1 | /* $Id: texture.c,v 1.3 2000-05-23 20:40:57 jeroen Exp $ */
|
---|
2 |
|
---|
3 | /*
|
---|
4 | * Mesa 3-D graphics library
|
---|
5 | * Version: 3.3
|
---|
6 | *
|
---|
7 | * Copyright (C) 1999 Brian Paul All Rights Reserved.
|
---|
8 | *
|
---|
9 | * Permission is hereby granted, free of charge, to any person obtaining a
|
---|
10 | * copy of this software and associated documentation files (the "Software"),
|
---|
11 | * to deal in the Software without restriction, including without limitation
|
---|
12 | * the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
---|
13 | * and/or sell copies of the Software, and to permit persons to whom the
|
---|
14 | * Software is furnished to do so, subject to the following conditions:
|
---|
15 | *
|
---|
16 | * The above copyright notice and this permission notice shall be included
|
---|
17 | * in all copies or substantial portions of the Software.
|
---|
18 | *
|
---|
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
---|
20 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
---|
21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
---|
22 | * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
---|
23 | * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
---|
24 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | #ifdef PC_HEADER
|
---|
29 | #include "all.h"
|
---|
30 | #else
|
---|
31 | #include "glheader.h"
|
---|
32 | #include "types.h"
|
---|
33 | #include "context.h"
|
---|
34 | #include "macros.h"
|
---|
35 | #include "mmath.h"
|
---|
36 | #include "pb.h"
|
---|
37 | #include "texture.h"
|
---|
38 | #include "xform.h"
|
---|
39 | #endif
|
---|
40 |
|
---|
41 | /***********************************************************************
|
---|
42 | * Automatic texture coordinate generation (texgen) code.
|
---|
43 | */
|
---|
44 |
|
---|
45 | static GLuint all_bits[5] = {
|
---|
46 | 0,
|
---|
47 | VEC_SIZE_1,
|
---|
48 | VEC_SIZE_2,
|
---|
49 | VEC_SIZE_3,
|
---|
50 | VEC_SIZE_4,
|
---|
51 | };
|
---|
52 |
|
---|
53 |
|
---|
54 | static texgen_func texgen_generic_tab[4];
|
---|
55 | static texgen_func texgen_reflection_map_nv_tab[4];
|
---|
56 | static texgen_func texgen_normal_map_nv_tab[4];
|
---|
57 | static texgen_func texgen_sphere_map_tab[4];
|
---|
58 |
|
---|
59 |
|
---|
60 | typedef void (*build_m_func)(GLfloat f[][3],
|
---|
61 | GLfloat m[],
|
---|
62 | const GLvector3f *normals,
|
---|
63 | const GLvector4f *coord_vec,
|
---|
64 | const GLuint flags[],
|
---|
65 | const GLubyte cullmask[] );
|
---|
66 |
|
---|
67 |
|
---|
68 | typedef void (*build_f_func)( GLfloat *f,
|
---|
69 | GLuint fstride,
|
---|
70 | const GLvector3f *normal_vec,
|
---|
71 | const GLvector4f *coord_vec,
|
---|
72 | const GLuint flags[],
|
---|
73 | const GLubyte cullmask[] );
|
---|
74 |
|
---|
75 |
|
---|
76 | /* KW: compacted vs. coindexed normals don't bring any performance
|
---|
77 | * gains to texture generation, but it is still necessary to cope
|
---|
78 | * with the two different formats.
|
---|
79 | */
|
---|
80 | #define TAG(x) x
|
---|
81 | #define FIRST_NORMAL normals->start
|
---|
82 | #define NEXT_NORMAL STRIDE_F(normal, normals->stride)
|
---|
83 | #define LOCAL_VARS
|
---|
84 | #define CHECK
|
---|
85 | #define IDX 0
|
---|
86 | #include "texgen_tmp.h"
|
---|
87 |
|
---|
88 |
|
---|
89 | #define TAG(x) x##_compacted
|
---|
90 | #define FIRST_NORMAL normals->start
|
---|
91 | #define NEXT_NORMAL ((flags[i]&VERT_NORM) ? (normal=first_normal[i]) : (normal))
|
---|
92 | #define CHECK
|
---|
93 | #define IDX 2
|
---|
94 | #define LOCAL_VARS \
|
---|
95 | GLfloat (*first_normal)[3] = (GLfloat (*)[3]) FIRST_NORMAL;
|
---|
96 |
|
---|
97 | #include "texgen_tmp.h"
|
---|
98 |
|
---|
99 | #define TAG(x) x##_masked
|
---|
100 | #define FIRST_NORMAL normals->start
|
---|
101 | #define NEXT_NORMAL STRIDE_F(normal, normals->stride)
|
---|
102 | #define LOCAL_VARS
|
---|
103 | #define CHECK if (cullmask[i])
|
---|
104 | #define IDX 1
|
---|
105 | #include "texgen_tmp.h"
|
---|
106 |
|
---|
107 | #define TAG(x) x##_compacted_masked
|
---|
108 | #define FIRST_NORMAL normals->start
|
---|
109 | #define NEXT_NORMAL ((flags[i]&VERT_NORM) ? normal=first_normal[i] : 0)
|
---|
110 | #define CHECK if (cullmask[i])
|
---|
111 | #define IDX 3
|
---|
112 | #define LOCAL_VARS \
|
---|
113 | GLfloat (*first_normal)[3] = (GLfloat (*)[3]) FIRST_NORMAL;
|
---|
114 |
|
---|
115 | #include "texgen_tmp.h"
|
---|
116 |
|
---|
117 |
|
---|
118 | /*
|
---|
119 | * End texgen code
|
---|
120 | ***********************************************************************
|
---|
121 | */
|
---|
122 |
|
---|
123 |
|
---|
124 |
|
---|
125 | /*
|
---|
126 | * One time inits for texture mapping.
|
---|
127 | * Called by one_time_init() in context.c
|
---|
128 | */
|
---|
129 | void gl_init_texture( void )
|
---|
130 | {
|
---|
131 | init_texgen();
|
---|
132 | init_texgen_compacted();
|
---|
133 | init_texgen_masked();
|
---|
134 | init_texgen_compacted_masked();
|
---|
135 | }
|
---|
136 |
|
---|
137 |
|
---|
138 | /*
|
---|
139 | * After state changes to texturing we call this function to update
|
---|
140 | * intermediate and derived state.
|
---|
141 | * Called by gl_update_state().
|
---|
142 | */
|
---|
143 | void gl_update_texture_unit( GLcontext *ctx, struct gl_texture_unit *texUnit )
|
---|
144 | {
|
---|
145 | (void) ctx;
|
---|
146 |
|
---|
147 | if ((texUnit->Enabled & TEXTURE0_3D) && texUnit->CurrentD[3]->Complete) {
|
---|
148 | texUnit->ReallyEnabled = TEXTURE0_3D;
|
---|
149 | texUnit->Current = texUnit->CurrentD[3];
|
---|
150 | texUnit->CurrentDimension = 3;
|
---|
151 | goto utex_cont;
|
---|
152 | }
|
---|
153 | if ((texUnit->Enabled & TEXTURE0_2D) && texUnit->CurrentD[2]->Complete) {
|
---|
154 | texUnit->ReallyEnabled = TEXTURE0_2D;
|
---|
155 | texUnit->Current = texUnit->CurrentD[2];
|
---|
156 | texUnit->CurrentDimension = 2;
|
---|
157 | goto utex_cont;
|
---|
158 | }
|
---|
159 | if ((texUnit->Enabled & TEXTURE0_1D) && texUnit->CurrentD[1]->Complete) {
|
---|
160 | texUnit->ReallyEnabled = TEXTURE0_1D;
|
---|
161 | texUnit->Current = texUnit->CurrentD[1];
|
---|
162 | texUnit->CurrentDimension = 1;
|
---|
163 | goto utex_cont;
|
---|
164 | }
|
---|
165 | {
|
---|
166 | /* if (MESA_VERBOSE & VERBOSE_TEXTURE) {
|
---|
167 | switch (texUnit->Enabled) {
|
---|
168 | case TEXTURE0_3D:
|
---|
169 | fprintf(stderr, "Using incomplete 3d texture %u\n",
|
---|
170 | texUnit->CurrentD[3]->Name);
|
---|
171 | break;
|
---|
172 | case TEXTURE0_2D:
|
---|
173 | fprintf(stderr, "Using incomplete 2d texture %u\n",
|
---|
174 | texUnit->CurrentD[2]->Name);
|
---|
175 | break;
|
---|
176 | case TEXTURE0_1D:
|
---|
177 | fprintf(stderr, "Using incomplete 1d texture %u\n",
|
---|
178 | texUnit->CurrentD[1]->Name);
|
---|
179 | break;
|
---|
180 | default:
|
---|
181 | fprintf(stderr, "Bad value for texUnit->Enabled %x\n",
|
---|
182 | texUnit->Enabled);
|
---|
183 | break;
|
---|
184 | }
|
---|
185 | } */
|
---|
186 |
|
---|
187 | texUnit->ReallyEnabled = 0;
|
---|
188 | texUnit->Current = NULL;
|
---|
189 | texUnit->CurrentDimension = 0;
|
---|
190 | return;
|
---|
191 | }
|
---|
192 |
|
---|
193 | utex_cont:
|
---|
194 |
|
---|
195 | texUnit->GenFlags = 0;
|
---|
196 |
|
---|
197 | if (texUnit->TexGenEnabled) {
|
---|
198 | GLuint sz = 0;
|
---|
199 |
|
---|
200 | if (texUnit->TexGenEnabled & S_BIT) {
|
---|
201 | sz = 1;
|
---|
202 | texUnit->GenFlags |= texUnit->GenBitS;
|
---|
203 | }
|
---|
204 | if (texUnit->TexGenEnabled & T_BIT) {
|
---|
205 | sz = 2;
|
---|
206 | texUnit->GenFlags |= texUnit->GenBitT;
|
---|
207 | }
|
---|
208 | if (texUnit->TexGenEnabled & Q_BIT) {
|
---|
209 | sz = 3;
|
---|
210 | texUnit->GenFlags |= texUnit->GenBitQ;
|
---|
211 | }
|
---|
212 | if (texUnit->TexGenEnabled & R_BIT) {
|
---|
213 | sz = 4;
|
---|
214 | texUnit->GenFlags |= texUnit->GenBitR;
|
---|
215 | }
|
---|
216 |
|
---|
217 | texUnit->TexgenSize = sz;
|
---|
218 | texUnit->Holes = (GLubyte) (all_bits[sz] & ~texUnit->TexGenEnabled);
|
---|
219 | texUnit->func = texgen_generic_tab;
|
---|
220 |
|
---|
221 | if (texUnit->TexGenEnabled == (S_BIT|T_BIT|R_BIT)) {
|
---|
222 | if (texUnit->GenFlags == TEXGEN_REFLECTION_MAP_NV) {
|
---|
223 | texUnit->func = texgen_reflection_map_nv_tab;
|
---|
224 | }
|
---|
225 | else if (texUnit->GenFlags == TEXGEN_NORMAL_MAP_NV) {
|
---|
226 | texUnit->func = texgen_normal_map_nv_tab;
|
---|
227 | }
|
---|
228 | }
|
---|
229 | else if (texUnit->TexGenEnabled == (S_BIT|T_BIT) &&
|
---|
230 | texUnit->GenFlags == TEXGEN_SPHERE_MAP) {
|
---|
231 | texUnit->func = texgen_sphere_map_tab;
|
---|
232 | }
|
---|
233 | }
|
---|
234 | }
|
---|
235 |
|
---|
236 |
|
---|
237 |
|
---|
238 | /*
|
---|
239 | * Paletted texture sampling.
|
---|
240 | * Input: tObj - the texture object
|
---|
241 | * index - the palette index (8-bit only)
|
---|
242 | * Output: red, green, blue, alpha - the texel color
|
---|
243 | */
|
---|
244 | static void palette_sample(const struct gl_texture_object *tObj,
|
---|
245 | GLubyte index, GLubyte rgba[4] )
|
---|
246 | {
|
---|
247 | GLcontext *ctx = gl_get_current_context(); /* THIS IS A HACK*/
|
---|
248 | GLint i = index;
|
---|
249 | const GLubyte *palette;
|
---|
250 | GLenum format;
|
---|
251 |
|
---|
252 | if (ctx->Texture.SharedPalette) {
|
---|
253 | palette = ctx->Texture.Palette.Table;
|
---|
254 | format = ctx->Texture.Palette.Format;
|
---|
255 | }
|
---|
256 | else {
|
---|
257 | palette = tObj->Palette.Table;
|
---|
258 | format = tObj->Palette.Format;
|
---|
259 | }
|
---|
260 |
|
---|
261 | switch (format) {
|
---|
262 | case GL_ALPHA:
|
---|
263 | rgba[ACOMP] = palette[index];
|
---|
264 | return;
|
---|
265 | case GL_LUMINANCE:
|
---|
266 | case GL_INTENSITY:
|
---|
267 | rgba[RCOMP] = palette[index];
|
---|
268 | return;
|
---|
269 | case GL_LUMINANCE_ALPHA:
|
---|
270 | rgba[RCOMP] = palette[(index << 1) + 0];
|
---|
271 | rgba[ACOMP] = palette[(index << 1) + 1];
|
---|
272 | return;
|
---|
273 | case GL_RGB:
|
---|
274 | rgba[RCOMP] = palette[index * 3 + 0];
|
---|
275 | rgba[GCOMP] = palette[index * 3 + 1];
|
---|
276 | rgba[BCOMP] = palette[index * 3 + 2];
|
---|
277 | return;
|
---|
278 | case GL_RGBA:
|
---|
279 | rgba[RCOMP] = palette[(i << 2) + 0];
|
---|
280 | rgba[GCOMP] = palette[(i << 2) + 1];
|
---|
281 | rgba[BCOMP] = palette[(i << 2) + 2];
|
---|
282 | rgba[ACOMP] = palette[(i << 2) + 3];
|
---|
283 | return;
|
---|
284 | default:
|
---|
285 | gl_problem(NULL, "Bad palette format in palette_sample");
|
---|
286 | }
|
---|
287 | }
|
---|
288 |
|
---|
289 |
|
---|
290 |
|
---|
291 | /*
|
---|
292 | * These values are used in the fixed-point arithmetic used
|
---|
293 | * for linear filtering.
