source: trunk/src/opengl/mesa/matrix.c@ 2970

Last change on this file since 2970 was 2962, checked in by jeroen, 25 years ago

* empty log message *

File size: 40.6 KB
Line 
1/* $Id: matrix.c,v 1.2 2000-03-01 18:49:31 jeroen Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version: 3.1
6 *
7 * Copyright (C) 1999 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28
29
30
31/*
32 * Matrix operations
33 *
34 *
35 * NOTES:
36 * 1. 4x4 transformation matrices are stored in memory in column major order.
37 * 2. Points/vertices are to be thought of as column vectors.
38 * 3. Transformation of a point p by a matrix M is: p' = M * p
39 *
40 */
41
42
43#ifdef PC_HEADER
44#include "all.h"
45#else
46#ifndef XFree86Server
47#include <math.h>
48#include <stdio.h>
49#include <stdlib.h>
50#include <string.h>
51#else
52#include "GL/xf86glx.h"
53#endif
54#include "types.h"
55#include "context.h"
56#include "enums.h"
57#include "macros.h"
58#include "matrix.h"
59#include "mmath.h"
60#endif
61
62
63static const char *types[] = {
64 "MATRIX_GENERAL",
65 "MATRIX_IDENTITY",
66 "MATRIX_3D_NO_ROT",
67 "MATRIX_PERSPECTIVE",
68 "MATRIX_2D",
69 "MATRIX_2D_NO_ROT",
70 "MATRIX_3D"
71};
72static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b );
73
74
75static GLfloat Identity[16] = {
76 1.0, 0.0, 0.0, 0.0,
77 0.0, 1.0, 0.0, 0.0,
78 0.0, 0.0, 1.0, 0.0,
79 0.0, 0.0, 0.0, 1.0
80};
81
82
83static void print_matrix_floats( const GLfloat m[16] )
84{
85 int i;
86 for (i=0;i<4;i++) {
87 fprintf(stderr,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
88 }
89}
90
91void gl_print_matrix( const GLmatrix *m )
92{
93 fprintf(stderr, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
94 print_matrix_floats(m->m);
95#if 1
96 fprintf(stderr, "Inverse: \n");
97 if (m->inv) {
98 GLfloat prod[16];
99 print_matrix_floats(m->inv);
100 matmul4(prod, m->m, m->inv);
101 fprintf(stderr, "Mat * Inverse:\n");
102 print_matrix_floats(prod);
103 } else
104 fprintf(stderr, " - not available\n");
105#endif
106}
107
108
109
110/*
111 * This matmul was contributed by Thomas Malik
112 *
113 * Perform a 4x4 matrix multiplication (product = a x b).
114 * Input: a, b - matrices to multiply
115 * Output: product - product of a and b
116 * WARNING: (product != b) assumed
117 * NOTE: (product == a) allowed
118 *
119 * KW: 4*16 = 64 muls
120 */
121#define A(row,col) a[(col<<2)+row]
122#define B(row,col) b[(col<<2)+row]
123#define P(row,col) product[(col<<2)+row]
124
125static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
126{
127 GLint i;
128 for (i = 0; i < 4; i++) {
129 GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
130 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
131 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
132 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
133 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
134 }
135}
136
137
138
139
140/* Multiply two matrices known to occupy only the top three rows,
141 * such as typical modelling matrices, and ortho matrices.
142 *
143 * KW: 3*9 = 27 muls
144 */
145static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
146{
147 GLint i;
148 for (i = 0; i < 3; i++) {
149 GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
150 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
151 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
152 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
153 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
154 }
155 P(3,0) = 0;
156 P(3,1) = 0;
157 P(3,2) = 0;
158 P(3,3) = 1;
159}
160
161static void matmul4fd( GLfloat *product, const GLfloat *a, const GLdouble *b )
162{
163 GLint i;
164 for (i = 0; i < 4; i++) {
165 GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
166 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
167 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
168 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
169 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
170 }
171}
172
173#undef A
174#undef B
175#undef P
176
177
178
179#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
180#define MAT(m,r,c) (m)[(c)*4+(r)]
181
182/*
183 * Compute inverse of 4x4 transformation matrix.
184 * Code contributed by Jacques Leroy jle@star.be
185 * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
186 */
187static GLboolean invert_matrix_general( GLmatrix *mat )
188{
189 const GLfloat *m = mat->m;
190 GLfloat *out = mat->inv;
191 GLfloat wtmp[4][8];
192 GLfloat m0, m1, m2, m3, s;
193 GLfloat *r0, *r1, *r2, *r3;
194
195 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
196
197 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
198 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
199 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
200
201 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
202 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
203 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
204
205 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
206 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
207 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
208
209 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
210 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
211 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
212
213 /* choose pivot - or die */
214 if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
215 if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
216 if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
217 if (0.0 == r0[0]) return GL_FALSE;
218
219 /* eliminate first variable */
220 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
221 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
222 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
223 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
224 s = r0[4];
225 if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
226 s = r0[5];
227 if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
228 s = r0[6];
229 if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
230 s = r0[7];
231 if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
232
233 /* choose pivot - or die */
234 if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
235 if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
236 if (0.0 == r1[1]) return GL_FALSE;
237
238 /* eliminate second variable */
239 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
240 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
241 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
242 s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
243 s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
244 s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
245 s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
246
247 /* choose pivot - or die */
248 if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
249 if (0.0 == r2[2]) return GL_FALSE;
250
251 /* eliminate third variable */
252 m3 = r3[2]/r2[2];
253 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
254 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
255 r3[7] -= m3 * r2[7];
256
257 /* last check */
258 if (0.0 == r3[3]) return GL_FALSE;
259
260 s = 1.0/r3[3]; /* now back substitute row 3 */
261 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
262
263 m2 = r2[3]; /* now back substitute row 2 */
264 s = 1.0/r2[2];
265 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
266 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
267 m1 = r1[3];
268 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
269 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
270 m0 = r0[3];
271 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
272 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
273
274 m1 = r1[2]; /* now back substitute row 1 */
275 s = 1.0/r1[1];
276 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
277 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
278 m0 = r0[2];
279 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
280 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
281
282 m0 = r0[1]; /* now back substitute row 0 */
283 s = 1.0/r0[0];
284 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
285 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
286
287 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
288 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
289 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
290 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
291 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
292 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
293 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
294 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
295
296 return GL_TRUE;
297}
298#undef SWAP_ROWS
299
300/* Adapted from graphics gems II.
