source: trunk/src/opengl/mesa/tritemp.h@ 2938

Last change on this file since 2938 was 2938, checked in by sandervl, 25 years ago

created

File size: 37.9 KB
Line 
1/* $Id: tritemp.h,v 1.1 2000-02-29 00:48:40 sandervl Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version: 3.1
6 *
7 * Copyright (C) 1999 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom triangle rasterizers.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be interplated across the triangle:
35 * INTERP_Z - if defined, interpolate Z values
36 * INTERP_RGB - if defined, interpolate RGB values
37 * INTERP_SPEC - if defined, interpolate specular RGB values
38 * INTERP_ALPHA - if defined, interpolate Alpha values
39 * INTERP_INDEX - if defined, interpolate color index values
40 * INTERP_INT_ST - if defined, interpolate integer ST texcoords
41 * (fast, simple 2-D texture mapping)
42 * INTERP_STUV - if defined, interpolate set 0 float STRQ texcoords
43 * NOTE: OpenGL STRQ = Mesa STUV (R was taken for red)
44 * INTERP_STUV1 - if defined, interpolate set 1 float STRQ texcoords
45 *
46 * When one can directly address pixels in the color buffer the following
47 * macros can be defined and used to compute pixel addresses during
48 * rasterization (see pRow):
49 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
50 * BYTES_PER_ROW - number of bytes per row in the color buffer
51 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
52 * Y==0 at bottom of screen and increases upward.
53 *
54 * Optionally, one may provide one-time setup code per triangle:
55 * SETUP_CODE - code which is to be executed once per triangle
56 *
57 * The following macro MUST be defined:
58 * INNER_LOOP(LEFT,RIGHT,Y) - code to write a span of pixels.
59 * Something like:
60 *
61 * for (x=LEFT; x<RIGHT;x++) {
62 * put_pixel(x,Y);
63 * // increment fixed point interpolants
64 * }
65 *
66 * This code was designed for the origin to be in the lower-left corner.
67 *
68 * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
69 */
70
71
72/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
73{
74 typedef struct {
75 GLint v0, v1; /* Y(v0) < Y(v1) */
76 GLfloat dx; /* X(v1) - X(v0) */
77 GLfloat dy; /* Y(v1) - Y(v0) */
78 GLfixed fdxdy; /* dx/dy in fixed-point */
79 GLfixed fsx; /* first sample point x coord */
80 GLfixed fsy;
81 GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
82 GLint lines; /* number of lines to be sampled on this edge */
83 GLfixed fx0; /* fixed pt X of lower endpoint */
84 } EdgeT;
85
86 struct vertex_buffer *VB = ctx->VB;
87 EdgeT eMaj, eTop, eBot;
88 GLfloat oneOverArea;
89 int vMin, vMid, vMax; /* vertex indexes: Y(vMin)<=Y(vMid)<=Y(vMax) */
90 float bf = ctx->backface_sign;
91
92 /* find the order of the 3 vertices along the Y axis */
93 {
94 GLfloat y0 = VB->Win.data[v0][1];
95 GLfloat y1 = VB->Win.data[v1][1];
96 GLfloat y2 = VB->Win.data[v2][1];
97
98 if (y0<=y1) {
99 if (y1<=y2) {
100 vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */
101 }
102 else if (y2<=y0) {
103 vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */
104 }
105 else {
106 vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */
107 }
108 }
109 else {
110 if (y0<=y2) {
111 vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */
112 }
113 else if (y2<=y1) {
114 vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */
115 }
116 else {
117 vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */
118 }
119 }
120 }
121
122 /* vertex/edge relationship */
123 eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
124 eTop.v0 = vMid; eTop.v1 = vMax;
125 eBot.v0 = vMin; eBot.v1 = vMid;
126
127 /* compute deltas for each edge: vertex[v1] - vertex[v0] */
128 eMaj.dx = VB->Win.data[vMax][0] - VB->Win.data[vMin][0];
129 eMaj.dy = VB->Win.data[vMax][1] - VB->Win.data[vMin][1];
130 eTop.dx = VB->Win.data[vMax][0] - VB->Win.data[vMid][0];
131 eTop.dy = VB->Win.data[vMax][1] - VB->Win.data[vMid][1];
132 eBot.dx = VB->Win.data[vMid][0] - VB->Win.data[vMin][0];
133 eBot.dy = VB->Win.data[vMid][1] - VB->Win.data[vMin][1];
134
135 /* compute oneOverArea */
136 {
137 GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
138
139 /* Do backface culling */
140 if (
141 area * bf < 0 ||
142 area * area < .0025
143 )
144 return;
145
146
147 oneOverArea = 1.0F / area;
148 }
149
150 /* Edge setup. For a triangle strip these could be reused... */
151 {
152 /* fixed point Y coordinates */
153 GLfixed vMin_fx = FloatToFixed(VB->Win.data[vMin][0] + 0.5F);
154 GLfixed vMin_fy = FloatToFixed(VB->Win.data[vMin][1] - 0.5F);
155 GLfixed vMid_fx = FloatToFixed(VB->Win.data[vMid][0] + 0.5F);
