, D = D - B */
|
---|
2205 | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
---|
2206 | goto __ERR;
|
---|
2207 | }
|
---|
2208 |
|
---|
2209 | if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
---|
2210 | goto __ERR;
|
---|
2211 | }
|
---|
2212 |
|
---|
2213 | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
---|
2214 | goto __ERR;
|
---|
2215 | }
|
---|
2216 | }
|
---|
2217 |
|
---|
2218 | /* if not zero goto step 4 */
|
---|
2219 | if (mp_iszero (&u) == 0)
|
---|
2220 | goto top;
|
---|
2221 |
|
---|
2222 | /* now a = C, b = D, gcd == g*v */
|
---|
2223 |
|
---|
2224 | /* if v != 1 then there is no inverse */
|
---|
2225 | if (mp_cmp_d (&v, 1) != MP_EQ) {
|
---|
2226 | res = MP_VAL;
|
---|
2227 | goto __ERR;
|
---|
2228 | }
|
---|
2229 |
|
---|
2230 | /* if its too low */
|
---|
2231 | while (mp_cmp_d(&C, 0) == MP_LT) {
|
---|
2232 | if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
|
---|
2233 | goto __ERR;
|
---|
2234 | }
|
---|
2235 | }
|
---|
2236 |
|
---|
2237 | /* too big */
|
---|
2238 | while (mp_cmp_mag(&C, b) != MP_LT) {
|
---|
2239 | if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
---|
2240 | goto __ERR;
|
---|
2241 | }
|
---|
2242 | }
|
---|
2243 |
|
---|
2244 | /* C is now the inverse */
|
---|
2245 | mp_exch (&C, c);
|
---|
2246 | res = MP_OKAY;
|
---|
2247 | __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
---|
2248 | return res;
|
---|
2249 | }
|
---|
2250 |
|
---|
2251 | /* c = |a| * |b| using Karatsuba Multiplication using
|
---|
2252 | * three half size multiplications
|
---|
2253 | *
|
---|
2254 | * Let B represent the radix [e.g. 2**DIGIT_BIT] and
|
---|
2255 | * let n represent half of the number of digits in
|
---|
2256 | * the min(a,b)
|
---|
2257 | *
|
---|
2258 | * a = a1 * B**n + a0
|
---|
2259 | * b = b1 * B**n + b0
|
---|
2260 | *
|
---|
2261 | * Then, a * b =>
|
---|
2262 | a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
|
---|
2263 | *
|
---|
2264 | * Note that a1b1 and a0b0 are used twice and only need to be
|
---|
2265 | * computed once. So in total three half size (half # of
|
---|
2266 | * digit) multiplications are performed, a0b0, a1b1 and
|
---|
2267 | * (a1-b1)(a0-b0)
|
---|
2268 | *
|
---|
2269 | * Note that a multiplication of half the digits requires
|
---|
2270 | * 1/4th the number of single precision multiplications so in
|
---|
2271 | * total after one call 25% of the single precision multiplications
|
---|
2272 | * are saved. Note also that the call to mp_mul can end up back
|
---|
2273 | * in this function if the a0, a1, b0, or b1 are above the threshold.
|
---|
2274 | * This is known as divide-and-conquer and leads to the famous
|
---|
2275 | * O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than
|
---|
2276 | * the standard O(N**2) that the baseline/comba methods use.
|
---|
2277 | * Generally though the overhead of this method doesn't pay off
|
---|
2278 | * until a certain size (N ~ 80) is reached.
|
---|
2279 | */
|
---|
2280 | int mp_karatsuba_mul (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
2281 | {
|
---|
2282 | mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
---|
2283 | int B, err;
|
---|
2284 |
|
---|
2285 | /* default the return code to an error */
|
---|
2286 | err = MP_MEM;
|
---|
2287 |
|
---|
2288 | /* min # of digits */
|
---|
2289 | B = MIN (a->used, b->used);
|
---|
2290 |
|
---|
2291 | /* now divide in two */
|
---|
2292 | B = B >> 1;
|
---|
2293 |
|
---|
2294 | /* init copy all the temps */
|
---|
2295 | if (mp_init_size (&x0, B) != MP_OKAY)
|
---|
2296 | goto ERR;
|
---|
2297 | if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
---|
2298 | goto X0;
|
---|
2299 | if (mp_init_size (&y0, B) != MP_OKAY)
|
---|
2300 | goto X1;
|
---|
2301 | if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
---|
2302 | goto Y0;
|
---|
2303 |
|
---|
2304 | /* init temps */
|
---|
2305 | if (mp_init_size (&t1, B * 2) != MP_OKAY)
|
---|
2306 | goto Y1;
|
---|
2307 | if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
|
---|
2308 | goto T1;
|
---|
2309 | if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
|
---|
2310 | goto X0Y0;
|
---|
2311 |
|
---|
2312 | /* now shift the digits */
|
---|
2313 | x0.used = y0.used = B;
|
---|
2314 | x1.used = a->used - B;
|
---|
2315 | y1.used = b->used - B;
|
---|
2316 |
|
---|
2317 | {
|
---|
2318 | register int x;
|
---|
2319 | register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
---|
2320 |
|
---|
2321 | /* we copy the digits directly instead of using higher level functions
|
---|
2322 | * since we also need to shift the digits
|
---|
2323 | */
|
---|
2324 | tmpa = a->dp;
|
---|
2325 | tmpb = b->dp;
|
---|
2326 |
|
---|
2327 | tmpx = x0.dp;
|
---|
2328 | tmpy = y0.dp;
|
---|
2329 | for (x = 0; x < B; x++) {
|
---|
2330 | *tmpx++ = *tmpa++;
|
---|
2331 | *tmpy++ = *tmpb++;
|
---|
2332 | }
|
---|
2333 |
|
---|
2334 | tmpx = x1.dp;
|
---|
2335 | for (x = B; x < a->used; x++) {
|
---|
2336 | *tmpx++ = *tmpa++;
|
---|
2337 | }
|
---|
2338 |
|
---|
2339 | tmpy = y1.dp;
|
---|
2340 | for (x = B; x < b->used; x++) {
|
---|
2341 | *tmpy++ = *tmpb++;
|
---|
2342 | }
|
---|
2343 | }
|
---|
2344 |
|
---|
2345 | /* only need to clamp the lower words since by definition the
|
---|
2346 | * upper words x1/y1 must have a known number of digits
|
---|
2347 | */
|
---|
2348 | mp_clamp (&x0);
|
---|
2349 | mp_clamp (&y0);
|
---|
2350 |
|
---|
2351 | /* now calc the products x0y0 and x1y1 */
|
---|
2352 | /* after this x0 is no longer required, free temp [x0==t2]! */
|
---|
2353 | if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
---|
2354 | goto X1Y1; /* x0y0 = x0*y0 */
|
---|
2355 | if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
---|
2356 | goto X1Y1; /* x1y1 = x1*y1 */
|
---|
2357 |
|
---|
2358 | /* now calc x1-x0 and y1-y0 */
|
---|
2359 | if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
---|
2360 | goto X1Y1; /* t1 = x1 - x0 */
|
---|
2361 | if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
|
---|
2362 | goto X1Y1; /* t2 = y1 - y0 */
|
---|
2363 | if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
|
---|
2364 | goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
|
---|
2365 |
|
---|
2366 | /* add x0y0 */
|
---|
2367 | if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
|
---|
2368 | goto X1Y1; /* t2 = x0y0 + x1y1 */
|
---|
2369 | if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
|
---|
2370 | goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
|
---|
2371 |
|
---|
2372 | /* shift by B */
|
---|
2373 | if (mp_lshd (&t1, B) != MP_OKAY)
|
---|
2374 | goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
---|
2375 | if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
---|
2376 | goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
---|
2377 |
|
---|
2378 | if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
---|
2379 | goto X1Y1; /* t1 = x0y0 + t1 */
|
---|
2380 | if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
---|
2381 | goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
---|
2382 |
|
---|
2383 | /* Algorithm succeeded set the return code to MP_OKAY */
|
---|
2384 | err = MP_OKAY;
|
---|
2385 |
|
---|
2386 | X1Y1:mp_clear (&x1y1);
|
---|
2387 | X0Y0:mp_clear (&x0y0);
|
---|
2388 | T1:mp_clear (&t1);
|
---|
2389 | Y1:mp_clear (&y1);
|
---|
2390 | Y0:mp_clear (&y0);
|
---|
2391 | X1:mp_clear (&x1);
|
---|
2392 | X0:mp_clear (&x0);
|
---|
2393 | ERR:
|
---|
2394 | return err;
|
---|
2395 | }
|
---|
2396 |
|
---|
2397 | /* Karatsuba squaring, computes b = a*a using three
|
---|
2398 | * half size squarings
|
---|
2399 | *
|
---|
2400 | * See comments of karatsuba_mul for details. It
|
---|
2401 | * is essentially the same algorithm but merely
|
---|
2402 | * tuned to perform recursive squarings.