|
---|
294 | */
|
---|
295 | #define WEIGHT_SCALE 65536.0F
|
---|
296 | #define WEIGHT_SHIFT 16
|
---|
297 |
|
---|
298 |
|
---|
299 | /*
|
---|
300 | * Used to compute texel locations for linear sampling.
|
---|
301 | */
|
---|
302 | #define COMPUTE_LINEAR_TEXEL_LOCATIONS(wrapMode, S, U, SIZE, I0, I1) \
|
---|
303 | { \
|
---|
304 | if (wrapMode == GL_REPEAT) { \
|
---|
305 | U = S * SIZE - 0.5F; \
|
---|
306 | I0 = ((GLint) myFloor(U)) & (SIZE - 1); \
|
---|
307 | I1 = (I0 + 1) & (SIZE - 1); \
|
---|
308 | } \
|
---|
309 | else { \
|
---|
310 | U = S * SIZE; \
|
---|
311 | if (U < 0.0F) \
|
---|
312 | U = 0.0F; \
|
---|
313 | else if (U >= SIZE) \
|
---|
314 | U = SIZE; \
|
---|
315 | U -= 0.5F; \
|
---|
316 | I0 = (GLint) myFloor(U); \
|
---|
317 | I1 = I0 + 1; \
|
---|
318 | if (wrapMode == GL_CLAMP_TO_EDGE) { \
|
---|
319 | if (I0 < 0) \
|
---|
320 | I0 = 0; \
|
---|
321 | if (I1 >= SIZE) \
|
---|
322 | I1 = SIZE - 1; \
|
---|
323 | } \
|
---|
324 | } \
|
---|
325 | }
|
---|
326 |
|
---|
327 |
|
---|
328 | /*
|
---|
329 | * Used to compute texel location for nearest sampling.
|
---|
330 | */
|
---|
331 | #define COMPUTE_NEAREST_TEXEL_LOCATION(wrapMode, S, SIZE, I) \
|
---|
332 | { \
|
---|
333 | if (wrapMode == GL_REPEAT) { \
|
---|
334 | /* s limited to [0,1) */ \
|
---|
335 | /* i limited to [0,width-1] */ \
|
---|
336 | I = (GLint) (S * SIZE); \
|
---|
337 | if (S < 0.0F) \
|
---|
338 | I -= 1; \
|
---|
339 | I &= (SIZE - 1); \
|
---|
340 | } \
|
---|
341 | else if (wrapMode == GL_CLAMP_TO_EDGE) { \
|
---|
342 | const GLfloat min = 1.0F / (2.0F * SIZE); \
|
---|
343 | const GLfloat max = 1.0F - min; \
|
---|
344 | if (S < min) \
|
---|
345 | I = 0; \
|
---|
346 | else if (S > max) \
|
---|
347 | I = SIZE - 1; \
|
---|
348 | else \
|
---|
349 | I = (GLint) (S * SIZE); \
|
---|
350 | } \
|
---|
351 | else { \
|
---|
352 | ASSERT(wrapMode == GL_CLAMP); \
|
---|
353 | /* s limited to [0,1] */ \
|
---|
354 | /* i limited to [0,width-1] */ \
|
---|
355 | if (S <= 0.0F) \
|
---|
356 | I = 0; \
|
---|
357 | else if (S >= 1.0F) \
|
---|
358 | I = SIZE - 1; \
|
---|
359 | else \
|
---|
360 | I = (GLint) (S * SIZE); \
|
---|
361 | } \
|
---|
362 | }
|
---|
363 |
|
---|
364 |
|
---|
365 | /*
|
---|
366 | * Bitflags for texture border color sampling.
|
---|
367 | */
|
---|
368 | #define I0BIT 1
|
---|
369 | #define I1BIT 2
|
---|
370 | #define J0BIT 4
|
---|
371 | #define J1BIT 8
|
---|
372 | #define K0BIT 16
|
---|
373 | #define K1BIT 32
|
---|
374 |
|
---|
375 |
|
---|
376 |
|
---|
377 | /**********************************************************************/
|
---|
378 | /* 1-D Texture Sampling Functions */
|
---|
379 | /**********************************************************************/
|
---|
380 |
|
---|
381 |
|
---|
382 | /*
|
---|
383 | * Return floor of x, being careful of negative values.
|
---|
384 | */
|
---|
385 | static GLfloat myFloor(GLfloat x)
|
---|
386 | {
|
---|
387 | if (x < 0.0F)
|
---|
388 | return (GLfloat) ((GLint) x - 1);
|
---|
389 | else
|
---|
390 | return (GLfloat) (GLint) x;
|
---|
391 | }
|
---|
392 |
|
---|
393 |
|
---|
394 | /*
|
---|
395 | * Return the fractional part of x.
|
---|
396 | */
|
---|
397 | #define myFrac(x) ( (x) - myFloor(x) )
|
---|
398 |
|
---|
399 |
|
---|
400 |
|
---|
401 |
|
---|
402 | /*
|
---|
403 | * Given 1-D texture image and an (i) texel column coordinate, return the
|
---|
404 | * texel color.
|
---|
405 | */
|
---|
406 | static void get_1d_texel( const struct gl_texture_object *tObj,
|
---|
407 | const struct gl_texture_image *img, GLint i,
|
---|
408 | GLubyte rgba[4] )
|
---|
409 | {
|
---|
410 | const GLubyte *texel;
|
---|
411 |
|
---|
412 | #ifdef DEBUG
|
---|
413 | GLint width = img->Width;
|
---|
414 | ASSERT(i >= 0);
|
---|
415 | ASSERT(i < width);
|
---|
416 | #endif
|
---|
417 |
|
---|
418 | switch (img->Format) {
|
---|
419 | case GL_COLOR_INDEX:
|
---|
420 | {
|
---|
421 | GLubyte index = img->Data[i];
|
---|
422 | palette_sample(tObj, index, rgba);
|
---|
423 | return;
|
---|
424 | }
|
---|
425 | case GL_ALPHA:
|
---|
426 | rgba[ACOMP] = img->Data[ i ];
|
---|
427 | return;
|
---|
428 | case GL_LUMINANCE:
|
---|
429 | case GL_INTENSITY:
|
---|
430 | rgba[RCOMP] = img->Data[ i ];
|
---|
431 | return;
|
---|
432 | case GL_LUMINANCE_ALPHA:
|
---|
433 | texel = img->Data + i * 2;
|
---|
434 | rgba[RCOMP] = texel[0];
|
---|
435 | rgba[ACOMP] = texel[1];
|
---|
436 | return;
|
---|
437 | case GL_RGB:
|
---|
438 | texel = img->Data + i * 3;
|
---|
439 | rgba[RCOMP] = texel[0];
|
---|
440 | rgba[GCOMP] = texel[1];
|
---|
441 | rgba[BCOMP] = texel[2];
|
---|
442 | return;
|
---|
443 | case GL_RGBA:
|
---|
444 | texel = img->Data + i * 4;
|
---|
445 | rgba[RCOMP] = texel[0];
|
---|
446 | rgba[GCOMP] = texel[1];
|
---|
447 | rgba[BCOMP] = texel[2];
|
---|
448 | rgba[ACOMP] = texel[3];
|
---|
449 | return;
|
---|
450 | default:
|
---|
451 | gl_problem(NULL, "Bad format in get_1d_texel");
|
---|
452 | return;
|
---|
453 | }
|
---|
454 | }
|
---|
455 |
|
---|
456 |
|
---|
457 |
|
---|
458 | /*
|
---|
459 | * Return the texture sample for coordinate (s) using GL_NEAREST filter.
|
---|
460 | */
|
---|
461 | static void sample_1d_nearest( const struct gl_texture_object *tObj,
|
---|
462 | const struct gl_texture_image *img,
|
---|
463 | GLfloat s, GLubyte rgba[4] )
|
---|
464 | {
|
---|
465 | const GLint width = img->Width2; /* without border, power of two */
|
---|
466 | const GLubyte *texel;
|
---|
467 | GLint i;
|
---|
468 |
|
---|
469 | COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i);
|
---|
470 |
|
---|
471 | /* skip over the border, if any */
|
---|
472 | i += img->Border;
|
---|
473 |
|
---|
474 | /* Get the texel */
|
---|
475 | switch (img->Format) {
|
---|
476 | case GL_COLOR_INDEX:
|
---|
477 | {
|
---|
478 | GLubyte index = img->Data[i];
|
---|
479 | palette_sample(tObj, index, rgba );
|
---|
480 | return;
|
---|
481 | }
|
---|
482 | case GL_ALPHA:
|
---|
483 | rgba[ACOMP] = img->Data[i];
|
---|
484 | return;
|
---|
485 | case GL_LUMINANCE:
|
---|
486 | case GL_INTENSITY:
|
---|
487 | rgba[RCOMP] = img->Data[i];
|
---|
488 | return;
|
---|
489 | case GL_LUMINANCE_ALPHA:
|
---|
490 | texel = img->Data + i * 2;
|
---|
491 | rgba[RCOMP] = texel[0];
|
---|
492 | rgba[ACOMP] = texel[1];
|
---|
493 | return;
|
---|
494 | case GL_RGB:
|
---|
495 | texel = img->Data + i * 3;
|
---|
496 | rgba[RCOMP] = texel[0];
|
---|
497 | rgba[GCOMP] = texel[1];
|
---|
498 | rgba[BCOMP] = texel[2];
|
---|
499 | return;
|
---|
500 | case GL_RGBA:
|
---|
501 | texel = img->Data + i * 4;
|
---|
502 | rgba[RCOMP] = texel[0];
|
---|
503 | rgba[GCOMP] = texel[1];
|
---|
504 | rgba[BCOMP] = texel[2];
|
---|
505 | rgba[ACOMP] = texel[3];
|
---|
506 | return;
|
---|
507 | default:
|
---|
508 | gl_problem(NULL, "Bad format in sample_1d_nearest");
|
---|
509 | }
|
---|
510 | }
|
---|
511 |
|
---|
512 |
|
---|
513 |
|
---|
514 | /*
|
---|
515 | * Return the texture sample for coordinate (s) using GL_LINEAR filter.