156 GLfixed vMid_fy = FloatToFixed(VB->Win.data[vMid][1] - 0.5F);
157 GLfixed vMax_fy = FloatToFixed(VB->Win.data[vMax][1] - 0.5F);
158
159 eMaj.fsy = FixedCeil(vMin_fy);
160 eMaj.lines = FixedToInt(vMax_fy + FIXED_ONE - FIXED_EPSILON - eMaj.fsy);
161 if (eMaj.lines > 0) {
162 GLfloat dxdy = eMaj.dx / eMaj.dy;
163 eMaj.fdxdy = SignedFloatToFixed(dxdy);
164 eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
165 eMaj.fx0 = vMin_fx;
166 eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * dxdy);
167 }
168 else {
169 return; /*CULLED*/
170 }
171
172 eTop.fsy = FixedCeil(vMid_fy);
173 eTop.lines = FixedToInt(vMax_fy + FIXED_ONE - FIXED_EPSILON - eTop.fsy);
174 if (eTop.lines > 0) {
175 GLfloat dxdy = eTop.dx / eTop.dy;
176 eTop.fdxdy = SignedFloatToFixed(dxdy);
177 eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
178 eTop.fx0 = vMid_fx;
179 eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * dxdy);
180 }
181
182 eBot.fsy = FixedCeil(vMin_fy);
183 eBot.lines = FixedToInt(vMid_fy + FIXED_ONE - FIXED_EPSILON - eBot.fsy);
184 if (eBot.lines > 0) {
185 GLfloat dxdy = eBot.dx / eBot.dy;
186 eBot.fdxdy = SignedFloatToFixed(dxdy);
187 eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
188 eBot.fx0 = vMin_fx;
189 eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * dxdy);
190 }
191 }
192
193 /*
194 * Conceptually, we view a triangle as two subtriangles
195 * separated by a perfectly horizontal line. The edge that is
196 * intersected by this line is one with maximal absolute dy; we
197 * call it a ``major'' edge. The other two edges are the
198 * ``top'' edge (for the upper subtriangle) and the ``bottom''
199 * edge (for the lower subtriangle). If either of these two
200 * edges is horizontal or very close to horizontal, the
201 * corresponding subtriangle might cover zero sample points;
202 * we take care to handle such cases, for performance as well
203 * as correctness.
204 *
205 * By stepping rasterization parameters along the major edge,
206 * we can avoid recomputing them at the discontinuity where
207 * the top and bottom edges meet. However, this forces us to
208 * be able to scan both left-to-right and right-to-left.
209 * Also, we must determine whether the major edge is at the
210 * left or right side of the triangle. We do this by
211 * computing the magnitude of the cross-product of the major
212 * and top edges. Since this magnitude depends on the sine of
213 * the angle between the two edges, its sign tells us whether
214 * we turn to the left or to the right when travelling along
215 * the major edge to the top edge, and from this we infer
216 * whether the major edge is on the left or the right.
217 *
218 * Serendipitously, this cross-product magnitude is also a
219 * value we need to compute the iteration parameter
220 * derivatives for the triangle, and it can be used to perform
221 * backface culling because its sign tells us whether the
222 * triangle is clockwise or counterclockwise. In this code we
223 * refer to it as ``area'' because it's also proportional to
224 * the pixel area of the triangle.
225 */
226
227 {
228 GLint ltor; /* true if scanning left-to-right */
229#if INTERP_Z
230 GLfloat dzdx, dzdy; GLfixed fdzdx;
231#endif
232#if INTERP_RGB
233 GLfloat drdx, drdy; GLfixed fdrdx;
234 GLfloat dgdx, dgdy; GLfixed fdgdx;
235 GLfloat dbdx, dbdy; GLfixed fdbdx;
236#endif
237#if INTERP_SPEC
238 GLfloat dsrdx, dsrdy; GLfixed fdsrdx;
239 GLfloat dsgdx, dsgdy; GLfixed fdsgdx;
240 GLfloat dsbdx, dsbdy; GLfixed fdsbdx;
241#endif
242#if INTERP_ALPHA
243 GLfloat dadx, dady; GLfixed fdadx;
244#endif
245#if INTERP_INDEX
246 GLfloat didx, didy; GLfixed fdidx;
247#endif
248#if INTERP_INT_ST
249 GLfloat dsdx, dsdy; GLfixed fdsdx;
250 GLfloat dtdx, dtdy; GLfixed fdtdx;
251#endif
252#if INTERP_STUV
253 GLfloat dsdx, dsdy;
254 GLfloat dtdx, dtdy;
255 GLfloat dudx, dudy;
256 GLfloat dvdx, dvdy;
257#endif
258#if INTERP_STUV1
259 GLfloat ds1dx, ds1dy;
260 GLfloat dt1dx, dt1dy;
261 GLfloat du1dx, du1dy;
262 GLfloat dv1dx, dv1dy;
263#endif
264
265 /*
266 * Execute user-supplied setup code
267 */
268#ifdef SETUP_CODE
269 SETUP_CODE
270#endif
271
272 ltor = (oneOverArea < 0.0F);
273
274 /* compute d?/dx and d?/dy derivatives */
275#if INTERP_Z
276 {
277 GLfloat eMaj_dz, eBot_dz;
278 eMaj_dz = VB->Win.data[vMax][2] - VB->Win.data[vMin][2];
279 eBot_dz = VB->Win.data[vMid][2] - VB->Win.data[vMin][2];
280 dzdx = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
281 if (dzdx>DEPTH_SCALE || dzdx<-DEPTH_SCALE) {
282 /* probably a sliver triangle */
283 dzdx = 0.0;
284 dzdy = 0.0;
285 }
286 else {