|
---|
2403 | */
|
---|
2404 | int mp_karatsuba_sqr (const mp_int * a, mp_int * b)
|
---|
2405 | {
|
---|
2406 | mp_int x0, x1, t1, t2, x0x0, x1x1;
|
---|
2407 | int B, err;
|
---|
2408 |
|
---|
2409 | err = MP_MEM;
|
---|
2410 |
|
---|
2411 | /* min # of digits */
|
---|
2412 | B = a->used;
|
---|
2413 |
|
---|
2414 | /* now divide in two */
|
---|
2415 | B = B >> 1;
|
---|
2416 |
|
---|
2417 | /* init copy all the temps */
|
---|
2418 | if (mp_init_size (&x0, B) != MP_OKAY)
|
---|
2419 | goto ERR;
|
---|
2420 | if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
---|
2421 | goto X0;
|
---|
2422 |
|
---|
2423 | /* init temps */
|
---|
2424 | if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
|
---|
2425 | goto X1;
|
---|
2426 | if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
|
---|
2427 | goto T1;
|
---|
2428 | if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
|
---|
2429 | goto T2;
|
---|
2430 | if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
|
---|
2431 | goto X0X0;
|
---|
2432 |
|
---|
2433 | {
|
---|
2434 | register int x;
|
---|
2435 | register mp_digit *dst, *src;
|
---|
2436 |
|
---|
2437 | src = a->dp;
|
---|
2438 |
|
---|
2439 | /* now shift the digits */
|
---|
2440 | dst = x0.dp;
|
---|
2441 | for (x = 0; x < B; x++) {
|
---|
2442 | *dst++ = *src++;
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 | dst = x1.dp;
|
---|
2446 | for (x = B; x < a->used; x++) {
|
---|
2447 | *dst++ = *src++;
|
---|
2448 | }
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | x0.used = B;
|
---|
2452 | x1.used = a->used - B;
|
---|
2453 |
|
---|
2454 | mp_clamp (&x0);
|
---|
2455 |
|
---|
2456 | /* now calc the products x0*x0 and x1*x1 */
|
---|
2457 | if (mp_sqr (&x0, &x0x0) != MP_OKAY)
|
---|
2458 | goto X1X1; /* x0x0 = x0*x0 */
|
---|
2459 | if (mp_sqr (&x1, &x1x1) != MP_OKAY)
|
---|
2460 | goto X1X1; /* x1x1 = x1*x1 */
|
---|
2461 |
|
---|
2462 | /* now calc (x1-x0)**2 */
|
---|
2463 | if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
---|
2464 | goto X1X1; /* t1 = x1 - x0 */
|
---|
2465 | if (mp_sqr (&t1, &t1) != MP_OKAY)
|
---|
2466 | goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
|
---|
2467 |
|
---|
2468 | /* add x0y0 */
|
---|
2469 | if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
|
---|
2470 | goto X1X1; /* t2 = x0x0 + x1x1 */
|
---|
2471 | if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
|
---|
2472 | goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
|
---|
2473 |
|
---|
2474 | /* shift by B */
|
---|
2475 | if (mp_lshd (&t1, B) != MP_OKAY)
|
---|
2476 | goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
|
---|
2477 | if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
|
---|
2478 | goto X1X1; /* x1x1 = x1x1 << 2*B */
|
---|
2479 |
|
---|
2480 | if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
|
---|
2481 | goto X1X1; /* t1 = x0x0 + t1 */
|
---|
2482 | if (mp_add (&t1, &x1x1, b) != MP_OKAY)
|
---|
2483 | goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
|
---|
2484 |
|
---|
2485 | err = MP_OKAY;
|
---|
2486 |
|
---|
2487 | X1X1:mp_clear (&x1x1);
|
---|
2488 | X0X0:mp_clear (&x0x0);
|
---|
2489 | T2:mp_clear (&t2);
|
---|
2490 | T1:mp_clear (&t1);
|
---|
2491 | X1:mp_clear (&x1);
|
---|
2492 | X0:mp_clear (&x0);
|
---|
2493 | ERR:
|
---|
2494 | return err;
|
---|
2495 | }
|
---|
2496 |
|
---|
2497 | /* computes least common multiple as |a*b|/(a, b) */
|
---|
2498 | int mp_lcm (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
2499 | {
|
---|
2500 | int res;
|
---|
2501 | mp_int t1, t2;
|
---|
2502 |
|
---|
2503 |
|
---|
2504 | if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
|
---|
2505 | return res;
|
---|
2506 | }
|
---|
2507 |
|
---|
2508 | /* t1 = get the GCD of the two inputs */
|
---|
2509 | if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
|
---|
2510 | goto __T;
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | /* divide the smallest by the GCD */
|
---|
2514 | if (mp_cmp_mag(a, b) == MP_LT) {
|
---|
2515 | /* store quotient in t2 such that t2 * b is the LCM */
|
---|
2516 | if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
|
---|
2517 | goto __T;
|
---|
2518 | }
|
---|
2519 | res = mp_mul(b, &t2, c);
|
---|
2520 | } else {
|
---|
2521 | /* store quotient in t2 such that t2 * a is the LCM */
|
---|
2522 | if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
|
---|
2523 | goto __T;
|
---|
2524 | }
|
---|
2525 | res = mp_mul(a, &t2, c);
|
---|
2526 | }
|
---|
2527 |
|
---|
2528 | /* fix the sign to positive */
|
---|
2529 | c->sign = MP_ZPOS;
|
---|
2530 |
|
---|
2531 | __T:
|
---|
2532 | mp_clear_multi (&t1, &t2, NULL);
|
---|
2533 | return res;
|
---|
2534 | }
|
---|
2535 |
|
---|
2536 | /* shift left a certain amount of digits */
|
---|
2537 | int mp_lshd (mp_int * a, int b)
|
---|
2538 | {
|
---|
2539 | int x, res;
|
---|
2540 |
|
---|
2541 | /* if its less than zero return */
|
---|
2542 | if (b <= 0) {
|
---|
2543 | return MP_OKAY;
|
---|
2544 | }
|
---|
2545 |
|
---|
2546 | /* grow to fit the new digits */
|
---|
2547 | if (a->alloc < a->used + b) {
|
---|
2548 | if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
---|
2549 | return res;
|
---|
2550 | }
|
---|
2551 | }
|
---|
2552 |
|
---|
2553 | {
|
---|
2554 | register mp_digit *top, *bottom;
|
---|
2555 |
|
---|
2556 | /* increment the used by the shift amount then copy upwards */
|
---|
2557 | a->used += b;
|
---|
2558 |
|
---|
2559 | /* top */
|
---|
2560 | top = a->dp + a->used - 1;
|
---|
2561 |
|
---|
2562 | /* base */
|
---|
2563 | bottom = a->dp + a->used - 1 - b;
|
---|
2564 |
|
---|
2565 | /* much like mp_rshd this is implemented using a sliding window
|
---|
2566 | * except the window goes the otherway around. Copying from
|
---|
2567 | * the bottom to the top. see bn_mp_rshd.c for more info.
|
---|
2568 | */
|
---|
2569 | for (x = a->used - 1; x >= b; x--) {
|
---|
2570 | *top-- = *bottom--;
|
---|
2571 | }
|
---|
2572 |
|
---|
2573 | /* zero the lower digits */
|
---|
2574 | top = a->dp;
|
---|
2575 | for (x = 0; x < b; x++) {
|
---|
2576 | *top++ = 0;
|
---|
2577 | }
|
---|
2578 | }
|
---|
2579 | return MP_OKAY;
|
---|
2580 | }
|
---|
2581 |
|
---|
2582 | /* c = a mod b, 0 <= c < b */
|
---|
2583 | int
|
---|
2584 | mp_mod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
2585 | {
|
---|
2586 | mp_int t;
|
---|
2587 | int res;
|
---|
2588 |
|
---|
2589 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
2590 | return res;
|
---|
2591 | }
|
---|
2592 |
|
---|
2593 | if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
|
---|
2594 | mp_clear (&t);
|
---|
2595 | return res;
|
---|
2596 | }
|
---|
2597 |
|
---|
2598 | if (t.sign != b->sign) {
|
---|
2599 | res = mp_add (b, &t, c);
|
---|
2600 | } else {
|
---|
2601 | res = MP_OKAY;
|
---|
2602 | mp_exch (&t, c);
|
---|
2603 | }
|
---|
2604 |
|
---|
2605 | mp_clear (&t);
|
---|
2606 | return res;
|
---|
2607 | }
|
---|
2608 |
|
---|
2609 | /* calc a value mod 2**b */
|
---|
2610 | int
|
---|
2611 | mp_mod_2d (const mp_int * a, int b, mp_int * c)
|
---|
2612 | {
|
---|
2613 | int x, res;
|
---|
2614 |
|
---|
2615 | /* if b is <= 0 then zero the int */
|
---|
2616 | if (b <= 0) {
|
---|
2617 | mp_zero (c);
|
---|
2618 | return MP_OKAY;
|
---|
2619 | }
|
---|
2620 |
|
---|
2621 | /* if the modulus is larger than the value than return */
|
---|
2622 | if (b > a->used * DIGIT_BIT) {
|
---|
2623 | res = mp_copy (a, c);
|
---|
2624 | return res;
|
---|
2625 | }
|
---|
2626 |
|
---|
2627 | /* copy */
|
---|
2628 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
2629 | return res;
|
---|
2630 | }
|
---|
2631 |
|
---|
2632 | /* zero digits above the last digit of the modulus */
|
---|
2633 | for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
---|
2634 | c->dp[x] = 0;
|
---|
2635 | }
|
---|
2636 | /* clear the digit that is not completely outside/inside the modulus */
|
---|
2637 | c->dp[b / DIGIT_BIT] &= (1 << ((mp_digit)b % DIGIT_BIT)) - 1;
|
---|
2638 | mp_clamp (c);
|
---|
2639 | return MP_OKAY;
|
---|
2640 | }
|
---|
2641 |
|
---|
2642 | int
|
---|
2643 | mp_mod_d (const mp_int * a, mp_digit b, mp_digit * c)
|
---|
2644 | {
|
---|
2645 | return mp_div_d(a, b, NULL, c);
|
---|
2646 | }
|
---|
2647 |
|
---|
2648 | /*
|
---|
2649 | * shifts with subtractions when the result is greater than b.
|
---|
2650 | *
|
---|
2651 | * The method is slightly modified to shift B unconditionally up to just under
|
---|
2652 | * the leading bit of b. This saves a lot of multiple precision shifting.
|
---|
2653 | */
|
---|
2654 | int mp_montgomery_calc_normalization (mp_int * a, const mp_int * b)
|
---|
2655 | {
|
---|
2656 | int x, bits, res;
|
---|
2657 |
|
---|
2658 | /* how many bits of last digit does b use */
|
---|
2659 | bits = mp_count_bits (b) % DIGIT_BIT;
|
---|
2660 |
|
---|
2661 |
|
---|
2662 | if (b->used > 1) {
|
---|
2663 | if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
---|
2664 | return res;
|
---|
2665 | }
|
---|
2666 | } else {
|
---|
2667 | mp_set(a, 1);
|
---|
2668 | bits = 1;
|
---|
2669 | }
|
---|
2670 |
|
---|
2671 |
|
---|
2672 | /* now compute C = A * B mod b */
|
---|
2673 | for (x = bits - 1; x < DIGIT_BIT; x++) {
|
---|
2674 | if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
---|
2675 | return res;
|
---|
2676 | }
|
---|
2677 | if (mp_cmp_mag (a, b) != MP_LT) {
|
---|
2678 | if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
---|
2679 | return res;
|
---|
2680 | }
|
---|
2681 | }
|
---|
2682 | }
|
---|
2683 |
|
---|
2684 | return MP_OKAY;
|
---|
2685 | }
|
---|
2686 |
|
---|
2687 | /* computes xR**-1 == x (mod N) via Montgomery Reduction */
|
---|
2688 | int
|
---|
2689 | mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
|
---|
2690 | {
|
---|
2691 | int ix, res, digs;
|
---|
2692 | mp_digit mu;
|
---|
2693 |
|
---|
2694 | /* can the fast reduction [comba] method be used?
|
---|
2695 | *
|
---|
2696 | * Note that unlike in mul you're safely allowed *less*
|
---|
2697 | * than the available columns [255 per default] since carries
|
---|
2698 | * are fixed up in the inner loop.
|
---|
2699 | */
|
---|
2700 | digs = n->used * 2 + 1;
|
---|
2701 | if ((digs < MP_WARRAY) &&
|
---|
2702 | n->used <
|
---|
2703 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
2704 | return fast_mp_montgomery_reduce (x, n, rho);
|
---|
2705 | }
|
---|
2706 |
|
---|
2707 | /* grow the input as required */
|
---|
2708 | if (x->alloc < digs) {
|
---|
2709 | if ((res = mp_grow (x, digs)) != MP_OKAY) {
|
---|
2710 | return res;
|
---|
2711 | }
|
---|
2712 | }
|
---|
2713 | x->used = digs;
|
---|
2714 |
|
---|
2715 | for (ix = 0; ix < n->used; ix++) {
|
---|
2716 | /* mu = ai * rho mod b
|
---|
2717 | *
|
---|
2718 | * The value of rho must be precalculated via
|
---|
2719 | * montgomery_setup() such that
|
---|
2720 | * it equals -1/n0 mod b this allows the
|
---|
2721 | * following inner loop to reduce the
|
---|
2722 | * input one digit at a time
|
---|
2723 | */
|
---|
2724 | mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
|
---|
2725 |
|
---|
2726 | /* a = a + mu * m * b**i */
|
---|
2727 | {
|
---|
2728 | register int iy;
|
---|
2729 | register mp_digit *tmpn, *tmpx, u;
|
---|
2730 | register mp_word r;
|
---|
2731 |
|
---|
2732 | /* alias for digits of the modulus */
|
---|
2733 | tmpn = n->dp;
|
---|
2734 |
|
---|
2735 | /* alias for the digits of x [the input] */
|
---|
2736 | tmpx = x->dp + ix;
|
---|
2737 |
|
---|
2738 | /* set the carry to zero */
|
---|
2739 | u = 0;
|
---|
2740 |
|
---|
2741 | /* Multiply and add in place */
|
---|
2742 | for (iy = 0; iy < n->used; iy++) {
|
---|
2743 | /* compute product and sum */
|
---|
2744 | r = ((mp_word)mu) * ((mp_word)*tmpn++) +
|
---|
2745 | ((mp_word) u) + ((mp_word) * tmpx);
|
---|
2746 |
|
---|
2747 | /* get carry */
|
---|
2748 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
2749 |
|
---|
2750 | /* fix digit */
|
---|
2751 | *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
|
---|
2752 | }
|
---|
2753 | /* At this point the ix'th digit of x should be zero */
|
---|
2754 |
|
---|
2755 |
|
---|
2756 | /* propagate carries upwards as required*/
|
---|
2757 | while (u) {
|
---|
2758 | *tmpx += u;
|
---|
2759 | u = *tmpx >> DIGIT_BIT;
|
---|
2760 | *tmpx++ &= MP_MASK;
|
---|
2761 | }
|
---|
2762 | }
|
---|
2763 | }
|
---|
2764 |
|
---|
2765 | /* at this point the n.used'th least
|
---|
2766 | * significant digits of x are all zero
|
---|
2767 | * which means we can shift x to the
|
---|
2768 | * right by n.used digits and the
|
---|
2769 | * residue is unchanged.