|
---|
516 | */
|
---|
517 | static void sample_1d_linear( const struct gl_texture_object *tObj,
|
---|
518 | const struct gl_texture_image *img,
|
---|
519 | GLfloat s,
|
---|
520 | GLubyte rgba[4] )
|
---|
521 | {
|
---|
522 | const GLint width = img->Width2;
|
---|
523 | GLint i0, i1;
|
---|
524 | GLfloat u;
|
---|
525 | GLuint useBorderColor;
|
---|
526 |
|
---|
527 | COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1);
|
---|
528 |
|
---|
529 | useBorderColor = 0;
|
---|
530 | if (img->Border) {
|
---|
531 | i0 += img->Border;
|
---|
532 | i1 += img->Border;
|
---|
533 | }
|
---|
534 | else {
|
---|
535 | if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
|
---|
536 | if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
|
---|
537 | }
|
---|
538 |
|
---|
539 | {
|
---|
540 | GLfloat a = myFrac(u);
|
---|
541 | /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
|
---|
542 | GLint w0 = (GLint) ((1.0F-a) * WEIGHT_SCALE + 0.5F);
|
---|
543 | GLint w1 = (GLint) ( a * WEIGHT_SCALE + 0.5F);
|
---|
544 |
|
---|
545 | GLubyte t0[4], t1[4]; /* texels */
|
---|
546 |
|
---|
547 | if (useBorderColor & I0BIT) {
|
---|
548 | COPY_4UBV(t0, tObj->BorderColor);
|
---|
549 | }
|
---|
550 | else {
|
---|
551 | get_1d_texel( tObj, img, i0, t0 );
|
---|
552 | }
|
---|
553 | if (useBorderColor & I1BIT) {
|
---|
554 | COPY_4UBV(t1, tObj->BorderColor);
|
---|
555 | }
|
---|
556 | else {
|
---|
557 | get_1d_texel( tObj, img, i1, t1 );
|
---|
558 | }
|
---|
559 |
|
---|
560 | rgba[0] = (GLubyte) ((w0 * t0[0] + w1 * t1[0]) >> WEIGHT_SHIFT);
|
---|
561 | rgba[1] = (GLubyte) ((w0 * t0[1] + w1 * t1[1]) >> WEIGHT_SHIFT);
|
---|
562 | rgba[2] = (GLubyte) ((w0 * t0[2] + w1 * t1[2]) >> WEIGHT_SHIFT);
|
---|
563 | rgba[3] = (GLubyte) ((w0 * t0[3] + w1 * t1[3]) >> WEIGHT_SHIFT);
|
---|
564 | }
|
---|
565 | }
|
---|
566 |
|
---|
567 |
|
---|
568 | static void
|
---|
569 | sample_1d_nearest_mipmap_nearest( const struct gl_texture_object *tObj,
|
---|
570 | GLfloat s, GLfloat lambda,
|
---|
571 | GLubyte rgba[4] )
|
---|
572 | {
|
---|
573 | GLint level;
|
---|
574 | if (lambda <= 0.5F)
|
---|
575 | lambda = 0.0F;
|
---|
576 | else if (lambda > tObj->M + 0.4999F)
|
---|
577 | lambda = tObj->M + 0.4999F;
|
---|
578 | level = (GLint) (tObj->BaseLevel + lambda + 0.5F);
|
---|
579 | if (level > tObj->P)
|
---|
580 | level = tObj->P;
|
---|
581 |
|
---|
582 | sample_1d_nearest( tObj, tObj->Image[level], s, rgba );
|
---|
583 | }
|
---|
584 |
|
---|
585 |
|
---|
586 | static void
|
---|
587 | sample_1d_linear_mipmap_nearest( const struct gl_texture_object *tObj,
|
---|
588 | GLfloat s, GLfloat lambda,
|
---|
589 | GLubyte rgba[4] )
|
---|
590 | {
|
---|
591 | GLint level;
|
---|
592 | if (lambda <= 0.5F)
|
---|
593 | lambda = 0.0F;
|
---|
594 | else if (lambda > tObj->M + 0.4999F)
|
---|
595 | lambda = tObj->M + 0.4999F;
|
---|
596 | level = (GLint) (tObj->BaseLevel + lambda + 0.5F);
|
---|
597 | if (level > tObj->P)
|
---|
598 | level = tObj->P;
|
---|
599 |
|
---|
600 | sample_1d_linear( tObj, tObj->Image[level], s, rgba );
|
---|
601 | }
|
---|
602 |
|
---|
603 |
|
---|
604 |
|
---|
605 | static void
|
---|
606 | sample_1d_nearest_mipmap_linear( const struct gl_texture_object *tObj,
|
---|
607 | GLfloat s, GLfloat lambda,
|
---|
608 | GLubyte rgba[4] )
|
---|
609 | {
|
---|
610 | GLint level;
|
---|
611 | if (lambda < 0.0F)
|
---|
612 | lambda = 0.0F;
|
---|
613 | else if (lambda > tObj->M)
|
---|
614 | lambda = tObj->M;
|
---|
615 | level = (GLint) (tObj->BaseLevel + lambda);
|
---|
616 |
|
---|
617 | if (level >= tObj->P) {
|
---|
618 | sample_1d_nearest( tObj, tObj->Image[tObj->P], s, rgba );
|
---|
619 | }
|
---|
620 | else {
|
---|
621 | GLubyte t0[4], t1[4];
|
---|
622 | GLfloat f = myFrac(lambda);
|
---|
623 | sample_1d_nearest( tObj, tObj->Image[level ], s, t0 );
|
---|
624 | sample_1d_nearest( tObj, tObj->Image[level+1], s, t1 );
|
---|
625 | rgba[RCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
|
---|
626 | rgba[GCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
|
---|
627 | rgba[BCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
|
---|
628 | rgba[ACOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
|
---|
629 | }
|
---|
630 | }
|
---|
631 |
|
---|
632 |
|
---|
633 |
|
---|
634 | static void
|
---|
635 | sample_1d_linear_mipmap_linear( const struct gl_texture_object *tObj,
|
---|
636 | GLfloat s, GLfloat lambda,
|
---|
637 | GLubyte rgba[4] )
|
---|
638 | {
|
---|
639 | GLint level;
|
---|
640 | if (lambda < 0.0F)
|
---|
641 | lambda = 0.0F;
|
---|
642 | else if (lambda > tObj->M)
|
---|
643 | lambda = tObj->M;
|
---|
644 | level = (GLint) (tObj->BaseLevel + lambda);
|
---|
645 |
|
---|
646 | if (level >= tObj->P) {
|
---|
647 | sample_1d_linear( tObj, tObj->Image[tObj->P], s, rgba );
|
---|
648 | }
|
---|
649 | else {
|
---|
650 | GLubyte t0[4], t1[4];
|
---|
651 | GLfloat f = myFrac(lambda);
|
---|
652 | sample_1d_linear( tObj, tObj->Image[level ], s, t0 );
|
---|
653 | sample_1d_linear( tObj, tObj->Image[level+1], s, t1 );
|
---|
654 | rgba[RCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
|
---|
655 | rgba[GCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
|
---|
656 | rgba[BCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
|
---|
657 | rgba[ACOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
|
---|
658 | }
|
---|
659 | }
|
---|
660 |
|
---|
661 |
|
---|
662 |
|
---|
663 | static void sample_nearest_1d( const struct gl_texture_object *tObj, GLuint n,
|
---|
664 | const GLfloat s[], const GLfloat t[],
|
---|
665 | const GLfloat u[], const GLfloat lambda[],
|
---|
666 | GLubyte rgba[][4] )
|
---|
667 | {
|
---|
668 | GLuint i;
|
---|
669 | struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
|
---|
670 | (void) t;
|
---|
671 | (void) u;
|
---|
672 | (void) lambda;
|
---|
673 | for (i=0;i<n;i++) {
|
---|
674 | sample_1d_nearest( tObj, image, s[i], rgba[i] );
|
---|
675 | }
|
---|
676 | }
|
---|
677 |
|
---|
678 |
|
---|
679 |
|
---|
680 | static void sample_linear_1d( const struct gl_texture_object *tObj, GLuint n,
|
---|
681 | const GLfloat s[], const GLfloat t[],
|
---|
682 | const GLfloat u[], const GLfloat lambda[],
|
---|
683 | GLubyte rgba[][4] )
|
---|
684 | {
|
---|
685 | GLuint i;
|
---|
686 | struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
|
---|
687 | (void) t;
|
---|
688 | (void) u;
|
---|
689 | (void) lambda;
|
---|
690 | for (i=0;i<n;i++) {
|
---|
691 | sample_1d_linear( tObj, image, s[i], rgba[i] );
|
---|
692 | }
|
---|
693 | }
|
---|
694 |
|
---|
695 |
|
---|
696 | /*
|
---|
697 | * Given an (s) texture coordinate and lambda (level of detail) value,
|
---|
698 | * return a texture sample.
|
---|
699 | *
|
---|
700 | */
|
---|
701 | static void sample_lambda_1d( const struct gl_texture_object *tObj, GLuint n,
|
---|
702 | const GLfloat s[], const GLfloat t[],
|
---|
703 | const GLfloat u[], const GLfloat lambda[],
|
---|
704 | GLubyte rgba[][4] )
|
---|
705 | {
|
---|
706 | GLuint i;
|
---|
707 |
|
---|
708 | (void) t;
|
---|
709 | (void) u;
|
---|
710 |
|
---|
711 | for (i=0;i<n;i++) {
|
---|
712 | if (lambda[i] > tObj->MinMagThresh) {
|
---|
713 | /* minification */
|
---|
714 | switch (tObj->MinFilter) {
|
---|
715 | case GL_NEAREST:
|
---|
716 | sample_1d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
|
---|
717 | break;
|
---|
718 | case GL_LINEAR:
|
---|
719 | sample_1d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
|
---|
720 | break;
|
---|
721 | case GL_NEAREST_MIPMAP_NEAREST:
|
---|
722 | sample_1d_nearest_mipmap_nearest( tObj, lambda[i], s[i], rgba[i] );
|
---|
723 | break;
|
---|
724 | case GL_LINEAR_MIPMAP_NEAREST:
|
---|
725 | sample_1d_linear_mipmap_nearest( tObj, s[i], lambda[i], rgba[i] );
|
---|
726 | break;
|
---|
727 | case GL_NEAREST_MIPMAP_LINEAR:
|
---|
728 | sample_1d_nearest_mipmap_linear( tObj, s[i], lambda[i], rgba[i] );
|
---|
729 | break;
|
---|
730 | case GL_LINEAR_MIPMAP_LINEAR:
|
---|
731 | sample_1d_linear_mipmap_linear( tObj, s[i], lambda[i], rgba[i] );
|
---|
732 | break;
|
---|
733 | default:
|
---|
734 | gl_problem(NULL, "Bad min filter in sample_1d_texture");
|
---|
735 | return;
|
---|
736 | }
|
---|
737 | }
|
---|
738 | else {
|
---|
739 | /* magnification */
|
---|
740 | switch (tObj->MagFilter) {
|
---|
741 | case GL_NEAREST:
|
---|
742 | sample_1d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
|
---|
743 | break;
|
---|
744 | case GL_LINEAR:
|
---|
745 | sample_1d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], rgba[i] );
|
---|
746 | break;
|
---|
747 | default:
|
---|
748 | gl_problem(NULL, "Bad mag filter in sample_1d_texture");
|
---|
749 | return;
|
---|
750 | }
|
---|
751 | }
|
---|
752 | }
|
---|
753 | }
|
---|
754 |
|
---|
755 |
|
---|
756 |
|
---|
757 |
|
---|
758 | /**********************************************************************/
|
---|
759 | /* 2-D Texture Sampling Functions */
|
---|
760 | /**********************************************************************/
|
---|
761 |
|
---|
762 |
|
---|
763 | /*
|
---|
764 | * Given a texture image and an (i,j) integer texel coordinate, return the
|
---|
765 | * texel color.
|
---|
766 | */
|
---|
767 | static void get_2d_texel( const struct gl_texture_object *tObj,
|
---|
768 | const struct gl_texture_image *img, GLint i, GLint j,
|
---|
769 | GLubyte rgba[4] )
|
---|
770 | {
|
---|
771 | const GLint width = img->Width; /* includes border */
|
---|
772 | const GLubyte *texel;
|
---|
773 |
|
---|
774 | #ifdef DEBUG
|
---|
775 | const GLint height = img->Height; /* includes border */
|
---|
776 | ASSERT(i >= 0);
|
---|
777 | ASSERT(i < width);
|
---|
778 | ASSERT(j >= 0);
|
---|
779 | ASSERT(j < height);
|
---|
780 | #endif
|
---|
781 |
|
---|
782 | switch (img->Format) {
|
---|
783 | case GL_COLOR_INDEX:
|
---|
784 | {
|
---|
785 | GLubyte index = img->Data[ width *j + i ];
|
---|
786 | palette_sample(tObj, index, rgba );
|
---|
787 | return;
|
---|
788 | }
|
---|
789 | case GL_ALPHA:
|
---|
790 | rgba[ACOMP] = img->Data[ width * j + i ];
|
---|
791 | return;
|
---|
792 | case GL_LUMINANCE:
|
---|
793 | case GL_INTENSITY:
|
---|
794 | rgba[RCOMP] = img->Data[ width * j + i ];
|
---|
795 | return;
|
---|
796 | case GL_LUMINANCE_ALPHA:
|
---|
797 | texel = img->Data + (width * j + i) * 2;
|
---|
798 | rgba[RCOMP] = texel[0];
|
---|
799 | rgba[ACOMP] = texel[1];
|
---|
800 | return;
|
---|
801 | case GL_RGB:
|
---|
802 | texel = img->Data + (width * j + i) * 3;
|
---|
803 | rgba[RCOMP] = texel[0];
|
---|
804 | rgba[GCOMP] = texel[1];
|
---|
805 | rgba[BCOMP] = texel[2];
|
---|
806 | return;
|
---|
807 | case GL_RGBA:
|
---|
808 | texel = img->Data + (width * j + i) * 4;
|
---|