287 dzdy = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
288 }
289#if DEPTH_BITS==16
290 fdzdx = SignedFloatToFixed(dzdx);
291#else
292 fdzdx = (GLint) dzdx;
293#endif
294 }
295#endif
296#if INTERP_RGB
297 {
298 GLfloat eMaj_dr, eBot_dr;
299 eMaj_dr = (GLint) VB->ColorPtr->data[vMax][0] - (GLint) VB->ColorPtr->data[vMin][0];
300 eBot_dr = (GLint) VB->ColorPtr->data[vMid][0] - (GLint) VB->ColorPtr->data[vMin][0];
301 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
302 fdrdx = SignedFloatToFixed(drdx);
303 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
304 }
305 {
306 GLfloat eMaj_dg, eBot_dg;
307 eMaj_dg = (GLint) VB->ColorPtr->data[vMax][1] - (GLint) VB->ColorPtr->data[vMin][1];
308 eBot_dg = (GLint) VB->ColorPtr->data[vMid][1] - (GLint) VB->ColorPtr->data[vMin][1];
309 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
310 fdgdx = SignedFloatToFixed(dgdx);
311 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
312 }
313 {
314 GLfloat eMaj_db, eBot_db;
315 eMaj_db = (GLint) VB->ColorPtr->data[vMax][2] - (GLint) VB->ColorPtr->data[vMin][2];
316 eBot_db = (GLint) VB->ColorPtr->data[vMid][2] - (GLint) VB->ColorPtr->data[vMin][2];
317 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
318 fdbdx = SignedFloatToFixed(dbdx);
319 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
320 }
321#endif
322#if INTERP_SPEC
323 {
324 GLfloat eMaj_dsr, eBot_dsr;
325 eMaj_dsr = (GLint) VB->Specular[vMax][0] - (GLint) VB->Specular[vMin][0];
326 eBot_dsr = (GLint) VB->Specular[vMid][0] - (GLint) VB->Specular[vMin][0];
327 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
328 fdsrdx = SignedFloatToFixed(dsrdx);
329 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
330 }
331 {
332 GLfloat eMaj_dsg, eBot_dsg;
333 eMaj_dsg = (GLint) VB->Specular[vMax][1] - (GLint) VB->Specular[vMin][1];
334 eBot_dsg = (GLint) VB->Specular[vMid][1] - (GLint) VB->Specular[vMin][1];
335 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
336 fdsgdx = SignedFloatToFixed(dsgdx);
337 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
338 }
339 {
340 GLfloat eMaj_dsb, eBot_dsb;
341 eMaj_dsb = (GLint) VB->Specular[vMax][2] - (GLint) VB->Specular[vMin][2];
342 eBot_dsb = (GLint) VB->Specular[vMid][2] - (GLint) VB->Specular[vMin][2];
343 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
344 fdsbdx = SignedFloatToFixed(dsbdx);
345 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
346 }
347#endif
348#if INTERP_ALPHA
349 {
350 GLfloat eMaj_da, eBot_da;
351 eMaj_da = (GLint) VB->ColorPtr->data[vMax][3] - (GLint) VB->ColorPtr->data[vMin][3];
352 eBot_da = (GLint) VB->ColorPtr->data[vMid][3] - (GLint) VB->ColorPtr->data[vMin][3];
353 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
354 fdadx = SignedFloatToFixed(dadx);
355 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
356 }
357#endif
358#if INTERP_INDEX
359 {
360 GLfloat eMaj_di, eBot_di;
361 eMaj_di = (GLint) VB->IndexPtr->data[vMax] - (GLint) VB->IndexPtr->data[vMin];
362 eBot_di = (GLint) VB->IndexPtr->data[vMid] - (GLint) VB->IndexPtr->data[vMin];
363 didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
364 fdidx = SignedFloatToFixed(didx);
365 didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
366 }
367#endif
368#if INTERP_INT_ST
369 {
370 GLfloat eMaj_ds, eBot_ds;
371 eMaj_ds = (VB->TexCoordPtr[0]->data[vMax][0] - VB->TexCoordPtr[0]->data[vMin][0]) * S_SCALE;
372 eBot_ds = (VB->TexCoordPtr[0]->data[vMid][0] - VB->TexCoordPtr[0]->data[vMin][0]) * S_SCALE;
373 dsdx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
374 fdsdx = SignedFloatToFixed(dsdx);
375 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
376 }
377 if (VB->TexCoordPtr[0]->size > 1)
378 {
379 GLfloat eMaj_dt, eBot_dt;
380 eMaj_dt = (VB->TexCoordPtr[0]->data[vMax][1] - VB->TexCoordPtr[0]->data[vMin][1]) * T_SCALE;
381 eBot_dt = (VB->TexCoordPtr[0]->data[vMid][1] - VB->TexCoordPtr[0]->data[vMin][1]) * T_SCALE;
382 dtdx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
383 fdtdx = SignedFloatToFixed(dtdx);
384 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
385 } else {
386 dtdx = 0;
387 fdtdx = SignedFloatToFixed(dtdx);
388 dtdy = 0;
389 }
390
391#endif
392#if INTERP_STUV
393 {
394 GLfloat wMax = VB->Win.data[vMax][3];
395 GLfloat wMin = VB->Win.data[vMin][3];
396 GLfloat wMid = VB->Win.data[vMid][3];
397 GLfloat eMaj_ds, eBot_ds;
398 GLfloat eMaj_dt, eBot_dt;
399 GLfloat eMaj_du, eBot_du;
400 GLfloat eMaj_dv, eBot_dv;
401
402 eMaj_ds = VB->TexCoordPtr[0]->data[vMax][0]*wMax - VB->TexCoordPtr[0]->data[vMin][0]*wMin;
403 eBot_ds = VB->TexCoordPtr[0]->data[vMid][0]*wMid - VB->TexCoordPtr[0]->data[vMin][0]*wMin;