|
---|
2770 | */
|
---|
2771 |
|
---|
2772 | /* x = x/b**n.used */
|
---|
2773 | mp_clamp(x);
|
---|
2774 | mp_rshd (x, n->used);
|
---|
2775 |
|
---|
2776 | /* if x >= n then x = x - n */
|
---|
2777 | if (mp_cmp_mag (x, n) != MP_LT) {
|
---|
2778 | return s_mp_sub (x, n, x);
|
---|
2779 | }
|
---|
2780 |
|
---|
2781 | return MP_OKAY;
|
---|
2782 | }
|
---|
2783 |
|
---|
2784 | /* setups the montgomery reduction stuff */
|
---|
2785 | int
|
---|
2786 | mp_montgomery_setup (const mp_int * n, mp_digit * rho)
|
---|
2787 | {
|
---|
2788 | mp_digit x, b;
|
---|
2789 |
|
---|
2790 | /* fast inversion mod 2**k
|
---|
2791 | *
|
---|
2792 | * Based on the fact that
|
---|
2793 | *
|
---|
2794 | * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
---|
2795 | * => 2*X*A - X*X*A*A = 1
|
---|
2796 | * => 2*(1) - (1) = 1
|
---|
2797 | */
|
---|
2798 | b = n->dp[0];
|
---|
2799 |
|
---|
2800 | if ((b & 1) == 0) {
|
---|
2801 | return MP_VAL;
|
---|
2802 | }
|
---|
2803 |
|
---|
2804 | x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
---|
2805 | x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
---|
2806 | x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
---|
2807 | x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
---|
2808 |
|
---|
2809 | /* rho = -1/m mod b */
|
---|
2810 | *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
|
---|
2811 |
|
---|
2812 | return MP_OKAY;
|
---|
2813 | }
|
---|
2814 |
|
---|
2815 | /* high level multiplication (handles sign) */
|
---|
2816 | int mp_mul (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
2817 | {
|
---|
2818 | int res, neg;
|
---|
2819 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
---|
2820 |
|
---|
2821 | /* use Karatsuba? */
|
---|
2822 | if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
---|
2823 | res = mp_karatsuba_mul (a, b, c);
|
---|
2824 | } else
|
---|
2825 | {
|
---|
2826 | /* can we use the fast multiplier?
|
---|
2827 | *
|
---|
2828 | * The fast multiplier can be used if the output will
|
---|
2829 | * have less than MP_WARRAY digits and the number of
|
---|
2830 | * digits won't affect carry propagation
|
---|
2831 | */
|
---|
2832 | int digs = a->used + b->used + 1;
|
---|
2833 |
|
---|
2834 | if ((digs < MP_WARRAY) &&
|
---|
2835 | MIN(a->used, b->used) <=
|
---|
2836 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
2837 | res = fast_s_mp_mul_digs (a, b, c, digs);
|
---|
2838 | } else
|
---|
2839 | res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
|
---|
2840 | }
|
---|
2841 | c->sign = (c->used > 0) ? neg : MP_ZPOS;
|
---|
2842 | return res;
|
---|
2843 | }
|
---|
2844 |
|
---|
2845 | /* b = a*2 */
|
---|
2846 | int mp_mul_2(const mp_int * a, mp_int * b)
|
---|
2847 | {
|
---|
2848 | int x, res, oldused;
|
---|
2849 |
|
---|
2850 | /* grow to accommodate result */
|
---|
2851 | if (b->alloc < a->used + 1) {
|
---|
2852 | if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
|
---|
2853 | return res;
|
---|
2854 | }
|
---|
2855 | }
|
---|
2856 |
|
---|
2857 | oldused = b->used;
|
---|
2858 | b->used = a->used;
|
---|
2859 |
|
---|
2860 | {
|
---|
2861 | register mp_digit r, rr, *tmpa, *tmpb;
|
---|
2862 |
|
---|
2863 | /* alias for source */
|
---|
2864 | tmpa = a->dp;
|
---|
2865 |
|
---|
2866 | /* alias for dest */
|
---|
2867 | tmpb = b->dp;
|
---|
2868 |
|
---|
2869 | /* carry */
|
---|
2870 | r = 0;
|
---|
2871 | for (x = 0; x < a->used; x++) {
|
---|
2872 |
|
---|
2873 | /* get what will be the *next* carry bit from the
|
---|
2874 | * MSB of the current digit
|
---|
2875 | */
|
---|
2876 | rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
---|
2877 |
|
---|
2878 | /* now shift up this digit, add in the carry [from the previous] */
|
---|
2879 | *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
---|
2880 |
|
---|
2881 | /* copy the carry that would be from the source
|
---|
2882 | * digit into the next iteration
|
---|
2883 | */
|
---|
2884 | r = rr;
|
---|
2885 | }
|
---|
2886 |
|
---|
2887 | /* new leading digit? */
|
---|
2888 | if (r != 0) {
|
---|
2889 | /* add a MSB which is always 1 at this point */
|
---|
2890 | *tmpb = 1;
|
---|
2891 | ++(b->used);
|
---|
2892 | }
|
---|
2893 |
|
---|
2894 | /* now zero any excess digits on the destination
|
---|
2895 | * that we didn't write to
|
---|
2896 | */
|
---|
2897 | tmpb = b->dp + b->used;
|
---|
2898 | for (x = b->used; x < oldused; x++) {
|
---|
2899 | *tmpb++ = 0;
|
---|
2900 | }
|
---|
2901 | }
|
---|
2902 | b->sign = a->sign;
|
---|
2903 | return MP_OKAY;
|
---|
2904 | }
|
---|
2905 |
|
---|
2906 | /* shift left by a certain bit count */
|
---|
2907 | int mp_mul_2d (const mp_int * a, int b, mp_int * c)
|
---|
2908 | {
|
---|
2909 | mp_digit d;
|
---|
2910 | int res;
|
---|
2911 |
|
---|
2912 | /* copy */
|
---|
2913 | if (a != c) {
|
---|
2914 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
2915 | return res;
|
---|
2916 | }
|
---|
2917 | }
|
---|
2918 |
|
---|
2919 | if (c->alloc < c->used + b/DIGIT_BIT + 1) {
|
---|
2920 | if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
|
---|
2921 | return res;
|
---|
2922 | }
|
---|
2923 | }
|
---|
2924 |
|
---|
2925 | /* shift by as many digits in the bit count */
|
---|
2926 | if (b >= DIGIT_BIT) {
|
---|
2927 | if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
|
---|
2928 | return res;
|
---|
2929 | }
|
---|
2930 | }
|
---|
2931 |
|
---|
2932 | /* shift any bit count < DIGIT_BIT */
|
---|
2933 | d = (mp_digit) (b % DIGIT_BIT);
|
---|
2934 | if (d != 0) {
|
---|
2935 | register mp_digit *tmpc, shift, mask, r, rr;
|
---|
2936 | register int x;
|
---|
2937 |
|
---|
2938 | /* bitmask for carries */
|
---|
2939 | mask = (((mp_digit)1) << d) - 1;
|
---|
2940 |
|
---|
2941 | /* shift for msbs */
|
---|
2942 | shift = DIGIT_BIT - d;
|
---|
2943 |
|
---|
2944 | /* alias */
|
---|
2945 | tmpc = c->dp;
|
---|
2946 |
|
---|
2947 | /* carry */
|
---|
2948 | r = 0;
|
---|
2949 | for (x = 0; x < c->used; x++) {
|
---|
2950 | /* get the higher bits of the current word */
|
---|
2951 | rr = (*tmpc >> shift) & mask;
|
---|
2952 |
|
---|
2953 | /* shift the current word and OR in the carry */
|
---|
2954 | *tmpc = ((*tmpc << d) | r) & MP_MASK;
|
---|
2955 | ++tmpc;
|
---|
2956 |
|
---|
2957 | /* set the carry to the carry bits of the current word */
|
---|
2958 | r = rr;
|
---|
2959 | }
|
---|
2960 |
|
---|
2961 | /* set final carry */
|
---|
2962 | if (r != 0) {
|
---|
2963 | c->dp[(c->used)++] = r;
|
---|
2964 | }
|
---|
2965 | }
|
---|
2966 | mp_clamp (c);
|
---|
2967 | return MP_OKAY;
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | /* multiply by a digit */
|
---|
2971 | int
|
---|
2972 | mp_mul_d (const mp_int * a, mp_digit b, mp_int * c)
|
---|
2973 | {
|
---|
2974 | mp_digit u, *tmpa, *tmpc;
|
---|
2975 | mp_word r;
|
---|
2976 | int ix, res, olduse;
|
---|
2977 |
|
---|
2978 | /* make sure c is big enough to hold a*b */
|
---|
2979 | if (c->alloc < a->used + 1) {
|
---|
2980 | if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
|
---|
2981 | return res;
|
---|
2982 | }
|
---|
2983 | }
|
---|
2984 |
|
---|
2985 | /* get the original destinations used count */
|
---|
2986 | olduse = c->used;
|
---|
2987 |
|
---|
2988 | /* set the sign */
|
---|
2989 | c->sign = a->sign;
|
---|
2990 |
|
---|
2991 | /* alias for a->dp [source] */
|
---|
2992 | tmpa = a->dp;
|
---|
2993 |
|
---|
2994 | /* alias for c->dp [dest] */
|
---|
2995 | tmpc = c->dp;
|
---|
2996 |
|
---|
2997 | /* zero carry */
|
---|
2998 | u = 0;
|
---|
2999 |
|
---|
3000 | /* compute columns */
|
---|
3001 | for (ix = 0; ix < a->used; ix++) {
|
---|
3002 | /* compute product and carry sum for this term */
|
---|
3003 | r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
|
---|
3004 |
|
---|
3005 | /* mask off higher bits to get a single digit */
|
---|
3006 | *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
3007 |
|
---|
3008 | /* send carry into next iteration */
|
---|
3009 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
3010 | }
|
---|
3011 |
|
---|
3012 | /* store final carry [if any] */
|
---|
3013 | *tmpc++ = u;
|
---|
3014 |
|
---|
3015 | /* now zero digits above the top */
|
---|
3016 | while (ix++ < olduse) {
|
---|
3017 | *tmpc++ = 0;
|
---|
3018 | }
|
---|
3019 |
|
---|
3020 | /* set used count */
|
---|
3021 | c->used = a->used + 1;
|
---|
3022 | mp_clamp(c);
|
---|
3023 |
|
---|
3024 | return MP_OKAY;
|
---|
3025 | }
|
---|
3026 |
|
---|
3027 | /* d = a * b (mod c) */
|
---|
3028 | int
|
---|
3029 | mp_mulmod (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
|
---|
3030 | {
|
---|
3031 | int res;
|
---|
3032 | mp_int t;
|
---|
3033 |
|
---|
3034 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
3035 | return res;
|
---|
3036 | }
|
---|
3037 |
|
---|
3038 | if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
---|
3039 | mp_clear (&t);
|
---|
3040 | return res;
|
---|
3041 | }
|
---|
3042 | res = mp_mod (&t, c, d);
|
---|
3043 | mp_clear (&t);
|
---|
3044 | return res;
|
---|
3045 | }
|
---|
3046 |
|
---|
3047 | /* table of first PRIME_SIZE primes */
|
---|
3048 | static const mp_digit __prime_tab[] = {
|
---|
3049 | 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
|
---|
3050 | 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
|
---|
3051 | 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
|
---|
3052 | 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
|
---|