809 | rgba[RCOMP] = texel[0];
|
---|
810 | rgba[GCOMP] = texel[1];
|
---|
811 | rgba[BCOMP] = texel[2];
|
---|
812 | rgba[ACOMP] = texel[3];
|
---|
813 | return;
|
---|
814 | default:
|
---|
815 | gl_problem(NULL, "Bad format in get_2d_texel");
|
---|
816 | }
|
---|
817 | }
|
---|
818 |
|
---|
819 |
|
---|
820 |
|
---|
821 | /*
|
---|
822 | * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
|
---|
823 | */
|
---|
824 | static void sample_2d_nearest( const struct gl_texture_object *tObj,
|
---|
825 | const struct gl_texture_image *img,
|
---|
826 | GLfloat s, GLfloat t,
|
---|
827 | GLubyte rgba[] )
|
---|
828 | {
|
---|
829 | const GLint imgWidth = img->Width; /* includes border */
|
---|
830 | const GLint width = img->Width2; /* without border, power of two */
|
---|
831 | const GLint height = img->Height2; /* without border, power of two */
|
---|
832 | const GLubyte *texel;
|
---|
833 | GLint i, j;
|
---|
834 |
|
---|
835 | COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i);
|
---|
836 | COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, t, height, j);
|
---|
837 |
|
---|
838 | /* skip over the border, if any */
|
---|
839 | i += img->Border;
|
---|
840 | j += img->Border;
|
---|
841 |
|
---|
842 | switch (img->Format) {
|
---|
843 | case GL_COLOR_INDEX:
|
---|
844 | {
|
---|
845 | GLubyte index = img->Data[ j * imgWidth + i ];
|
---|
846 | palette_sample(tObj, index, rgba);
|
---|
847 | return;
|
---|
848 | }
|
---|
849 | case GL_ALPHA:
|
---|
850 | rgba[ACOMP] = img->Data[ j * imgWidth + i ];
|
---|
851 | return;
|
---|
852 | case GL_LUMINANCE:
|
---|
853 | case GL_INTENSITY:
|
---|
854 | rgba[RCOMP] = img->Data[ j * imgWidth + i ];
|
---|
855 | return;
|
---|
856 | case GL_LUMINANCE_ALPHA:
|
---|
857 | texel = img->Data + ((j * imgWidth + i) << 1);
|
---|
858 | rgba[RCOMP] = texel[0];
|
---|
859 | rgba[ACOMP] = texel[1];
|
---|
860 | return;
|
---|
861 | case GL_RGB:
|
---|
862 | texel = img->Data + (j * imgWidth + i) * 3;
|
---|
863 | rgba[RCOMP] = texel[0];
|
---|
864 | rgba[GCOMP] = texel[1];
|
---|
865 | rgba[BCOMP] = texel[2];
|
---|
866 | return;
|
---|
867 | case GL_RGBA:
|
---|
868 | texel = img->Data + ((j * imgWidth + i) << 2);
|
---|
869 | rgba[RCOMP] = texel[0];
|
---|
870 | rgba[GCOMP] = texel[1];
|
---|
871 | rgba[BCOMP] = texel[2];
|
---|
872 | rgba[ACOMP] = texel[3];
|
---|
873 | return;
|
---|
874 | default:
|
---|
875 | gl_problem(NULL, "Bad format in sample_2d_nearest");
|
---|
876 | }
|
---|
877 | }
|
---|
878 |
|
---|
879 |
|
---|
880 |
|
---|
881 | /*
|
---|
882 | * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
|
---|
883 | * New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
|
---|
884 | */
|
---|
885 | static void sample_2d_linear( const struct gl_texture_object *tObj,
|
---|
886 | const struct gl_texture_image *img,
|
---|
887 | GLfloat s, GLfloat t,
|
---|
888 | GLubyte rgba[] )
|
---|
889 | {
|
---|
890 | const GLint width = img->Width2;
|
---|
891 | const GLint height = img->Height2;
|
---|
892 | GLint i0, j0, i1, j1;
|
---|
893 | GLuint useBorderColor;
|
---|
894 | GLfloat u, v;
|
---|
895 |
|
---|
896 | COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1);
|
---|
897 | COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, t, v, height, j0, j1);
|
---|
898 |
|
---|
899 | useBorderColor = 0;
|
---|
900 | if (img->Border) {
|
---|
901 | i0 += img->Border;
|
---|
902 | i1 += img->Border;
|
---|
903 | j0 += img->Border;
|
---|
904 | j1 += img->Border;
|
---|
905 | }
|
---|
906 | else {
|
---|
907 | if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
|
---|
908 | if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
|
---|
909 | if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
|
---|
910 | if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
|
---|
911 | }
|
---|
912 |
|
---|
913 | {
|
---|
914 | GLfloat a = myFrac(u);
|
---|
915 | GLfloat b = myFrac(v);
|
---|
916 | /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
|
---|
917 | GLint w00 = (GLint) ((1.0F-a)*(1.0F-b) * WEIGHT_SCALE + 0.5F);
|
---|
918 | GLint w10 = (GLint) ( a *(1.0F-b) * WEIGHT_SCALE + 0.5F);
|
---|
919 | GLint w01 = (GLint) ((1.0F-a)* b * WEIGHT_SCALE + 0.5F);
|
---|
920 | GLint w11 = (GLint) ( a * b * WEIGHT_SCALE + 0.5F);
|
---|
921 | GLubyte t00[4];
|
---|
922 | GLubyte t10[4];
|
---|
923 | GLubyte t01[4];
|
---|
924 | GLubyte t11[4];
|
---|
925 |
|
---|
926 | if (useBorderColor & (I0BIT | J0BIT)) {
|
---|
927 | COPY_4UBV(t00, tObj->BorderColor);
|
---|
928 | }
|
---|
929 | else {
|
---|
930 | get_2d_texel( tObj, img, i0, j0, t00 );
|
---|
931 | }
|
---|
932 | if (useBorderColor & (I1BIT | J0BIT)) {
|
---|
933 | COPY_4UBV(t10, tObj->BorderColor);
|
---|
934 | }
|
---|
935 | else {
|
---|
936 | get_2d_texel( tObj, img, i1, j0, t10 );
|
---|
937 | }
|
---|
938 | if (useBorderColor & (I0BIT | J1BIT)) {
|
---|
939 | COPY_4UBV(t01, tObj->BorderColor);
|
---|
940 | }
|
---|
941 | else {
|
---|
942 | get_2d_texel( tObj, img, i0, j1, t01 );
|
---|
943 | }
|
---|
944 | if (useBorderColor & (I1BIT | J1BIT)) {
|
---|
945 | COPY_4UBV(t11, tObj->BorderColor);
|
---|
946 | }
|
---|
947 | else {
|
---|
948 | get_2d_texel( tObj, img, i1, j1, t11 );
|
---|
949 | }
|
---|
950 |
|
---|
951 | rgba[0] = (GLubyte) ((w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT);
|
---|
952 | rgba[1] = (GLubyte) ((w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT);
|
---|
953 | rgba[2] = (GLubyte) ((w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT);
|
---|
954 | rgba[3] = (GLubyte) ((w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT);
|
---|
955 | }
|
---|
956 |
|
---|
957 | }
|
---|
958 |
|
---|
959 |
|
---|
960 |
|
---|
961 | static void
|
---|
962 | sample_2d_nearest_mipmap_nearest( const struct gl_texture_object *tObj,
|
---|
963 | GLfloat s, GLfloat t, GLfloat lambda,
|
---|
964 | GLubyte rgba[4] )
|
---|
965 | {
|
---|
966 | GLint level;
|
---|
967 | if (lambda <= 0.5F)
|
---|
968 | lambda = 0.0F;
|
---|
969 | else if (lambda > tObj->M + 0.4999F)
|
---|
970 | lambda = tObj->M + 0.4999F;
|
---|
971 | level = (GLint) (tObj->BaseLevel + lambda + 0.5F);
|
---|
972 | if (level > tObj->P)
|
---|
973 | level = tObj->P;
|
---|
974 |
|
---|
975 | sample_2d_nearest( tObj, tObj->Image[level], s, t, rgba );
|
---|
976 | }
|
---|
977 |
|
---|
978 |
|
---|
979 |
|
---|
980 | static void
|
---|
981 | sample_2d_linear_mipmap_nearest( const struct gl_texture_object *tObj,
|
---|
982 | GLfloat s, GLfloat t, GLfloat lambda,
|
---|
983 | GLubyte rgba[4] )
|
---|
984 | {
|
---|
985 | GLint level;
|
---|
986 | if (lambda <= 0.5F)
|
---|
987 | lambda = 0.0F;
|
---|
988 | else if (lambda > tObj->M + 0.4999F)
|
---|
989 | lambda = tObj->M + 0.4999F;
|
---|
990 | level = (GLint) (tObj->BaseLevel + lambda + 0.5F);
|
---|
991 | if (level > tObj->P)
|
---|
992 | level = tObj->P;
|
---|
993 |
|
---|
994 | sample_2d_linear( tObj, tObj->Image[level], s, t, rgba );
|
---|
995 | }
|
---|
996 |
|
---|
997 |
|
---|
998 |
|
---|
999 | static void
|
---|
1000 | sample_2d_nearest_mipmap_linear( const struct gl_texture_object *tObj,
|
---|
1001 | GLfloat s, GLfloat t, GLfloat lambda,
|
---|
1002 | GLubyte rgba[4] )
|
---|
1003 | {
|
---|
1004 | GLint level;
|
---|
1005 | if (lambda < 0.0F)
|
---|
1006 | lambda = 0.0F;
|
---|
1007 | else if (lambda > tObj->M)
|
---|
1008 | lambda = tObj->M;
|
---|
1009 | level = (GLint) (tObj->BaseLevel + lambda);
|
---|
1010 |
|
---|
1011 | if (level >= tObj->P) {
|
---|
1012 | sample_2d_nearest( tObj, tObj->Image[tObj->P], s, t, rgba );
|
---|
1013 | }
|
---|
1014 | else {
|
---|
1015 | GLubyte t0[4], t1[4]; /* texels */
|
---|
1016 | GLfloat f = myFrac(lambda);
|
---|
1017 | sample_2d_nearest( tObj, tObj->Image[level ], s, t, t0 );
|
---|
1018 | sample_2d_nearest( tObj, tObj->Image[level+1], s, t, t1 );
|
---|
1019 | rgba[RCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
|
---|
1020 | rgba[GCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
|
---|
1021 | rgba[BCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
|
---|
1022 | rgba[ACOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
|
---|
1023 | }
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 |
|
---|
1027 |
|
---|
1028 | static void
|
---|
1029 | sample_2d_linear_mipmap_linear( const struct gl_texture_object *tObj,
|
---|
1030 | GLfloat s, GLfloat t, GLfloat lambda,
|
---|
1031 | GLubyte rgba[4] )
|
---|
1032 | {
|
---|
1033 | GLint level;
|
---|
1034 | if (lambda < 0.0F)
|
---|
1035 | lambda = 0.0F;
|
---|
1036 | else if (lambda > tObj->M)
|
---|
1037 | lambda = tObj->M;
|
---|
1038 | level = (GLint) (tObj->BaseLevel + lambda);
|
---|
1039 |
|
---|
1040 | if (level >= tObj->P) {
|
---|
1041 | sample_2d_linear( tObj, tObj->Image[tObj->P], s, t, rgba );
|
---|
1042 | }
|
---|
1043 | else {
|
---|
1044 | GLubyte t0[4], t1[4]; /* texels */
|
---|
1045 | GLfloat f = myFrac(lambda);
|
---|
1046 | sample_2d_linear( tObj, tObj->Image[level ], s, t, t0 );
|
---|
1047 | sample_2d_linear( tObj, tObj->Image[level+1], s, t, t1 );
|
---|
1048 | rgba[RCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
|
---|
1049 | rgba[GCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
|
---|
1050 | rgba[BCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
|
---|
1051 | rgba[ACOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
|
---|
1052 | }
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 |
|
---|
1056 |
|
---|
1057 | static void sample_nearest_2d( const struct gl_texture_object *tObj, GLuint n,
|
---|
1058 | const GLfloat s[], const GLfloat t[],
|
---|
1059 | const GLfloat u[], const GLfloat lambda[],
|
---|
1060 | GLubyte rgba[][4] )
|
---|
1061 | {
|
---|
1062 | GLuint i;
|
---|
1063 | struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
|
---|
1064 | (void) u;
|
---|
1065 | (void) lambda;
|
---|
1066 | for (i=0;i<n;i++) {
|
---|
1067 | sample_2d_nearest( tObj, image, s[i], t[i], rgba[i] );
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 |
|
---|
1072 |
|
---|
1073 | static void sample_linear_2d( const struct gl_texture_object *tObj, GLuint n,
|
---|
1074 | const GLfloat s[], const GLfloat t[],
|
---|
1075 | const GLfloat u[], const GLfloat lambda[],
|
---|
1076 | GLubyte rgba[][4] )
|
---|
1077 | {
|
---|
1078 | GLuint i;
|
---|
1079 | struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
|
---|
1080 | (void) u;
|
---|
1081 | (void) lambda;
|
---|
1082 | for (i=0;i<n;i++) {
|
---|
1083 | sample_2d_linear( tObj, image, s[i], t[i], rgba[i] );
|
---|
1084 | }
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 |
|
---|
1088 | /*
|
---|
1089 | * Given an (s,t) texture coordinate and lambda (level of detail) value,
|
---|
1090 | * return a texture sample.