404 dsdx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
405 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
406
407
408 if (VB->TexCoordPtr[0]->size > 1)
409 {
410 eMaj_dt = VB->TexCoordPtr[0]->data[vMax][1]*wMax - VB->TexCoordPtr[0]->data[vMin][1]*wMin;
411 eBot_dt = VB->TexCoordPtr[0]->data[vMid][1]*wMid - VB->TexCoordPtr[0]->data[vMin][1]*wMin;
412 dtdx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
413 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
414 } else {
415 dtdx = 0;
416 dtdy = 0;
417 }
418
419 if (VB->TexCoordPtr[0]->size > 2)
420 {
421 eMaj_du = VB->TexCoordPtr[0]->data[vMax][2]*wMax - VB->TexCoordPtr[0]->data[vMin][2]*wMin;
422 eBot_du = VB->TexCoordPtr[0]->data[vMid][2]*wMid - VB->TexCoordPtr[0]->data[vMin][2]*wMin;
423 dudx = oneOverArea * (eMaj_du * eBot.dy - eMaj.dy * eBot_du);
424 dudy = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
425 } else {
426 dudx = 0;
427 dudy = 0;
428 }
429
430 if (VB->TexCoordPtr[0]->size > 3)
431 {
432 eMaj_dv = VB->TexCoordPtr[0]->data[vMax][3]*wMax - VB->TexCoordPtr[0]->data[vMin][3]*wMin;
433 eBot_dv = VB->TexCoordPtr[0]->data[vMid][3]*wMid - VB->TexCoordPtr[0]->data[vMin][3]*wMin;
434 dvdx = oneOverArea * (eMaj_dv * eBot.dy - eMaj.dy * eBot_dv);
435 dvdy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
436 } else {
437 eMaj_dv = wMax - wMin;
438 eBot_dv = wMid - wMin;
439 dvdx = oneOverArea * (eMaj_dv * eBot.dy - eMaj.dy * eBot_dv);
440 dvdy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
441 }
442 }
443#endif
444#if INTERP_STUV1
445 {
446 GLfloat wMax = VB->Win.data[vMax][3];
447 GLfloat wMin = VB->Win.data[vMin][3];
448 GLfloat wMid = VB->Win.data[vMid][3];
449 GLfloat eMaj_ds, eBot_ds;
450 GLfloat eMaj_dt, eBot_dt;
451 GLfloat eMaj_du, eBot_du;
452 GLfloat eMaj_dv, eBot_dv;
453 eMaj_ds = VB->TexCoordPtr[1]->data[vMax][0]*wMax - VB->TexCoordPtr[1]->data[vMin][0]*wMin;
454 eBot_ds = VB->TexCoordPtr[1]->data[vMid][0]*wMid - VB->TexCoordPtr[1]->data[vMin][0]*wMin;
455 ds1dx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
456 ds1dy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
457
458 if (VB->TexCoordPtr[1]->size > 1)
459 {
460 eMaj_dt = VB->TexCoordPtr[1]->data[vMax][1]*wMax - VB->TexCoordPtr[1]->data[vMin][1]*wMin;
461 eBot_dt = VB->TexCoordPtr[1]->data[vMid][1]*wMid - VB->TexCoordPtr[1]->data[vMin][1]*wMin;
462 dt1dx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
463 dt1dy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
464 }
465 else
466 {
467 dt1dx = 0;
468 dt1dy = 0;
469 }
470
471 if (VB->TexCoordPtr[1]->size > 2)
472 {
473 eMaj_du = VB->TexCoordPtr[1]->data[vMax][2]*wMax - VB->TexCoordPtr[1]->data[vMin][2]*wMin;
474 eBot_du = VB->TexCoordPtr[1]->data[vMid][2]*wMid - VB->TexCoordPtr[1]->data[vMin][2]*wMin;
475 du1dx = oneOverArea * (eMaj_du * eBot.dy - eMaj.dy * eBot_du);
476 du1dy = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
477 }
478 else
479 {
480 du1dx = 0;
481 du1dy = 0;
482 }
483
484 if (VB->TexCoordPtr[1]->size > 3)
485 {
486 eMaj_dv = VB->TexCoordPtr[1]->data[vMax][3]*wMax - VB->TexCoordPtr[1]->data[vMin][3]*wMin;
487 eBot_dv = VB->TexCoordPtr[1]->data[vMid][3]*wMid - VB->TexCoordPtr[1]->data[vMin][3]*wMin;
488 dv1dx = oneOverArea * (eMaj_dv * eBot.dy - eMaj.dy * eBot_dv);
489 dv1dy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
490 }
491 else
492 {
493 eMaj_dv = wMax - wMin;
494 eBot_dv = wMid - wMin;
495 dv1dx = oneOverArea * (eMaj_dv * eBot.dy - eMaj.dy * eBot_dv);
496 dv1dy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
497 }
498 }
499#endif
500
501 /*
502 * We always sample at pixel centers. However, we avoid
503 * explicit half-pixel offsets in this code by incorporating
504 * the proper offset in each of x and y during the
505 * transformation to window coordinates.
506 *
507 * We also apply the usual rasterization rules to prevent
508 * cracks and overlaps. A pixel is considered inside a
509 * subtriangle if it meets all of four conditions: it is on or
510 * to the right of the left edge, strictly to the left of the
511 * right edge, on or below the top edge, and strictly above
512 * the bottom edge. (Some edges may be degenerate.)
513 *
514 * The following discussion assumes left-to-right scanning
515 * (that is, the major edge is on the left); the right-to-left
516 * case is a straightforward variation.
517 *
518 * We start by finding the half-integral y coordinate that is
519 * at or below the top of the triangle. This gives us the
520 * first scan line that could possibly contain pixels that are
521 * inside the triangle.