3053 | 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
|
---|
3054 | 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
|
---|
3055 | 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
|
---|
3056 | 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
|
---|
3057 |
|
---|
3058 | 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
|
---|
3059 | 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
|
---|
3060 | 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
|
---|
3061 | 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
|
---|
3062 | 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
|
---|
3063 | 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
|
---|
3064 | 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
|
---|
3065 | 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
|
---|
3066 |
|
---|
3067 | 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
|
---|
3068 | 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
|
---|
3069 | 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
|
---|
3070 | 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
|
---|
3071 | 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
|
---|
3072 | 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
|
---|
3073 | 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
|
---|
3074 | 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
|
---|
3075 |
|
---|
3076 | 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
|
---|
3077 | 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
|
---|
3078 | 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
|
---|
3079 | 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
|
---|
3080 | 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
|
---|
3081 | 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
|
---|
3082 | 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
|
---|
3083 | 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
|
---|
3084 | };
|
---|
3085 |
|
---|
3086 | /* determines if an integers is divisible by one
|
---|
3087 | * of the first PRIME_SIZE primes or not
|
---|
3088 | *
|
---|
3089 | * sets result to 0 if not, 1 if yes
|
---|
3090 | */
|
---|
3091 | int mp_prime_is_divisible (const mp_int * a, int *result)
|
---|
3092 | {
|
---|
3093 | int err, ix;
|
---|
3094 | mp_digit res;
|
---|
3095 |
|
---|
3096 | /* default to not */
|
---|
3097 | *result = MP_NO;
|
---|
3098 |
|
---|
3099 | for (ix = 0; ix < PRIME_SIZE; ix++) {
|
---|
3100 | /* what is a mod __prime_tab[ix] */
|
---|
3101 | if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
|
---|
3102 | return err;
|
---|
3103 | }
|
---|
3104 |
|
---|
3105 | /* is the residue zero? */
|
---|
3106 | if (res == 0) {
|
---|
3107 | *result = MP_YES;
|
---|
3108 | return MP_OKAY;
|
---|
3109 | }
|
---|
3110 | }
|
---|
3111 |
|
---|
3112 | return MP_OKAY;
|
---|
3113 | }
|
---|
3114 |
|
---|
3115 | /* performs a variable number of rounds of Miller-Rabin
|
---|
3116 | *
|
---|
3117 | * Probability of error after t rounds is no more than
|
---|
3118 |
|
---|
3119 | *
|
---|
3120 | * Sets result to 1 if probably prime, 0 otherwise
|
---|
3121 | */
|
---|
3122 | int mp_prime_is_prime (mp_int * a, int t, int *result)
|
---|
3123 | {
|
---|
3124 | mp_int b;
|
---|
3125 | int ix, err, res;
|
---|
3126 |
|
---|
3127 | /* default to no */
|
---|
3128 | *result = MP_NO;
|
---|
3129 |
|
---|
3130 | /* valid value of t? */
|
---|
3131 | if (t <= 0 || t > PRIME_SIZE) {
|
---|
3132 | return MP_VAL;
|
---|
3133 | }
|
---|
3134 |
|
---|
3135 | /* is the input equal to one of the primes in the table? */
|
---|
3136 | for (ix = 0; ix < PRIME_SIZE; ix++) {
|
---|
3137 | if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
|
---|
3138 | *result = 1;
|
---|
3139 | return MP_OKAY;
|
---|
3140 | }
|
---|
3141 | }
|
---|
3142 |
|
---|
3143 | /* first perform trial division */
|
---|
3144 | if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
|
---|
3145 | return err;
|
---|
3146 | }
|
---|
3147 |
|
---|
3148 | /* return if it was trivially divisible */
|
---|
3149 | if (res == MP_YES) {
|
---|
3150 | return MP_OKAY;
|
---|
3151 | }
|
---|
3152 |
|
---|
3153 | /* now perform the miller-rabin rounds */
|
---|
3154 | if ((err = mp_init (&b)) != MP_OKAY) {
|
---|
3155 | return err;
|
---|
3156 | }
|
---|
3157 |
|
---|
3158 | for (ix = 0; ix < t; ix++) {
|
---|
3159 | /* set the prime */
|
---|
3160 | mp_set (&b, __prime_tab[ix]);
|
---|
3161 |
|
---|
3162 | if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
|
---|
3163 | goto __B;
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 | if (res == MP_NO) {
|
---|
3167 | goto __B;
|
---|
3168 | }
|
---|
3169 | }
|
---|
3170 |
|
---|
3171 | /* passed the test */
|
---|
3172 | *result = MP_YES;
|
---|
3173 | __B:mp_clear (&b);
|
---|
3174 | return err;
|
---|
3175 | }
|
---|
3176 |
|
---|
3177 | /* Miller-Rabin test of "a" to the base of "b" as described in
|
---|
3178 | * HAC pp. 139 Algorithm 4.24
|
---|
3179 | *
|
---|
3180 | * Sets result to 0 if definitely composite or 1 if probably prime.
|
---|
3181 | * Randomly the chance of error is no more than 1/4 and often
|
---|
3182 | * very much lower.
|
---|
3183 | */
|
---|
3184 | int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result)
|
---|
3185 | {
|
---|
3186 | mp_int n1, y, r;
|
---|
3187 | int s, j, err;
|
---|
3188 |
|
---|
3189 | /* default */
|
---|
3190 | *result = MP_NO;
|
---|
3191 |
|
---|
3192 | /* ensure b > 1 */
|
---|
3193 | if (mp_cmp_d(b, 1) != MP_GT) {
|
---|
3194 | return MP_VAL;
|
---|
3195 | }
|
---|
3196 |
|
---|
3197 | /* get n1 = a - 1 */
|
---|
3198 | if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
|
---|
3199 | return err;
|
---|
3200 | }
|
---|
3201 | if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
|
---|
3202 | goto __N1;
|
---|
3203 | }
|
---|
3204 |
|
---|
3205 | /* set 2**s * r = n1 */
|
---|
3206 | if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
|
---|
3207 | goto __N1;
|
---|
3208 | }
|
---|
3209 |
|
---|
3210 | /* count the number of least significant bits
|
---|
3211 | * which are zero
|
---|
3212 | */
|
---|
3213 | s = mp_cnt_lsb(&r);
|
---|
3214 |
|
---|
3215 | /* now divide n - 1 by 2**s */
|
---|
3216 | if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
|
---|
3217 | goto __R;
|
---|
3218 | }
|
---|
3219 |
|
---|
3220 | /* compute y = b**r mod a */
|
---|
3221 | if ((err = mp_init (&y)) != MP_OKAY) {
|
---|
3222 | goto __R;
|
---|
3223 | }
|
---|
3224 | if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
|
---|
3225 | goto __Y;
|
---|
3226 | }
|
---|
3227 |
|
---|
3228 | /* if y != 1 and y != n1 do */
|
---|
3229 | if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
|
---|
3230 | j = 1;
|
---|
3231 | /* while j <= s-1 and y != n1 */
|
---|
3232 | while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
|
---|
3233 | if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
|
---|
3234 | goto __Y;
|
---|
3235 | }
|
---|
3236 |
|
---|
3237 | /* if y == 1 then composite */
|
---|
3238 | if (mp_cmp_d (&y, 1) == MP_EQ) {
|
---|
3239 | goto __Y;
|
---|
3240 | }
|
---|
3241 |
|
---|
3242 | ++j;
|
---|
3243 | }
|
---|
3244 |
|
---|
3245 | /* if y != n1 then composite */
|
---|
3246 | if (mp_cmp (&y, &n1) != MP_EQ) {
|
---|
3247 | goto __Y;
|
---|
3248 | }
|
---|
3249 | }
|
---|
3250 |
|
---|
3251 | /* probably prime now */
|
---|
3252 | *result = MP_YES;
|
---|
3253 | __Y:mp_clear (&y);
|
---|
3254 | __R:mp_clear (&r);
|
---|
3255 | __N1:mp_clear (&n1);
|
---|
3256 | return err;
|
---|
3257 | }
|
---|
3258 |
|
---|
3259 | static const struct {
|
---|
3260 | int k, t;
|
---|
3261 | } sizes[] = {
|
---|
3262 | { 128, 28 },
|
---|
3263 | { 256, 16 },
|
---|
3264 | { 384, 10 },
|
---|
3265 | { 512, 7 },
|
---|
3266 | { 640, 6 },
|
---|
3267 | { 768, 5 },
|
---|
3268 | { 896, 4 },
|
---|
3269 | { 1024, 4 }
|
---|
3270 | };
|
---|
3271 |
|
---|
3272 | /* returns # of RM trials required for a given bit size */
|
---|
3273 | int mp_prime_rabin_miller_trials(int size)
|
---|
3274 | {
|
---|
3275 | int x;
|
---|
3276 |
|
---|
3277 | for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
|
---|
3278 | if (sizes[x].k == size) {
|
---|
3279 | return sizes[x].t;
|
---|
3280 | } else if (sizes[x].k > size) {
|
---|
3281 | return (x == 0) ? sizes[0].t : sizes[x - 1].t;
|
---|
3282 | }
|
---|
3283 | }
|
---|
3284 | return sizes[x-1].t + 1;
|
---|
3285 | }
|
---|
3286 |
|
---|
3287 | /* makes a truly random prime of a given size (bits),
|
---|
3288 | *
|
---|
3289 | * Flags are as follows:
|
---|
3290 | *
|
---|
3291 | * LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
---|
3292 | * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
---|
3293 | * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
|
---|
3294 | * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
---|
3295 | *
|
---|
3296 | * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
---|
3297 | * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
---|
3298 | * so it can be NULL
|
---|
3299 | *
|
---|
3300 | */
|
---|
3301 |
|
---|
3302 | /* This is possibly the mother of all prime generation functions, muahahahahaha! */
|
---|
3303 | int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
|
---|
3304 | {
|
---|
3305 | unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
|
---|
3306 | int res, err, bsize, maskOR_msb_offset;
|
---|
3307 |
|
---|
3308 | /* sanity check the input */
|
---|
3309 | if (size <= 1 || t <= 0) {
