source: trunk/src/opengl/mesa/eval.c@ 3721

Last change on this file since 3721 was 3598, checked in by jeroen, 25 years ago

* empty log message *

File size: 94.4 KB
Line 
1/* $Id: eval.c,v 1.3 2000-05-23 20:40:32 jeroen Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version: 3.3
6 *
7 * Copyright (C) 1999 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * eval.c was written by
30 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
31 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
32 *
33 * My original implementation of evaluators was simplistic and didn't
34 * compute surface normal vectors properly. Bernd and Volker applied
35 * used more sophisticated methods to get better results.
36 *
37 * Thanks guys!
38 */
39
40
41#ifdef PC_HEADER
42#include "all.h"
43#else
44#include "glheader.h"
45#include "types.h"
46#include "context.h"
47#include "eval.h"
48#include "macros.h"
49#include "mmath.h"
50#include "mem.h"
51#include "types.h"
52#include "vbcull.h"
53#include "vbfill.h"
54#include "vbxform.h"
55#endif
56
57
58static GLfloat inv_tab[MAX_EVAL_ORDER];
59
60/*
61 * Do one-time initialization for evaluators.
62 */
63void gl_init_eval( void )
64{
65 static int init_flag = 0;
66 GLuint i;
67
68 /* Compute a table of nCr (combination) values used by the
69 * Bernstein polynomial generator.
70 */
71
72 /* KW: precompute 1/x for useful x.
73 */
74 if (init_flag==0)
75 {
76 for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
77 inv_tab[i] = 1.0 / i;
78 }
79
80 init_flag = 1;
81}
82
83
84
85/*
86 * Horner scheme for Bezier curves
87 *
88 * Bezier curves can be computed via a Horner scheme.
89 * Horner is numerically less stable than the de Casteljau
90 * algorithm, but it is faster. For curves of degree n
91 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
92 * Since stability is not important for displaying curve
93 * points I decided to use the Horner scheme.
94 *
95 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
96 * written as
97 *
98 * (([3] [3] ) [3] ) [3]
99 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
100 *
101 * [n]
102 * where s=1-t and the binomial coefficients [i]. These can
103 * be computed iteratively using the identity:
104 *
105 * [n] [n ] [n]
106 * [i] = (n-i+1)/i * [i-1] and [0] = 1
107 */
108
109
110static void
111horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
112 GLuint dim, GLuint order)
113{
114 GLfloat s, powert;
115 GLuint i, k, bincoeff;
116
117 if(order >= 2)
118 {
119 bincoeff = order-1;
120 s = 1.0-t;
121
122 for(k=0; k<dim; k++)
123 out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
124
125 for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
126 {
127 bincoeff *= order-i;
128 bincoeff *= inv_tab[i];
129
130 for(k=0; k<dim; k++)
131 out[k] = s*out[k] + bincoeff*powert*cp[k];
132 }
133 }
134 else /* order=1 -> constant curve */
135 {
136 for(k=0; k<dim; k++)
137 out[k] = cp[k];
138 }
139}
140
141/*
142 * Tensor product Bezier surfaces
143 *
144 * Again the Horner scheme is used to compute a point on a
145 * TP Bezier surface. First a control polygon for a curve
146 * on the surface in one parameter direction is computed,
147 * then the point on the curve for the other parameter
148 * direction is evaluated.
149 *
150 * To store the curve control polygon additional storage
151 * for max(uorder,vorder) points is needed in the
152 * control net cn.
153 */
154
155static void
156horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
157 GLuint dim, GLuint uorder, GLuint vorder)
158{
159 GLfloat *cp = cn + uorder*vorder*dim;
160 GLuint i, uinc = vorder*dim;
161
162 if(vorder > uorder)
163 {
164 if(uorder >= 2)
165 {
166 GLfloat s, poweru;
167 GLuint j, k, bincoeff;
168
169 /* Compute the control polygon for the surface-curve in u-direction */
170 for(j=0; j<vorder; j++)
171 {
172 GLfloat *ucp = &cn[j*dim];
173
174 /* Each control point is the point for parameter u on a */
175 /* curve defined by the control polygons in u-direction */
176 bincoeff = uorder-1;
177 s = 1.0-u;
178
179 for(k=0; k<dim; k++)
180 cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
181
182 for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
183 i++, poweru*=u, ucp +=uinc)
184 {
185 bincoeff *= uorder-i;
186 bincoeff *= inv_tab[i];
187
188 for(k=0; k<dim; k++)
189 cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
190 }
191 }
192
193 /* Evaluate curve point in v */
194 horner_bezier_curve(cp, out, v, dim, vorder);
195 }
196 else /* uorder=1 -> cn defines a curve in v */
197 horner_bezier_curve(cn, out, v, dim, vorder);
198 }
199 else /* vorder <= uorder */
200 {
201 if(vorder > 1)
202 {
203 GLuint i;
204
205 /* Compute the control polygon for the surface-curve in u-direction */
206 for(i=0; i<uorder; i++, cn += uinc)
207 {
208 /* For constant i all cn[i][j] (j=0..vorder) are located */
209 /* on consecutive memory locations, so we can use */
210 /* horner_bezier_curve to compute the control points */
211
212 horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
213 }
214
215 /* Evaluate curve point in u */
216 horner_bezier_curve(cp, out, u, dim, uorder);
217 }
218 else /* vorder=1 -> cn defines a curve in u */
219 horner_bezier_curve(cn, out, u, dim, uorder);
220 }
221}
222
223/*
224 * The direct de Casteljau algorithm is used when a point on the
225 * surface and the tangent directions spanning the tangent plane
226 * should be computed (this is needed to compute normals to the
227 * surface). In this case the de Casteljau algorithm approach is
228 * nicer because a point and the partial derivatives can be computed
229 * at the same time. To get the correct tangent length du and dv
230 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
231 * Since only the directions are needed, this scaling step is omitted.
232 *
233 * De Casteljau needs additional storage for uorder*vorder
234 * values in the control net cn.
235 */
236
237static void
238de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
239 GLfloat u, GLfloat v, GLuint dim,
240 GLuint uorder, GLuint vorder)
241{
242 GLfloat *dcn = cn + uorder*vorder*dim;
243 GLfloat us = 1.0-u, vs = 1.0-v;
244 GLuint h, i, j, k;
245 GLuint minorder = uorder < vorder ? uorder : vorder;
246 GLuint uinc = vorder*dim;
247 GLuint dcuinc = vorder;
248
249 /* Each component is evaluated separately to save buffer space */
250 /* This does not drasticaly decrease the performance of the */
251 /* algorithm. If additional storage for (uorder-1)*(vorder-1) */
252 /* points would be available, the components could be accessed */
253 /* in the innermost loop which could lead to less cache misses. */
254
255#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
256#define DCN(I, J) dcn[(I)*dcuinc+(J)]
257 if(minorder < 3)
258 {
259 if(uorder==vorder)
260 {
261 for(k=0; k<dim; k++)
262 {
263 /* Derivative direction in u */
264 du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
265 v*(CN(1,1,k) - CN(0,1,k));
266
267 /* Derivative direction in v */
268 dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
269 u*(CN(1,1,k) - CN(1,0,k));
270
271 /* bilinear de Casteljau step */
272 out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
273 u*(vs*CN(1,0,k) + v*CN(1,1,k));
274 }
275 }
276 else if(minorder == uorder)
277 {
278 for(k=0; k<dim; k++)
279 {
280 /* bilinear de Casteljau step */
281 DCN(1,0) = CN(1,0,k) - CN(0,0,k);
282 DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
283
284 for(j=0; j<vorder-1; j++)
285 {
286 /* for the derivative in u */
287 DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
288 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
289
290 /* for the `point' */
291 DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
292 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
293 }
294
295 /* remaining linear de Casteljau steps until the second last step */
296 for(h=minorder; h<vorder-1; h++)
297 for(j=0; j<vorder-h; j++)
298 {
299 /* for the derivative in u */
300 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
301
302 /* for the `point' */
303 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
304 }
305
306 /* derivative direction in v */
307 dv[k] = DCN(0,1) - DCN(0,0);
308
309 /* derivative direction in u */
310 du[k] = vs*DCN(1,0) + v*DCN(1,1);
311
312 /* last linear de Casteljau step */
313 out[k] = vs*DCN(0,0) + v*DCN(0,1);
314 }
315 }
316 else /* minorder == vorder */
317 {
318 for(k=0; k<dim; k++)
319 {
320 /* bilinear de Casteljau step */
321 DCN(0,1) = CN(0,1,k) - CN(0,0,k);
322 DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
323 for(i=0; i<uorder-1; i++)
324 {
325 /* for the derivative in v */
326 DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
327 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
328
329 /* for the `point' */
330 DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
331 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
332 }
333
334 /* remaining linear de Casteljau steps until the second last step */
335 for(h=minorder; h<uorder-1; h++)
336 for(i=0; i<uorder-h; i++)
337 {
338 /* for the derivative in v */
339 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
340
341 /* for the `point' */
342 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
343 }
344
345 /* derivative direction in u */
346 du[k] = DCN(1,0) - DCN(0,0);
347
348 /* derivative direction in v */
349 dv[k] = us*DCN(0,1) + u*DCN(1,1);
350
351 /* last linear de Casteljau step */
352 out[k] = us*DCN(0,0) + u*DCN(1,0);
353 }
354 }
355 }
356 else if(uorder == vorder)
357 {
358 for(k=0; k<dim; k++)
359 {
360 /* first bilinear de Casteljau step */
361 for(i=0; i<uorder-1; i++)
362 {
363 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
364 for(j=0; j<vorder-1; j++)
365 {
366 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