522 *
523 * Next we creep down the major edge until we reach that y,
524 * and compute the corresponding x coordinate on the edge.
525 * Then we find the half-integral x that lies on or just
526 * inside the edge. This is the first pixel that might lie in
527 * the interior of the triangle. (We won't know for sure
528 * until we check the other edges.)
529 *
530 * As we rasterize the triangle, we'll step down the major
531 * edge. For each step in y, we'll move an integer number
532 * of steps in x. There are two possible x step sizes, which
533 * we'll call the ``inner'' step (guaranteed to land on the
534 * edge or inside it) and the ``outer'' step (guaranteed to
535 * land on the edge or outside it). The inner and outer steps
536 * differ by one. During rasterization we maintain an error
537 * term that indicates our distance from the true edge, and
538 * select either the inner step or the outer step, whichever
539 * gets us to the first pixel that falls inside the triangle.
540 *
541 * All parameters (z, red, etc.) as well as the buffer
542 * addresses for color and z have inner and outer step values,
543 * so that we can increment them appropriately. This method
544 * eliminates the need to adjust parameters by creeping a
545 * sub-pixel amount into the triangle at each scanline.
546 */
547
548 {
549 int subTriangle;
550 GLfixed fx, fxLeftEdge, fxRightEdge, fdxLeftEdge, fdxRightEdge;
551 GLfixed fdxOuter;
552 int idxOuter;
553 float dxOuter;
554 GLfixed fError, fdError;
555 float adjx, adjy;
556 GLfixed fy;
557 int iy;
558#ifdef PIXEL_ADDRESS
559 PIXEL_TYPE *pRow;
560 int dPRowOuter, dPRowInner; /* offset in bytes */
561#endif
562#if INTERP_Z
563 GLdepth *zRow;
564 int dZRowOuter, dZRowInner; /* offset in bytes */
565 GLfixed fz, fdzOuter, fdzInner;
566#endif
567#if INTERP_RGB
568 GLfixed fr, fdrOuter, fdrInner;
569 GLfixed fg, fdgOuter, fdgInner;
570 GLfixed fb, fdbOuter, fdbInner;
571#endif
572#if INTERP_SPEC
573 GLfixed fsr, fdsrOuter, fdsrInner;
574 GLfixed fsg, fdsgOuter, fdsgInner;
575 GLfixed fsb, fdsbOuter, fdsbInner;
576#endif
577#if INTERP_ALPHA
578 GLfixed fa, fdaOuter, fdaInner;
579#endif
580#if INTERP_INDEX
581 GLfixed fi, fdiOuter, fdiInner;
582#endif
583#if INTERP_INT_ST
584 GLfixed fs, fdsOuter, fdsInner;
585 GLfixed ft, fdtOuter, fdtInner;
586#endif
587#if INTERP_STUV
588 GLfloat sLeft, dsOuter, dsInner;
589 GLfloat tLeft, dtOuter, dtInner;
590 GLfloat uLeft, duOuter, duInner;
591 GLfloat vLeft, dvOuter, dvInner;
592#endif
593#if INTERP_STUV1
594 GLfloat s1Left, ds1Outer, ds1Inner;
595 GLfloat t1Left, dt1Outer, dt1Inner;
596 GLfloat u1Left, du1Outer, du1Inner;
597 GLfloat v1Left, dv1Outer, dv1Inner;
598#endif
599
600 for (subTriangle=0; subTriangle<=1; subTriangle++) {
601 EdgeT *eLeft, *eRight;
602 int setupLeft, setupRight;
603 int lines;
604
605 if (subTriangle==0) {
606 /* bottom half */
607 if (ltor) {
608 eLeft = &eMaj;
609 eRight = &eBot;
610 lines = eRight->lines;
611 setupLeft = 1;
612 setupRight = 1;
613 }
614 else {
615 eLeft = &eBot;
616 eRight = &eMaj;
617 lines = eLeft->lines;
618 setupLeft = 1;
619 setupRight = 1;
620 }
621 }
622 else {
623 /* top half */
624 if (ltor) {
625 eLeft = &eMaj;
626 eRight = &eTop;
627 lines = eRight->lines;
628 setupLeft = 0;
629 setupRight = 1;
630 }
631 else {
632 eLeft = &eTop;
633 eRight = &eMaj;
634 lines = eLeft->lines;
635 setupLeft = 1;
636 setupRight = 0;
637 }
638 if (lines==0) return;
639 }
640
641 if (setupLeft && eLeft->lines>0) {
642 GLint vLower;
643 GLfixed fsx = eLeft->fsx;
644 fx = FixedCeil(fsx);
645 fError = fx - fsx - FIXED_ONE;
646 fxLeftEdge = fsx - FIXED_EPSILON;
647 fdxLeftEdge = eLeft->fdxdy;
648 fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
649 fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
650 idxOuter = FixedToInt(fdxOuter);
651 dxOuter = (float) idxOuter;
652 (void) dxOuter;
653
654 fy = eLeft->fsy;
655 iy = FixedToInt(fy);
656
657 adjx = (float)(fx - eLeft->fx0); /* SCALED! */
658 adjy = eLeft->adjy; /* SCALED! */
659 (void) adjx; /* silence compiler warnings */
660 (void) adjy; /* silence compiler warnings */
661
662 vLower = eLeft->v0;
663 (void) vLower; /* silence compiler warnings */
664
665#ifdef PIXEL_ADDRESS
666 {
667 pRow = (PIXEL_TYPE *) PIXEL_ADDRESS( FixedToInt(fxLeftEdge), iy );
668 dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
669 /* negative because Y=0 at bottom and increases upward */
670 }
671#endif
672 /*
673 * Now we need the set of parameter (z, color, etc.) values at
674 * the point (fx, fy). This gives us properly-sampled parameter
675 * values that we can step from pixel to pixel. Furthermore,
676 * although we might have intermediate results that overflow
677 * the normal parameter range when we step temporarily outside
678 * the triangle, we shouldn't overflow or underflow for any
679 * pixel that's actually inside the triangle.