|
---|
3310 | return MP_VAL;
|
---|
3311 | }
|
---|
3312 |
|
---|
3313 | /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
|
---|
3314 | if (flags & LTM_PRIME_SAFE) {
|
---|
3315 | flags |= LTM_PRIME_BBS;
|
---|
3316 | }
|
---|
3317 |
|
---|
3318 | /* calc the byte size */
|
---|
3319 | bsize = (size>>3)+((size&7)?1:0);
|
---|
3320 |
|
---|
3321 | /* we need a buffer of bsize bytes */
|
---|
3322 | tmp = malloc(bsize);
|
---|
3323 | if (tmp == NULL) {
|
---|
3324 | return MP_MEM;
|
---|
3325 | }
|
---|
3326 |
|
---|
3327 | /* calc the maskAND value for the MSbyte*/
|
---|
3328 | maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
|
---|
3329 |
|
---|
3330 | /* calc the maskOR_msb */
|
---|
3331 | maskOR_msb = 0;
|
---|
3332 | maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
|
---|
3333 | if (flags & LTM_PRIME_2MSB_ON) {
|
---|
3334 | maskOR_msb |= 1 << ((size - 2) & 7);
|
---|
3335 | } else if (flags & LTM_PRIME_2MSB_OFF) {
|
---|
3336 | maskAND &= ~(1 << ((size - 2) & 7));
|
---|
3337 | }
|
---|
3338 |
|
---|
3339 | /* get the maskOR_lsb */
|
---|
3340 | maskOR_lsb = 0;
|
---|
3341 | if (flags & LTM_PRIME_BBS) {
|
---|
3342 | maskOR_lsb |= 3;
|
---|
3343 | }
|
---|
3344 |
|
---|
3345 | do {
|
---|
3346 | /* read the bytes */
|
---|
3347 | if (cb(tmp, bsize, dat) != bsize) {
|
---|
3348 | err = MP_VAL;
|
---|
3349 | goto error;
|
---|
3350 | }
|
---|
3351 |
|
---|
3352 | /* work over the MSbyte */
|
---|
3353 | tmp[0] &= maskAND;
|
---|
3354 | tmp[0] |= 1 << ((size - 1) & 7);
|
---|
3355 |
|
---|
3356 | /* mix in the maskORs */
|
---|
3357 | tmp[maskOR_msb_offset] |= maskOR_msb;
|
---|
3358 | tmp[bsize-1] |= maskOR_lsb;
|
---|
3359 |
|
---|
3360 | /* read it in */
|
---|
3361 | if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
|
---|
3362 |
|
---|
3363 | /* is it prime? */
|
---|
3364 | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
---|
3365 | if (res == MP_NO) {
|
---|
3366 | continue;
|
---|
3367 | }
|
---|
3368 |
|
---|
3369 | if (flags & LTM_PRIME_SAFE) {
|
---|
3370 | /* see if (a-1)/2 is prime */
|
---|
3371 | if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
|
---|
3372 | if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
|
---|
3373 |
|
---|
3374 | /* is it prime? */
|
---|
3375 | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
---|
3376 | }
|
---|
3377 | } while (res == MP_NO);
|
---|
3378 |
|
---|
3379 | if (flags & LTM_PRIME_SAFE) {
|
---|
3380 | /* restore a to the original value */
|
---|
3381 | if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
|
---|
3382 | if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
|
---|
3383 | }
|
---|
3384 |
|
---|
3385 | err = MP_OKAY;
|
---|
3386 | error:
|
---|
3387 | free(tmp);
|
---|
3388 | return err;
|
---|
3389 | }
|
---|
3390 |
|
---|
3391 | /* reads an unsigned char array, assumes the msb is stored first [big endian] */
|
---|
3392 | int
|
---|
3393 | mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
|
---|
3394 | {
|
---|
3395 | int res;
|
---|
3396 |
|
---|
3397 | /* make sure there are at least two digits */
|
---|
3398 | if (a->alloc < 2) {
|
---|
3399 | if ((res = mp_grow(a, 2)) != MP_OKAY) {
|
---|
3400 | return res;
|
---|
3401 | }
|
---|
3402 | }
|
---|
3403 |
|
---|
3404 | /* zero the int */
|
---|
3405 | mp_zero (a);
|
---|
3406 |
|
---|
3407 | /* read the bytes in */
|
---|
3408 | while (c-- > 0) {
|
---|
3409 | if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
|
---|
3410 | return res;
|
---|
3411 | }
|
---|
3412 |
|
---|
3413 | a->dp[0] |= *b++;
|
---|
3414 | a->used += 1;
|
---|
3415 | }
|
---|
3416 | mp_clamp (a);
|
---|
3417 | return MP_OKAY;
|
---|
3418 | }
|
---|
3419 |
|
---|
3420 | /* reduces x mod m, assumes 0 < x < m**2, mu is
|
---|
3421 | * precomputed via mp_reduce_setup.
|
---|
3422 | * From HAC pp.604 Algorithm 14.42
|
---|
3423 | */
|
---|
3424 | int
|
---|
3425 | mp_reduce (mp_int * x, const mp_int * m, const mp_int * mu)
|
---|
3426 | {
|
---|
3427 | mp_int q;
|
---|
3428 | int res, um = m->used;
|
---|
3429 |
|
---|
3430 | /* q = x */
|
---|
3431 | if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
|
---|
3432 | return res;
|
---|
3433 | }
|
---|
3434 |
|
---|
3435 | /* q1 = x / b**(k-1) */
|
---|
3436 | mp_rshd (&q, um - 1);
|
---|
3437 |
|
---|
3438 | /* according to HAC this optimization is ok */
|
---|
3439 | if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
|
---|
3440 | if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
|
---|
3441 | goto CLEANUP;
|
---|
3442 | }
|
---|
3443 | } else {
|
---|
3444 | if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
|
---|
3445 | goto CLEANUP;
|
---|
3446 | }
|
---|
3447 | }
|
---|
3448 |
|
---|
3449 | /* q3 = q2 / b**(k+1) */
|
---|
3450 | mp_rshd (&q, um + 1);
|
---|
3451 |
|
---|
3452 | /* x = x mod b**(k+1), quick (no division) */
|
---|
3453 | if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
---|
3454 | goto CLEANUP;
|
---|
3455 | }
|
---|
3456 |
|
---|
3457 | /* q = q * m mod b**(k+1), quick (no division) */
|
---|
3458 | if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
|
---|
3459 | goto CLEANUP;
|
---|
3460 | }
|
---|
3461 |
|
---|
3462 | /* x = x - q */
|
---|
3463 | if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
|
---|
3464 | goto CLEANUP;
|
---|
3465 | }
|
---|
3466 |
|
---|
3467 | /* If x < 0, add b**(k+1) to it */
|
---|
3468 | if (mp_cmp_d (x, 0) == MP_LT) {
|
---|
3469 | mp_set (&q, 1);
|
---|
3470 | if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
|
---|
3471 | goto CLEANUP;
|
---|
3472 | if ((res = mp_add (x, &q, x)) != MP_OKAY)
|
---|
3473 | goto CLEANUP;
|
---|
3474 | }
|
---|
3475 |
|
---|
3476 | /* Back off if it's too big */
|
---|
3477 | while (mp_cmp (x, m) != MP_LT) {
|
---|
3478 | if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
|
---|
3479 | goto CLEANUP;
|
---|
3480 | }
|
---|
3481 | }
|
---|
3482 |
|
---|
3483 | CLEANUP:
|
---|
3484 | mp_clear (&q);
|
---|
3485 |
|
---|
3486 | return res;
|
---|
3487 | }
|
---|
3488 |
|
---|
3489 | /* reduces a modulo n where n is of the form 2**p - d */
|
---|
3490 | int
|
---|
3491 | mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
|
---|
3492 | {
|
---|
3493 | mp_int q;
|
---|
3494 | int p, res;
|
---|
3495 |
|
---|
3496 | if ((res = mp_init(&q)) != MP_OKAY) {
|
---|
3497 | return res;
|
---|
3498 | }
|
---|
3499 |
|
---|
3500 | p = mp_count_bits(n);
|
---|
3501 | top:
|
---|
3502 | /* q = a/2**p, a = a mod 2**p */
|
---|
3503 | if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
---|
3504 | goto ERR;
|
---|
3505 | }
|
---|
3506 |
|
---|
3507 | if (d != 1) {
|
---|
3508 | /* q = q * d */
|
---|
3509 | if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
|
---|
3510 | goto ERR;
|
---|
3511 | }
|
---|
3512 | }
|
---|
3513 |
|
---|
3514 | /* a = a + q */
|
---|
3515 | if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
---|
3516 | goto ERR;
|
---|
3517 | }
|
---|
3518 |
|
---|
3519 | if (mp_cmp_mag(a, n) != MP_LT) {
|
---|
3520 | s_mp_sub(a, n, a);
|
---|
3521 | goto top;
|
---|
3522 | }
|
---|
3523 |
|
---|
3524 | ERR:
|
---|
3525 | mp_clear(&q);
|
---|
3526 | return res;
|
---|
3527 | }
|
---|
3528 |
|
---|
3529 | /* determines the setup value */
|
---|
3530 | int
|
---|
3531 | mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
|
---|
3532 | {
|
---|
3533 | int res, p;
|
---|
3534 | mp_int tmp;
|
---|
3535 |
|
---|
3536 | if ((res = mp_init(&tmp)) != MP_OKAY) {
|
---|
3537 | return res;
|
---|
3538 | }
|
---|
3539 |
|
---|
3540 | p = mp_count_bits(a);
|
---|
3541 | if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
|
---|
3542 | mp_clear(&tmp);
|
---|
3543 | return res;
|
---|
3544 | }
|
---|
3545 |
|
---|
3546 | if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
|
---|
3547 | mp_clear(&tmp);
|
---|
3548 | return res;
|
---|
3549 | }
|
---|
3550 |
|
---|
3551 | *d = tmp.dp[0];
|
---|
3552 | mp_clear(&tmp);
|
---|
3553 | return MP_OKAY;
|
---|
3554 | }
|
---|
3555 |
|
---|
3556 | /* pre-calculate the value required for Barrett reduction
|
---|
3557 | * For a given modulus "b" it calulates the value required in "a"
|
---|
3558 | */
|
---|
3559 | int mp_reduce_setup (mp_int * a, const mp_int * b)
|
---|
3560 | {
|
---|
3561 | int res;
|
---|
3562 |
|
---|
3563 | if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
---|
3564 | return res;
|
---|
3565 | }
|
---|
3566 | return mp_div (a, b, a, NULL);
|
---|
3567 | }
|
---|
3568 |
|
---|
3569 | /* shift right a certain amount of digits */
|
---|
3570 | void mp_rshd (mp_int * a, int b)
|
---|
3571 | {
|
---|
3572 | int x;
|
---|
3573 |
|
---|
3574 | /* if b <= 0 then ignore it */
|
---|
3575 | if (b <= 0) {
|
---|
3576 | return;
|
---|
3577 | }
|
---|
3578 |
|
---|
3579 | /* if b > used then simply zero it and return */
|
---|
3580 | if (a->used <= b) {
|
---|
3581 | mp_zero (a);
|
---|
3582 | return;
|
---|
3583 | }
|
---|
3584 |
|
---|
3585 | {
|
---|
3586 | register mp_digit *bottom, *top;
|
---|
3587 |
|
---|
3588 | /* shift the digits down */
|
---|
3589 |
|
---|
3590 | /* bottom */
|
---|
3591 | bottom = a->dp;
|
---|
3592 |
|
---|
3593 | /* top [offset into digits] */
|
---|
3594 | top = a->dp + b;
|
---|
3595 |
|
---|
3596 | /* this is implemented as a sliding window where
|
---|
3597 | * the window is b-digits long and digits from
|
---|
3598 | * the top of the window are copied to the bottom
|
---|
3599 | *
|
---|
3600 | * e.g.