|
---|
1091 | */
|
---|
1092 | static void sample_lambda_2d( const struct gl_texture_object *tObj,
|
---|
1093 | GLuint n,
|
---|
1094 | const GLfloat s[], const GLfloat t[],
|
---|
1095 | const GLfloat u[], const GLfloat lambda[],
|
---|
1096 | GLubyte rgba[][4] )
|
---|
1097 | {
|
---|
1098 | GLuint i;
|
---|
1099 | (void) u;
|
---|
1100 | for (i=0;i<n;i++) {
|
---|
1101 | if (lambda[i] > tObj->MinMagThresh) {
|
---|
1102 | /* minification */
|
---|
1103 | switch (tObj->MinFilter) {
|
---|
1104 | case GL_NEAREST:
|
---|
1105 | sample_2d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
|
---|
1106 | break;
|
---|
1107 | case GL_LINEAR:
|
---|
1108 | sample_2d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
|
---|
1109 | break;
|
---|
1110 | case GL_NEAREST_MIPMAP_NEAREST:
|
---|
1111 | sample_2d_nearest_mipmap_nearest( tObj, s[i], t[i], lambda[i], rgba[i] );
|
---|
1112 | break;
|
---|
1113 | case GL_LINEAR_MIPMAP_NEAREST:
|
---|
1114 | sample_2d_linear_mipmap_nearest( tObj, s[i], t[i], lambda[i], rgba[i] );
|
---|
1115 | break;
|
---|
1116 | case GL_NEAREST_MIPMAP_LINEAR:
|
---|
1117 | sample_2d_nearest_mipmap_linear( tObj, s[i], t[i], lambda[i], rgba[i] );
|
---|
1118 | break;
|
---|
1119 | case GL_LINEAR_MIPMAP_LINEAR:
|
---|
1120 | sample_2d_linear_mipmap_linear( tObj, s[i], t[i], lambda[i], rgba[i] );
|
---|
1121 | break;
|
---|
1122 | default:
|
---|
1123 | gl_problem(NULL, "Bad min filter in sample_2d_texture");
|
---|
1124 | return;
|
---|
1125 | }
|
---|
1126 | }
|
---|
1127 | else {
|
---|
1128 | /* magnification */
|
---|
1129 | switch (tObj->MagFilter) {
|
---|
1130 | case GL_NEAREST:
|
---|
1131 | sample_2d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
|
---|
1132 | break;
|
---|
1133 | case GL_LINEAR:
|
---|
1134 | sample_2d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], rgba[i] );
|
---|
1135 | break;
|
---|
1136 | default:
|
---|
1137 | gl_problem(NULL, "Bad mag filter in sample_2d_texture");
|
---|
1138 | }
|
---|
1139 | }
|
---|
1140 | }
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 |
|
---|
1144 | /*
|
---|
1145 | * Optimized 2-D texture sampling:
|
---|
1146 | * S and T wrap mode == GL_REPEAT
|
---|
1147 | * GL_NEAREST min/mag filter
|
---|
1148 | * No border
|
---|
1149 | * Format = GL_RGB
|
---|
1150 | */
|
---|
1151 | static void opt_sample_rgb_2d( const struct gl_texture_object *tObj,
|
---|
1152 | GLuint n, const GLfloat s[], const GLfloat t[],
|
---|
1153 | const GLfloat u[], const GLfloat lambda[],
|
---|
1154 | GLubyte rgba[][4] )
|
---|
1155 | {
|
---|
1156 | const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel];
|
---|
1157 | const GLfloat width = (GLfloat) img->Width;
|
---|
1158 | const GLfloat height = (GLfloat) img->Height;
|
---|
1159 | const GLint colMask = img->Width - 1;
|
---|
1160 | const GLint rowMask = img->Height - 1;
|
---|
1161 | const GLint shift = img->WidthLog2;
|
---|
1162 | GLuint k;
|
---|
1163 | (void) u;
|
---|
1164 | (void) lambda;
|
---|
1165 | ASSERT(tObj->WrapS==GL_REPEAT);
|
---|
1166 | ASSERT(tObj->WrapT==GL_REPEAT);
|
---|
1167 | ASSERT(tObj->MinFilter==GL_NEAREST);
|
---|
1168 | ASSERT(tObj->MagFilter==GL_NEAREST);
|
---|
1169 | ASSERT(img->Border==0);
|
---|
1170 | ASSERT(img->Format==GL_RGB);
|
---|
1171 |
|
---|
1172 | /* NOTE: negative float->int doesn't floor, add 10000 as to work-around */
|
---|
1173 | for (k=0;k<n;k++) {
|
---|
1174 | GLint i = (GLint) ((s[k] + 10000.0) * width) & colMask;
|
---|
1175 | GLint j = (GLint) ((t[k] + 10000.0) * height) & rowMask;
|
---|
1176 | GLint pos = (j << shift) | i;
|
---|
1177 | GLubyte *texel = img->Data + pos + pos + pos; /* pos*3 */
|
---|
1178 | rgba[k][RCOMP] = texel[0];
|
---|
1179 | rgba[k][GCOMP] = texel[1];
|
---|
1180 | rgba[k][BCOMP] = texel[2];
|
---|
1181 | }
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 |
|
---|
1185 | /*
|
---|
1186 | * Optimized 2-D texture sampling:
|
---|
1187 | * S and T wrap mode == GL_REPEAT
|
---|
1188 | * GL_NEAREST min/mag filter
|
---|
1189 | * No border
|
---|
1190 | * Format = GL_RGBA
|
---|
1191 | */
|
---|
1192 | static void opt_sample_rgba_2d( const struct gl_texture_object *tObj,
|
---|
1193 | GLuint n, const GLfloat s[], const GLfloat t[],
|
---|
1194 | const GLfloat u[], const GLfloat lambda[],
|
---|
1195 | GLubyte rgba[][4] )
|
---|
1196 | {
|
---|
1197 | const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel];
|
---|
1198 | const GLfloat width = (GLfloat) img->Width;
|
---|
1199 | const GLfloat height = (GLfloat) img->Height;
|
---|
1200 | const GLint colMask = img->Width - 1;
|
---|
1201 | const GLint rowMask = img->Height - 1;
|
---|
1202 | const GLint shift = img->WidthLog2;
|
---|
1203 | GLuint k;
|
---|
1204 | (void) u;
|
---|
1205 | (void) lambda;
|
---|
1206 | ASSERT(tObj->WrapS==GL_REPEAT);
|
---|
1207 | ASSERT(tObj->WrapT==GL_REPEAT);
|
---|
1208 | ASSERT(tObj->MinFilter==GL_NEAREST);
|
---|
1209 | ASSERT(tObj->MagFilter==GL_NEAREST);
|
---|
1210 | ASSERT(img->Border==0);
|
---|
1211 | ASSERT(img->Format==GL_RGBA);
|
---|
1212 |
|
---|
1213 | /* NOTE: negative float->int doesn't floor, add 10000 as to work-around */
|
---|
1214 | for (k=0;k<n;k++) {
|
---|
1215 | GLint i = (GLint) ((s[k] + 10000.0) * width) & colMask;
|
---|
1216 | GLint j = (GLint) ((t[k] + 10000.0) * height) & rowMask;
|
---|
1217 | GLint pos = (j << shift) | i;
|
---|
1218 | GLubyte *texel = img->Data + (pos << 2); /* pos*4 */
|
---|
1219 | rgba[k][RCOMP] = texel[0];
|
---|
1220 | rgba[k][GCOMP] = texel[1];
|
---|
1221 | rgba[k][BCOMP] = texel[2];
|
---|
1222 | rgba[k][ACOMP] = texel[3];
|
---|
1223 | }
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 |
|
---|
1227 |
|
---|
1228 | /**********************************************************************/
|
---|
1229 | /* 3-D Texture Sampling Functions */
|
---|
1230 | /**********************************************************************/
|
---|
1231 |
|
---|
1232 | /*
|
---|
1233 | * Given a texture image and an (i,j,k) integer texel coordinate, return the
|
---|
1234 | * texel color.
|
---|
1235 | */
|
---|
1236 | static void get_3d_texel( const struct gl_texture_object *tObj,
|
---|
1237 | const struct gl_texture_image *img,
|
---|
1238 | GLint i, GLint j, GLint k,
|
---|
1239 | GLubyte rgba[4] )
|
---|
1240 | {
|
---|
1241 | const GLint width = img->Width; /* includes border */
|
---|
1242 | const GLint height = img->Height; /* includes border */
|
---|
1243 | const GLint rectarea = width * height;
|
---|
1244 | const GLubyte *texel;
|
---|
1245 |
|
---|
1246 | #ifdef DEBUG
|
---|
1247 | const GLint depth = img->Depth; /* includes border */
|
---|
1248 | ASSERT(i >= 0);
|
---|
1249 | ASSERT(i < width);
|
---|
1250 | ASSERT(j >= 0);
|
---|
1251 | ASSERT(j < height);
|
---|
1252 | ASSERT(k >= 0);
|
---|
1253 | ASSERT(k < depth);
|
---|
1254 | #endif
|
---|
1255 |
|
---|
1256 | switch (img->Format) {
|
---|
1257 | case GL_COLOR_INDEX:
|
---|
1258 | {
|
---|
1259 | GLubyte index = img->Data[ rectarea * k + width * j + i ];
|
---|
1260 | palette_sample(tObj, index, rgba );
|
---|
1261 | return;
|
---|
1262 | }
|
---|
1263 | case GL_ALPHA:
|
---|
1264 | rgba[ACOMP] = img->Data[ rectarea * k + width * j + i ];
|
---|
1265 | return;
|
---|
1266 | case GL_LUMINANCE:
|
---|
1267 | case GL_INTENSITY:
|
---|
1268 | rgba[RCOMP] = img->Data[ rectarea * k + width * j + i ];
|
---|
1269 | return;
|
---|
1270 | case GL_LUMINANCE_ALPHA:
|
---|
1271 | texel = img->Data + ( rectarea * k + width * j + i) * 2;
|
---|
1272 | rgba[RCOMP] = texel[0];
|
---|
1273 | rgba[ACOMP] = texel[1];
|
---|
1274 | return;
|
---|
1275 | case GL_RGB:
|
---|
1276 | texel = img->Data + (rectarea * k + width * j + i) * 3;
|
---|
1277 | rgba[RCOMP] = texel[0];
|
---|
1278 | rgba[GCOMP] = texel[1];
|
---|
1279 | rgba[BCOMP] = texel[2];
|
---|
1280 | return;
|
---|
1281 | case GL_RGBA:
|
---|
1282 | texel = img->Data + (rectarea * k + width * j + i) * 4;
|
---|
1283 | rgba[RCOMP] = texel[0];
|
---|
1284 | rgba[GCOMP] = texel[1];
|
---|
1285 | rgba[BCOMP] = texel[2];
|
---|
1286 | rgba[ACOMP] = texel[3];
|
---|
1287 | return;
|
---|
1288 | default:
|
---|
1289 | gl_problem(NULL, "Bad format in get_3d_texel");
|
---|
1290 | }
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 |
|
---|
1294 | /*
|
---|
1295 | * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
|
---|
1296 | */
|
---|
1297 | static void sample_3d_nearest( const struct gl_texture_object *tObj,
|
---|
1298 | const struct gl_texture_image *img,
|
---|
1299 | GLfloat s, GLfloat t, GLfloat r,
|
---|
1300 | GLubyte rgba[4] )
|
---|
1301 | {
|
---|
1302 | const GLint imgWidth = img->Width; /* includes border, if any */
|
---|
1303 | const GLint imgHeight = img->Height; /* includes border, if any */
|
---|
1304 | const GLint width = img->Width2; /* without border, power of two */
|
---|
1305 | const GLint height = img->Height2; /* without border, power of two */
|
---|
1306 | const GLint depth = img->Depth2; /* without border, power of two */
|
---|
1307 | const GLint rectarea = imgWidth * imgHeight;
|
---|
1308 | const GLubyte *texel;
|
---|
1309 | GLint i, j, k;
|
---|
1310 |
|
---|
1311 | COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i);
|
---|
1312 | COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, t, height, j);
|
---|
1313 | COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapR, r, depth, k);
|
---|
1314 |
|
---|
1315 | switch (tObj->Image[0]->Format) {
|
---|
1316 | case GL_COLOR_INDEX:
|
---|
1317 | {
|
---|
1318 | GLubyte index = img->Data[ rectarea * k + j * imgWidth + i ];
|
---|
1319 | palette_sample(tObj, index, rgba );
|
---|
1320 | return;
|
---|
1321 | }
|
---|
1322 | case GL_ALPHA:
|
---|
1323 | rgba[ACOMP] = img->Data[ rectarea * k + j * imgWidth + i ];
|
---|
1324 | return;
|
---|
1325 | case GL_LUMINANCE:
|
---|
1326 | case GL_INTENSITY:
|
---|
1327 | rgba[RCOMP] = img->Data[ rectarea * k + j * imgWidth + i ];
|
---|
1328 | return;
|
---|
1329 | case GL_LUMINANCE_ALPHA:
|
---|
1330 | texel = img->Data + ((rectarea * k + j * imgWidth + i) << 1);
|
---|
1331 | rgba[RCOMP] = texel[0];
|
---|
1332 | rgba[ACOMP] = texel[1];
|
---|
1333 | return;
|
---|
1334 | case GL_RGB:
|
---|
1335 | texel = img->Data + ( rectarea * k + j * imgWidth + i) * 3;
|
---|
1336 | rgba[RCOMP] = texel[0];
|
---|
1337 | rgba[GCOMP] = texel[1];
|
---|
1338 | rgba[BCOMP] = texel[2];
|
---|
1339 | return;
|
---|
1340 | case GL_RGBA:
|
---|
1341 | texel = img->Data + ((rectarea * k + j * imgWidth + i) << 2);
|
---|
1342 | rgba[RCOMP] = texel[0];
|
---|
1343 | rgba[GCOMP] = texel[1];
|
---|
1344 | rgba[BCOMP] = texel[2];
|
---|
1345 | rgba[ACOMP] = texel[3];
|
---|
1346 | return;
|
---|
1347 | default:
|
---|
1348 | gl_problem(NULL, "Bad format in sample_3d_nearest");
|
---|
1349 | }
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 |
|
---|
1353 |
|
---|
1354 | /*
|
---|
1355 | * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
|
---|
1356 | */
|
---|
1357 | static void sample_3d_linear( const struct gl_texture_object *tObj,
|
---|
1358 | const struct gl_texture_image *img,
|
---|
1359 | GLfloat s, GLfloat t, GLfloat r,
|
---|
1360 | GLubyte rgba[4] )
|
---|
1361 | {
|
---|
1362 | const GLint width = img->Width2;
|
---|
1363 | const GLint height = img->Height2;
|
---|
1364 | const GLint depth = img->Depth2;
|
---|
1365 | GLint i0, j0, k0, i1, j1, k1;
|
---|
1366 | GLuint useBorderColor;
|
---|
1367 | GLfloat u, v, w;
|
---|
1368 |
|
---|
1369 | COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1);
|
---|
1370 | COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, t, v, height, j0, j1);
|
---|
1371 | COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapR, r, w, depth, k0, k1);
|
---|
1372 |
|
---|
1373 | useBorderColor = 0;
|
---|
1374 | if (img->Border) {
|
---|
1375 | i0 += img->Border;
|
---|
1376 | i1 += img->Border;
|
---|
1377 | j0 += img->Border;
|
---|
1378 | j1 += img->Border;