680 */
681
682#if INTERP_Z
683 {
684 GLfloat z0, tmp;
685 z0 = VB->Win.data[vLower][2] + ctx->PolygonZoffset;
686#if DEPTH_BITS==16
687 /* interpolate fixed-pt values */
688 tmp = (z0 * FIXED_SCALE + dzdx * adjx + dzdy * adjy) + FIXED_HALF;
689 if (tmp < MAX_GLUINT/2)
690 fz = (GLfixed) tmp;
691 else
692 fz = MAX_GLUINT/2;
693 fdzOuter = SignedFloatToFixed(dzdy + dxOuter * dzdx);
694#else
695 (void) tmp;
696 /* interpolate depth values exactly */
697 fz = (GLint) (z0 + dzdx*FixedToFloat(adjx) + dzdy*FixedToFloat(adjy));
698 fdzOuter = (GLint) (dzdy + dxOuter * dzdx);
699#endif
700 zRow = Z_ADDRESS( ctx, FixedToInt(fxLeftEdge), iy );
701 dZRowOuter = (ctx->Buffer->Width + idxOuter) * sizeof(GLdepth);
702 }
703#endif
704#if INTERP_RGB
705 fr = (GLfixed)(IntToFixed(VB->ColorPtr->data[vLower][0]) + drdx * adjx + drdy * adjy)
706 + FIXED_HALF;
707 fdrOuter = SignedFloatToFixed(drdy + dxOuter * drdx);
708
709 fg = (GLfixed)(IntToFixed(VB->ColorPtr->data[vLower][1]) + dgdx * adjx + dgdy * adjy)
710 + FIXED_HALF;
711 fdgOuter = SignedFloatToFixed(dgdy + dxOuter * dgdx);
712
713 fb = (GLfixed)(IntToFixed(VB->ColorPtr->data[vLower][2]) + dbdx * adjx + dbdy * adjy)
714 + FIXED_HALF;
715 fdbOuter = SignedFloatToFixed(dbdy + dxOuter * dbdx);
716#endif
717#if INTERP_SPEC
718 fsr = (GLfixed)(IntToFixed(VB->Specular[vLower][0]) + dsrdx * adjx + dsrdy * adjy)
719 + FIXED_HALF;
720 fdsrOuter = SignedFloatToFixed(dsrdy + dxOuter * dsrdx);
721
722 fsg = (GLfixed)(IntToFixed(VB->Specular[vLower][1]) + dsgdx * adjx + dsgdy * adjy)
723 + FIXED_HALF;
724 fdsgOuter = SignedFloatToFixed(dsgdy + dxOuter * dsgdx);
725
726 fsb = (GLfixed)(IntToFixed(VB->Specular[vLower][2]) + dsbdx * adjx + dsbdy * adjy)
727 + FIXED_HALF;
728 fdsbOuter = SignedFloatToFixed(dsbdy + dxOuter * dsbdx);
729#endif
730#if INTERP_ALPHA
731 fa = (GLfixed)(IntToFixed(VB->ColorPtr->data[vLower][3]) + dadx * adjx + dady * adjy)
732 + FIXED_HALF;
733 fdaOuter = SignedFloatToFixed(dady + dxOuter * dadx);
734#endif
735#if INTERP_INDEX
736 fi = (GLfixed)(VB->IndexPtr->data[vLower] * FIXED_SCALE + didx * adjx
737 + didy * adjy) + FIXED_HALF;
738 fdiOuter = SignedFloatToFixed(didy + dxOuter * didx);
739#endif
740#if INTERP_INT_ST
741 {
742 GLfloat s0, t0;
743 s0 = VB->TexCoordPtr[0]->data[vLower][0] * S_SCALE;
744 fs = (GLfixed)(s0 * FIXED_SCALE + dsdx * adjx + dsdy * adjy) + FIXED_HALF;
745 fdsOuter = SignedFloatToFixed(dsdy + dxOuter * dsdx);
746
747 if (VB->TexCoordPtr[0]->size > 1)
748 {
749 t0 = VB->TexCoordPtr[0]->data[vLower][1] * T_SCALE;
750 ft = (GLfixed)(t0 * FIXED_SCALE + dtdx * adjx + dtdy * adjy) + FIXED_HALF;
751 fdtOuter = SignedFloatToFixed(dtdy + dxOuter * dtdx);
752 }
753 else
754 {
755 t0 = 0;
756 ft = (GLfixed) FIXED_HALF;
757 fdtOuter = SignedFloatToFixed(0);
758 }
759 }
760#endif
761#if INTERP_STUV
762 {
763 GLfloat invW = VB->Win.data[vLower][3];
764 GLfloat s0, t0, u0, v0;
765 s0 = VB->TexCoordPtr[0]->data[vLower][0] * invW;
766 sLeft = s0 + (dsdx * adjx + dsdy * adjy) * (1.0F/FIXED_SCALE);
767 dsOuter = dsdy + dxOuter * dsdx;
768 if (VB->TexCoordPtr[0]->size > 1)
769 {
770 t0 = VB->TexCoordPtr[0]->data[vLower][1] * invW;
771 tLeft = t0 + (dtdx * adjx + dtdy * adjy) * (1.0F/FIXED_SCALE);
772 dtOuter = dtdy + dxOuter * dtdx;
773 } else {
774 tLeft = dtOuter = 0;
775 }
776 if (VB->TexCoordPtr[0]->size > 2)
777 {
778 u0 = VB->TexCoordPtr[0]->data[vLower][2] * invW;
779 uLeft = u0 + (dudx * adjx + dudy * adjy) * (1.0F/FIXED_SCALE);