367 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
368 }
369 }
370
371 /* remaining bilinear de Casteljau steps until the second last step */
372 for(h=2; h<minorder-1; h++)
373 for(i=0; i<uorder-h; i++)
374 {
375 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
376 for(j=0; j<vorder-h; j++)
377 {
378 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
379 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
380 }
381 }
382
383 /* derivative direction in u */
384 du[k] = vs*(DCN(1,0) - DCN(0,0)) +
385 v*(DCN(1,1) - DCN(0,1));
386
387 /* derivative direction in v */
388 dv[k] = us*(DCN(0,1) - DCN(0,0)) +
389 u*(DCN(1,1) - DCN(1,0));
390
391 /* last bilinear de Casteljau step */
392 out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
393 u*(vs*DCN(1,0) + v*DCN(1,1));
394 }
395 }
396 else if(minorder == uorder)
397 {
398 for(k=0; k<dim; k++)
399 {
400 /* first bilinear de Casteljau step */
401 for(i=0; i<uorder-1; i++)
402 {
403 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
404 for(j=0; j<vorder-1; j++)
405 {
406 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
407 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
408 }
409 }
410
411 /* remaining bilinear de Casteljau steps until the second last step */
412 for(h=2; h<minorder-1; h++)
413 for(i=0; i<uorder-h; i++)
414 {
415 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
416 for(j=0; j<vorder-h; j++)
417 {
418 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
419 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
420 }
421 }
422
423 /* last bilinear de Casteljau step */
424 DCN(2,0) = DCN(1,0) - DCN(0,0);
425 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
426 for(j=0; j<vorder-1; j++)
427 {
428 /* for the derivative in u */
429 DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
430 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
431
432 /* for the `point' */
433 DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
434 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
435 }
436
437 /* remaining linear de Casteljau steps until the second last step */
438 for(h=minorder; h<vorder-1; h++)
439 for(j=0; j<vorder-h; j++)
440 {
441 /* for the derivative in u */
442 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
443
444 /* for the `point' */
445 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
446 }
447
448 /* derivative direction in v */
449 dv[k] = DCN(0,1) - DCN(0,0);
450
451 /* derivative direction in u */
452 du[k] = vs*DCN(2,0) + v*DCN(2,1);
453
454 /* last linear de Casteljau step */
455 out[k] = vs*DCN(0,0) + v*DCN(0,1);
456 }
457 }
458 else /* minorder == vorder */
459 {
460 for(k=0; k<dim; k++)
461 {
462 /* first bilinear de Casteljau step */
463 for(i=0; i<uorder-1; i++)
464 {
465 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
466 for(j=0; j<vorder-1; j++)
467 {
468 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
469 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
470 }
471 }
472
473 /* remaining bilinear de Casteljau steps until the second last step */
474 for(h=2; h<minorder-1; h++)
475 for(i=0; i<uorder-h; i++)
476 {
477 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
478 for(j=0; j<vorder-h; j++)
479 {
480 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
481 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
482 }
483 }
484
485 /* last bilinear de Casteljau step */
486 DCN(0,2) = DCN(0,1) - DCN(0,0);
487 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
488 for(i=0; i<uorder-1; i++)
489 {
490 /* for the derivative in v */
491 DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
492 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
493
494 /* for the `point' */
495 DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
496 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
497 }
498
499 /* remaining linear de Casteljau steps until the second last step */
500 for(h=minorder; h<uorder-1; h++)
501 for(i=0; i<uorder-h; i++)
502 {
503 /* for the derivative in v */
504 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
505
506 /* for the `point' */
507 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
508 }
509
510 /* derivative direction in u */
511 du[k] = DCN(1,0) - DCN(0,0);
512
513 /* derivative direction in v */
514 dv[k] = us*DCN(0,2) + u*DCN(1,2);
515
516 /* last linear de Casteljau step */
517 out[k] = us*DCN(0,0) + u*DCN(1,0);
518 }
519 }
520#undef DCN
521#undef CN
522}
523
524/*
525 * Return the number of components per control point for any type of
526 * evaluator. Return 0 if bad target.
527 * See table 5.1 in the OpenGL 1.2 spec.
528 */
529GLuint _mesa_evaluator_components( GLenum target )
530{
531 switch (target) {
532 case GL_MAP1_VERTEX_3: return 3;
533 case GL_MAP1_VERTEX_4: return 4;
534 case GL_MAP1_INDEX: return 1;
535 case GL_MAP1_COLOR_4: return 4;
536 case GL_MAP1_NORMAL: return 3;
537 case GL_MAP1_TEXTURE_COORD_1: return 1;
538 case GL_MAP1_TEXTURE_COORD_2: return 2;
539 case GL_MAP1_TEXTURE_COORD_3: return 3;
540 case GL_MAP1_TEXTURE_COORD_4: return 4;
541 case GL_MAP2_VERTEX_3: return 3;
542 case GL_MAP2_VERTEX_4: return 4;
543 case GL_MAP2_INDEX: return 1;
544 case GL_MAP2_COLOR_4: return 4;
545 case GL_MAP2_NORMAL: return 3;
546 case GL_MAP2_TEXTURE_COORD_1: return 1;
547 case GL_MAP2_TEXTURE_COORD_2: return 2;
548 case GL_MAP2_TEXTURE_COORD_3: return 3;
549 case GL_MAP2_TEXTURE_COORD_4: return 4;
550 default: return 0;
551 }
552}
553
554
555/**********************************************************************/
556/*** Copy and deallocate control points ***/
557/**********************************************************************/
558
559
560/*
561 * Copy 1-parametric evaluator control points from user-specified
562 * memory space to a buffer of contiguous control points.
563 * Input: see glMap1f for details
564 * Return: pointer to buffer of contiguous control points or NULL if out
565 * of memory.
566 */
567GLfloat *gl_copy_map_points1f( GLenum target, GLint ustride, GLint uorder,
568 const GLfloat *points )
569{
570 GLfloat *buffer, *p;
571 GLint i, k, size = _mesa_evaluator_components(target);
572
573 if (!points || size==0) {
574 return NULL;
575 }
576
577 buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
578
579 if(buffer)
580 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
581 for(k=0; k<size; k++)
582 *p++ = points[k];
583
584 return buffer;
585}
586
587
588
589/*
590 * Same as above but convert doubles to floats.
591 */
592GLfloat *gl_copy_map_points1d( GLenum target, GLint ustride, GLint uorder,
593 const GLdouble *points )
594{
595 GLfloat *buffer, *p;
596 GLint i, k, size = _mesa_evaluator_components(target);
597
598 if (!points || size==0) {
599 return NULL;
600 }
601
602 buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
603
604 if(buffer)
605 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
606 for(k=0; k<size; k++)
607 *p++ = (GLfloat) points[k];
608
609 return buffer;
610}
611
612
613
614/*
615 * Copy 2-parametric evaluator control points from user-specified
616 * memory space to a buffer of contiguous control points.
617 * Additional memory is allocated to be used by the horner and
618 * de Casteljau evaluation schemes.
619 *
620 * Input: see glMap2f for details
621 * Return: pointer to buffer of contiguous control points or NULL if out
622 * of memory.
623 */
624GLfloat *gl_copy_map_points2f( GLenum target,
625 GLint ustride, GLint uorder,
626 GLint vstride, GLint vorder,
627 const GLfloat *points )
628{
629 GLfloat *buffer, *p;
630 GLint i, j, k, size, dsize, hsize;
631 GLint uinc;
632
633 size = _mesa_evaluator_components(target);
634
635 if (!points || size==0) {
636 return NULL;
637 }
638
639 /* max(uorder, vorder) additional points are used in */
640 /* horner evaluation and uorder*vorder additional */
641 /* values are needed for de Casteljau */
642 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
643 hsize = (uorder > vorder ? uorder : vorder)*size;
644
645 if(hsize>dsize)
646 buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
647 else
648 buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
649
650 /* compute the increment value for the u-loop */
651 uinc = ustride - vorder*vstride;
652
653 if (buffer)
654 for (i=0, p=buffer; i<uorder; i++, points += uinc)
655 for (j=0; j<vorder; j++, points += vstride)
656 for (k=0; k<size; k++)
657 *p++ = points[k];
658
659 return buffer;
660}
661
662
663
664/*
665 * Same as above but convert doubles to floats.
666 */
667GLfloat *gl_copy_map_points2d(GLenum target,
668 GLint ustride, GLint uorder,
669 GLint vstride, GLint vorder,
670 const GLdouble *points )
671{
672 GLfloat *buffer, *p;
673 GLint i, j, k, size, hsize, dsize;
674 GLint uinc;
675
676 size = _mesa_evaluator_components(target);
677
678 if (!points || size==0) {
679 return NULL;
680 }
681
682 /* max(uorder, vorder) additional points are used in */
683 /* horner evaluation and uorder*vorder additional */
684 /* values are needed for de Casteljau */
685 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
686 hsize = (uorder > vorder ? uorder : vorder)*size;
687
688 if(hsize>dsize)
689 buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
690 else
691 buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
692
693 /* compute the increment value for the u-loop */
694 uinc = ustride - vorder*vstride;
695
696 if (buffer)
697 for (i=0, p=buffer; i<uorder; i++, points += uinc)
698 for (j=0; j<vorder; j++, points += vstride)
699 for (k=0; k<size; k++)
700 *p++ = (GLfloat) points[k];
701
702 return buffer;
703}
704
705
706#if 00
707/*
708 * This function is called by the display list deallocator function to
709 * specify that a given set of control points are no longer needed.