|
---|
1379 | k0 += img->Border;
|
---|
1380 | k1 += img->Border;
|
---|
1381 | }
|
---|
1382 | else {
|
---|
1383 | /* check if sampling texture border color */
|
---|
1384 | if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
|
---|
1385 | if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
|
---|
1386 | if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
|
---|
1387 | if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
|
---|
1388 | if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
|
---|
1389 | if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
|
---|
1390 | }
|
---|
1391 |
|
---|
1392 | {
|
---|
1393 | GLfloat a = myFrac(u);
|
---|
1394 | GLfloat b = myFrac(v);
|
---|
1395 | GLfloat c = myFrac(w);
|
---|
1396 | /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
|
---|
1397 | GLint w000 = (GLint) ((1.0F-a)*(1.0F-b)*(1.0F-c) * WEIGHT_SCALE + 0.5F);
|
---|
1398 | GLint w100 = (GLint) ( a *(1.0F-b)*(1.0F-c) * WEIGHT_SCALE + 0.5F);
|
---|
1399 | GLint w010 = (GLint) ((1.0F-a)* b *(1.0F-c) * WEIGHT_SCALE + 0.5F);
|
---|
1400 | GLint w110 = (GLint) ( a * b *(1.0F-c) * WEIGHT_SCALE + 0.5F);
|
---|
1401 | GLint w001 = (GLint) ((1.0F-a)*(1.0F-b)* c * WEIGHT_SCALE + 0.5F);
|
---|
1402 | GLint w101 = (GLint) ( a *(1.0F-b)* c * WEIGHT_SCALE + 0.5F);
|
---|
1403 | GLint w011 = (GLint) ((1.0F-a)* b * c * WEIGHT_SCALE + 0.5F);
|
---|
1404 | GLint w111 = (GLint) ( a * b * c * WEIGHT_SCALE + 0.5F);
|
---|
1405 |
|
---|
1406 | GLubyte t000[4], t010[4], t001[4], t011[4];
|
---|
1407 | GLubyte t100[4], t110[4], t101[4], t111[4];
|
---|
1408 |
|
---|
1409 | if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
|
---|
1410 | COPY_4UBV(t000, tObj->BorderColor);
|
---|
1411 | }
|
---|
1412 | else {
|
---|
1413 | get_3d_texel( tObj, img, i0, j0, k0, t000 );
|
---|
1414 | }
|
---|
1415 | if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
|
---|
1416 | COPY_4UBV(t100, tObj->BorderColor);
|
---|
1417 | }
|
---|
1418 | else {
|
---|
1419 | get_3d_texel( tObj, img, i1, j0, k0, t100 );
|
---|
1420 | }
|
---|
1421 | if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
|
---|
1422 | COPY_4UBV(t010, tObj->BorderColor);
|
---|
1423 | }
|
---|
1424 | else {
|
---|
1425 | get_3d_texel( tObj, img, i0, j1, k0, t010 );
|
---|
1426 | }
|
---|
1427 | if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
|
---|
1428 | COPY_4UBV(t110, tObj->BorderColor);
|
---|
1429 | }
|
---|
1430 | else {
|
---|
1431 | get_3d_texel( tObj, img, i1, j1, k0, t110 );
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
|
---|
1435 | COPY_4UBV(t001, tObj->BorderColor);
|
---|
1436 | }
|
---|
1437 | else {
|
---|
1438 | get_3d_texel( tObj, img, i0, j0, k1, t001 );
|
---|
1439 | }
|
---|
1440 | if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
|
---|
1441 | COPY_4UBV(t101, tObj->BorderColor);
|
---|
1442 | }
|
---|
1443 | else {
|
---|
1444 | get_3d_texel( tObj, img, i1, j0, k1, t101 );
|
---|
1445 | }
|
---|
1446 | if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
|
---|
1447 | COPY_4UBV(t011, tObj->BorderColor);
|
---|
1448 | }
|
---|
1449 | else {
|
---|
1450 | get_3d_texel( tObj, img, i0, j1, k1, t011 );
|
---|
1451 | }
|
---|
1452 | if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
|
---|
1453 | COPY_4UBV(t111, tObj->BorderColor);
|
---|
1454 | }
|
---|
1455 | else {
|
---|
1456 | get_3d_texel( tObj, img, i1, j1, k1, t111 );
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | rgba[0] = (GLubyte) (
|
---|
1460 | (w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] +
|
---|
1461 | w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0] )
|
---|
1462 | >> WEIGHT_SHIFT);
|
---|
1463 | rgba[1] = (GLubyte) (
|
---|
1464 | (w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] +
|
---|
1465 | w100*t100[1] + w110*t110[1] + w101*t101[1] + w111*t111[1] )
|
---|
1466 | >> WEIGHT_SHIFT);
|
---|
1467 | rgba[2] = (GLubyte) (
|
---|
1468 | (w000*t000[2] + w010*t010[2] + w001*t001[2] + w011*t011[2] +
|
---|
1469 | w100*t100[2] + w110*t110[2] + w101*t101[2] + w111*t111[2] )
|
---|
1470 | >> WEIGHT_SHIFT);
|
---|
1471 | rgba[3] = (GLubyte) (
|
---|
1472 | (w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] +
|
---|
1473 | w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3] )
|
---|
1474 | >> WEIGHT_SHIFT);
|
---|
1475 | }
|
---|
1476 | }
|
---|
1477 |
|
---|
1478 |
|
---|
1479 |
|
---|
1480 | static void
|
---|
1481 | sample_3d_nearest_mipmap_nearest( const struct gl_texture_object *tObj,
|
---|
1482 | GLfloat s, GLfloat t, GLfloat r,
|
---|
1483 | GLfloat lambda, GLubyte rgba[4] )
|
---|
1484 | {
|
---|
1485 | GLint level;
|
---|
1486 | if (lambda <= 0.5F)
|
---|
1487 | lambda = 0.0F;
|
---|
1488 | else if (lambda > tObj->M + 0.4999F)
|
---|
1489 | lambda = tObj->M + 0.4999F;
|
---|
1490 | level = (GLint) (tObj->BaseLevel + lambda + 0.5F);
|
---|
1491 | if (level > tObj->P)
|
---|
1492 | level = tObj->P;
|
---|
1493 |
|
---|
1494 | sample_3d_nearest( tObj, tObj->Image[level], s, t, r, rgba );
|
---|
1495 | }
|
---|
1496 |
|
---|
1497 |
|
---|
1498 | static void
|
---|
1499 | sample_3d_linear_mipmap_nearest( const struct gl_texture_object *tObj,
|
---|
1500 | GLfloat s, GLfloat t, GLfloat r,
|
---|
1501 | GLfloat lambda, GLubyte rgba[4] )
|
---|
1502 | {
|
---|
1503 | GLint level;
|
---|
1504 | if (lambda <= 0.5F)
|
---|
1505 | lambda = 0.0F;
|
---|
1506 | else if (lambda > tObj->M + 0.4999F)
|
---|
1507 | lambda = tObj->M + 0.4999F;
|
---|
1508 | level = (GLint) (tObj->BaseLevel + lambda + 0.5F);
|
---|
1509 | if (level > tObj->P)
|
---|
1510 | level = tObj->P;
|
---|
1511 |
|
---|
1512 | sample_3d_linear( tObj, tObj->Image[level], s, t, r, rgba );
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 |
|
---|
1516 | static void
|
---|
1517 | sample_3d_nearest_mipmap_linear( const struct gl_texture_object *tObj,
|
---|
1518 | GLfloat s, GLfloat t, GLfloat r,
|
---|
1519 | GLfloat lambda, GLubyte rgba[4] )
|
---|
1520 | {
|
---|
1521 | GLint level;
|
---|
1522 | if (lambda < 0.0F)
|
---|
1523 | lambda = 0.0F;
|
---|
1524 | else if (lambda > tObj->M)
|
---|
1525 | lambda = tObj->M;
|
---|
1526 | level = (GLint) (tObj->BaseLevel + lambda);
|
---|
1527 |
|
---|
1528 | if (level >= tObj->P) {
|
---|
1529 | sample_3d_nearest( tObj, tObj->Image[tObj->P], s, t, r, rgba );
|
---|
1530 | }
|
---|
1531 | else {
|
---|
1532 | GLubyte t0[4], t1[4]; /* texels */
|
---|
1533 | GLfloat f = myFrac(lambda);
|
---|
1534 | sample_3d_nearest( tObj, tObj->Image[level ], s, t, r, t0 );
|
---|
1535 | sample_3d_nearest( tObj, tObj->Image[level+1], s, t, r, t1 );
|
---|
1536 | rgba[RCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
|
---|
1537 | rgba[GCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
|
---|
1538 | rgba[BCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
|
---|
1539 | rgba[ACOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
|
---|
1540 | }
|
---|
1541 | }
|
---|
1542 |
|
---|
1543 |
|
---|
1544 | static void
|
---|
1545 | sample_3d_linear_mipmap_linear( const struct gl_texture_object *tObj,
|
---|
1546 | GLfloat s, GLfloat t, GLfloat r,
|
---|
1547 | GLfloat lambda, GLubyte rgba[4] )
|
---|
1548 | {
|
---|
1549 | GLint level;
|
---|
1550 | if (lambda < 0.0F)
|
---|
1551 | lambda = 0.0F;
|
---|
1552 | else if (lambda > tObj->M)
|
---|
1553 | lambda = tObj->M;
|
---|
1554 | level = (GLint) (tObj->BaseLevel + lambda);
|
---|
1555 |
|
---|
1556 | if (level >= tObj->P) {
|
---|
1557 | sample_3d_linear( tObj, tObj->Image[tObj->P], s, t, r, rgba );
|
---|
1558 | }
|
---|
1559 | else {
|
---|
1560 | GLubyte t0[4], t1[4]; /* texels */
|
---|
1561 | GLfloat f = myFrac(lambda);
|
---|
1562 | sample_3d_linear( tObj, tObj->Image[level ], s, t, r, t0 );
|
---|
1563 | sample_3d_linear( tObj, tObj->Image[level+1], s, t, r, t1 );
|
---|
1564 | rgba[RCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
|
---|
1565 | rgba[GCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
|
---|
1566 | rgba[BCOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
|
---|
1567 | rgba[ACOMP] = (GLubyte) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
|
---|
1568 | }
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 |
|
---|
1572 | static void sample_nearest_3d( const struct gl_texture_object *tObj, GLuint n,
|
---|
1573 | const GLfloat s[], const GLfloat t[],
|
---|
1574 | const GLfloat u[], const GLfloat lambda[],
|
---|
1575 | GLubyte rgba[][4] )
|
---|
1576 | {
|
---|
1577 | GLuint i;
|
---|
1578 | struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
|
---|
1579 | (void) lambda;
|
---|
1580 | for (i=0;i<n;i++) {
|
---|
1581 | sample_3d_nearest( tObj, image, s[i], t[i], u[i], rgba[i] );
|
---|
1582 | }
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 |
|
---|
1586 |
|
---|
1587 | static void sample_linear_3d( const struct gl_texture_object *tObj, GLuint n,
|
---|
1588 | const GLfloat s[], const GLfloat t[],
|
---|
1589 | const GLfloat u[], const GLfloat lambda[],
|
---|
1590 | GLubyte rgba[][4] )
|
---|
1591 | {
|
---|
1592 | GLuint i;
|
---|
1593 | struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
|
---|
1594 | (void) lambda;
|
---|
1595 | for (i=0;i<n;i++) {
|
---|
1596 | sample_3d_linear( tObj, image, s[i], t[i], u[i], rgba[i] );
|
---|
1597 | }
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 |
|
---|
1601 | /*
|
---|
1602 | * Given an (s,t,r) texture coordinate and lambda (level of detail) value,
|
---|
1603 | * return a texture sample.
|
---|
1604 | */
|
---|
1605 | static void sample_lambda_3d( const struct gl_texture_object *tObj, GLuint n,
|
---|
1606 | const GLfloat s[], const GLfloat t[],
|
---|
1607 | const GLfloat u[], const GLfloat lambda[],
|
---|
1608 | GLubyte rgba[][4] )
|
---|
1609 | {
|
---|
1610 | GLuint i;
|
---|
1611 |
|
---|
1612 | for (i=0;i<n;i++) {
|
---|
1613 |
|
---|
1614 | if (lambda[i] > tObj->MinMagThresh) {
|
---|
1615 | /* minification */
|
---|
1616 | switch (tObj->MinFilter) {
|
---|
1617 | case GL_NEAREST:
|
---|
1618 | sample_3d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
|
---|
1619 | break;
|
---|
1620 | case GL_LINEAR:
|
---|
1621 | sample_3d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
|
---|
1622 | break;
|
---|
1623 | case GL_NEAREST_MIPMAP_NEAREST:
|
---|
1624 | sample_3d_nearest_mipmap_nearest( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
|
---|
1625 | break;
|
---|
1626 | case GL_LINEAR_MIPMAP_NEAREST:
|
---|
1627 | sample_3d_linear_mipmap_nearest( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
|
---|
1628 | break;
|
---|
1629 | case GL_NEAREST_MIPMAP_LINEAR:
|
---|
1630 | sample_3d_nearest_mipmap_linear( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
|
---|
1631 | break;
|
---|
1632 | case GL_LINEAR_MIPMAP_LINEAR:
|
---|
1633 | sample_3d_linear_mipmap_linear( tObj, s[i], t[i], u[i], lambda[i], rgba[i] );
|
---|
1634 | break;
|
---|
1635 | default:
|
---|
1636 | gl_problem(NULL, "Bad min filterin sample_3d_texture");
|
---|
1637 | }
|
---|
1638 | }
|
---|
1639 | else {
|
---|
1640 | /* magnification */
|
---|
1641 | switch (tObj->MagFilter) {
|
---|
1642 | case GL_NEAREST:
|
---|
1643 | sample_3d_nearest( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
|
---|
1644 | break;
|
---|
1645 | case GL_LINEAR:
|
---|
1646 | sample_3d_linear( tObj, tObj->Image[tObj->BaseLevel], s[i], t[i], u[i], rgba[i] );
|
---|
1647 | break;
|
---|
1648 | default:
|
---|
1649 | gl_problem(NULL, "Bad mag filter in sample_3d_texture");
|
---|
1650 | }
|
---|
1651 | }
|
---|
1652 | }
|
---|
1653 | }
|
---|
1654 |
|
---|
1655 |
|
---|
1656 |
|
---|
1657 | /**********************************************************************/
|
---|
1658 | /* Texture Sampling Setup */
|
---|
1659 | /**********************************************************************/
|
---|
1660 |
|
---|
1661 |
|
---|
1662 | /*
|
---|
1663 | * Setup the texture sampling function for this texture object.