301 */
302static GLboolean invert_matrix_3d_general( GLmatrix *mat )
303{
304 const GLfloat *in = mat->m;
305 GLfloat *out = mat->inv;
306 GLfloat pos, neg, t;
307 GLfloat det;
308
309 /* Calculate the determinant of upper left 3x3 submatrix and
310 * determine if the matrix is singular.
311 */
312 pos = neg = 0.0;
313 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
314 if (t >= 0.0) pos += t; else neg += t;
315
316 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
317 if (t >= 0.0) pos += t; else neg += t;
318
319 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
320 if (t >= 0.0) pos += t; else neg += t;
321
322 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
323 if (t >= 0.0) pos += t; else neg += t;
324
325 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
326 if (t >= 0.0) pos += t; else neg += t;
327
328 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
329 if (t >= 0.0) pos += t; else neg += t;
330
331 det = pos + neg;
332
333 if (det*det < 1e-25)
334 return GL_FALSE;
335
336 det = 1.0 / det;
337 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
338 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
339 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
340 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
341 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
342 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
343 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
344 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
345 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
346
347 /* Do the translation part */
348 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
349 MAT(in,1,3) * MAT(out,0,1) +
350 MAT(in,2,3) * MAT(out,0,2) );
351 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
352 MAT(in,1,3) * MAT(out,1,1) +
353 MAT(in,2,3) * MAT(out,1,2) );
354 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
355 MAT(in,1,3) * MAT(out,2,1) +
356 MAT(in,2,3) * MAT(out,2,2) );
357
358 return GL_TRUE;
359}
360
361
362static GLboolean invert_matrix_3d( GLmatrix *mat )
363{
364 const GLfloat *in = mat->m;
365 GLfloat *out = mat->inv;
366
367 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING))
368 {
369 return invert_matrix_3d_general( mat );
370 }
371
372 if (mat->flags & MAT_FLAG_UNIFORM_SCALE)
373 {
374 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
375 MAT(in,0,1) * MAT(in,0,1) +
376 MAT(in,0,2) * MAT(in,0,2));
377
378 if (scale == 0.0)
379 return GL_FALSE;
380
381 scale = 1.0 / scale;
382
383 /* Transpose and scale the 3 by 3 upper-left submatrix. */
384 MAT(out,0,0) = scale * MAT(in,0,0);
385 MAT(out,1,0) = scale * MAT(in,0,1);
386 MAT(out,2,0) = scale * MAT(in,0,2);
387 MAT(out,0,1) = scale * MAT(in,1,0);
388 MAT(out,1,1) = scale * MAT(in,1,1);
389 MAT(out,2,1) = scale * MAT(in,1,2);
390 MAT(out,0,2) = scale * MAT(in,2,0);
391 MAT(out,1,2) = scale * MAT(in,2,1);
392 MAT(out,2,2) = scale * MAT(in,2,2);
393 }
394 else if (mat->flags & MAT_FLAG_ROTATION)
395 {
396 /* Transpose the 3 by 3 upper-left submatrix. */
397 MAT(out,0,0) = MAT(in,0,0);
398 MAT(out,1,0) = MAT(in,0,1);
399 MAT(out,2,0) = MAT(in,0,2);
400 MAT(out,0,1) = MAT(in,1,0);
401 MAT(out,1,1) = MAT(in,1,1);
402 MAT(out,2,1) = MAT(in,1,2);
403 MAT(out,0,2) = MAT(in,2,0);
404 MAT(out,1,2) = MAT(in,2,1);
405 MAT(out,2,2) = MAT(in,2,2);
406 }
407 else /* pure translation */
408 {
409 MEMCPY( out, Identity, sizeof(Identity) );
410 MAT(out,0,3) = - MAT(in,0,3);
411 MAT(out,1,3) = - MAT(in,1,3);
412 MAT(out,2,3) = - MAT(in,2,3);
413 return GL_TRUE;
414 }
415
416 if (mat->flags & MAT_FLAG_TRANSLATION)
417 {
418 /* Do the translation part */
419 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
420 MAT(in,1,3) * MAT(out,0,1) +
421 MAT(in,2,3) * MAT(out,0,2) );
422 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
423 MAT(in,1,3) * MAT(out,1,1) +
424 MAT(in,2,3) * MAT(out,1,2) );
425 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
426 MAT(in,1,3) * MAT(out,2,1) +
427 MAT(in,2,3) * MAT(out,2,2) );
428 }
429 else
430 {
431 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
432 }
433
434 return GL_TRUE;
435}
436
437
438
439static GLboolean invert_matrix_identity( GLmatrix *mat )
440{
441 MEMCPY( mat->inv, Identity, sizeof(Identity) );
442 return GL_TRUE;
443}
444
445
446static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
447{
448 const GLfloat *in = mat->m;
449 GLfloat *out = mat->inv;
450
451 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
452 return GL_FALSE;
453
454 MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
455 MAT(out,0,0) = 1.0 / MAT(in,0,0);
456 MAT(out,1,1) = 1.0 / MAT(in,1,1);
457 MAT(out,2,2) = 1.0 / MAT(in,2,2);
458
459 if (mat->flags & MAT_FLAG_TRANSLATION)
460 {
461 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
462 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
463 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
464 }
465
466 return GL_TRUE;
467}
468
469