710 */
711void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
712{
713 struct gl_1d_map *map1 = NULL;
714 struct gl_2d_map *map2 = NULL;
715
716 switch (target) {
717 case GL_MAP1_VERTEX_3:
718 map1 = &ctx->EvalMap.Map1Vertex3;
719 break;
720 case GL_MAP1_VERTEX_4:
721 map1 = &ctx->EvalMap.Map1Vertex4;
722 break;
723 case GL_MAP1_INDEX:
724 map1 = &ctx->EvalMap.Map1Index;
725 break;
726 case GL_MAP1_COLOR_4:
727 map1 = &ctx->EvalMap.Map1Color4;
728 break;
729 case GL_MAP1_NORMAL:
730 map1 = &ctx->EvalMap.Map1Normal;
731 break;
732 case GL_MAP1_TEXTURE_COORD_1:
733 map1 = &ctx->EvalMap.Map1Texture1;
734 break;
735 case GL_MAP1_TEXTURE_COORD_2:
736 map1 = &ctx->EvalMap.Map1Texture2;
737 break;
738 case GL_MAP1_TEXTURE_COORD_3:
739 map1 = &ctx->EvalMap.Map1Texture3;
740 break;
741 case GL_MAP1_TEXTURE_COORD_4:
742 map1 = &ctx->EvalMap.Map1Texture4;
743 break;
744 case GL_MAP2_VERTEX_3:
745 map2 = &ctx->EvalMap.Map2Vertex3;
746 break;
747 case GL_MAP2_VERTEX_4:
748 map2 = &ctx->EvalMap.Map2Vertex4;
749 break;
750 case GL_MAP2_INDEX:
751 map2 = &ctx->EvalMap.Map2Index;
752 break;
753 case GL_MAP2_COLOR_4:
754 map2 = &ctx->EvalMap.Map2Color4;
755 break;
756 case GL_MAP2_NORMAL:
757 map2 = &ctx->EvalMap.Map2Normal;
758 break;
759 case GL_MAP2_TEXTURE_COORD_1:
760 map2 = &ctx->EvalMap.Map2Texture1;
761 break;
762 case GL_MAP2_TEXTURE_COORD_2:
763 map2 = &ctx->EvalMap.Map2Texture2;
764 break;
765 case GL_MAP2_TEXTURE_COORD_3:
766 map2 = &ctx->EvalMap.Map2Texture3;
767 break;
768 case GL_MAP2_TEXTURE_COORD_4:
769 map2 = &ctx->EvalMap.Map2Texture4;
770 break;
771 default:
772 gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
773 return;
774 }
775
776 if (map1) {
777 if (data==map1->Points) {
778 /* The control points in the display list are currently */
779 /* being used so we can mark them as discard-able. */
780 map1->Retain = GL_FALSE;
781 }
782 else {
783 /* The control points in the display list are not currently */
784 /* being used. */
785 FREE( data );
786 }
787 }
788 if (map2) {
789 if (data==map2->Points) {
790 /* The control points in the display list are currently */
791 /* being used so we can mark them as discard-able. */
792 map2->Retain = GL_FALSE;
793 }
794 else {
795 /* The control points in the display list are not currently */
796 /* being used. */
797 FREE( data );
798 }
799 }
800
801}
802#endif
803
804
805
806/**********************************************************************/
807/*** API entry points ***/
808/**********************************************************************/
809
810
811/*
812 * This does the work of glMap1[fd].
813 */
814static void
815map1(GLenum target, GLfloat u1, GLfloat u2, GLint ustride,
816 GLint uorder, const GLvoid *points, GLenum type )
817{
818 GET_CURRENT_CONTEXT(ctx);
819 GLint k;
820 GLfloat *pnts;
821
822 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
823
824 ASSERT(type == GL_FLOAT || type == GL_DOUBLE);
825
826 if (u1 == u2) {
827 gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
828 return;
829 }
830 if (uorder < 1 || uorder > MAX_EVAL_ORDER) {
831 gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
832 return;
833 }
834 if (!points) {
835 gl_error( ctx, GL_INVALID_VALUE, "glMap1(points)" );
836 return;
837 }
838
839 k = _mesa_evaluator_components( target );
840 if (k == 0) {
841 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
842 }
843
844 if (ustride < k) {
845 gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
846 return;
847 }
848
849 /* make copy of the control points */
850 if (type == GL_FLOAT)
851 pnts = gl_copy_map_points1f(target, ustride, uorder, (GLfloat*) points);
852 else
853 pnts = gl_copy_map_points1d(target, ustride, uorder, (GLdouble*) points);
854
855 switch (target) {
856 case GL_MAP1_VERTEX_3:
857 ctx->EvalMap.Map1Vertex3.Order = uorder;
858 ctx->EvalMap.Map1Vertex3.u1 = u1;
859 ctx->EvalMap.Map1Vertex3.u2 = u2;
860 ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
861 if (ctx->EvalMap.Map1Vertex3.Points)
862 FREE( ctx->EvalMap.Map1Vertex3.Points );
863 ctx->EvalMap.Map1Vertex3.Points = pnts;
864 break;
865 case GL_MAP1_VERTEX_4:
866 ctx->EvalMap.Map1Vertex4.Order = uorder;
867 ctx->EvalMap.Map1Vertex4.u1 = u1;
868 ctx->EvalMap.Map1Vertex4.u2 = u2;
869 ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
870 if (ctx->EvalMap.Map1Vertex4.Points)
871 FREE( ctx->EvalMap.Map1Vertex4.Points );
872 ctx->EvalMap.Map1Vertex4.Points = pnts;
873 break;
874 case GL_MAP1_INDEX:
875 ctx->EvalMap.Map1Index.Order = uorder;
876 ctx->EvalMap.Map1Index.u1 = u1;
877 ctx->EvalMap.Map1Index.u2 = u2;
878 ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
879 if (ctx->EvalMap.Map1Index.Points)
880 FREE( ctx->EvalMap.Map1Index.Points );
881 ctx->EvalMap.Map1Index.Points = pnts;
882 break;
883 case GL_MAP1_COLOR_4:
884 ctx->EvalMap.Map1Color4.Order = uorder;
885 ctx->EvalMap.Map1Color4.u1 = u1;
886 ctx->EvalMap.Map1Color4.u2 = u2;
887 ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
888 if (ctx->EvalMap.Map1Color4.Points)
889 FREE( ctx->EvalMap.Map1Color4.Points );
890 ctx->EvalMap.Map1Color4.Points = pnts;
891 break;
892 case GL_MAP1_NORMAL:
893 ctx->EvalMap.Map1Normal.Order = uorder;
894 ctx->EvalMap.Map1Normal.u1 = u1;
895 ctx->EvalMap.Map1Normal.u2 = u2;
896 ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
897 if (ctx->EvalMap.Map1Normal.Points)
898 FREE( ctx->EvalMap.Map1Normal.Points );
899 ctx->EvalMap.Map1Normal.Points = pnts;
900 break;
901 case GL_MAP1_TEXTURE_COORD_1:
902 ctx->EvalMap.Map1Texture1.Order = uorder;
903 ctx->EvalMap.Map1Texture1.u1 = u1;
904 ctx->EvalMap.Map1Texture1.u2 = u2;
905 ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
906 if (ctx->EvalMap.Map1Texture1.Points)
907 FREE( ctx->EvalMap.Map1Texture1.Points );
908 ctx->EvalMap.Map1Texture1.Points = pnts;
909 break;
910 case GL_MAP1_TEXTURE_COORD_2:
911 ctx->EvalMap.Map1Texture2.Order = uorder;
912 ctx->EvalMap.Map1Texture2.u1 = u1;
913 ctx->EvalMap.Map1Texture2.u2 = u2;
914 ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
915 if (ctx->EvalMap.Map1Texture2.Points)
916 FREE( ctx->EvalMap.Map1Texture2.Points );
917 ctx->EvalMap.Map1Texture2.Points = pnts;
918 break;
919 case GL_MAP1_TEXTURE_COORD_3:
920 ctx->EvalMap.Map1Texture3.Order = uorder;
921 ctx->EvalMap.Map1Texture3.u1 = u1;
922 ctx->EvalMap.Map1Texture3.u2 = u2;
923 ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
924 if (ctx->EvalMap.Map1Texture3.Points)
925 FREE( ctx->EvalMap.Map1Texture3.Points );
926 ctx->EvalMap.Map1Texture3.Points = pnts;
927 break;
928 case GL_MAP1_TEXTURE_COORD_4:
929 ctx->EvalMap.Map1Texture4.Order = uorder;
930 ctx->EvalMap.Map1Texture4.u1 = u1;
931 ctx->EvalMap.Map1Texture4.u2 = u2;
932 ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
933 if (ctx->EvalMap.Map1Texture4.Points)
934 FREE( ctx->EvalMap.Map1Texture4.Points );
935 ctx->EvalMap.Map1Texture4.Points = pnts;
936 break;
937 default:
938 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
939 }
940}
941
942void
943_mesa_Map1f( GLenum target, GLfloat u1, GLfloat u2, GLint stride,
944 GLint order, const GLfloat *points )
945{
946 map1(target, u1, u2, stride, order, points, GL_FLOAT);
947}
948
949
950void
951_mesa_Map1d( GLenum target, GLdouble u1, GLdouble u2, GLint stride,
952 GLint order, const GLdouble *points )
953{
954 map1(target, u1, u2, stride, order, points, GL_DOUBLE);
955}
956
957
958static void
959map2( GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
960 GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
961 const GLvoid *points, GLenum type )
962{
963 GET_CURRENT_CONTEXT(ctx);
964 GLint k;
965 GLfloat *pnts;
966
967 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
968
969 if (u1==u2) {
970 gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
971 return;
972 }
973
974 if (v1==v2) {
975 gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
976 return;
977 }
978
979 if (uorder<1 || uorder>MAX_EVAL_ORDER) {
980 gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
981 return;
982 }
983
984 if (vorder<1 || vorder>MAX_EVAL_ORDER) {
985 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
986 return;
987 }
988
989 k = _mesa_evaluator_components( target );
990 if (k==0) {
991 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
992 }
993
994 if (ustride < k) {
995 gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
996 return;
997 }
998 if (vstride < k) {
999 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
1000 return;
1001 }
1002
1003 /* make copy of the control points */
1004 if (type == GL_FLOAT)
1005 pnts = gl_copy_map_points2f(target, ustride, uorder,
1006 vstride, vorder, (GLfloat*) points);