|
---|
1664 | */
|
---|
1665 | void gl_set_texture_sampler( struct gl_texture_object *t )
|
---|
1666 | {
|
---|
1667 | if (!t->Complete) {
|
---|
1668 | t->SampleFunc = NULL;
|
---|
1669 | }
|
---|
1670 | else {
|
---|
1671 | GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
|
---|
1672 |
|
---|
1673 | if (needLambda) {
|
---|
1674 | /* Compute min/mag filter threshold */
|
---|
1675 | if (t->MagFilter==GL_LINEAR
|
---|
1676 | && (t->MinFilter==GL_NEAREST_MIPMAP_NEAREST ||
|
---|
1677 | t->MinFilter==GL_LINEAR_MIPMAP_NEAREST)) {
|
---|
1678 | t->MinMagThresh = 0.5F;
|
---|
1679 | }
|
---|
1680 | else {
|
---|
1681 | t->MinMagThresh = 0.0F;
|
---|
1682 | }
|
---|
1683 | }
|
---|
1684 |
|
---|
1685 | switch (t->Dimensions) {
|
---|
1686 | case 1:
|
---|
1687 | if (needLambda) {
|
---|
1688 | t->SampleFunc = sample_lambda_1d;
|
---|
1689 | }
|
---|
1690 | else if (t->MinFilter==GL_LINEAR) {
|
---|
1691 | t->SampleFunc = sample_linear_1d;
|
---|
1692 | }
|
---|
1693 | else {
|
---|
1694 | ASSERT(t->MinFilter==GL_NEAREST);
|
---|
1695 | t->SampleFunc = sample_nearest_1d;
|
---|
1696 | }
|
---|
1697 | break;
|
---|
1698 | case 2:
|
---|
1699 | if (needLambda) {
|
---|
1700 | t->SampleFunc = sample_lambda_2d;
|
---|
1701 | }
|
---|
1702 | else if (t->MinFilter==GL_LINEAR) {
|
---|
1703 | t->SampleFunc = sample_linear_2d;
|
---|
1704 | }
|
---|
1705 | else {
|
---|
1706 | ASSERT(t->MinFilter==GL_NEAREST);
|
---|
1707 | if (t->WrapS==GL_REPEAT && t->WrapT==GL_REPEAT
|
---|
1708 | && t->Image[0]->Border==0 && t->Image[0]->Format==GL_RGB) {
|
---|
1709 | t->SampleFunc = opt_sample_rgb_2d;
|
---|
1710 | }
|
---|
1711 | else if (t->WrapS==GL_REPEAT && t->WrapT==GL_REPEAT
|
---|
1712 | && t->Image[0]->Border==0 && t->Image[0]->Format==GL_RGBA) {
|
---|
1713 | t->SampleFunc = opt_sample_rgba_2d;
|
---|
1714 | }
|
---|
1715 | else
|
---|
1716 | t->SampleFunc = sample_nearest_2d;
|
---|
1717 | }
|
---|
1718 | break;
|
---|
1719 | case 3:
|
---|
1720 | if (needLambda) {
|
---|
1721 | t->SampleFunc = sample_lambda_3d;
|
---|
1722 | }
|
---|
1723 | else if (t->MinFilter==GL_LINEAR) {
|
---|
1724 | t->SampleFunc = sample_linear_3d;
|
---|
1725 | }
|
---|
1726 | else {
|
---|
1727 | ASSERT(t->MinFilter==GL_NEAREST);
|
---|
1728 | t->SampleFunc = sample_nearest_3d;
|
---|
1729 | }
|
---|
1730 | break;
|
---|
1731 | default:
|
---|
1732 | gl_problem(NULL, "invalid dimensions in gl_set_texture_sampler");
|
---|
1733 | }
|
---|
1734 | }
|
---|
1735 | }
|
---|
1736 |
|
---|
1737 |
|
---|
1738 |
|
---|
1739 | /**********************************************************************/
|
---|
1740 | /* Texture Application */
|
---|
1741 | /**********************************************************************/
|
---|
1742 |
|
---|
1743 |
|
---|
1744 | /*
|
---|
1745 | * Combine incoming fragment color with texel color to produce output color.
|
---|
1746 | * Input: textureUnit - pointer to texture unit to apply
|
---|
1747 | * format - base internal texture format
|
---|
1748 | * n - number of fragments
|
---|
1749 | * texels - array of texel colors
|
---|
1750 | * InOut: rgba - incoming fragment colors modified by texel colors
|
---|
1751 | * according to the texture environment mode.
|
---|
1752 | */
|
---|
1753 | static void apply_texture( const GLcontext *ctx,
|
---|
1754 | const struct gl_texture_unit *texUnit,
|
---|
1755 | GLuint n,
|
---|
1756 | GLubyte rgba[][4], CONST GLubyte texel[][4] )
|
---|
1757 | {
|
---|
1758 | GLuint i;
|
---|
1759 | GLint Rc, Gc, Bc, Ac;
|
---|
1760 | GLenum format;
|
---|
1761 |
|
---|
1762 | ASSERT(texUnit);
|
---|
1763 | ASSERT(texUnit->Current);
|
---|
1764 | ASSERT(texUnit->Current->Image[0]);
|
---|
1765 |
|
---|
1766 | format = texUnit->Current->Image[0]->Format;
|
---|
1767 |
|
---|
1768 | /*
|
---|
1769 | * Use (A*(B+1)) >> 8 as a fast approximation of (A*B)/255 for A
|
---|
1770 | * and B in [0,255]
|
---|
1771 | */
|
---|
1772 | #define PROD(A,B) ( (GLubyte) (((GLint)(A) * ((GLint)(B)+1)) >> 8) )
|
---|
1773 |
|
---|
1774 | if (format==GL_COLOR_INDEX) {
|
---|
1775 | format = GL_RGBA; /* XXXX a hack! */
|
---|
1776 | }
|
---|
1777 |
|
---|
1778 | switch (texUnit->EnvMode) {
|
---|
1779 | case GL_REPLACE:
|
---|
1780 | switch (format) {
|
---|
1781 | case GL_ALPHA:
|
---|
1782 | for (i=0;i<n;i++) {
|
---|
1783 | /* Cv = Cf */
|
---|
1784 | /* Av = At */
|
---|
1785 | rgba[i][ACOMP] = texel[i][ACOMP];
|
---|
1786 | }
|
---|
1787 | break;
|
---|
1788 | case GL_LUMINANCE:
|
---|
1789 | for (i=0;i<n;i++) {
|
---|
1790 | /* Cv = Lt */
|
---|
1791 | GLubyte Lt = texel[i][RCOMP];
|
---|
1792 | rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
|
---|
1793 | /* Av = Af */
|
---|
1794 | }
|
---|
1795 | break;
|
---|
1796 | case GL_LUMINANCE_ALPHA:
|
---|
1797 | for (i=0;i<n;i++) {
|
---|
1798 | GLubyte Lt = texel[i][RCOMP];
|
---|
1799 | /* Cv = Lt */
|
---|
1800 | rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
|
---|
1801 | /* Av = At */
|
---|
1802 | rgba[i][ACOMP] = texel[i][ACOMP];
|
---|
1803 | }
|
---|
1804 | break;
|
---|
1805 | case GL_INTENSITY:
|
---|
1806 | for (i=0;i<n;i++) {
|
---|
1807 | /* Cv = It */
|
---|
1808 | GLubyte It = texel[i][RCOMP];
|
---|
1809 | rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = It;
|
---|
1810 | /* Av = It */
|
---|
1811 | rgba[i][ACOMP] = It;
|
---|
1812 | }
|
---|
1813 | break;
|
---|
1814 | case GL_RGB:
|
---|
1815 | for (i=0;i<n;i++) {
|
---|
1816 | /* Cv = Ct */
|
---|
1817 | rgba[i][RCOMP] = texel[i][RCOMP];
|
---|
1818 | rgba[i][GCOMP] = texel[i][GCOMP];
|
---|
1819 | rgba[i][BCOMP] = texel[i][BCOMP];
|
---|
1820 | /* Av = Af */
|
---|
1821 | }
|
---|
1822 | break;
|
---|
1823 | case GL_RGBA:
|
---|
1824 | for (i=0;i<n;i++) {
|
---|
1825 | /* Cv = Ct */
|
---|
1826 | rgba[i][RCOMP] = texel[i][RCOMP];
|
---|
1827 | rgba[i][GCOMP] = texel[i][GCOMP];
|
---|
1828 | rgba[i][BCOMP] = texel[i][BCOMP];
|
---|
1829 | /* Av = At */
|
---|
1830 | rgba[i][ACOMP] = texel[i][ACOMP];
|
---|
1831 | }
|
---|
1832 | break;
|
---|
1833 | default:
|
---|
1834 | gl_problem(ctx, "Bad format (GL_REPLACE) in apply_texture");
|
---|
1835 | return;
|
---|
1836 | }
|
---|
1837 | break;
|
---|
1838 |
|
---|
1839 | case GL_MODULATE:
|
---|
1840 | switch (format) {
|
---|
1841 | case GL_ALPHA:
|
---|
1842 | for (i=0;i<n;i++) {
|
---|
1843 | /* Cv = Cf */
|
---|
1844 | /* Av = AfAt */
|
---|
1845 | rgba[i][ACOMP] = PROD( rgba[i][ACOMP], texel[i][ACOMP] );
|
---|
1846 | }
|
---|
1847 | break;
|
---|
1848 | case GL_LUMINANCE:
|
---|
1849 | for (i=0;i<n;i++) {
|
---|
1850 | /* Cv = LtCf */
|
---|
1851 | GLubyte Lt = texel[i][RCOMP];
|
---|
1852 | rgba[i][RCOMP] = PROD( rgba[i][RCOMP], Lt );
|
---|
1853 | rgba[i][GCOMP] = PROD( rgba[i][GCOMP], Lt );
|
---|
1854 | rgba[i][BCOMP] = PROD( rgba[i][BCOMP], Lt );
|
---|
1855 | /* Av = Af */
|
---|
1856 | }
|
---|
1857 | break;
|
---|
1858 | case GL_LUMINANCE_ALPHA:
|
---|
1859 | for (i=0;i<n;i++) {
|
---|
1860 | /* Cv = CfLt */
|
---|
1861 | GLubyte Lt = texel[i][RCOMP];
|
---|
1862 | rgba[i][RCOMP] = PROD( rgba[i][RCOMP], Lt );
|
---|
1863 | rgba[i][GCOMP] = PROD( rgba[i][GCOMP], Lt );
|
---|
1864 | rgba[i][BCOMP] = PROD( rgba[i][BCOMP], Lt );
|
---|
1865 | /* Av = AfAt */
|
---|
1866 | rgba[i][ACOMP] = PROD( rgba[i][ACOMP], texel[i][ACOMP] );
|
---|
1867 | }
|
---|
1868 | break;
|
---|
1869 | case GL_INTENSITY:
|
---|
1870 | for (i=0;i<n;i++) {
|
---|
1871 | /* Cv = CfIt */
|
---|
1872 | GLubyte It = texel[i][RCOMP];
|
---|
1873 | rgba[i][RCOMP] = PROD( rgba[i][RCOMP], It );
|
---|
1874 | rgba[i][GCOMP] = PROD( rgba[i][GCOMP], It );
|
---|
1875 | rgba[i][BCOMP] = PROD( rgba[i][BCOMP], It );
|
---|
1876 | /* Av = AfIt */
|
---|
1877 | rgba[i][ACOMP] = PROD( rgba[i][ACOMP], It );
|
---|
1878 | }
|
---|
1879 | break;
|
---|
1880 | case GL_RGB:
|
---|
1881 | for (i=0;i<n;i++) {
|
---|
1882 | /* Cv = CfCt */
|
---|
1883 | rgba[i][RCOMP] = PROD( rgba[i][RCOMP], texel[i][RCOMP] );
|
---|
1884 | rgba[i][GCOMP] = PROD( rgba[i][GCOMP], texel[i][GCOMP] );
|
---|
1885 | rgba[i][BCOMP] = PROD( rgba[i][BCOMP], texel[i][BCOMP] );
|
---|
1886 | /* Av = Af */
|
---|
1887 | }
|
---|
1888 | break;
|
---|
1889 | case GL_RGBA:
|
---|
1890 | for (i=0;i<n;i++) {
|
---|
1891 | /* Cv = CfCt */
|
---|
1892 | rgba[i][RCOMP] = PROD( rgba[i][RCOMP], texel[i][RCOMP] );
|
---|
1893 | rgba[i][GCOMP] = PROD( rgba[i][GCOMP], texel[i][GCOMP] );
|
---|
1894 | rgba[i][BCOMP] = PROD( rgba[i][BCOMP], texel[i][BCOMP] );
|
---|
1895 | /* Av = AfAt */
|
---|
1896 | rgba[i][ACOMP] = PROD( rgba[i][ACOMP], texel[i][ACOMP] );
|
---|
1897 | }
|
---|
1898 | break;
|
---|
1899 | default:
|
---|
1900 | gl_problem(ctx, "Bad format (GL_MODULATE) in apply_texture");
|
---|
1901 | return;
|
---|
1902 | }
|
---|
1903 | break;
|
---|
1904 |
|
---|
1905 | case GL_DECAL:
|
---|
1906 | switch (format) {
|
---|
1907 | case GL_ALPHA:
|
---|
1908 | case GL_LUMINANCE:
|
---|
1909 | case GL_LUMINANCE_ALPHA:
|
---|
1910 | case GL_INTENSITY:
|
---|
1911 | /* undefined */
|
---|
1912 | break;
|
---|
1913 | case GL_RGB:
|
---|
1914 | for (i=0;i<n;i++) {
|
---|
1915 | /* Cv = Ct */
|
---|
1916 | rgba[i][RCOMP] = texel[i][RCOMP];
|
---|