470static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
471{
472 const GLfloat *in = mat->m;
473 GLfloat *out = mat->inv;
474
475 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
476 return GL_FALSE;
477
478 MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
479 MAT(out,0,0) = 1.0 / MAT(in,0,0);
480 MAT(out,1,1) = 1.0 / MAT(in,1,1);
481
482 if (mat->flags & MAT_FLAG_TRANSLATION)
483 {
484 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
485 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
486 }
487
488 return GL_TRUE;
489}
490
491
492static GLboolean invert_matrix_perspective( GLmatrix *mat )
493{
494 const GLfloat *in = mat->m;
495 GLfloat *out = mat->inv;
496
497 if (MAT(in,2,3) == 0)
498 return GL_FALSE;
499
500 MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
501
502 MAT(out,0,0) = 1.0 / MAT(in,0,0);
503 MAT(out,1,1) = 1.0 / MAT(in,1,1);
504
505 MAT(out,0,3) = MAT(in,0,2);
506 MAT(out,1,3) = MAT(in,1,2);
507
508 MAT(out,2,2) = 0;
509 MAT(out,2,3) = -1;
510
511 MAT(out,3,2) = 1.0 / MAT(in,2,3);
512 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
513
514 return GL_TRUE;
515}
516
517
518typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
519
520static inv_mat_func inv_mat_tab[7] = {
521 invert_matrix_general,
522 invert_matrix_identity,
523 invert_matrix_3d_no_rot,
524 invert_matrix_perspective,
525 invert_matrix_3d, /* lazy! */
526 invert_matrix_2d_no_rot,
527 invert_matrix_3d
528};
529
530
531GLboolean gl_matrix_invert( GLmatrix *mat )
532{
533 if (inv_mat_tab[mat->type](mat)) {
534#if 0
535 GLmatrix m; m.inv = 0; m.type = 0; m.flags = 0;
536 matmul4( m.m, mat->m, mat->inv );
537 printf("inverted matrix of type %s:\n", types[mat->type]);
538 gl_print_matrix( mat );
539 gl_print_matrix( &m );
540#endif
541 return GL_TRUE;
542 } else {
543 MEMCPY( mat->inv, Identity, sizeof(Identity) );
544 return GL_FALSE;
545 }
546}
547
548
549
550/*
551 * Generate a 4x4 transformation matrix from glRotate parameters.
552 */
553void gl_rotation_matrix( GLfloat angle, GLfloat x, GLfloat y, GLfloat z,
554 GLfloat m[] )
555{
556 /* This function contributed by Erich Boleyn (erich@uruk.org) */
557 GLfloat mag, s, c;
558 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
559
560 s = sin( angle * DEG2RAD );
561 c = cos( angle * DEG2RAD );
562
563 mag = GL_SQRT( x*x + y*y + z*z );
564
565 if (mag == 0.0) {
566 /* generate an identity matrix and return */
567 MEMCPY(m, Identity, sizeof(GLfloat)*16);
568 return;
569 }
570
571 x /= mag;
572 y /= mag;
573 z /= mag;
574
575#define M(row,col) m[col*4+row]
576
577 /*
578 * Arbitrary axis rotation matrix.
579 *
580 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
581 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
582 * (which is about the X-axis), and the two composite transforms
583 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
584 * from the arbitrary axis to the X-axis then back. They are
585 * all elementary rotations.
586 *
587 * Rz' is a rotation about the Z-axis, to bring the axis vector
588 * into the x-z plane. Then Ry' is applied, rotating about the
589 * Y-axis to bring the axis vector parallel with the X-axis. The
590 * rotation about the X-axis is then performed. Ry and Rz are
591 * simply the respective inverse transforms to bring the arbitrary
592 * axis back to it's original orientation. The first transforms
593 * Rz' and Ry' are considered inverses, since the data from the
594 * arbitrary axis gives you info on how to get to it, not how
595 * to get away from it, and an inverse must be applied.
596 *
597 * The basic calculation used is to recognize that the arbitrary
598 * axis vector (x, y, z), since it is of unit length, actually
599 * represents the sines and cosines of the angles to rotate the
600 * X-axis to the same orientation, with theta being the angle about
601 * Z and phi the angle about Y (in the order described above)
602 * as follows:
603 *
604 * cos ( theta ) = x / sqrt ( 1 - z^2 )
605 * sin ( theta ) = y / sqrt ( 1 - z^2 )
606 *
607 * cos ( phi ) = sqrt ( 1 - z^2 )
608 * sin ( phi ) = z
609 *
610 * Note that cos ( phi ) can further be inserted to the above
611 * formulas:
612 *
613 * cos ( theta ) = x / cos ( phi )
614 * sin ( theta ) = y / sin ( phi )
615 *
616 * ...etc. Because of those relations and the standard trigonometric
617 * relations, it is pssible to reduce the transforms down to what
618 * is used below. It may be that any primary axis chosen will give the
619 * same results (modulo a sign convention) using thie method.
620 *
621 * Particularly nice is to notice that all divisions that might
622 * have caused trouble when parallel to certain planes or
623 * axis go away with care paid to reducing the expressions.
624 * After checking, it does perform correctly under all cases, since
625 * in all the cases of division where the denominator would have
626 * been zero, the numerator would have been zero as well, giving
627 * the expected result.