1007 else
1008 pnts = gl_copy_map_points2d(target, ustride, uorder,
1009 vstride, vorder, (GLdouble*) points);
1010
1011 switch (target) {
1012 case GL_MAP2_VERTEX_3:
1013 ctx->EvalMap.Map2Vertex3.Uorder = uorder;
1014 ctx->EvalMap.Map2Vertex3.u1 = u1;
1015 ctx->EvalMap.Map2Vertex3.u2 = u2;
1016 ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
1017 ctx->EvalMap.Map2Vertex3.Vorder = vorder;
1018 ctx->EvalMap.Map2Vertex3.v1 = v1;
1019 ctx->EvalMap.Map2Vertex3.v2 = v2;
1020 ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
1021 if (ctx->EvalMap.Map2Vertex3.Points)
1022 FREE( ctx->EvalMap.Map2Vertex3.Points );
1023 ctx->EvalMap.Map2Vertex3.Points = pnts;
1024 break;
1025 case GL_MAP2_VERTEX_4:
1026 ctx->EvalMap.Map2Vertex4.Uorder = uorder;
1027 ctx->EvalMap.Map2Vertex4.u1 = u1;
1028 ctx->EvalMap.Map2Vertex4.u2 = u2;
1029 ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
1030 ctx->EvalMap.Map2Vertex4.Vorder = vorder;
1031 ctx->EvalMap.Map2Vertex4.v1 = v1;
1032 ctx->EvalMap.Map2Vertex4.v2 = v2;
1033 ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
1034 if (ctx->EvalMap.Map2Vertex4.Points)
1035 FREE( ctx->EvalMap.Map2Vertex4.Points );
1036 ctx->EvalMap.Map2Vertex4.Points = pnts;
1037 break;
1038 case GL_MAP2_INDEX:
1039 ctx->EvalMap.Map2Index.Uorder = uorder;
1040 ctx->EvalMap.Map2Index.u1 = u1;
1041 ctx->EvalMap.Map2Index.u2 = u2;
1042 ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
1043 ctx->EvalMap.Map2Index.Vorder = vorder;
1044 ctx->EvalMap.Map2Index.v1 = v1;
1045 ctx->EvalMap.Map2Index.v2 = v2;
1046 ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
1047 if (ctx->EvalMap.Map2Index.Points)
1048 FREE( ctx->EvalMap.Map2Index.Points );
1049 ctx->EvalMap.Map2Index.Points = pnts;
1050 break;
1051 case GL_MAP2_COLOR_4:
1052 ctx->EvalMap.Map2Color4.Uorder = uorder;
1053 ctx->EvalMap.Map2Color4.u1 = u1;
1054 ctx->EvalMap.Map2Color4.u2 = u2;
1055 ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
1056 ctx->EvalMap.Map2Color4.Vorder = vorder;
1057 ctx->EvalMap.Map2Color4.v1 = v1;
1058 ctx->EvalMap.Map2Color4.v2 = v2;
1059 ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
1060 if (ctx->EvalMap.Map2Color4.Points)
1061 FREE( ctx->EvalMap.Map2Color4.Points );
1062 ctx->EvalMap.Map2Color4.Points = pnts;
1063 break;
1064 case GL_MAP2_NORMAL:
1065 ctx->EvalMap.Map2Normal.Uorder = uorder;
1066 ctx->EvalMap.Map2Normal.u1 = u1;
1067 ctx->EvalMap.Map2Normal.u2 = u2;
1068 ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
1069 ctx->EvalMap.Map2Normal.Vorder = vorder;
1070 ctx->EvalMap.Map2Normal.v1 = v1;
1071 ctx->EvalMap.Map2Normal.v2 = v2;
1072 ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
1073 if (ctx->EvalMap.Map2Normal.Points)
1074 FREE( ctx->EvalMap.Map2Normal.Points );
1075 ctx->EvalMap.Map2Normal.Points = pnts;
1076 break;
1077 case GL_MAP2_TEXTURE_COORD_1:
1078 ctx->EvalMap.Map2Texture1.Uorder = uorder;
1079 ctx->EvalMap.Map2Texture1.u1 = u1;
1080 ctx->EvalMap.Map2Texture1.u2 = u2;
1081 ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
1082 ctx->EvalMap.Map2Texture1.Vorder = vorder;
1083 ctx->EvalMap.Map2Texture1.v1 = v1;
1084 ctx->EvalMap.Map2Texture1.v2 = v2;
1085 ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
1086 if (ctx->EvalMap.Map2Texture1.Points)
1087 FREE( ctx->EvalMap.Map2Texture1.Points );
1088 ctx->EvalMap.Map2Texture1.Points = pnts;
1089 break;
1090 case GL_MAP2_TEXTURE_COORD_2:
1091 ctx->EvalMap.Map2Texture2.Uorder = uorder;
1092 ctx->EvalMap.Map2Texture2.u1 = u1;
1093 ctx->EvalMap.Map2Texture2.u2 = u2;
1094 ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
1095 ctx->EvalMap.Map2Texture2.Vorder = vorder;
1096 ctx->EvalMap.Map2Texture2.v1 = v1;
1097 ctx->EvalMap.Map2Texture2.v2 = v2;
1098 ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
1099 if (ctx->EvalMap.Map2Texture2.Points)
1100 FREE( ctx->EvalMap.Map2Texture2.Points );
1101 ctx->EvalMap.Map2Texture2.Points = pnts;
1102 break;
1103 case GL_MAP2_TEXTURE_COORD_3:
1104 ctx->EvalMap.Map2Texture3.Uorder = uorder;
1105 ctx->EvalMap.Map2Texture3.u1 = u1;
1106 ctx->EvalMap.Map2Texture3.u2 = u2;
1107 ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
1108 ctx->EvalMap.Map2Texture3.Vorder = vorder;
1109 ctx->EvalMap.Map2Texture3.v1 = v1;
1110 ctx->EvalMap.Map2Texture3.v2 = v2;
1111 ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
1112 if (ctx->EvalMap.Map2Texture3.Points)
1113 FREE( ctx->EvalMap.Map2Texture3.Points );
1114 ctx->EvalMap.Map2Texture3.Points = pnts;
1115 break;
1116 case GL_MAP2_TEXTURE_COORD_4:
1117 ctx->EvalMap.Map2Texture4.Uorder = uorder;
1118 ctx->EvalMap.Map2Texture4.u1 = u1;
1119 ctx->EvalMap.Map2Texture4.u2 = u2;
1120 ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
1121 ctx->EvalMap.Map2Texture4.Vorder = vorder;
1122 ctx->EvalMap.Map2Texture4.v1 = v1;
1123 ctx->EvalMap.Map2Texture4.v2 = v2;
1124 ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
1125 if (ctx->EvalMap.Map2Texture4.Points)
1126 FREE( ctx->EvalMap.Map2Texture4.Points );
1127 ctx->EvalMap.Map2Texture4.Points = pnts;
1128 break;
1129 default:
1130 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1131 }
1132}
1133
1134
1135void
1136_mesa_Map2f( GLenum target,
1137 GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
1138 GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
1139 const GLfloat *points)
1140{
1141 map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder,
1142 points, GL_FLOAT);
1143}
1144
1145
1146void
1147_mesa_Map2d( GLenum target,
1148 GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
1149 GLdouble v1, GLdouble v2, GLint vstride, GLint vorder,
1150 const GLdouble *points )
1151{
1152 map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder,
1153 points, GL_DOUBLE);
1154}
1155
1156
1157
1158void
1159_mesa_GetMapdv( GLenum target, GLenum query, GLdouble *v )
1160{
1161 GET_CURRENT_CONTEXT(ctx);
1162 GLint i, n;
1163 GLfloat *data;
1164
1165 switch (query) {
1166 case GL_COEFF:
1167 switch (target) {
1168 case GL_MAP1_COLOR_4:
1169 data = ctx->EvalMap.Map1Color4.Points;
1170 n = ctx->EvalMap.Map1Color4.Order * 4;
1171 break;
1172 case GL_MAP1_INDEX:
1173 data = ctx->EvalMap.Map1Index.Points;
1174 n = ctx->EvalMap.Map1Index.Order;
1175 break;
1176 case GL_MAP1_NORMAL:
1177 data = ctx->EvalMap.Map1Normal.Points;
1178 n = ctx->EvalMap.Map1Normal.Order * 3;
1179 break;
1180 case GL_MAP1_TEXTURE_COORD_1:
1181 data = ctx->EvalMap.Map1Texture1.Points;
1182 n = ctx->EvalMap.Map1Texture1.Order * 1;
1183 break;
1184 case GL_MAP1_TEXTURE_COORD_2:
1185 data = ctx->EvalMap.Map1Texture2.Points;
1186 n = ctx->EvalMap.Map1Texture2.Order * 2;
1187 break;
1188 case GL_MAP1_TEXTURE_COORD_3:
1189 data = ctx->EvalMap.Map1Texture3.Points;
1190 n = ctx->EvalMap.Map1Texture3.Order * 3;
1191 break;
1192 case GL_MAP1_TEXTURE_COORD_4:
1193 data = ctx->EvalMap.Map1Texture4.Points;
1194 n = ctx->EvalMap.Map1Texture4.Order * 4;
1195 break;
1196 case GL_MAP1_VERTEX_3:
1197 data = ctx->EvalMap.Map1Vertex3.Points;
1198 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1199 break;
1200 case GL_MAP1_VERTEX_4:
1201 data = ctx->EvalMap.Map1Vertex4.Points;
1202 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1203 break;
1204 case GL_MAP2_COLOR_4:
1205 data = ctx->EvalMap.Map2Color4.Points;
1206 n = ctx->EvalMap.Map2Color4.Uorder
1207 * ctx->EvalMap.Map2Color4.Vorder * 4;
1208 break;
1209 case GL_MAP2_INDEX:
1210 data = ctx->EvalMap.Map2Index.Points;
1211 n = ctx->EvalMap.Map2Index.Uorder
1212 * ctx->EvalMap.Map2Index.Vorder;
1213 break;
1214 case GL_MAP2_NORMAL:
1215 data = ctx->EvalMap.Map2Normal.Points;
1216 n = ctx->EvalMap.Map2Normal.Uorder
1217 * ctx->EvalMap.Map2Normal.Vorder * 3;
1218 break;
1219 case GL_MAP2_TEXTURE_COORD_1:
1220 data = ctx->EvalMap.Map2Texture1.Points;
1221 n = ctx->EvalMap.Map2Texture1.Uorder
1222 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1223 break;
1224 case GL_MAP2_TEXTURE_COORD_2:
1225 data = ctx->EvalMap.Map2Texture2.Points;
1226 n = ctx->EvalMap.Map2Texture2.Uorder
1227 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1228 break;
1229 case GL_MAP2_TEXTURE_COORD_3:
1230 data = ctx->EvalMap.Map2Texture3.Points;
1231 n = ctx->EvalMap.Map2Texture3.Uorder
1232 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1233 break;
1234 case GL_MAP2_TEXTURE_COORD_4:
1235 data = ctx->EvalMap.Map2Texture4.Points;
1236 n = ctx->EvalMap.Map2Texture4.Uorder
1237 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1238 break;
1239 case GL_MAP2_VERTEX_3:
1240 data = ctx->EvalMap.Map2Vertex3.Points;
1241 n = ctx->EvalMap.Map2Vertex3.Uorder
1242 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1243 break;
1244 case GL_MAP2_VERTEX_4:
1245 data = ctx->EvalMap.Map2Vertex4.Points;
1246 n = ctx->EvalMap.Map2Vertex4.Uorder
1247 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1248 break;
1249 default:
1250 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1251 return;
1252 }
1253 if (data) {
1254 for (i=0;i<n;i++) {
1255 v[i] = data[i];
1256 }
1257 }
1258 break;
1259 case GL_ORDER:
1260 switch (target) {
1261 case GL_MAP1_COLOR_4:
1262 *v = ctx->EvalMap.Map1Color4.Order;
1263 break;
1264 case GL_MAP1_INDEX:
1265 *v = ctx->EvalMap.Map1Index.Order;
1266 break;
1267 case GL_MAP1_NORMAL:
1268 *v = ctx->EvalMap.Map1Normal.Order;
1269 break;
1270 case GL_MAP1_TEXTURE_COORD_1:
1271 *v = ctx->EvalMap.Map1Texture1.Order;
1272 break;
1273 case GL_MAP1_TEXTURE_COORD_2:
1274 *v = ctx->EvalMap.Map1Texture2.Order;
1275 break;
1276 case GL_MAP1_TEXTURE_COORD_3:
1277 *v = ctx->EvalMap.Map1Texture3.Order;
1278 break;
1279 case GL_MAP1_TEXTURE_COORD_4:
1280 *v = ctx->EvalMap.Map1Texture4.Order;
1281 break;
1282 case GL_MAP1_VERTEX_3:
1283 *v = ctx->EvalMap.Map1Vertex3.Order;
1284 break;
1285 case GL_MAP1_VERTEX_4:
1286 *v = ctx->EvalMap.Map1Vertex4.Order;
1287 break;
1288 case GL_MAP2_COLOR_4:
1289 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1290 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1291 break;
1292 case GL_MAP2_INDEX:
1293 v[0] = ctx->EvalMap.Map2Index.Uorder;
1294 v[1] = ctx->EvalMap.Map2Index.Vorder;
1295 break;
1296 case GL_MAP2_NORMAL:
1297 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1298 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1299 break;
1300 case GL_MAP2_TEXTURE_COORD_1:
1301 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1302 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1303 break;
1304 case GL_MAP2_TEXTURE_COORD_2:
1305 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1306 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1307 break;
1308 case GL_MAP2_TEXTURE_COORD_3:
1309 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1310 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1311 break;
1312 case GL_MAP2_TEXTURE_COORD_4:
1313 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1314 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1315 break;
1316 case GL_MAP2_VERTEX_3:
1317 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1318 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1319 break;
1320 case GL_MAP2_VERTEX_4:
1321 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1322 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1323 break;
1324 default:
1325 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1326 return;
1327 }
1328 break;
1329 case GL_DOMAIN:
1330 switch (target) {
1331 case GL_MAP1_COLOR_4:
1332 v[0] = ctx->EvalMap.Map1Color4.u1;
1333 v[1] = ctx->EvalMap.Map1Color4.u2;
1334 break;
1335 case GL_MAP1_INDEX:
1336 v[0] = ctx->EvalMap.Map1Index.u1;
1337 v[1] = ctx->EvalMap.Map1Index.u2;
1338 break;
1339 case GL_MAP1_NORMAL:
1340 v[0] = ctx->EvalMap.Map1Normal.u1;
1341 v[1] = ctx->EvalMap.Map1Normal.u2;
1342 break;
1343 case GL_MAP1_TEXTURE_COORD_1:
1344 v[0] = ctx->EvalMap.Map1Texture1.u1;
1345 v[1] = ctx->EvalMap.Map1Texture1.u2;
1346 break;
1347 case GL_MAP1_TEXTURE_COORD_2:
1348 v[0] = ctx->EvalMap.Map1Texture2.u1;
1349 v[1] = ctx->EvalMap.Map1Texture2.u2;
1350 break;
1351 case GL_MAP1_TEXTURE_COORD_3:
1352 v[0] = ctx->EvalMap.Map1Texture3.u1;
1353 v[1] = ctx->EvalMap.Map1Texture3.u2;
1354 break;
1355 case GL_MAP1_TEXTURE_COORD_4:
1356 v[0] = ctx->EvalMap.Map1Texture4.u1;
1357 v[1] = ctx->EvalMap.Map1Texture4.u2;
1358 break;
1359 case GL_MAP1_VERTEX_3:
1360 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1361 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1362 break;
1363 case GL_MAP1_VERTEX_4:
1364 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1365 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1366 break;
1367 case GL_MAP2_COLOR_4:
1368 v[0] = ctx->EvalMap.Map2Color4.u1;
1369 v[1] = ctx->EvalMap.Map2Color4.u2;
1370 v[2] = ctx->EvalMap.Map2Color4.v1;
1371 v[3] = ctx->EvalMap.Map2Color4.v2;
1372 break;
1373 case GL_MAP2_INDEX:
1374 v[0] = ctx->EvalMap.Map2Index.u1;
1375 v[1] = ctx->EvalMap.Map2Index.u2;
1376 v[2] = ctx->EvalMap.Map2Index.v1;
1377 v[3] = ctx->EvalMap.Map2Index.v2;
1378 break;
1379 case GL_MAP2_NORMAL:
1380 v[0] = ctx->EvalMap.Map2Normal.u1;
1381 v[1] = ctx->EvalMap.Map2Normal.u2;
1382 v[2] = ctx->EvalMap.Map2Normal.v1;
1383 v[3] = ctx->EvalMap.Map2Normal.v2;
1384 break;
1385 case GL_MAP2_TEXTURE_COORD_1:
1386 v[0] = ctx->EvalMap.Map2Texture1.u1;
1387 v[1] = ctx->EvalMap.Map2Texture1.u2;
1388 v[2] = ctx->EvalMap.Map2Texture1.v1;
1389 v[3] = ctx->EvalMap.Map2Texture1.v2;
1390 break;
1391 case GL_MAP2_TEXTURE_COORD_2:
1392 v[0] = ctx->EvalMap.Map2Texture2.u1;
1393 v[1] = ctx->EvalMap.Map2Texture2.u2;
1394 v[2] = ctx->EvalMap.Map2Texture2.v1;
1395 v[3] = ctx->EvalMap.Map2Texture2.v2;
1396 break;
1397 case GL_MAP2_TEXTURE_COORD_3:
1398 v[0] = ctx->EvalMap.Map2Texture3.u1;
1399 v[1] = ctx->EvalMap.Map2Texture3.u2;
1400 v[2] = ctx->EvalMap.Map2Texture3.v1;
1401 v[3] = ctx->EvalMap.Map2Texture3.v2;
1402 break;
1403 case GL_MAP2_TEXTURE_COORD_4:
1404 v[0] = ctx->EvalMap.Map2Texture4.u1;
1405 v[1] = ctx->EvalMap.Map2Texture4.u2;
1406 v[2] = ctx->EvalMap.Map2Texture4.v1;
1407 v[3] = ctx->EvalMap.Map2Texture4.v2;
1408 break;
1409 case GL_MAP2_VERTEX_3:
1410 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1411 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1412 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1413 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1414 break;
1415 case GL_MAP2_VERTEX_4:
1416 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1417 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1418 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1419 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1420 break;
1421 default:
1422 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1423 }
1424 break;
1425 default:
1426 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
1427 }
1428}
1429
1430
1431void
1432_mesa_GetMapfv( GLenum target, GLenum query, GLfloat *v )
1433{
1434 GET_CURRENT_CONTEXT(ctx);
1435 GLint i, n;
1436 GLfloat *data;
1437
1438 switch (query) {
1439 case GL_COEFF:
1440 switch (target) {
1441 case GL_MAP1_COLOR_4:
1442 data = ctx->EvalMap.Map1Color4.Points;
1443 n = ctx->EvalMap.Map1Color4.Order * 4;
1444 break;
1445 case GL_MAP1_INDEX:
1446 data = ctx->EvalMap.Map1Index.Points;
1447 n = ctx->EvalMap.Map1Index.Order;
1448 break;
1449 case GL_MAP1_NORMAL:
1450 data = ctx->EvalMap.Map1Normal.Points;
1451 n = ctx->EvalMap.Map1Normal.Order * 3;
1452 break;
1453 case GL_MAP1_TEXTURE_COORD_1:
1454 data = ctx->EvalMap.Map1Texture1.Points;
1455 n = ctx->EvalMap.Map1Texture1.Order * 1;
1456 break;
1457 case GL_MAP1_TEXTURE_COORD_2:
1458 data = ctx->EvalMap.Map1Texture2.Points;
1459 n = ctx->EvalMap.Map1Texture2.Order * 2;
1460 break;
1461 case GL_MAP1_TEXTURE_COORD_3:
1462 data = ctx->EvalMap.Map1Texture3.Points;
1463 n = ctx->EvalMap.Map1Texture3.Order * 3;
1464 break;
1465 case GL_MAP1_TEXTURE_COORD_4:
1466 data = ctx->EvalMap.Map1Texture4.Points;
1467 n = ctx->EvalMap.Map1Texture4.Order * 4;
1468 break;
1469 case GL_MAP1_VERTEX_3:
1470 data = ctx->EvalMap.Map1Vertex3.Points;
1471 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1472 break;
1473 case GL_MAP1_VERTEX_4:
1474 data = ctx->EvalMap.Map1Vertex4.Points;
1475 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1476 break;
1477 case GL_MAP2_COLOR_4:
1478 data = ctx->EvalMap.Map2Color4.Points;
1479 n = ctx->EvalMap.Map2Color4.Uorder
1480 * ctx->EvalMap.Map2Color4.Vorder * 4;
1481 break;
1482 case GL_MAP2_INDEX:
1483 data = ctx->EvalMap.Map2Index.Points;
1484 n = ctx->EvalMap.Map2Index.Uorder
1485 * ctx->EvalMap.Map2Index.Vorder;
1486 break;
1487 case GL_MAP2_NORMAL:
1488 data = ctx->EvalMap.Map2Normal.Points;
1489 n = ctx->EvalMap.Map2Normal.Uorder
1490 * ctx->EvalMap.Map2Normal.Vorder * 3;
1491 break;
1492 case GL_MAP2_TEXTURE_COORD_1:
1493 data = ctx->EvalMap.Map2Texture1.Points;
1494 n = ctx->EvalMap.Map2Texture1.Uorder
1495 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1496 break;
1497 case GL_MAP2_TEXTURE_COORD_2:
1498 data = ctx->EvalMap.Map2Texture2.Points;
1499 n = ctx->EvalMap.Map2Texture2.Uorder
1500 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1501 break;
1502 case GL_MAP2_TEXTURE_COORD_3:
1503 data = ctx->EvalMap.Map2Texture3.Points;
1504 n = ctx->EvalMap.Map2Texture3.Uorder
1505 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1506 break;
1507 case GL_MAP2_TEXTURE_COORD_4:
1508 data = ctx->EvalMap.Map2Texture4.Points;