1917 | rgba[i][GCOMP] = texel[i][GCOMP];
|
---|
1918 | rgba[i][BCOMP] = texel[i][BCOMP];
|
---|
1919 | /* Av = Af */
|
---|
1920 | }
|
---|
1921 | break;
|
---|
1922 | case GL_RGBA:
|
---|
1923 | for (i=0;i<n;i++) {
|
---|
1924 | /* Cv = Cf(1-At) + CtAt */
|
---|
1925 | GLint t = texel[i][ACOMP], s = 255 - t;
|
---|
1926 | rgba[i][RCOMP] = PROD(rgba[i][RCOMP], s) + PROD(texel[i][RCOMP],t);
|
---|
1927 | rgba[i][GCOMP] = PROD(rgba[i][GCOMP], s) + PROD(texel[i][GCOMP],t);
|
---|
1928 | rgba[i][BCOMP] = PROD(rgba[i][BCOMP], s) + PROD(texel[i][BCOMP],t);
|
---|
1929 | /* Av = Af */
|
---|
1930 | }
|
---|
1931 | break;
|
---|
1932 | default:
|
---|
1933 | gl_problem(ctx, "Bad format (GL_DECAL) in apply_texture");
|
---|
1934 | return;
|
---|
1935 | }
|
---|
1936 | break;
|
---|
1937 |
|
---|
1938 | case GL_BLEND:
|
---|
1939 | Rc = (GLint) (texUnit->EnvColor[0] * 255.0F);
|
---|
1940 | Gc = (GLint) (texUnit->EnvColor[1] * 255.0F);
|
---|
1941 | Bc = (GLint) (texUnit->EnvColor[2] * 255.0F);
|
---|
1942 | Ac = (GLint) (texUnit->EnvColor[3] * 255.0F);
|
---|
1943 | switch (format) {
|
---|
1944 | case GL_ALPHA:
|
---|
1945 | for (i=0;i<n;i++) {
|
---|
1946 | /* Cv = Cf */
|
---|
1947 | /* Av = AfAt */
|
---|
1948 | rgba[i][ACOMP] = PROD(rgba[i][ACOMP], texel[i][ACOMP]);
|
---|
1949 | }
|
---|
1950 | break;
|
---|
1951 | case GL_LUMINANCE:
|
---|
1952 | for (i=0;i<n;i++) {
|
---|
1953 | /* Cv = Cf(1-Lt) + CcLt */
|
---|
1954 | GLubyte Lt = texel[i][RCOMP], s = 255 - Lt;
|
---|
1955 | rgba[i][RCOMP] = PROD(rgba[i][RCOMP], s) + PROD(Rc, Lt);
|
---|
1956 | rgba[i][GCOMP] = PROD(rgba[i][GCOMP], s) + PROD(Gc, Lt);
|
---|
1957 | rgba[i][BCOMP] = PROD(rgba[i][BCOMP], s) + PROD(Bc, Lt);
|
---|
1958 | /* Av = Af */
|
---|
1959 | }
|
---|
1960 | break;
|
---|
1961 | case GL_LUMINANCE_ALPHA:
|
---|
1962 | for (i=0;i<n;i++) {
|
---|
1963 | /* Cv = Cf(1-Lt) + CcLt */
|
---|
1964 | GLubyte Lt = texel[i][RCOMP], s = 255 - Lt;
|
---|
1965 | rgba[i][RCOMP] = PROD(rgba[i][RCOMP], s) + PROD(Rc, Lt);
|
---|
1966 | rgba[i][GCOMP] = PROD(rgba[i][GCOMP], s) + PROD(Gc, Lt);
|
---|
1967 | rgba[i][BCOMP] = PROD(rgba[i][BCOMP], s) + PROD(Bc, Lt);
|
---|
1968 | /* Av = AfAt */
|
---|
1969 | rgba[i][ACOMP] = PROD(rgba[i][ACOMP],texel[i][ACOMP]);
|
---|
1970 | }
|
---|
1971 | break;
|
---|
1972 | case GL_INTENSITY:
|
---|
1973 | for (i=0;i<n;i++) {
|
---|
1974 | /* Cv = Cf(1-It) + CcLt */
|
---|
1975 | GLubyte It = texel[i][RCOMP], s = 255 - It;
|
---|
1976 | rgba[i][RCOMP] = PROD(rgba[i][RCOMP], s) + PROD(Rc, It);
|
---|
1977 | rgba[i][GCOMP] = PROD(rgba[i][GCOMP], s) + PROD(Gc, It);
|
---|
1978 | rgba[i][BCOMP] = PROD(rgba[i][BCOMP], s) + PROD(Bc, It);
|
---|
1979 | /* Av = Af(1-It) + Ac*It */
|
---|
1980 | rgba[i][ACOMP] = PROD(rgba[i][ACOMP], s) + PROD(Ac, It);
|
---|
1981 | }
|
---|
1982 | break;
|
---|
1983 | case GL_RGB:
|
---|
1984 | for (i=0;i<n;i++) {
|
---|
1985 | /* Cv = Cf(1-Ct) + CcCt */
|
---|
1986 | rgba[i][RCOMP] = PROD(rgba[i][RCOMP], (255-texel[i][RCOMP])) + PROD(Rc,texel[i][RCOMP]);
|
---|
1987 | rgba[i][GCOMP] = PROD(rgba[i][GCOMP], (255-texel[i][GCOMP])) + PROD(Gc,texel[i][GCOMP]);
|
---|
1988 | rgba[i][BCOMP] = PROD(rgba[i][BCOMP], (255-texel[i][BCOMP])) + PROD(Bc,texel[i][BCOMP]);
|
---|
1989 | /* Av = Af */
|
---|
1990 | }
|
---|
1991 | break;
|
---|
1992 | case GL_RGBA:
|
---|
1993 | for (i=0;i<n;i++) {
|
---|
1994 | /* Cv = Cf(1-Ct) + CcCt */
|
---|
1995 | rgba[i][RCOMP] = PROD(rgba[i][RCOMP], (255-texel[i][RCOMP])) + PROD(Rc,texel[i][RCOMP]);
|
---|
1996 | rgba[i][GCOMP] = PROD(rgba[i][GCOMP], (255-texel[i][GCOMP])) + PROD(Gc,texel[i][GCOMP]);
|
---|
1997 | rgba[i][BCOMP] = PROD(rgba[i][BCOMP], (255-texel[i][BCOMP])) + PROD(Bc,texel[i][BCOMP]);
|
---|
1998 | /* Av = AfAt */
|
---|
1999 | rgba[i][ACOMP] = PROD(rgba[i][ACOMP],texel[i][ACOMP]);
|
---|
2000 | }
|
---|
2001 | break;
|
---|
2002 | default:
|
---|
2003 | gl_problem(ctx, "Bad format (GL_BLEND) in apply_texture");
|
---|
2004 | return;
|
---|
2005 | }
|
---|
2006 | break;
|
---|
2007 |
|
---|
2008 | case GL_ADD: /* GL_EXT_texture_add_env */
|
---|
2009 | switch (format) {
|
---|
2010 | case GL_ALPHA:
|
---|
2011 | for (i=0;i<n;i++) {
|
---|
2012 | /* Rv = Rf */
|
---|
2013 | /* Gv = Gf */
|
---|
2014 | /* Bv = Bf */
|
---|
2015 | rgba[i][ACOMP] = PROD(rgba[i][ACOMP], texel[i][ACOMP]);
|
---|
2016 | }
|
---|
2017 | break;
|
---|
2018 | case GL_LUMINANCE:
|
---|
2019 | for (i=0;i<n;i++) {
|
---|
2020 | GLuint Lt = texel[i][RCOMP];
|
---|
2021 | GLuint r = rgba[i][RCOMP] + Lt;
|
---|
2022 | GLuint g = rgba[i][GCOMP] + Lt;
|
---|
2023 | GLuint b = rgba[i][BCOMP] + Lt;
|
---|
2024 | rgba[i][RCOMP] = r < 256 ? (GLubyte) r : 255;
|
---|
2025 | rgba[i][GCOMP] = g < 256 ? (GLubyte) g : 255;
|
---|
2026 | rgba[i][BCOMP] = b < 256 ? (GLubyte) b : 255;
|
---|
2027 | /* Av = Af */
|
---|
2028 | }
|
---|
2029 | break;
|
---|
2030 | case GL_LUMINANCE_ALPHA:
|
---|
2031 | for (i=0;i<n;i++) {
|
---|
2032 | GLuint Lt = texel[i][RCOMP];
|
---|
2033 | GLuint r = rgba[i][RCOMP] + Lt;
|
---|
2034 | GLuint g = rgba[i][GCOMP] + Lt;
|
---|
2035 | GLuint b = rgba[i][BCOMP] + Lt;
|
---|
2036 | rgba[i][RCOMP] = r < 256 ? (GLubyte) r : 255;
|
---|
2037 | rgba[i][GCOMP] = g < 256 ? (GLubyte) g : 255;
|
---|
2038 | rgba[i][BCOMP] = b < 256 ? (GLubyte) b : 255;
|
---|
2039 | rgba[i][ACOMP] = PROD(rgba[i][ACOMP], texel[i][ACOMP]);
|
---|
2040 | }
|
---|
2041 | break;
|
---|
2042 | case GL_INTENSITY:
|
---|
2043 | for (i=0;i<n;i++) {
|
---|
2044 | GLubyte It = texel[i][RCOMP];
|
---|
2045 | GLuint r = rgba[i][RCOMP] + It;
|
---|
2046 | GLuint g = rgba[i][GCOMP] + It;
|
---|
2047 | GLuint b = rgba[i][BCOMP] + It;
|
---|
2048 | GLuint a = rgba[i][ACOMP] + It;
|
---|
2049 | rgba[i][RCOMP] = r < 256 ? (GLubyte) r : 255;
|
---|
2050 | rgba[i][GCOMP] = g < 256 ? (GLubyte) g : 255;
|
---|
2051 | rgba[i][BCOMP] = b < 256 ? (GLubyte) b : 255;
|
---|
2052 | rgba[i][ACOMP] = a < 256 ? (GLubyte) a : 255;
|
---|
2053 | }
|
---|
2054 | break;
|
---|
2055 | case GL_RGB:
|
---|
2056 | for (i=0;i<n;i++) {
|
---|
2057 | GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
|
---|
2058 | GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
|
---|
2059 | GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
|
---|
2060 | rgba[i][RCOMP] = r < 256 ? (GLubyte) r : 255;
|
---|
2061 | rgba[i][GCOMP] = g < 256 ? (GLubyte) g : 255;
|
---|
2062 | rgba[i][BCOMP] = b < 256 ? (GLubyte) b : 255;
|
---|
2063 | /* Av = Af */
|
---|
2064 | }
|
---|
2065 | break;
|
---|
2066 | case GL_RGBA:
|
---|
2067 | for (i=0;i<n;i++) {
|
---|
2068 | GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
|
---|
2069 | GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
|
---|
2070 | GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
|
---|
2071 | rgba[i][RCOMP] = r < 256 ? (GLubyte) r : 255;
|
---|
2072 | rgba[i][GCOMP] = g < 256 ? (GLubyte) g : 255;
|
---|
2073 | rgba[i][BCOMP] = b < 256 ? (GLubyte) b : 255;
|
---|
2074 | rgba[i][ACOMP] = PROD(rgba[i][ACOMP], texel[i][ACOMP]);
|
---|
2075 | }
|
---|
2076 | break;
|
---|
2077 | default:
|
---|
2078 | gl_problem(ctx, "Bad format (GL_ADD) in apply_texture");
|
---|
2079 | return;
|
---|
2080 | }
|
---|
2081 | break;
|
---|
2082 |
|
---|
2083 | default:
|
---|
2084 | gl_problem(ctx, "Bad env mode in apply_texture");
|
---|
2085 | return;
|
---|
2086 | }
|
---|
2087 | #undef PROD
|
---|
2088 | }
|
---|
2089 |
|
---|
2090 |
|
---|
2091 |
|
---|
2092 | /*
|
---|
2093 | * Apply a unit of texture mapping to the incoming fragments.
|
---|
2094 | */
|
---|
2095 | void gl_texture_pixels( GLcontext *ctx, GLuint texUnit, GLuint n,
|
---|
2096 | const GLfloat s[], const GLfloat t[],
|
---|
2097 | const GLfloat r[], GLfloat lambda[],
|
---|
2098 | GLubyte rgba[][4] )
|
---|
2099 | {
|
---|
2100 | GLuint mask = (TEXTURE0_1D | TEXTURE0_2D | TEXTURE0_3D) << (texUnit * 4);
|
---|
2101 | if (ctx->Texture.Enabled & mask) {
|
---|
2102 | const struct gl_texture_unit *textureUnit = &ctx->Texture.Unit[texUnit];
|
---|
2103 | if (textureUnit->Current && textureUnit->Current->SampleFunc) {
|
---|
2104 | GLubyte texel[PB_SIZE][4];
|
---|
2105 |
|
---|
2106 | if (textureUnit->LodBias != 0.0F) {
|
---|
2107 | /* apply LOD bias, but don't clamp yet */
|
---|
2108 | GLuint i;
|
---|
2109 | for (i=0;i<n;i++) {
|
---|
2110 | lambda[i] += textureUnit->LodBias;
|
---|
2111 | }
|
---|
2112 | }
|
---|
2113 |
|
---|
2114 | if (textureUnit->Current->MinLod != -1000.0
|
---|
2115 | || textureUnit->Current->MaxLod != 1000.0) {
|
---|
2116 | /* apply LOD clamping to lambda */
|
---|
2117 | GLfloat min = textureUnit->Current->MinLod;
|
---|
2118 | GLfloat max = textureUnit->Current->MaxLod;
|
---|
2119 | GLuint i;
|
---|
2120 | for (i=0;i<n;i++) {
|
---|
2121 | GLfloat l = lambda[i];
|
---|
2122 | lambda[i] = CLAMP(l, min, max);
|
---|
2123 | }
|
---|
2124 | }
|
---|
2125 |
|
---|
2126 | /* Sample the texture. */
|
---|
2127 | (*textureUnit->Current->SampleFunc)( textureUnit->Current, n,
|
---|
2128 | s, t, r, lambda, texel );
|
---|
2129 |
|
---|
2130 | apply_texture( ctx, textureUnit, n,
|
---|
2131 | rgba, (const GLubyte (*)[4])texel );
|
---|
2132 | }
|
---|
2133 | }
|
---|
2134 | }
|
---|