|
---|
3601 |
|
---|
3602 | b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
---|
3603 | /\ | ---->
|
---|
3604 | \-------------------/ ---->
|
---|
3605 | */
|
---|
3606 | for (x = 0; x < (a->used - b); x++) {
|
---|
3607 | *bottom++ = *top++;
|
---|
3608 | }
|
---|
3609 |
|
---|
3610 | /* zero the top digits */
|
---|
3611 | for (; x < a->used; x++) {
|
---|
3612 | *bottom++ = 0;
|
---|
3613 | }
|
---|
3614 | }
|
---|
3615 |
|
---|
3616 | /* remove excess digits */
|
---|
3617 | a->used -= b;
|
---|
3618 | }
|
---|
3619 |
|
---|
3620 | /* set to a digit */
|
---|
3621 | void mp_set (mp_int * a, mp_digit b)
|
---|
3622 | {
|
---|
3623 | mp_zero (a);
|
---|
3624 | a->dp[0] = b & MP_MASK;
|
---|
3625 | a->used = (a->dp[0] != 0) ? 1 : 0;
|
---|
3626 | }
|
---|
3627 |
|
---|
3628 | /* set a 32-bit const */
|
---|
3629 | int mp_set_int (mp_int * a, unsigned long b)
|
---|
3630 | {
|
---|
3631 | int x, res;
|
---|
3632 |
|
---|
3633 | mp_zero (a);
|
---|
3634 |
|
---|
3635 | /* set four bits at a time */
|
---|
3636 | for (x = 0; x < 8; x++) {
|
---|
3637 | /* shift the number up four bits */
|
---|
3638 | if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
|
---|
3639 | return res;
|
---|
3640 | }
|
---|
3641 |
|
---|
3642 | /* OR in the top four bits of the source */
|
---|
3643 | a->dp[0] |= (b >> 28) & 15;
|
---|
3644 |
|
---|
3645 | /* shift the source up to the next four bits */
|
---|
3646 | b <<= 4;
|
---|
3647 |
|
---|
3648 | /* ensure that digits are not clamped off */
|
---|
3649 | a->used += 1;
|
---|
3650 | }
|
---|
3651 | mp_clamp (a);
|
---|
3652 | return MP_OKAY;
|
---|
3653 | }
|
---|
3654 |
|
---|
3655 | /* shrink a bignum */
|
---|
3656 | int mp_shrink (mp_int * a)
|
---|
3657 | {
|
---|
3658 | mp_digit *tmp;
|
---|
3659 | if (a->alloc != a->used && a->used > 0) {
|
---|
3660 | if ((tmp = realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
---|
3661 | return MP_MEM;
|
---|
3662 | }
|
---|
3663 | a->dp = tmp;
|
---|
3664 | a->alloc = a->used;
|
---|
3665 | }
|
---|
3666 | return MP_OKAY;
|
---|
3667 | }
|
---|
3668 |
|
---|
3669 | /* get the size for an signed equivalent */
|
---|
3670 | int mp_signed_bin_size (const mp_int * a)
|
---|
3671 | {
|
---|
3672 | return 1 + mp_unsigned_bin_size (a);
|
---|
3673 | }
|
---|
3674 |
|
---|
3675 | /* computes b = a*a */
|
---|
3676 | int
|
---|
3677 | mp_sqr (const mp_int * a, mp_int * b)
|
---|
3678 | {
|
---|
3679 | int res;
|
---|
3680 |
|
---|
3681 | if (a->used >= KARATSUBA_SQR_CUTOFF) {
|
---|
3682 | res = mp_karatsuba_sqr (a, b);
|
---|
3683 | } else
|
---|
3684 | {
|
---|
3685 | /* can we use the fast comba multiplier? */
|
---|
3686 | if ((a->used * 2 + 1) < MP_WARRAY &&
|
---|
3687 | a->used <
|
---|
3688 | (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
|
---|
3689 | res = fast_s_mp_sqr (a, b);
|
---|
3690 | } else
|
---|
3691 | res = s_mp_sqr (a, b);
|
---|
3692 | }
|
---|
3693 | b->sign = MP_ZPOS;
|
---|
3694 | return res;
|
---|
3695 | }
|
---|
3696 |
|
---|
3697 | /* c = a * a (mod b) */
|
---|
3698 | int
|
---|
3699 | mp_sqrmod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
3700 | {
|
---|
3701 | int res;
|
---|
3702 | mp_int t;
|
---|
3703 |
|
---|
3704 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
3705 | return res;
|
---|
3706 | }
|
---|
3707 |
|
---|
3708 | if ((res = mp_sqr (a, &t)) != MP_OKAY) {
|
---|
3709 | mp_clear (&t);
|
---|
3710 | return res;
|
---|
3711 | }
|
---|
3712 | res = mp_mod (&t, b, c);
|
---|
3713 | mp_clear (&t);
|
---|
3714 | return res;
|
---|
3715 | }
|
---|
3716 |
|
---|
3717 | /* high level subtraction (handles signs) */
|
---|
3718 | int
|
---|
3719 | mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
---|
3720 | {
|
---|
3721 | int sa, sb, res;
|
---|
3722 |
|
---|
3723 | sa = a->sign;
|
---|
3724 | sb = b->sign;
|
---|
3725 |
|
---|
3726 | if (sa != sb) {
|
---|
3727 | /* subtract a negative from a positive, OR */
|
---|
3728 | /* subtract a positive from a negative. */
|
---|
3729 | /* In either case, ADD their magnitudes, */
|
---|
3730 | /* and use the sign of the first number. */
|
---|
3731 | c->sign = sa;
|
---|
3732 | res = s_mp_add (a, b, c);
|
---|
3733 | } else {
|
---|
3734 | /* subtract a positive from a positive, OR */
|
---|
3735 | /* subtract a negative from a negative. */
|
---|
3736 | /* First, take the difference between their */
|
---|
3737 | /* magnitudes, then... */
|
---|
3738 | if (mp_cmp_mag (a, b) != MP_LT) {
|
---|
3739 | /* Copy the sign from the first */
|
---|
3740 | c->sign = sa;
|
---|
3741 | /* The first has a larger or equal magnitude */
|
---|
3742 | res = s_mp_sub (a, b, c);
|
---|
3743 | } else {
|
---|
3744 | /* The result has the *opposite* sign from */
|
---|
3745 | /* the first number. */
|
---|
3746 | c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
---|
3747 | /* The second has a larger magnitude */
|
---|
3748 | res = s_mp_sub (b, a, c);
|
---|
3749 | }
|
---|
3750 | }
|
---|
3751 | return res;
|
---|
3752 | }
|
---|
3753 |
|
---|
3754 | /* single digit subtraction */
|
---|
3755 | int
|
---|
3756 | mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
---|
3757 | {
|
---|
3758 | mp_digit *tmpa, *tmpc, mu;
|
---|
3759 | int res, ix, oldused;
|
---|
3760 |
|
---|
3761 | /* grow c as required */
|
---|
3762 | if (c->alloc < a->used + 1) {
|
---|
3763 | if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
---|
3764 | return res;
|
---|
3765 | }
|
---|
3766 | }
|
---|
3767 |
|
---|
3768 | /* if a is negative just do an unsigned
|
---|
3769 | * addition [with fudged signs]
|
---|
3770 | */
|
---|
3771 | if (a->sign == MP_NEG) {
|
---|
3772 | a->sign = MP_ZPOS;
|
---|
3773 | res = mp_add_d(a, b, c);
|
---|
3774 | a->sign = c->sign = MP_NEG;
|
---|
3775 | return res;
|
---|
3776 | }
|
---|
3777 |
|
---|
3778 | /* setup regs */
|
---|
3779 | oldused = c->used;
|
---|
3780 | tmpa = a->dp;
|
---|
3781 | tmpc = c->dp;
|
---|
3782 |
|
---|
3783 | /* if a <= b simply fix the single digit */
|
---|
3784 | if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
|
---|
3785 | if (a->used == 1) {
|
---|
3786 | *tmpc++ = b - *tmpa;
|
---|
3787 | } else {
|
---|
3788 | *tmpc++ = b;
|
---|
3789 | }
|
---|
3790 | ix = 1;
|
---|
3791 |
|
---|
3792 | /* negative/1digit */
|
---|
3793 | c->sign = MP_NEG;
|
---|
3794 | c->used = 1;
|
---|
3795 | } else {
|
---|
3796 | /* positive/size */
|
---|
3797 | c->sign = MP_ZPOS;
|
---|
3798 | c->used = a->used;
|
---|
3799 |
|
---|
3800 | /* subtract first digit */
|
---|
3801 | *tmpc = *tmpa++ - b;
|
---|
3802 | mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
|
---|
3803 | *tmpc++ &= MP_MASK;
|
---|
3804 |
|
---|
3805 | /* handle rest of the digits */
|
---|
3806 | for (ix = 1; ix < a->used; ix++) {
|
---|
3807 | *tmpc = *tmpa++ - mu;
|
---|
3808 | mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
|
---|
3809 | *tmpc++ &= MP_MASK;
|
---|
3810 | }
|
---|
3811 | }
|
---|
3812 |
|
---|
3813 | /* zero excess digits */
|
---|
3814 | while (ix++ < oldused) {
|
---|
3815 | *tmpc++ = 0;
|
---|
3816 | }
|
---|
3817 | mp_clamp(c);
|
---|
3818 | return MP_OKAY;
|
---|
3819 | }
|
---|
3820 |
|
---|
3821 | /* store in unsigned [big endian] format */
|
---|
3822 | int
|
---|
3823 | mp_to_unsigned_bin (const mp_int * a, unsigned char *b)
|
---|
3824 | {
|
---|
3825 | int x, res;
|
---|
3826 | mp_int t;
|
---|
3827 |
|
---|
3828 | if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
---|
3829 | return res;
|
---|
3830 | }
|
---|
3831 |
|
---|
3832 | x = 0;
|
---|
3833 | while (mp_iszero (&t) == 0) {
|
---|
3834 | b[x++] = (unsigned char) (t.dp[0] & 255);
|
---|
3835 | if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
|
---|
3836 | mp_clear (&t);
|
---|
3837 | return res;
|
---|
3838 | }
|
---|
3839 | }
|
---|
3840 | bn_reverse (b, x);
|
---|
3841 | mp_clear (&t);
|
---|
3842 | return MP_OKAY;
|
---|
3843 | }
|
---|
3844 |
|
---|
3845 | /* get the size for an unsigned equivalent */
|
---|
3846 | int
|
---|
3847 | mp_unsigned_bin_size (const mp_int * a)
|
---|
3848 | {
|
---|
3849 | int size = mp_count_bits (a);
|
---|
3850 | return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
---|
3851 | }
|
---|
3852 |
|
---|
3853 | /* set to zero */
|
---|
3854 | void
|
---|
3855 | mp_zero (mp_int * a)
|
---|
3856 | {
|
---|
3857 | a->sign = MP_ZPOS;
|
---|
3858 | a->used = 0;
|
---|
3859 | memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
|
---|
3860 | }
|
---|
3861 |
|
---|
3862 | /* reverse an array, used for radix code */
|
---|
3863 | static void
|
---|
3864 | bn_reverse (unsigned char *s, int len)
|
---|
3865 | {
|
---|
3866 | int ix, iy;
|
---|
3867 | unsigned char t;
|
---|
3868 |
|
---|
3869 | ix = 0;
|
---|
3870 | iy = len - 1;
|
---|
3871 | while (ix < iy) {
|
---|
3872 | t = s[ix];
|
---|
3873 | s[ix] = s[iy];
|
---|
3874 | s[iy] = t;
|
---|
3875 | ++ix;
|
---|
3876 | --iy;
|
---|
3877 | }
|
---|
3878 | }
|
---|
3879 |
|
---|
3880 | /* low level addition, based on HAC pp.594, Algorithm 14.7 */
|
---|
3881 | static int
|
---|
3882 | s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
---|
3883 | {
|
---|
3884 | mp_int *x;
|
---|
3885 | int olduse, res, min, max;
|
---|
3886 |
|
---|
3887 | /* find sizes, we let |a| <= |b| which means we have to sort
|
---|
3888 | * them. "x" will point to the input with the most digits
|
---|
3889 | */
|
---|
3890 | if (a->used > b->used) {
|
---|
3891 | min = b->used;