628 */
629
630 xx = x * x;
631 yy = y * y;
632 zz = z * z;
633 xy = x * y;
634 yz = y * z;
635 zx = z * x;
636 xs = x * s;
637 ys = y * s;
638 zs = z * s;
639 one_c = 1.0F - c;
640
641 M(0,0) = (one_c * xx) + c;
642 M(0,1) = (one_c * xy) - zs;
643 M(0,2) = (one_c * zx) + ys;
644 M(0,3) = 0.0F;
645
646 M(1,0) = (one_c * xy) + zs;
647 M(1,1) = (one_c * yy) + c;
648 M(1,2) = (one_c * yz) - xs;
649 M(1,3) = 0.0F;
650
651 M(2,0) = (one_c * zx) - ys;
652 M(2,1) = (one_c * yz) + xs;
653 M(2,2) = (one_c * zz) + c;
654 M(2,3) = 0.0F;
655
656 M(3,0) = 0.0F;
657 M(3,1) = 0.0F;
658 M(3,2) = 0.0F;
659 M(3,3) = 1.0F;
660
661#undef M
662}
663
664#define ZERO(x) (1<<x)
665#define ONE(x) (1<<(x+16))
666
667#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
668#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
669
670#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
671 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
672 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
673 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
674
675#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
676 ZERO(1) | ZERO(9) | \
677 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
678 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
679
680#define MASK_2D ( ZERO(8) | \
681 ZERO(9) | \
682 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
683 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
684
685
686#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
687 ZERO(1) | ZERO(9) | \
688 ZERO(2) | ZERO(6) | \
689 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
690
691#define MASK_3D ( \
692 \
693 \
694 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
695
696
697#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
698 ZERO(1) | ZERO(13) |\
699 ZERO(2) | ZERO(6) | \
700 ZERO(3) | ZERO(7) | ZERO(15) )
701
702#define SQ(x) ((x)*(x))
703
704/* Determine type and flags from scratch. This is expensive enough to
705 * only want to do it once.
706 */
707static void analyze_from_scratch( GLmatrix *mat )
708{
709 const GLfloat *m = mat->m;
710 GLuint mask = 0;
711 GLuint i;
712
713 for (i = 0 ; i < 16 ; i++)
714 {
715 if (m[i] == 0.0) mask |= (1<<i);
716 }
717
718 if (m[0] == 1.0F) mask |= (1<<16);
719 if (m[5] == 1.0F) mask |= (1<<21);
720 if (m[10] == 1.0F) mask |= (1<<26);
721 if (m[15] == 1.0F) mask |= (1<<31);
722
723 mat->flags &= ~MAT_FLAGS_GEOMETRY;
724
725 /* Check for translation - no-one really cares
726 */
727 if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
728 mat->flags |= MAT_FLAG_TRANSLATION;
729
730 /* Do the real work
731 */
732 if (mask == MASK_IDENTITY) {
733 mat->type = MATRIX_IDENTITY;
734 }
735 else if ((mask & MASK_2D_NO_ROT) == MASK_2D_NO_ROT)
736 {
737 mat->type = MATRIX_2D_NO_ROT;
738
739 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
740 mat->flags = MAT_FLAG_GENERAL_SCALE;
741 }
742 else if ((mask & MASK_2D) == MASK_2D)
743 {
744 GLfloat mm = DOT2(m, m);
745 GLfloat m4m4 = DOT2(m+4,m+4);
746 GLfloat mm4 = DOT2(m,m+4);
747
748 mat->type = MATRIX_2D;
749
750 /* Check for scale */
751 if (SQ(mm-1) > SQ(1e-6) ||
752 SQ(m4m4-1) > SQ(1e-6))
753 mat->flags |= MAT_FLAG_GENERAL_SCALE;
754
755 /* Check for rotation */
756 if (SQ(mm4) > SQ(1e-6))
757 mat->flags |= MAT_FLAG_GENERAL_3D;
758 else
759 mat->flags |= MAT_FLAG_ROTATION;
760
761 }
762 else if ((mask & MASK_3D_NO_ROT) == MASK_3D_NO_ROT)
763 {
764 mat->type = MATRIX_3D_NO_ROT;
765
766 /* Check for scale */
767 if (SQ(m[0]-m[5]) < SQ(1e-6) &&
768 SQ(m[0]-m[10]) < SQ(1e-6)) {
769 if (SQ(m[0]-1.0) > SQ(1e-6))
770 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
771 } else
772 mat->flags |= MAT_FLAG_GENERAL_SCALE;
773 }
774 else if ((mask & MASK_3D) == MASK_3D)
775 {
776 GLfloat c1 = DOT3(m,m);
777 GLfloat c2 = DOT3(m+4,m+4);
778 GLfloat c3 = DOT3(m+8,m+8);
779 GLfloat d1 = DOT3(m, m+4);
780 GLfloat cp[3];
781
782 mat->type = MATRIX_3D;
783
784 /* Check for scale */
785 if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
786 if (SQ(c1-1.0) > SQ(1e-6))
787 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
788 /* else no scale at all */
789 } else
790 mat->flags |= MAT_FLAG_GENERAL_SCALE;
791
792 /* Check for rotation */
793 if (SQ(d1) < SQ(1e-6)) {
794 CROSS3( cp, m, m+4 );
795 SUB_3V( cp, cp, (m+8) );
796 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
797 mat->flags |= MAT_FLAG_ROTATION;
798 else
799 mat->flags |= MAT_FLAG_GENERAL_3D;
800 }
801 else
802 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
803 }
804 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F)
805 {
806 mat->type = MATRIX_PERSPECTIVE;
807 mat->flags |= MAT_FLAG_GENERAL;
808 }
809 else {
810 mat->type = MATRIX_GENERAL;
811 mat->flags |= MAT_FLAG_GENERAL;
812 }
813}
814
815
816/* Analyse a matrix given that its flags are accurate - this is the
817 * more common operation, hopefully.