780 duOuter = dudy + dxOuter * dudx;
781 } else {
782 uLeft = duOuter = 0;
783 }
784 if (VB->TexCoordPtr[0]->size > 3)
785 {
786 v0 = VB->TexCoordPtr[0]->data[vLower][3] * invW;
787 } else {
788 v0 = invW;
789 }
790 vLeft = v0 + (dvdx * adjx + dvdy * adjy) * (1.0F/FIXED_SCALE);
791 dvOuter = dvdy + dxOuter * dvdx;
792 }
793#endif
794#if INTERP_STUV1
795 {
796 GLfloat invW = VB->Win.data[vLower][3];
797 GLfloat s0, t0, u0, v0;
798 s0 = VB->TexCoordPtr[1]->data[vLower][0] * invW;
799 s1Left = s0 + (ds1dx * adjx + ds1dy * adjy) * (1.0F/FIXED_SCALE);
800 ds1Outer = ds1dy + dxOuter * ds1dx;
801 if (VB->TexCoordPtr[0]->size > 1)
802 {
803 t0 = VB->TexCoordPtr[1]->data[vLower][1] * invW;
804 t1Left = t0 + (dt1dx * adjx + dt1dy * adjy) * (1.0F/FIXED_SCALE);
805 dt1Outer = dt1dy + dxOuter * dt1dx;
806 } else {
807 t1Left = dt1Outer = 0;
808 }
809 if (VB->TexCoordPtr[0]->size > 2)
810 {
811 u0 = VB->TexCoordPtr[1]->data[vLower][2] * invW;
812 u1Left = u0 + (du1dx * adjx + du1dy * adjy) * (1.0F/FIXED_SCALE);
813 du1Outer = du1dy + dxOuter * du1dx;
814 } else {
815 u1Left = du1Outer = 0;
816 }
817 if (VB->TexCoordPtr[0]->size > 3)
818 {
819 v0 = VB->TexCoordPtr[1]->data[vLower][3] * invW;
820 } else {
821 v0 = invW;
822 }
823 v1Left = v0 + (dv1dx * adjx + dv1dy * adjy) * (1.0F/FIXED_SCALE);
824 dv1Outer = dv1dy + dxOuter * dv1dx;
825 }
826#endif
827
828 } /*if setupLeft*/
829
830
831 if (setupRight && eRight->lines>0) {
832 fxRightEdge = eRight->fsx - FIXED_EPSILON;
833 fdxRightEdge = eRight->fdxdy;
834 }
835
836 if (lines==0) {
837 continue;
838 }
839
840
841 /* Rasterize setup */
842#ifdef PIXEL_ADDRESS
843 dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
844#endif
845#if INTERP_Z
846 dZRowInner = dZRowOuter + sizeof(GLdepth);
847 fdzInner = fdzOuter + fdzdx;
848#endif
849#if INTERP_RGB
850 fdrInner = fdrOuter + fdrdx;
851 fdgInner = fdgOuter + fdgdx;
852 fdbInner = fdbOuter + fdbdx;
853#endif
854#if INTERP_SPEC
855 fdsrInner = fdsrOuter + fdsrdx;
856 fdsgInner = fdsgOuter + fdsgdx;
857 fdsbInner = fdsbOuter + fdsbdx;
858#endif
859#if INTERP_ALPHA
860 fdaInner = fdaOuter + fdadx;
861#endif
862#if INTERP_INDEX
863 fdiInner = fdiOuter + fdidx;
864#endif
865#if INTERP_INT_ST
866 fdsInner = fdsOuter + fdsdx;
867 fdtInner = fdtOuter + fdtdx;
868#endif
869#if INTERP_STUV
870 dsInner = dsOuter + dsdx;
871 dtInner = dtOuter + dtdx;
872 duInner = duOuter + dudx;
873 dvInner = dvOuter + dvdx;
874#endif
875#if INTERP_STUV1
876 ds1Inner = ds1Outer + ds1dx;
877 dt1Inner = dt1Outer + dt1dx;
878 du1Inner = du1Outer + du1dx;
879 dv1Inner = dv1Outer + dv1dx;
880#endif
881
882 while (lines>0) {
883 /* initialize the span interpolants to the leftmost value */
884 /* ff = fixed-pt fragment */
885#if INTERP_Z
886 GLfixed ffz = fz;
887 /*GLdepth *zp = zRow;*/
888#endif
889#if INTERP_RGB
890 GLfixed ffr = fr, ffg = fg, ffb = fb;
891#endif
892#if INTERP_SPEC
893 GLfixed ffsr = fsr, ffsg = fsg, ffsb = fsb;
894#endif
895#if INTERP_ALPHA
896 GLfixed ffa = fa;
897#endif
898#if INTERP_INDEX
899 GLfixed ffi = fi;
900#endif
901#if INTERP_INT_ST
902 GLfixed ffs = fs, fft = ft;
903#endif
904#if INTERP_STUV
905 GLfloat ss = sLeft, tt = tLeft, uu = uLeft, vv = vLeft;
906#endif
907#if INTERP_STUV1
908 GLfloat ss1 = s1Left, tt1 = t1Left, uu1 = u1Left, vv1 = v1Left;
909#endif
910 GLint left = FixedToInt(fxLeftEdge);
911 GLint right = FixedToInt(fxRightEdge);
912
913#if INTERP_RGB
914 {
915 /* need this to accomodate round-off errors */