|
---|
3892 | max = a->used;
|
---|
3893 | x = a;
|
---|
3894 | } else {
|
---|
3895 | min = a->used;
|
---|
3896 | max = b->used;
|
---|
3897 | x = b;
|
---|
3898 | }
|
---|
3899 |
|
---|
3900 | /* init result */
|
---|
3901 | if (c->alloc < max + 1) {
|
---|
3902 | if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
|
---|
3903 | return res;
|
---|
3904 | }
|
---|
3905 | }
|
---|
3906 |
|
---|
3907 | /* get old used digit count and set new one */
|
---|
3908 | olduse = c->used;
|
---|
3909 | c->used = max + 1;
|
---|
3910 |
|
---|
3911 | {
|
---|
3912 | register mp_digit u, *tmpa, *tmpb, *tmpc;
|
---|
3913 | register int i;
|
---|
3914 |
|
---|
3915 | /* alias for digit pointers */
|
---|
3916 |
|
---|
3917 | /* first input */
|
---|
3918 | tmpa = a->dp;
|
---|
3919 |
|
---|
3920 | /* second input */
|
---|
3921 | tmpb = b->dp;
|
---|
3922 |
|
---|
3923 | /* destination */
|
---|
3924 | tmpc = c->dp;
|
---|
3925 |
|
---|
3926 | /* zero the carry */
|
---|
3927 | u = 0;
|
---|
3928 | for (i = 0; i < min; i++) {
|
---|
3929 | /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
|
---|
3930 | *tmpc = *tmpa++ + *tmpb++ + u;
|
---|
3931 |
|
---|
3932 | /* U = carry bit of T[i] */
|
---|
3933 | u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
---|
3934 |
|
---|
3935 | /* take away carry bit from T[i] */
|
---|
3936 | *tmpc++ &= MP_MASK;
|
---|
3937 | }
|
---|
3938 |
|
---|
3939 | /* now copy higher words if any, that is in A+B
|
---|
3940 | * if A or B has more digits add those in
|
---|
3941 | */
|
---|
3942 | if (min != max) {
|
---|
3943 | for (; i < max; i++) {
|
---|
3944 | /* T[i] = X[i] + U */
|
---|
3945 | *tmpc = x->dp[i] + u;
|
---|
3946 |
|
---|
3947 | /* U = carry bit of T[i] */
|
---|
3948 | u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
---|
3949 |
|
---|
3950 | /* take away carry bit from T[i] */
|
---|
3951 | *tmpc++ &= MP_MASK;
|
---|
3952 | }
|
---|
3953 | }
|
---|
3954 |
|
---|
3955 | /* add carry */
|
---|
3956 | *tmpc++ = u;
|
---|
3957 |
|
---|
3958 | /* clear digits above oldused */
|
---|
3959 | for (i = c->used; i < olduse; i++) {
|
---|
3960 | *tmpc++ = 0;
|
---|
3961 | }
|
---|
3962 | }
|
---|
3963 |
|
---|
3964 | mp_clamp (c);
|
---|
3965 | return MP_OKAY;
|
---|
3966 | }
|
---|
3967 |
|
---|
3968 | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
|
---|
3969 | {
|
---|
3970 | mp_int M[256], res, mu;
|
---|
3971 | mp_digit buf;
|
---|
3972 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
---|
3973 |
|
---|
3974 | /* find window size */
|
---|
3975 | x = mp_count_bits (X);
|
---|
3976 | if (x <= 7) {
|
---|
3977 | winsize = 2;
|
---|
3978 | } else if (x <= 36) {
|
---|
3979 | winsize = 3;
|
---|
3980 | } else if (x <= 140) {
|
---|
3981 | winsize = 4;
|
---|
3982 | } else if (x <= 450) {
|
---|
3983 | winsize = 5;
|
---|
3984 | } else if (x <= 1303) {
|
---|
3985 | winsize = 6;
|
---|
3986 | } else if (x <= 3529) {
|
---|
3987 | winsize = 7;
|
---|
3988 | } else {
|
---|
3989 | winsize = 8;
|
---|
3990 | }
|
---|
3991 |
|
---|
3992 | /* init M array */
|
---|
3993 | /* init first cell */
|
---|
3994 | if ((err = mp_init(&M[1])) != MP_OKAY) {
|
---|
3995 | return err;
|
---|
3996 | }
|
---|
3997 |
|
---|
3998 | /* now init the second half of the array */
|
---|
3999 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
4000 | if ((err = mp_init(&M[x])) != MP_OKAY) {
|
---|
4001 | for (y = 1<<(winsize-1); y < x; y++) {
|
---|
4002 | mp_clear (&M[y]);
|
---|
4003 | }
|
---|
4004 | mp_clear(&M[1]);
|
---|
4005 | return err;
|
---|
4006 | }
|
---|
4007 | }
|
---|
4008 |
|
---|
4009 | /* create mu, used for Barrett reduction */
|
---|
4010 | if ((err = mp_init (&mu)) != MP_OKAY) {
|
---|
4011 | goto __M;
|
---|
4012 | }
|
---|
4013 | if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
---|
4014 | goto __MU;
|
---|
4015 | }
|
---|
4016 |
|
---|
4017 | /* create M table
|
---|
4018 | *
|
---|
4019 | * The M table contains powers of the base,
|
---|
4020 | * e.g. M[x] = G**x mod P
|
---|
4021 | *
|
---|
4022 | * The first half of the table is not
|
---|
4023 | * computed though accept for M[0] and M[1]
|
---|
4024 | */
|
---|
4025 | if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
---|
4026 | goto __MU;
|
---|
4027 | }
|
---|
4028 |
|
---|
4029 | /* compute the value at M[1<<(winsize-1)] by squaring
|
---|
4030 | * M[1] (winsize-1) times
|
---|
4031 | */
|
---|
4032 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
4033 | goto __MU;
|
---|
4034 | }
|
---|
4035 |
|
---|
4036 | for (x = 0; x < (winsize - 1); x++) {
|
---|
4037 | if ((err = mp_sqr (&M[1 << (winsize - 1)],
|
---|
4038 | &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
4039 | goto __MU;
|
---|
4040 | }
|
---|
4041 | if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
---|
4042 | goto __MU;
|
---|
4043 | }
|
---|
4044 | }
|
---|
4045 |
|
---|
4046 | /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
|
---|
4047 | * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
|
---|
4048 | */
|
---|
4049 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
---|
4050 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
---|
4051 | goto __MU;
|
---|
4052 | }
|
---|
4053 | if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
|
---|
4054 | goto __MU;
|
---|
4055 | }
|
---|
4056 | }
|
---|
4057 |
|
---|
4058 | /* setup result */
|
---|
4059 | if ((err = mp_init (&res)) != MP_OKAY) {
|
---|
4060 | goto __MU;
|
---|
4061 | }
|
---|
4062 | mp_set (&res, 1);
|
---|
4063 |
|
---|
4064 | /* set initial mode and bit cnt */
|
---|
4065 | mode = 0;
|
---|
4066 | bitcnt = 1;
|
---|
4067 | buf = 0;
|
---|
4068 | digidx = X->used - 1;
|
---|
4069 | bitcpy = 0;
|
---|
4070 | bitbuf = 0;
|
---|
4071 |
|
---|
4072 | for (;;) {
|
---|
4073 | /* grab next digit as required */
|
---|
4074 | if (--bitcnt == 0) {
|
---|
4075 | /* if digidx == -1 we are out of digits */
|
---|
4076 | if (digidx == -1) {
|
---|
4077 | break;
|
---|
4078 | }
|
---|
4079 | /* read next digit and reset the bitcnt */
|
---|
4080 | buf = X->dp[digidx--];
|
---|
4081 | bitcnt = DIGIT_BIT;
|
---|
4082 | }
|
---|
4083 |
|
---|
4084 | /* grab the next msb from the exponent */
|
---|
4085 | y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
|
---|
4086 | buf <<= (mp_digit)1;
|
---|
4087 |
|
---|
4088 | /* if the bit is zero and mode == 0 then we ignore it
|
---|
4089 | * These represent the leading zero bits before the first 1 bit
|
---|
4090 | * in the exponent. Technically this opt is not required but it
|
---|
4091 | * does lower the # of trivial squaring/reductions used
|
---|
4092 | */
|
---|
4093 | if (mode == 0 && y == 0) {
|
---|
4094 | continue;
|
---|
4095 | }
|
---|
4096 |
|
---|
4097 | /* if the bit is zero and mode == 1 then we square */
|
---|
4098 | if (mode == 1 && y == 0) {
|
---|
4099 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
4100 | goto __RES;
|
---|
4101 | }
|
---|
4102 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
4103 | goto __RES;
|
---|
4104 | }
|
---|
4105 | continue;
|
---|
4106 | }
|
---|
4107 |
|
---|
4108 | /* else we add it to the window */
|
---|
4109 | bitbuf |= (y << (winsize - ++bitcpy));
|
---|
4110 | mode = 2;
|
---|
4111 |
|
---|
4112 | if (bitcpy == winsize) {
|
---|
4113 | /* ok window is filled so square as required and multiply */
|
---|
4114 | /* square first */
|
---|
4115 | for (x = 0; x < winsize; x++) {
|
---|
4116 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
4117 | goto __RES;
|
---|
4118 | }
|
---|
4119 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
4120 | goto __RES;
|
---|
4121 | }
|
---|
4122 | }
|
---|
4123 |
|
---|
4124 | /* then multiply */
|
---|
4125 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
---|
4126 | goto __RES;
|
---|
4127 | }
|
---|
4128 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
4129 | goto __RES;
|
---|
4130 | }
|
---|
4131 |
|
---|
4132 | /* empty window and reset */
|
---|
4133 | bitcpy = 0;
|
---|
4134 | bitbuf = 0;
|
---|
4135 | mode = 1;
|
---|
4136 | }
|
---|
4137 | }
|
---|
4138 |
|
---|
4139 | /* if bits remain then square/multiply */
|
---|
4140 | if (mode == 2 && bitcpy > 0) {
|
---|
4141 | /* square then multiply if the bit is set */
|
---|
4142 | for (x = 0; x < bitcpy; x++) {
|
---|
4143 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
4144 | goto __RES;
|
---|
4145 | }
|
---|
4146 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
4147 | goto __RES;
|
---|
4148 | }
|
---|
4149 |
|
---|
4150 | bitbuf <<= 1;
|
---|
4151 | if ((bitbuf & (1 << winsize)) != 0) {
|
---|
4152 | /* then multiply */
|
---|
4153 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
---|
4154 | goto __RES;
|
---|
4155 | }
|
---|
4156 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
4157 | goto __RES;
|
---|
4158 | }
|
---|
4159 | }
|
---|
4160 | }
|
---|
4161 | }
|
---|
4162 |
|
---|
4163 | mp_exch (&res, Y);
|
---|
4164 | err = MP_OKAY;
|
---|
4165 | __RES:mp_clear (&res);
|
---|
4166 | __MU:mp_clear (&mu);
|
---|
4167 | __M:
|
---|
4168 | mp_clear(&M[1]);
|
---|
4169 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
4170 | mp_clear (&M[x]);
|
---|
4171 | }
|
---|
4172 | return err;
|
---|
4173 | }
|
---|
4174 |
|
---|
4175 | /* multiplies |a| * |b| and only computes up to digs digits of result
|
---|
4176 | * HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
---|
4177 | * many digits of output are created.