818 */
819static void analyze_from_flags( GLmatrix *mat )
820{
821 const GLfloat *m = mat->m;
822
823 if (TEST_MAT_FLAGS(mat, 0)) {
824 mat->type = MATRIX_IDENTITY;
825 }
826 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
827 MAT_FLAG_UNIFORM_SCALE |
828 MAT_FLAG_GENERAL_SCALE)))
829 {
830 if ( m[10]==1.0F && m[14]==0.0F ) {
831 mat->type = MATRIX_2D_NO_ROT;
832 }
833 else {
834 mat->type = MATRIX_3D_NO_ROT;
835 }
836 }
837 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
838 if ( m[ 8]==0.0F
839 && m[ 9]==0.0F
840 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F)
841 {
842 mat->type = MATRIX_2D;
843 }
844 else
845 {
846 mat->type = MATRIX_3D;
847 }
848 }
849 else if ( m[4]==0.0F && m[12]==0.0F
850 && m[1]==0.0F && m[13]==0.0F
851 && m[2]==0.0F && m[6]==0.0F
852 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F)
853 {
854 mat->type = MATRIX_PERSPECTIVE;
855 }
856 else {
857 mat->type = MATRIX_GENERAL;
858 }
859
860}
861
862
863void gl_matrix_analyze( GLmatrix *mat )
864{
865 if (mat->flags & MAT_DIRTY_TYPE) {
866 if (mat->flags & MAT_DIRTY_FLAGS)
867 analyze_from_scratch( mat );
868 else
869 analyze_from_flags( mat );
870 }
871
872 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
873 gl_matrix_invert( mat );
874 }
875
876 mat->flags &= ~(MAT_DIRTY_FLAGS|
877 MAT_DIRTY_TYPE|
878 MAT_DIRTY_INVERSE);
879}
880
881
882#define GET_ACTIVE_MATRIX(ctx, mat, flags, where) \
883do { \
884 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, where); \
885 if (MESA_VERBOSE&VERBOSE_API) fprintf(stderr, "%s\n", where); \
886 switch (ctx->Transform.MatrixMode) { \
887 case GL_MODELVIEW: \
888 mat = &ctx->ModelView; \
889 flags |= NEW_MODELVIEW; \
890 break; \
891 case GL_PROJECTION: \
892 mat = &ctx->ProjectionMatrix; \
893 flags |= NEW_PROJECTION; \
894 break; \
895 case GL_TEXTURE: \
896 mat = &ctx->TextureMatrix[ctx->Texture.CurrentTransformUnit]; \
897 flags |= NEW_TEXTURE_MATRIX; \
898 break; \
899 default: \
900 gl_problem(ctx, where); \
901 } \
902} while (0)
903
904
905void gl_Frustum( GLcontext *ctx,
906 GLdouble left, GLdouble right,
907 GLdouble bottom, GLdouble top,
908 GLdouble nearval, GLdouble farval )
909{
910 GLfloat x, y, a, b, c, d;
911 GLfloat m[16];
912 GLmatrix *mat = 0;
913
914 GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glFrustrum" );
915
916 if ((nearval<=0.0 || farval<=0.0) || (nearval == farval) || (left == right) || (top == bottom)) {
917 gl_error( ctx, GL_INVALID_VALUE, "glFrustum(near or far)" );
918 return;
919 }
920
921 x = (2.0*nearval) / (right-left);
922 y = (2.0*nearval) / (top-bottom);
923 a = (right+left) / (right-left);
924 b = (top+bottom) / (top-bottom);
925 c = -(farval+nearval) / ( farval-nearval);
926 d = -(2.0*farval*nearval) / (farval-nearval); /* error? */
927
928#define M(row,col) m[col*4+row]
929 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
930 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
931 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
932 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
933#undef M
934
935
936 gl_mat_mul_floats( mat, m, MAT_FLAG_PERSPECTIVE );
937
938
939 if (ctx->Transform.MatrixMode == GL_PROJECTION)
940 {
941 /* Need to keep a stack of near/far values in case the user push/pops
942 * the projection matrix stack so that we can call Driver.NearFar()
943 * after a pop.