916 GLfixed ffrend = ffr+(right-left-1)*fdrdx;
917 GLfixed ffgend = ffg+(right-left-1)*fdgdx;
918 GLfixed ffbend = ffb+(right-left-1)*fdbdx;
919 if (ffrend<0) ffr -= ffrend;
920 if (ffgend<0) ffg -= ffgend;
921 if (ffbend<0) ffb -= ffbend;
922 if (ffr<0) ffr = 0;
923 if (ffg<0) ffg = 0;
924 if (ffb<0) ffb = 0;
925 }
926#endif
927#if INTERP_SPEC
928 {
929 /* need this to accomodate round-off errors */
930 GLfixed ffsrend = ffsr+(right-left-1)*fdsrdx;
931 GLfixed ffsgend = ffsg+(right-left-1)*fdsgdx;
932 GLfixed ffsbend = ffsb+(right-left-1)*fdsbdx;
933 if (ffsrend<0) ffsr -= ffsrend;
934 if (ffsgend<0) ffsg -= ffsgend;
935 if (ffsbend<0) ffsb -= ffsbend;
936 if (ffsr<0) ffsr = 0;
937 if (ffsg<0) ffsg = 0;
938 if (ffsb<0) ffsb = 0;
939 }
940#endif
941#if INTERP_ALPHA
942 {
943 GLfixed ffaend = ffa+(right-left-1)*fdadx;
944 if (ffaend<0) ffa -= ffaend;
945 if (ffa<0) ffa = 0;
946 }
947#endif
948#if INTERP_INDEX
949 if (ffi<0) ffi = 0;
950#endif
951
952 INNER_LOOP( left, right, iy );
953
954 /*
955 * Advance to the next scan line. Compute the
956 * new edge coordinates, and adjust the
957 * pixel-center x coordinate so that it stays
958 * on or inside the major edge.
959 */
960 iy++;
961 lines--;
962
963 fxLeftEdge += fdxLeftEdge;
964 fxRightEdge += fdxRightEdge;
965
966
967 fError += fdError;
968 if (fError >= 0) {
969 fError -= FIXED_ONE;
970#ifdef PIXEL_ADDRESS
971 pRow = (PIXEL_TYPE*) ((GLubyte*)pRow + dPRowOuter);
972#endif
973#if INTERP_Z
974 zRow = (GLdepth*) ((GLubyte*)zRow + dZRowOuter);
975 fz += fdzOuter;
976#endif
977#if INTERP_RGB
978 fr += fdrOuter; fg += fdgOuter; fb += fdbOuter;
979#endif
980#if INTERP_SPEC
981 fsr += fdsrOuter; fsg += fdsgOuter; fsb += fdsbOuter;
982#endif
983#if INTERP_ALPHA
984 fa += fdaOuter;
985#endif
986#if INTERP_INDEX
987 fi += fdiOuter;
988#endif
989#if INTERP_INT_ST
990 fs += fdsOuter; ft += fdtOuter;
991#endif
992#if INTERP_STUV
993 sLeft += dsOuter;
994 tLeft += dtOuter;
995 uLeft += duOuter;
996 vLeft += dvOuter;
997#endif
998#if INTERP_STUV1
999 s1Left += ds1Outer;
1000 t1Left += dt1Outer;
1001 u1Left += du1Outer;
1002 v1Left += dv1Outer;
1003#endif
1004 }
1005 else {
1006#ifdef PIXEL_ADDRESS
1007 pRow = (PIXEL_TYPE*) ((GLubyte*)pRow + dPRowInner);
1008#endif
1009#if INTERP_Z
1010 zRow = (GLdepth*) ((GLubyte*)zRow + dZRowInner);
1011 fz += fdzInner;
1012#endif
1013#if INTERP_RGB
1014 fr += fdrInner; fg += fdgInner; fb += fdbInner;
1015#endif
1016#if INTERP_SPEC
1017 fsr += fdsrInner; fsg += fdsgInner; fsb += fdsbInner;
1018#endif
1019#if INTERP_ALPHA
1020 fa += fdaInner;
1021#endif
1022#if INTERP_INDEX
1023 fi += fdiInner;
1024#endif
1025#if INTERP_INT_ST
1026 fs += fdsInner; ft += fdtInner;
1027#endif
1028#if INTERP_STUV
1029 sLeft += dsInner;
1030 tLeft += dtInner;
1031 uLeft += duInner;
1032 vLeft += dvInner;
1033#endif
1034#if INTERP_STUV1
1035 s1Left += ds1Inner;
1036 t1Left += dt1Inner;
1037 u1Left += du1Inner;
1038 v1Left += dv1Inner;
1039#endif
1040 }
1041 } /*while lines>0*/
1042
1043 } /* for subTriangle */
1044
1045 }
1046 }
1047}
1048
1049#undef SETUP_CODE
1050#undef INNER_LOOP
1051
1052#undef PIXEL_TYPE
1053#undef BYTES_PER_ROW
1054#undef PIXEL_ADDRESS
1055
1056#undef INTERP_Z
1057#undef INTERP_RGB
1058#undef INTERP_SPEC
1059#undef INTERP_ALPHA
1060#undef INTERP_INDEX
1061#undef INTERP_INT_ST
1062#undef INTERP_STUV
1063#undef INTERP_STUV1
1064
1065#undef S_SCALE
1066#undef T_SCALE
Note: See TracBrowser for help on using the repository browser.