1509 n = ctx->EvalMap.Map2Texture4.Uorder
1510 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1511 break;
1512 case GL_MAP2_VERTEX_3:
1513 data = ctx->EvalMap.Map2Vertex3.Points;
1514 n = ctx->EvalMap.Map2Vertex3.Uorder
1515 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1516 break;
1517 case GL_MAP2_VERTEX_4:
1518 data = ctx->EvalMap.Map2Vertex4.Points;
1519 n = ctx->EvalMap.Map2Vertex4.Uorder
1520 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1521 break;
1522 default:
1523 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1524 return;
1525 }
1526 if (data) {
1527 for (i=0;i<n;i++) {
1528 v[i] = data[i];
1529 }
1530 }
1531 break;
1532 case GL_ORDER:
1533 switch (target) {
1534 case GL_MAP1_COLOR_4:
1535 *v = ctx->EvalMap.Map1Color4.Order;
1536 break;
1537 case GL_MAP1_INDEX:
1538 *v = ctx->EvalMap.Map1Index.Order;
1539 break;
1540 case GL_MAP1_NORMAL:
1541 *v = ctx->EvalMap.Map1Normal.Order;
1542 break;
1543 case GL_MAP1_TEXTURE_COORD_1:
1544 *v = ctx->EvalMap.Map1Texture1.Order;
1545 break;
1546 case GL_MAP1_TEXTURE_COORD_2:
1547 *v = ctx->EvalMap.Map1Texture2.Order;
1548 break;
1549 case GL_MAP1_TEXTURE_COORD_3:
1550 *v = ctx->EvalMap.Map1Texture3.Order;
1551 break;
1552 case GL_MAP1_TEXTURE_COORD_4:
1553 *v = ctx->EvalMap.Map1Texture4.Order;
1554 break;
1555 case GL_MAP1_VERTEX_3:
1556 *v = ctx->EvalMap.Map1Vertex3.Order;
1557 break;
1558 case GL_MAP1_VERTEX_4:
1559 *v = ctx->EvalMap.Map1Vertex4.Order;
1560 break;
1561 case GL_MAP2_COLOR_4:
1562 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1563 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1564 break;
1565 case GL_MAP2_INDEX:
1566 v[0] = ctx->EvalMap.Map2Index.Uorder;
1567 v[1] = ctx->EvalMap.Map2Index.Vorder;
1568 break;
1569 case GL_MAP2_NORMAL:
1570 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1571 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1572 break;
1573 case GL_MAP2_TEXTURE_COORD_1:
1574 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1575 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1576 break;
1577 case GL_MAP2_TEXTURE_COORD_2:
1578 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1579 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1580 break;
1581 case GL_MAP2_TEXTURE_COORD_3:
1582 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1583 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1584 break;
1585 case GL_MAP2_TEXTURE_COORD_4:
1586 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1587 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1588 break;
1589 case GL_MAP2_VERTEX_3:
1590 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1591 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1592 break;
1593 case GL_MAP2_VERTEX_4:
1594 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1595 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1596 break;
1597 default:
1598 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1599 return;
1600 }
1601 break;
1602 case GL_DOMAIN:
1603 switch (target) {
1604 case GL_MAP1_COLOR_4:
1605 v[0] = ctx->EvalMap.Map1Color4.u1;
1606 v[1] = ctx->EvalMap.Map1Color4.u2;
1607 break;
1608 case GL_MAP1_INDEX:
1609 v[0] = ctx->EvalMap.Map1Index.u1;
1610 v[1] = ctx->EvalMap.Map1Index.u2;
1611 break;
1612 case GL_MAP1_NORMAL:
1613 v[0] = ctx->EvalMap.Map1Normal.u1;
1614 v[1] = ctx->EvalMap.Map1Normal.u2;
1615 break;
1616 case GL_MAP1_TEXTURE_COORD_1:
1617 v[0] = ctx->EvalMap.Map1Texture1.u1;
1618 v[1] = ctx->EvalMap.Map1Texture1.u2;
1619 break;
1620 case GL_MAP1_TEXTURE_COORD_2:
1621 v[0] = ctx->EvalMap.Map1Texture2.u1;
1622 v[1] = ctx->EvalMap.Map1Texture2.u2;
1623 break;
1624 case GL_MAP1_TEXTURE_COORD_3:
1625 v[0] = ctx->EvalMap.Map1Texture3.u1;
1626 v[1] = ctx->EvalMap.Map1Texture3.u2;
1627 break;
1628 case GL_MAP1_TEXTURE_COORD_4:
1629 v[0] = ctx->EvalMap.Map1Texture4.u1;
1630 v[1] = ctx->EvalMap.Map1Texture4.u2;
1631 break;
1632 case GL_MAP1_VERTEX_3:
1633 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1634 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1635 break;
1636 case GL_MAP1_VERTEX_4:
1637 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1638 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1639 break;
1640 case GL_MAP2_COLOR_4:
1641 v[0] = ctx->EvalMap.Map2Color4.u1;
1642 v[1] = ctx->EvalMap.Map2Color4.u2;
1643 v[2] = ctx->EvalMap.Map2Color4.v1;
1644 v[3] = ctx->EvalMap.Map2Color4.v2;
1645 break;
1646 case GL_MAP2_INDEX:
1647 v[0] = ctx->EvalMap.Map2Index.u1;
1648 v[1] = ctx->EvalMap.Map2Index.u2;
1649 v[2] = ctx->EvalMap.Map2Index.v1;
1650 v[3] = ctx->EvalMap.Map2Index.v2;
1651 break;
1652 case GL_MAP2_NORMAL:
1653 v[0] = ctx->EvalMap.Map2Normal.u1;
1654 v[1] = ctx->EvalMap.Map2Normal.u2;
1655 v[2] = ctx->EvalMap.Map2Normal.v1;
1656 v[3] = ctx->EvalMap.Map2Normal.v2;
1657 break;
1658 case GL_MAP2_TEXTURE_COORD_1:
1659 v[0] = ctx->EvalMap.Map2Texture1.u1;
1660 v[1] = ctx->EvalMap.Map2Texture1.u2;
1661 v[2] = ctx->EvalMap.Map2Texture1.v1;
1662 v[3] = ctx->EvalMap.Map2Texture1.v2;
1663 break;
1664 case GL_MAP2_TEXTURE_COORD_2:
1665 v[0] = ctx->EvalMap.Map2Texture2.u1;
1666 v[1] = ctx->EvalMap.Map2Texture2.u2;
1667 v[2] = ctx->EvalMap.Map2Texture2.v1;
1668 v[3] = ctx->EvalMap.Map2Texture2.v2;
1669 break;
1670 case GL_MAP2_TEXTURE_COORD_3:
1671 v[0] = ctx->EvalMap.Map2Texture3.u1;
1672 v[1] = ctx->EvalMap.Map2Texture3.u2;
1673 v[2] = ctx->EvalMap.Map2Texture3.v1;
1674 v[3] = ctx->EvalMap.Map2Texture3.v2;
1675 break;
1676 case GL_MAP2_TEXTURE_COORD_4:
1677 v[0] = ctx->EvalMap.Map2Texture4.u1;
1678 v[1] = ctx->EvalMap.Map2Texture4.u2;
1679 v[2] = ctx->EvalMap.Map2Texture4.v1;
1680 v[3] = ctx->EvalMap.Map2Texture4.v2;
1681 break;
1682 case GL_MAP2_VERTEX_3:
1683 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1684 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1685 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1686 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1687 break;
1688 case GL_MAP2_VERTEX_4:
1689 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1690 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1691 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1692 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1693 break;
1694 default:
1695 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1696 }
1697 break;
1698 default:
1699 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
1700 }
1701}
1702
1703
1704void
1705_mesa_GetMapiv( GLenum target, GLenum query, GLint *v )
1706{
1707 GET_CURRENT_CONTEXT(ctx);
1708 GLuint i, n;
1709 GLfloat *data;
1710
1711 switch (query) {
1712 case GL_COEFF:
1713 switch (target) {
1714 case GL_MAP1_COLOR_4:
1715 data = ctx->EvalMap.Map1Color4.Points;
1716 n = ctx->EvalMap.Map1Color4.Order * 4;
1717 break;
1718 case GL_MAP1_INDEX:
1719 data = ctx->EvalMap.Map1Index.Points;
1720 n = ctx->EvalMap.Map1Index.Order;
1721 break;
1722 case GL_MAP1_NORMAL:
1723 data = ctx->EvalMap.Map1Normal.Points;
1724 n = ctx->EvalMap.Map1Normal.Order * 3;
1725 break;
1726 case GL_MAP1_TEXTURE_COORD_1:
1727 data = ctx->EvalMap.Map1Texture1.Points;
1728 n = ctx->EvalMap.Map1Texture1.Order * 1;
1729 break;
1730 case GL_MAP1_TEXTURE_COORD_2:
1731 data = ctx->EvalMap.Map1Texture2.Points;
1732 n = ctx->EvalMap.Map1Texture2.Order * 2;
1733 break;
1734 case GL_MAP1_TEXTURE_COORD_3:
1735 data = ctx->EvalMap.Map1Texture3.Points;
1736 n = ctx->EvalMap.Map1Texture3.Order * 3;
1737 break;
1738 case GL_MAP1_TEXTURE_COORD_4:
1739 data = ctx->EvalMap.Map1Texture4.Points;
1740 n = ctx->EvalMap.Map1Texture4.Order * 4;
1741 break;
1742 case GL_MAP1_VERTEX_3:
1743 data = ctx->EvalMap.Map1Vertex3.Points;
1744 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1745 break;
1746 case GL_MAP1_VERTEX_4:
1747 data = ctx->EvalMap.Map1Vertex4.Points;
1748 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1749 break;
1750 case GL_MAP2_COLOR_4:
1751 data = ctx->EvalMap.Map2Color4.Points;
1752 n = ctx->EvalMap.Map2Color4.Uorder
1753 * ctx->EvalMap.Map2Color4.Vorder * 4;
1754 break;
1755 case GL_MAP2_INDEX:
1756 data = ctx->EvalMap.Map2Index.Points;
1757 n = ctx->EvalMap.Map2Index.Uorder
1758 * ctx->EvalMap.Map2Index.Vorder;
1759 break;
1760 case GL_MAP2_NORMAL:
1761 data = ctx->EvalMap.Map2Normal.Points;
1762 n = ctx->EvalMap.Map2Normal.Uorder
1763 * ctx->EvalMap.Map2Normal.Vorder * 3;
1764 break;
1765 case GL_MAP2_TEXTURE_COORD_1:
1766 data = ctx->EvalMap.Map2Texture1.Points;
1767 n = ctx->EvalMap.Map2Texture1.Uorder
1768 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1769 break;
1770 case GL_MAP2_TEXTURE_COORD_2:
1771 data = ctx->EvalMap.Map2Texture2.Points;
1772 n = ctx->EvalMap.Map2Texture2.Uorder