944 */
945 ctx->NearFarStack[ctx->ProjectionStackDepth][0] = nearval;
946 ctx->NearFarStack[ctx->ProjectionStackDepth][1] = farval;
947
948 if (ctx->Driver.NearFar) {
949 (*ctx->Driver.NearFar)( ctx, nearval, farval );
950 }
951 }
952}
953
954
955void gl_Ortho( GLcontext *ctx,
956 GLdouble left, GLdouble right,
957 GLdouble bottom, GLdouble top,
958 GLdouble nearval, GLdouble farval )
959{
960 GLfloat x, y, z;
961 GLfloat tx, ty, tz;
962 GLfloat m[16];
963 GLmatrix *mat = 0;
964
965 GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glOrtho" );
966
967 if ((left == right) || (bottom == top) || (nearval == farval)) {
968 gl_error( ctx, GL_INVALID_VALUE, "gl_Ortho((l = r) or (b = top) or (n=f)" );
969 return;
970 }
971
972 x = 2.0 / (right-left);
973 y = 2.0 / (top-bottom);
974 z = -2.0 / (farval-nearval);
975 tx = -(right+left) / (right-left);
976 ty = -(top+bottom) / (top-bottom);
977 tz = -(farval+nearval) / (farval-nearval);
978
979#define M(row,col) m[col*4+row]
980 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx;
981 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty;
982 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz;
983 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F;
984#undef M
985
986 gl_mat_mul_floats( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
987
988 if (ctx->Driver.NearFar) {
989 (*ctx->Driver.NearFar)( ctx, nearval, farval );
990 }
991}
992
993
994void gl_MatrixMode( GLcontext *ctx, GLenum mode )
995{
996 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMatrixMode");
997 switch (mode) {
998 case GL_MODELVIEW:
999 case GL_PROJECTION:
1000 case GL_TEXTURE:
1001 ctx->Transform.MatrixMode = mode;
1002 break;
1003 default:
1004 gl_error( ctx, GL_INVALID_ENUM, "glMatrixMode" );
1005 }
1006}
1007
1008
1009
1010void gl_PushMatrix( GLcontext *ctx )
1011{
1012 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glPushMatrix");
1013
1014 if (MESA_VERBOSE&VERBOSE_API)
1015 fprintf(stderr, "glPushMatrix %s\n",
1016 gl_lookup_enum_by_nr(ctx->Transform.MatrixMode));
1017
1018 switch (ctx->Transform.MatrixMode) {
1019 case GL_MODELVIEW:
1020 if (ctx->ModelViewStackDepth>=MAX_MODELVIEW_STACK_DEPTH-1) {
1021 gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
1022 return;
1023 }
1024 gl_matrix_copy( &ctx->ModelViewStack[ctx->ModelViewStackDepth++],
1025 &ctx->ModelView );
1026 break;
1027 case GL_PROJECTION:
1028 if (ctx->ProjectionStackDepth>=MAX_PROJECTION_STACK_DEPTH) {
1029 gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
1030 return;
1031 }
1032 gl_matrix_copy( &ctx->ProjectionStack[ctx->ProjectionStackDepth++],
1033 &ctx->ProjectionMatrix );
1034
1035 /* Save near and far projection values */
1036 ctx->NearFarStack[ctx->ProjectionStackDepth][0]
1037 = ctx->NearFarStack[ctx->ProjectionStackDepth-1][0];
1038 ctx->NearFarStack[ctx->ProjectionStackDepth][1]
1039 = ctx->NearFarStack[ctx->ProjectionStackDepth-1][1];
1040 break;
1041 case GL_TEXTURE:
1042 {
1043 GLuint t = ctx->Texture.CurrentTransformUnit;
1044 if (ctx->TextureStackDepth[t] >= MAX_TEXTURE_STACK_DEPTH) {
1045 gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
1046 return;
1047 }
1048 gl_matrix_copy( &ctx->TextureStack[t][ctx->TextureStackDepth[t]++],
1049 &ctx->TextureMatrix[t] );
1050 }
1051 break;
1052 default:
1053 gl_problem(ctx, "Bad matrix mode in gl_PushMatrix");
1054 }
1055}
1056
1057
1058
1059void gl_PopMatrix( GLcontext *ctx )
1060{
1061 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glPopMatrix");
1062
1063 if (MESA_VERBOSE&VERBOSE_API)
1064 fprintf(stderr, "glPopMatrix %s\n",
1065 gl_lookup_enum_by_nr(ctx->Transform.MatrixMode));
1066
1067 switch (ctx->Transform.MatrixMode) {
1068 case GL_MODELVIEW:
1069 if (ctx->ModelViewStackDepth==0) {
1070 gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
1071 return;
1072 }
1073 gl_matrix_copy( &ctx->ModelView,
1074 &ctx->ModelViewStack[--ctx->ModelViewStackDepth] );
1075 ctx->NewState |= NEW_MODELVIEW;
1076 break;
1077 case GL_PROJECTION:
1078 if (ctx->ProjectionStackDepth==0) {
1079 gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
1080 return;
1081 }
1082
1083 gl_matrix_copy( &ctx->ProjectionMatrix,
1084 &ctx->ProjectionStack[--ctx->ProjectionStackDepth] );
1085 ctx->NewState |= NEW_PROJECTION;
1086
1087 /* Device driver near/far values */
1088 {
1089 GLfloat nearVal = ctx->NearFarStack[ctx->ProjectionStackDepth][0];
1090 GLfloat farVal = ctx->NearFarStack[ctx->ProjectionStackDepth][1];
1091 if (ctx->Driver.NearFar) {
1092 (*ctx->Driver.NearFar)( ctx, nearVal, farVal );
1093 }
1094 }
1095 break;
1096 case GL_TEXTURE:
1097 {
1098 GLuint t = ctx->Texture.CurrentTransformUnit;
1099 if (ctx->TextureStackDepth[t]==0) {
1100 gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
1101 return;
1102 }
1103 gl_matrix_copy(&ctx->TextureMatrix[t],
1104 &ctx->TextureStack[t][--ctx->TextureStackDepth[t]]);
1105 }
1106 break;
1107 default:
1108 gl_problem(ctx, "Bad matrix mode in gl_PopMatrix");
1109 }
1110}
1111
1112
1113
1114void gl_LoadIdentity( GLcontext *ctx )
1115{
1116 GLmatrix *mat = 0;
1117 GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadIdentity");
1118
1119 MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
1120
1121 if (mat->inv)
1122 MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) );
1123
1124 mat->type = MATRIX_IDENTITY;
1125
1126 /* Have to set this to dirty to make sure we recalculate the
1127 * combined matrix later. The update_matrix in this case is a
1128 * shortcircuit anyway...
1129 */
1130 mat->flags = MAT_DIRTY_DEPENDENTS;
1131}
1132
1133
1134void gl_LoadMatrixf( GLcontext *ctx, const GLfloat *m )
1135{
1136 GLmatrix *mat = 0;
1137 GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadMatrix");
1138
1139 MEMCPY( mat->m, m, 16*sizeof(GLfloat) );
1140 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
1141
1142 if (ctx->Transform.MatrixMode == GL_PROJECTION) {
1143
1144#define M(row,col) m[col*4+row]
1145 GLfloat c = M(2,2);
1146 GLfloat d = M(2,3);
1147#undef M
1148 GLfloat n = (c == 1.0 ? 0.0 : d / (c - 1.0));
1149 GLfloat f = (c == -1.0 ? 1.0 : d / (c + 1.0));
1150
1151 /* Need to keep a stack of near/far values in case the user
1152 * push/pops the projection matrix stack so that we can call
1153 * Driver.NearFar() after a pop.