|
---|
4178 | */
|
---|
4179 | static int
|
---|
4180 | s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
4181 | {
|
---|
4182 | mp_int t;
|
---|
4183 | int res, pa, pb, ix, iy;
|
---|
4184 | mp_digit u;
|
---|
4185 | mp_word r;
|
---|
4186 | mp_digit tmpx, *tmpt, *tmpy;
|
---|
4187 |
|
---|
4188 | /* can we use the fast multiplier? */
|
---|
4189 | if (((digs) < MP_WARRAY) &&
|
---|
4190 | MIN (a->used, b->used) <
|
---|
4191 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
4192 | return fast_s_mp_mul_digs (a, b, c, digs);
|
---|
4193 | }
|
---|
4194 |
|
---|
4195 | if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
|
---|
4196 | return res;
|
---|
4197 | }
|
---|
4198 | t.used = digs;
|
---|
4199 |
|
---|
4200 | /* compute the digits of the product directly */
|
---|
4201 | pa = a->used;
|
---|
4202 | for (ix = 0; ix < pa; ix++) {
|
---|
4203 | /* set the carry to zero */
|
---|
4204 | u = 0;
|
---|
4205 |
|
---|
4206 | /* limit ourselves to making digs digits of output */
|
---|
4207 | pb = MIN (b->used, digs - ix);
|
---|
4208 |
|
---|
4209 | /* setup some aliases */
|
---|
4210 | /* copy of the digit from a used within the nested loop */
|
---|
4211 | tmpx = a->dp[ix];
|
---|
4212 |
|
---|
4213 | /* an alias for the destination shifted ix places */
|
---|
4214 | tmpt = t.dp + ix;
|
---|
4215 |
|
---|
4216 | /* an alias for the digits of b */
|
---|
4217 | tmpy = b->dp;
|
---|
4218 |
|
---|
4219 | /* compute the columns of the output and propagate the carry */
|
---|
4220 | for (iy = 0; iy < pb; iy++) {
|
---|
4221 | /* compute the column as a mp_word */
|
---|
4222 | r = ((mp_word)*tmpt) +
|
---|
4223 | ((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
---|
4224 | ((mp_word) u);
|
---|
4225 |
|
---|
4226 | /* the new column is the lower part of the result */
|
---|
4227 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
4228 |
|
---|
4229 | /* get the carry word from the result */
|
---|
4230 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
4231 | }
|
---|
4232 | /* set carry if it is placed below digs */
|
---|
4233 | if (ix + iy < digs) {
|
---|
4234 | *tmpt = u;
|
---|
4235 | }
|
---|
4236 | }
|
---|
4237 |
|
---|
4238 | mp_clamp (&t);
|
---|
4239 | mp_exch (&t, c);
|
---|
4240 |
|
---|
4241 | mp_clear (&t);
|
---|
4242 | return MP_OKAY;
|
---|
4243 | }
|
---|
4244 |
|
---|
4245 | /* multiplies |a| * |b| and does not compute the lower digs digits
|
---|
4246 | * [meant to get the higher part of the product]
|
---|
4247 | */
|
---|
4248 | static int
|
---|
4249 | s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
4250 | {
|
---|
4251 | mp_int t;
|
---|
4252 | int res, pa, pb, ix, iy;
|
---|
4253 | mp_digit u;
|
---|
4254 | mp_word r;
|
---|
4255 | mp_digit tmpx, *tmpt, *tmpy;
|
---|
4256 |
|
---|
4257 | /* can we use the fast multiplier? */
|
---|
4258 | if (((a->used + b->used + 1) < MP_WARRAY)
|
---|
4259 | && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
4260 | return fast_s_mp_mul_high_digs (a, b, c, digs);
|
---|
4261 | }
|
---|
4262 |
|
---|
4263 | if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
|
---|
4264 | return res;
|
---|
4265 | }
|
---|
4266 | t.used = a->used + b->used + 1;
|
---|
4267 |
|
---|
4268 | pa = a->used;
|
---|
4269 | pb = b->used;
|
---|
4270 | for (ix = 0; ix < pa; ix++) {
|
---|
4271 | /* clear the carry */
|
---|
4272 | u = 0;
|
---|
4273 |
|
---|
4274 | /* left hand side of A[ix] * B[iy] */
|
---|
4275 | tmpx = a->dp[ix];
|
---|
4276 |
|
---|
4277 | /* alias to the address of where the digits will be stored */
|
---|
4278 | tmpt = &(t.dp[digs]);
|
---|
4279 |
|
---|
4280 | /* alias for where to read the right hand side from */
|
---|
4281 | tmpy = b->dp + (digs - ix);
|
---|
4282 |
|
---|
4283 | for (iy = digs - ix; iy < pb; iy++) {
|
---|
4284 | /* calculate the double precision result */
|
---|
4285 | r = ((mp_word)*tmpt) +
|
---|
4286 | ((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
---|
4287 | ((mp_word) u);
|
---|
4288 |
|
---|
4289 | /* get the lower part */
|
---|
4290 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
4291 |
|
---|
4292 | /* carry the carry */
|
---|
4293 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
4294 | }
|
---|
4295 | *tmpt = u;
|
---|
4296 | }
|
---|
4297 | mp_clamp (&t);
|
---|
4298 | mp_exch (&t, c);
|
---|
4299 | mp_clear (&t);
|
---|
4300 | return MP_OKAY;
|
---|
4301 | }
|
---|
4302 |
|
---|
4303 | /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
|
---|
4304 | static int
|
---|
4305 | s_mp_sqr (const mp_int * a, mp_int * b)
|
---|
4306 | {
|
---|
4307 | mp_int t;
|
---|
4308 | int res, ix, iy, pa;
|
---|
4309 | mp_word r;
|
---|
4310 | mp_digit u, tmpx, *tmpt;
|
---|
4311 |
|
---|
4312 | pa = a->used;
|
---|
4313 | if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
|
---|
4314 | return res;
|
---|
4315 | }
|
---|
4316 |
|
---|
4317 | /* default used is maximum possible size */
|
---|
4318 | t.used = 2*pa + 1;
|
---|
4319 |
|
---|
4320 | for (ix = 0; ix < pa; ix++) {
|
---|
4321 | /* first calculate the digit at 2*ix */
|
---|
4322 | /* calculate double precision result */
|
---|
4323 | r = ((mp_word) t.dp[2*ix]) +
|
---|
4324 | ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
|
---|
4325 |
|
---|
4326 | /* store lower part in result */
|
---|
4327 | t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
4328 |
|
---|
4329 | /* get the carry */
|
---|
4330 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
4331 |
|
---|
4332 | /* left hand side of A[ix] * A[iy] */
|
---|
4333 | tmpx = a->dp[ix];
|
---|
4334 |
|
---|
4335 | /* alias for where to store the results */
|
---|
4336 | tmpt = t.dp + (2*ix + 1);
|
---|
4337 |
|
---|
4338 | for (iy = ix + 1; iy < pa; iy++) {
|
---|
4339 | /* first calculate the product */
|
---|
4340 | r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
|
---|
4341 |
|
---|
4342 | /* now calculate the double precision result, note we use
|
---|
4343 | * addition instead of *2 since it's easier to optimize
|
---|
4344 | */
|
---|
4345 | r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
|
---|
4346 |
|
---|
4347 | /* store lower part */
|
---|
4348 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
4349 |
|
---|
4350 | /* get carry */
|
---|
4351 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
4352 | }
|
---|
4353 | /* propagate upwards */
|
---|
4354 | while (u != ((mp_digit) 0)) {
|
---|
4355 | r = ((mp_word) *tmpt) + ((mp_word) u);
|
---|
4356 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
4357 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
4358 | }
|
---|
4359 | }
|
---|
4360 |
|
---|
4361 | mp_clamp (&t);
|
---|
4362 | mp_exch (&t, b);
|
---|
4363 | mp_clear (&t);
|
---|
4364 | return MP_OKAY;
|
---|
4365 | }
|
---|
4366 |
|
---|
4367 | /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
|
---|
4368 | int
|
---|
4369 | s_mp_sub (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
4370 | {
|
---|
4371 | int olduse, res, min, max;
|
---|
4372 |
|
---|
4373 | /* find sizes */
|
---|
4374 | min = b->used;
|
---|
4375 | max = a->used;
|
---|
4376 |
|
---|
4377 | /* init result */
|
---|
4378 | if (c->alloc < max) {
|
---|
4379 | if ((res = mp_grow (c, max)) != MP_OKAY) {
|
---|
4380 | return res;
|
---|
4381 | }
|
---|
4382 | }
|
---|
4383 | olduse = c->used;
|
---|
4384 | c->used = max;
|
---|
4385 |
|
---|
4386 | {
|
---|
4387 | register mp_digit u, *tmpa, *tmpb, *tmpc;
|
---|
4388 | register int i;
|
---|
4389 |
|
---|
4390 | /* alias for digit pointers */
|
---|
4391 | tmpa = a->dp;
|
---|
4392 | tmpb = b->dp;
|
---|
4393 | tmpc = c->dp;
|
---|
4394 |
|
---|
4395 | /* set carry to zero */
|
---|
4396 | u = 0;
|
---|
4397 | for (i = 0; i < min; i++) {
|
---|
4398 | /* T[i] = A[i] - B[i] - U */
|
---|
4399 | *tmpc = *tmpa++ - *tmpb++ - u;
|
---|
4400 |
|
---|
4401 | /* U = carry bit of T[i]
|
---|
4402 | * Note this saves performing an AND operation since
|
---|
4403 | * if a carry does occur it will propagate all the way to the
|
---|
4404 | * MSB. As a result a single shift is enough to get the carry
|
---|
4405 | */
|
---|
4406 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
---|
4407 |
|
---|
4408 | /* Clear carry from T[i] */
|
---|
4409 | *tmpc++ &= MP_MASK;
|
---|
4410 | }
|
---|
4411 |
|
---|
4412 | /* now copy higher words if any, e.g. if A has more digits than B */
|
---|
4413 | for (; i < max; i++) {
|
---|
4414 | /* T[i] = A[i] - U */
|
---|
4415 | *tmpc = *tmpa++ - u;
|
---|
4416 |
|
---|
4417 | /* U = carry bit of T[i] */
|
---|
4418 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
---|
4419 |
|
---|
4420 | /* Clear carry from T[i] */
|
---|
4421 | *tmpc++ &= MP_MASK;
|
---|
4422 | }
|
---|
4423 |
|
---|
4424 | /* clear digits above used (since we may not have grown result above) */
|
---|
4425 | for (i = c->used; i < olduse; i++) {
|
---|
4426 | *tmpc++ = 0;
|
---|
4427 | }
|
---|
4428 | }
|
---|
4429 |
|
---|
4430 | mp_clamp (c);
|
---|
4431 | return MP_OKAY;
|
---|
4432 | }
|
---|