1773 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1774 break;
1775 case GL_MAP2_TEXTURE_COORD_3:
1776 data = ctx->EvalMap.Map2Texture3.Points;
1777 n = ctx->EvalMap.Map2Texture3.Uorder
1778 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1779 break;
1780 case GL_MAP2_TEXTURE_COORD_4:
1781 data = ctx->EvalMap.Map2Texture4.Points;
1782 n = ctx->EvalMap.Map2Texture4.Uorder
1783 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1784 break;
1785 case GL_MAP2_VERTEX_3:
1786 data = ctx->EvalMap.Map2Vertex3.Points;
1787 n = ctx->EvalMap.Map2Vertex3.Uorder
1788 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1789 break;
1790 case GL_MAP2_VERTEX_4:
1791 data = ctx->EvalMap.Map2Vertex4.Points;
1792 n = ctx->EvalMap.Map2Vertex4.Uorder
1793 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1794 break;
1795 default:
1796 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1797 return;
1798 }
1799 if (data) {
1800 for (i=0;i<n;i++) {
1801 v[i] = ROUNDF(data[i]);
1802 }
1803 }
1804 break;
1805 case GL_ORDER:
1806 switch (target) {
1807 case GL_MAP1_COLOR_4:
1808 *v = ctx->EvalMap.Map1Color4.Order;
1809 break;
1810 case GL_MAP1_INDEX:
1811 *v = ctx->EvalMap.Map1Index.Order;
1812 break;
1813 case GL_MAP1_NORMAL:
1814 *v = ctx->EvalMap.Map1Normal.Order;
1815 break;
1816 case GL_MAP1_TEXTURE_COORD_1:
1817 *v = ctx->EvalMap.Map1Texture1.Order;
1818 break;
1819 case GL_MAP1_TEXTURE_COORD_2:
1820 *v = ctx->EvalMap.Map1Texture2.Order;
1821 break;
1822 case GL_MAP1_TEXTURE_COORD_3:
1823 *v = ctx->EvalMap.Map1Texture3.Order;
1824 break;
1825 case GL_MAP1_TEXTURE_COORD_4:
1826 *v = ctx->EvalMap.Map1Texture4.Order;
1827 break;
1828 case GL_MAP1_VERTEX_3:
1829 *v = ctx->EvalMap.Map1Vertex3.Order;
1830 break;
1831 case GL_MAP1_VERTEX_4:
1832 *v = ctx->EvalMap.Map1Vertex4.Order;
1833 break;
1834 case GL_MAP2_COLOR_4:
1835 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1836 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1837 break;
1838 case GL_MAP2_INDEX:
1839 v[0] = ctx->EvalMap.Map2Index.Uorder;
1840 v[1] = ctx->EvalMap.Map2Index.Vorder;
1841 break;
1842 case GL_MAP2_NORMAL:
1843 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1844 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1845 break;
1846 case GL_MAP2_TEXTURE_COORD_1:
1847 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1848 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1849 break;
1850 case GL_MAP2_TEXTURE_COORD_2:
1851 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1852 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1853 break;
1854 case GL_MAP2_TEXTURE_COORD_3:
1855 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1856 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1857 break;
1858 case GL_MAP2_TEXTURE_COORD_4:
1859 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1860 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1861 break;
1862 case GL_MAP2_VERTEX_3:
1863 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1864 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1865 break;
1866 case GL_MAP2_VERTEX_4:
1867 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1868 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1869 break;
1870 default:
1871 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1872 return;
1873 }
1874 break;
1875 case GL_DOMAIN:
1876 switch (target) {
1877 case GL_MAP1_COLOR_4:
1878 v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
1879 v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
1880 break;
1881 case GL_MAP1_INDEX:
1882 v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
1883 v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
1884 break;
1885 case GL_MAP1_NORMAL:
1886 v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
1887 v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
1888 break;
1889 case GL_MAP1_TEXTURE_COORD_1:
1890 v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
1891 v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
1892 break;
1893 case GL_MAP1_TEXTURE_COORD_2:
1894 v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
1895 v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
1896 break;
1897 case GL_MAP1_TEXTURE_COORD_3:
1898 v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
1899 v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
1900 break;
1901 case GL_MAP1_TEXTURE_COORD_4:
1902 v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
1903 v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
1904 break;
1905 case GL_MAP1_VERTEX_3:
1906 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
1907 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
1908 break;
1909 case GL_MAP1_VERTEX_4:
1910 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
1911 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
1912 break;
1913 case GL_MAP2_COLOR_4:
1914 v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
1915 v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
1916 v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
1917 v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
1918 break;
1919 case GL_MAP2_INDEX:
1920 v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
1921 v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
1922 v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
1923 v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
1924 break;
1925 case GL_MAP2_NORMAL:
1926 v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
1927 v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
1928 v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
1929 v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
1930 break;
1931 case GL_MAP2_TEXTURE_COORD_1:
1932 v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
1933 v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
1934 v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
1935 v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
1936 break;
1937 case GL_MAP2_TEXTURE_COORD_2:
1938 v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
1939 v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
1940 v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
1941 v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
1942 break;
1943 case GL_MAP2_TEXTURE_COORD_3:
1944 v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
1945 v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
1946 v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
1947 v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
1948 break;
1949 case GL_MAP2_TEXTURE_COORD_4:
1950 v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
1951 v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
1952 v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
1953 v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
1954 break;
1955 case GL_MAP2_VERTEX_3:
1956 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
1957 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
1958 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
1959 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
1960 break;
1961 case GL_MAP2_VERTEX_4:
1962 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
1963 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
1964 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
1965 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
1966 break;
1967 default:
1968 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1969 }
1970 break;
1971 default:
1972 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
1973 }
1974}
1975
1976
1977
1978static void eval_points1( GLfloat outcoord[][4],
1979 GLfloat coord[][4],
1980 const GLuint *flags,
1981 GLuint start,
1982 GLfloat du, GLfloat u1 )
1983{
1984 GLuint i;
1985 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
1986 if (flags[i] & VERT_EVAL_P1)
1987 outcoord[i][0] = coord[i][0] * du + u1;
1988 else if (flags[i] & VERT_EVAL_ANY) {
1989 outcoord[i][0] = coord[i][0];
1990 outcoord[i][1] = coord[i][1];
1991 }
1992}
1993
1994static void eval_points2( GLfloat outcoord[][4],
1995 GLfloat coord[][4],
1996 const GLuint *flags,
1997 GLuint start,
1998 GLfloat du, GLfloat u1,
1999 GLfloat dv, GLfloat v1 )
2000{
2001 GLuint i;
2002 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2003 if (flags[i] & VERT_EVAL_P2) {
2004 outcoord[i][0] = coord[i][0] * du + u1;
2005 outcoord[i][1] = coord[i][1] * dv + v1;
2006 } else if (flags[i] & VERT_EVAL_ANY) {
2007 outcoord[i][0] = coord[i][0];
2008 outcoord[i][1] = coord[i][1];
2009 }
2010}
2011
2012
2013static const GLubyte dirty_flags[5] = {
2014 0, /* not possible */
2015 VEC_DIRTY_0,
2016 VEC_DIRTY_1,
2017 VEC_DIRTY_2,
2018 VEC_DIRTY_3
2019};
2020