1154 */
1155 ctx->NearFarStack[ctx->ProjectionStackDepth][0] = n;
1156 ctx->NearFarStack[ctx->ProjectionStackDepth][1] = f;
1157
1158 if (ctx->Driver.NearFar) {
1159 (*ctx->Driver.NearFar)( ctx, n, f );
1160 }
1161 }
1162}
1163
1164
1165
1166/*
1167 * Multiply the active matrix by an arbitary matrix.
1168 */
1169void gl_MultMatrixf( GLcontext *ctx, const GLfloat *m )
1170{
1171 GLmatrix *mat = 0;
1172 GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" );
1173 matmul4( mat->m, mat->m, m );
1174 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
1175}
1176
1177
1178/*
1179 * Multiply the active matrix by an arbitary matrix.
1180 */
1181void gl_MultMatrixd( GLcontext *ctx, const GLdouble *m )
1182{
1183 GLmatrix *mat = 0;
1184 GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" );
1185 matmul4fd( mat->m, mat->m, m );
1186 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
1187}
1188
1189
1190
1191
1192/*
1193 * Multiply a matrix by an array of floats with known properties.
1194 */
1195void gl_mat_mul_floats( GLmatrix *mat, const GLfloat *m, GLuint flags )
1196{
1197 mat->flags |= (flags |
1198 MAT_DIRTY_TYPE |
1199 MAT_DIRTY_INVERSE |
1200 MAT_DIRTY_DEPENDENTS);
1201
1202 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
1203 matmul34( mat->m, mat->m, m );
1204 else
1205 matmul4( mat->m, mat->m, m );
1206
1207}
1208
1209/*
1210 * Multiply a matrix by an array of floats with known properties.
1211 */
1212void gl_mat_mul_mat( GLmatrix *mat, const GLmatrix *m )
1213{
1214 mat->flags |= (m->flags |
1215 MAT_DIRTY_TYPE |
1216 MAT_DIRTY_INVERSE |
1217 MAT_DIRTY_DEPENDENTS);
1218
1219 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
1220 matmul34( mat->m, mat->m, m->m );
1221 else
1222 matmul4( mat->m, mat->m, m->m );
1223}
1224
1225
1226
1227/*
1228 * Execute a glRotate call
1229 */
1230void gl_Rotatef( GLcontext *ctx,
1231 GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
1232{
1233 GLfloat m[16];
1234 if (angle != 0.0F) {
1235 GLmatrix *mat = 0;
1236 GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glRotate" );
1237
1238 gl_rotation_matrix( angle, x, y, z, m );
1239 gl_mat_mul_floats( mat, m, MAT_FLAG_ROTATION );
1240 }
1241}
1242
1243/*
1244 * Execute a glScale call
1245 */
1246void gl_Scalef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
1247{
1248 GLmatrix *mat = 0;
1249 GLfloat *m;
1250 GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glScale");
1251
1252 m = mat->m;
1253 m[0] *= x; m[4] *= y; m[8] *= z;
1254 m[1] *= x; m[5] *= y; m[9] *= z;
1255 m[2] *= x; m[6] *= y; m[10] *= z;
1256 m[3] *= x; m[7] *= y; m[11] *= z;
1257
1258 if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8)
1259 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1260 else
1261 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1262
1263 mat->flags |= (MAT_DIRTY_TYPE |
1264 MAT_DIRTY_INVERSE |
1265 MAT_DIRTY_DEPENDENTS);
1266}
1267
1268/*
1269 * Execute a glTranslate call
1270 */
1271void gl_Translatef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
1272{
1273 GLmatrix *mat = 0;
1274 GLfloat *m;
1275 GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glTranslate");
1276 m = mat->m;
1277 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
1278 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
1279 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1280 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1281
1282 mat->flags |= (MAT_FLAG_TRANSLATION |
1283 MAT_DIRTY_TYPE |
1284 MAT_DIRTY_INVERSE |
1285 MAT_DIRTY_DEPENDENTS);
1286}
1287
1288
1289/*
1290 * Define a new viewport and reallocate auxillary buffers if the size of
1291 * the window (color buffer) has changed.
1292 */
1293void gl_Viewport( GLcontext *ctx,
1294 GLint x, GLint y, GLsizei width, GLsizei height )
1295{
1296 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glViewport");
1297
1298 if (width<0 || height<0) {
1299 gl_error( ctx, GL_INVALID_VALUE, "glViewport" );
1300 return;
1301 }
1302
1303 if (MESA_VERBOSE & VERBOSE_API)
1304 fprintf(stderr, "glViewport %d %d %d %d\n", x, y, width, height);
1305
1306 /* clamp width, and height to implementation dependent range */
1307 width = CLAMP( width, 1, MAX_WIDTH );
1308 height = CLAMP( height, 1, MAX_HEIGHT );
1309
1310 /* Save viewport */
1311 ctx->Viewport.X = x;
1312 ctx->Viewport.Width = width;
1313 ctx->Viewport.Y = y;
1314 ctx->Viewport.Height = height;
1315
1316 /* compute scale and bias values */
1317 ctx->Viewport.WindowMap.m[MAT_SX] = (GLfloat) width / 2.0F;
1318 ctx->Viewport.WindowMap.m[MAT_TX] = ctx->Viewport.WindowMap.m[MAT_SX] + x;
1319 ctx->Viewport.WindowMap.m[MAT_SY] = (GLfloat) height / 2.0F;
1320 ctx->Viewport.WindowMap.m[MAT_TY] = ctx->Viewport.WindowMap.m[MAT_SY] + y;
1321 ctx->Viewport.WindowMap.m[MAT_SZ] = 0.5 * DEPTH_SCALE;
1322 ctx->Viewport.WindowMap.m[MAT_TZ] = 0.5 * DEPTH_SCALE;
1323
1324 ctx->Viewport.WindowMap.flags = MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION;
1325 ctx->Viewport.WindowMap.type = MATRIX_3D_NO_ROT;
1326
1327 ctx->ModelProjectWinMatrixUptodate = GL_FALSE;
1328 ctx->NewState |= NEW_VIEWPORT;
1329
1330 /* Check if window/buffer has been resized and if so, reallocate the
1331 * ancillary buffers.
1332 */
1333 gl_ResizeBuffersMESA(ctx);
1334
1335
1336 ctx->RasterMask &= ~WINCLIP_BIT;
1337
1338 if ( ctx->Viewport.X<0
1339 || ctx->Viewport.X + ctx->Viewport.Width > ctx->Buffer->Width
1340 || ctx->Viewport.Y<0
1341 || ctx->Viewport.Y + ctx->Viewport.Height > ctx->Buffer->Height) {
1342 ctx->RasterMask |= WINCLIP_BIT;
1343 }
1344
1345
1346 if (ctx->Driver.Viewport) {
1347 (*ctx->Driver.Viewport)( ctx, x, y, width, height );
1348 }
1349}
1350
1351
1352
1353void gl_DepthRange( GLcontext *ctx, GLclampd nearval, GLclampd farval )
1354{
1355 /*
1356 * nearval - specifies mapping of the near clipping plane to window
1357 * coordinates, default is 0
1358 * farval - specifies mapping of the far clipping plane to window
1359 * coordinates, default is 1
1360 *
1361 * After clipping and div by w, z coords are in -1.0 to 1.0,
1362 * corresponding to near and far clipping planes. glDepthRange
1363 * specifies a linear mapping of the normalized z coords in
1364 * this range to window z coords.
1365 */
1366 GLfloat n, f;
1367
1368 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glDepthRange");
1369
1370 if (MESA_VERBOSE&VERBOSE_API)
1371 fprintf(stderr, "glDepthRange %f %f\n", nearval, farval);
1372
1373 n = (GLfloat) CLAMP( nearval, 0.0, 1.0 );
1374 f = (GLfloat) CLAMP( farval, 0.0, 1.0 );
1375
1376 ctx->Viewport.Near = n;
1377 ctx->Viewport.Far = f;
1378 ctx->Viewport.WindowMap.m[MAT_SZ] = DEPTH_SCALE * ((f - n) / 2.0);
1379 ctx->Viewport.WindowMap.m[MAT_TZ] = DEPTH_SCALE * ((f - n) / 2.0 + n);
1380
1381 ctx->ModelProjectWinMatrixUptodate = GL_FALSE;
1382
1383 if (ctx->Driver.DepthRange) {
1384 (*ctx->Driver.DepthRange)( ctx, nearval, farval );
1385 }
1386}
1387
1388
1389void gl_calculate_model_project_matrix( GLcontext *ctx )
1390{
1391 gl_matrix_mul( &ctx->ModelProjectMatrix,
1392 &ctx->ProjectionMatrix,
1393 &ctx->ModelView );
1394
1395 gl_matrix_analyze( &ctx->ModelProjectMatrix );
1396}
1397
1398
1399void gl_matrix_ctr( GLmatrix *m )
1400{
1401 m->inv = 0;
1402 MEMCPY( m->m, Identity, sizeof(Identity));
1403 m->type = MATRIX_IDENTITY;
1404 m->flags = MAT_DIRTY_DEPENDENTS;
1405}
1406
1407void gl_matrix_dtr( GLmatrix *m )
1408{
1409 if (m->inv != 0) {
1410 FREE(m->inv);
1411 m->inv = 0;
1412 }
1413}
1414
1415void gl_matrix_set_identity( GLmatrix *m )
1416{
1417 MEMCPY( m->m, Identity, sizeof(Identity));
1418 m->type = MATRIX_IDENTITY;
1419 m->flags = MAT_DIRTY_DEPENDENTS;
1420}
1421
1422
1423void gl_matrix_alloc_inv( GLmatrix *m )
1424{
1425 if (m->inv == 0) {
1426 m->inv = (GLfloat *)MALLOC(16*sizeof(GLfloat));
1427 MEMCPY( m->inv, Identity, 16 * sizeof(GLfloat) );
1428 }
1429}
1430
1431void gl_matrix_copy( GLmatrix *to, const GLmatrix *from )
1432{
1433 MEMCPY( to->m, from->m, sizeof(Identity));
1434 to->flags = from->flags | MAT_DIRTY_DEPENDENTS;
1435 to->type = from->type;
1436
1437 if (to->inv != 0) {
1438 if (from->inv == 0) {
1439 gl_matrix_invert( to );
1440 } else {
1441 MEMCPY(to->inv, from->inv, sizeof(GLfloat)*16);
1442 }
1443 }
1444}
1445
1446void gl_matrix_mul( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
1447{
1448 dest->flags = (a->flags |
1449 b->flags |
1450 MAT_DIRTY_TYPE |
1451 MAT_DIRTY_INVERSE |
1452 MAT_DIRTY_DEPENDENTS);
1453
1454 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
1455 matmul34( dest->m, a->m, b->m );
1456 else
1457 matmul4( dest->m, a->m, b->m );
1458}
Note: See TracBrowser for help on using the repository browser.