2021
2022static GLvector4f *eval1_4f( GLvector4f *dest,
2023 GLfloat coord[][4],
2024 const GLuint *flags,
2025 GLuint start,
2026 GLuint dimension,
2027 struct gl_1d_map *map )
2028{
2029 const GLfloat u1 = map->u1;
2030 const GLfloat du = map->du;
2031 GLfloat (*to)[4] = dest->data;
2032 GLuint i;
2033
2034 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2035 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2036 GLfloat u = (coord[i][0] - u1) * du;
2037 ASSIGN_4V(to[i], 0,0,0,1);
2038 horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
2039 }
2040
2041 dest->count = i;
2042 dest->start = VEC_ELT(dest, GLfloat, start);
2043 dest->size = MAX2(dest->size, dimension);
2044 dest->flags |= dirty_flags[dimension];
2045 return dest;
2046}
2047
2048
2049static GLvector1ui *eval1_1ui( GLvector1ui *dest,
2050 GLfloat coord[][4],
2051 const GLuint *flags,
2052 GLuint start,
2053 struct gl_1d_map *map )
2054{
2055 const GLfloat u1 = map->u1;
2056 const GLfloat du = map->du;
2057 GLuint *to = dest->data;
2058 GLuint i;
2059
2060 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2061 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2062 GLfloat u = (coord[i][0] - u1) * du;
2063 GLfloat tmp;
2064 horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
2065 to[i] = (GLuint) (GLint) tmp;
2066 }
2067
2068 dest->start = VEC_ELT(dest, GLuint, start);
2069 dest->count = i;
2070 return dest;
2071}
2072
2073static GLvector3f *eval1_norm( GLvector3f *dest,
2074 GLfloat coord[][4],
2075 GLuint *flags, /* not const */
2076 GLuint start,
2077 struct gl_1d_map *map )
2078{
2079 const GLfloat u1 = map->u1;
2080 const GLfloat du = map->du;
2081 GLfloat (*to)[3] = dest->data;
2082 GLuint i;
2083
2084 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2085 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2086 GLfloat u = (coord[i][0] - u1) * du;
2087 horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
2088 flags[i+1] |= VERT_NORM; /* reset */
2089 }
2090
2091 dest->start = VEC_ELT(dest, GLfloat, start);
2092 dest->count = i;
2093 return dest;
2094}
2095
2096static GLvector4ub *eval1_color( GLvector4ub *dest,
2097 GLfloat coord[][4],
2098 GLuint *flags, /* not const */
2099 GLuint start,
2100 struct gl_1d_map *map )
2101{
2102 const GLfloat u1 = map->u1;
2103 const GLfloat du = map->du;
2104 GLubyte (*to)[4] = dest->data;
2105 GLuint i;
2106
2107 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2108 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2109 GLfloat u = (coord[i][0] - u1) * du;
2110 GLfloat fcolor[4];
2111 horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
2112 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2113 flags[i+1] |= VERT_RGBA; /* reset */
2114 }
2115
2116 dest->start = VEC_ELT(dest, GLubyte, start);
2117 dest->count = i;
2118 return dest;
2119}
2120
2121
2122
2123
2124static GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr,
2125 GLvector3f *norm_ptr,
2126 GLfloat coord[][4],
2127 GLuint *flags,
2128 GLuint start,
2129 GLuint dimension,
2130 struct gl_2d_map *map )
2131{
2132 const GLfloat u1 = map->u1;
2133 const GLfloat du = map->du;
2134 const GLfloat v1 = map->v1;
2135 const GLfloat dv = map->dv;
2136 GLfloat (*obj)[4] = obj_ptr->data;
2137 GLfloat (*normal)[3] = norm_ptr->data;
2138 GLuint i;
2139
2140 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2141 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2142 GLfloat u = (coord[i][0] - u1) * du;
2143 GLfloat v = (coord[i][1] - v1) * dv;
2144 GLfloat du[4], dv[4];
2145
2146 ASSIGN_4V(obj[i], 0,0,0,1);
2147 de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
2148 map->Uorder, map->Vorder);
2149
2150 CROSS3(normal[i], du, dv);
2151 NORMALIZE_3FV(normal[i]);
2152 flags[i+1] |= VERT_NORM;
2153 }
2154
2155 obj_ptr->start = VEC_ELT(obj_ptr, GLfloat, start);
2156 obj_ptr->count = i;
2157 obj_ptr->size = MAX2(obj_ptr->size, dimension);
2158 obj_ptr->flags |= dirty_flags[dimension];
2159 return obj_ptr;
2160}
2161
2162
2163static GLvector4f *eval2_4f( GLvector4f *dest,
2164 GLfloat coord[][4],
2165 const GLuint *flags,
2166 GLuint start,
2167 GLuint dimension,
2168 struct gl_2d_map *map )
2169{
2170 const GLfloat u1 = map->u1;
2171 const GLfloat du = map->du;
2172 const GLfloat v1 = map->v1;
2173 const GLfloat dv = map->dv;
2174 GLfloat (*to)[4] = dest->data;
2175 GLuint i;
2176
2177 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2178 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2179 GLfloat u = (coord[i][0] - u1) * du;
2180 GLfloat v = (coord[i][1] - v1) * dv;
2181 horner_bezier_surf(map->Points, to[i], u, v, dimension,
2182 map->Uorder, map->Vorder);
2183 }
2184
2185 dest->start = VEC_ELT(dest, GLfloat, start);
2186 dest->count = i;
2187 dest->size = MAX2(dest->size, dimension);
2188 dest->flags |= dirty_flags[dimension];
2189 return dest;
2190}
2191
2192
2193static GLvector3f *eval2_norm( GLvector3f *dest,
2194 GLfloat coord[][4],
2195 GLuint *flags,
2196 GLuint start,
2197 struct gl_2d_map *map )
2198{
2199 const GLfloat u1 = map->u1;
2200 const GLfloat du = map->du;
2201 const GLfloat v1 = map->v1;
2202 const GLfloat dv = map->dv;
2203 GLfloat (*to)[3] = dest->data;
2204 GLuint i;
2205
2206 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2207 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2208 GLfloat u = (coord[i][0] - u1) * du;
2209 GLfloat v = (coord[i][1] - v1) * dv;
2210 horner_bezier_surf(map->Points, to[i], u, v, 3,
2211 map->Uorder, map->Vorder);
2212 flags[i+1] |= VERT_NORM; /* reset */
2213 }
2214
2215 dest->start = VEC_ELT(dest, GLfloat, start);
2216 dest->count = i;
2217 return dest;
2218}
2219
2220
2221static GLvector1ui *eval2_1ui( GLvector1ui *dest,
2222 GLfloat coord[][4],
2223 const GLuint *flags,
2224 GLuint start,
2225 struct gl_2d_map *map )
2226{
2227 const GLfloat u1 = map->u1;
2228 const GLfloat du = map->du;
2229 const GLfloat v1 = map->v1;
2230 const GLfloat dv = map->dv;
2231 GLuint *to = dest->data;
2232 GLuint i;
2233
2234 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2235 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2236 GLfloat u = (coord[i][0] - u1) * du;
2237 GLfloat v = (coord[i][1] - v1) * dv;
2238 GLfloat tmp;
2239 horner_bezier_surf(map->Points, &tmp, u, v, 1,
2240 map->Uorder, map->Vorder);
2241
2242 to[i] = (GLuint) (GLint) tmp;
2243 }
2244
2245 dest->start = VEC_ELT(dest, GLuint, start);
2246 dest->count = i;
2247 return dest;
2248}
2249
2250
2251
2252static GLvector4ub *eval2_color( GLvector4ub *dest,
2253 GLfloat coord[][4],
2254 GLuint *flags,
2255 GLuint start,
2256 struct gl_2d_map *map )
2257{
2258 const GLfloat u1 = map->u1;
2259 const GLfloat du = map->du;
2260 const GLfloat v1 = map->v1;
2261 const GLfloat dv = map->dv;
2262 GLubyte (*to)[4] = dest->data;
2263 GLuint i;
2264
2265 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2266 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2267 GLfloat u = (coord[i][0] - u1) * du;
2268 GLfloat v = (coord[i][1] - v1) * dv;
2269 GLfloat fcolor[4];
2270 horner_bezier_surf(map->Points, fcolor, u, v, 4,
2271 map->Uorder, map->Vorder);
2272 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2273 flags[i+1] |= VERT_RGBA; /* reset */
2274 }
2275
2276 dest->start = VEC_ELT(dest, GLubyte, start);
2277 dest->count = i;
2278 return dest;
2279}
2280
2281
2282static GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in,
2283 const GLuint *flags,
2284 GLuint start )
2285{
2286 GLfloat (*to)[4] = out->data;
2287 GLfloat (*from)[4] = in->data;
2288 GLuint i;
2289
2290 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2291 if (!(flags[i] & VERT_EVAL_ANY))
2292 COPY_4FV( to[i], from[i] );
2293
2294 out->start = VEC_ELT(out, GLfloat, start);
2295 return out;
2296}
2297
2298static GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in,
2299 const GLuint *flags,
2300 GLuint start )
2301{
2302 GLfloat (*to)[3] = out->data;
2303 GLfloat (*from)[3] = in->data;
2304 GLuint i;
2305
2306 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2307 if (!(flags[i] & VERT_EVAL_ANY))
2308 COPY_3V( to[i], from[i] );
2309
2310 out->start = VEC_ELT(out, GLfloat, start);
2311 return out;
2312}
2313
2314static GLvector4ub *copy_4ub( GLvector4ub *out,
2315 CONST GLvector4ub *in,
2316 const GLuint *flags,
2317 GLuint start )
2318{
2319 GLubyte (*to)[4] = out->data;
2320 GLubyte (*from)[4] = in->data;
2321 GLuint i;
2322
2323 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2324 if (!(flags[i] & VERT_EVAL_ANY))
2325 COPY_4UBV( to[i], from[i] );
2326
2327 out->start = VEC_ELT(out, GLubyte, start);
2328 return out;
2329}
2330
2331static GLvector1ui *copy_1ui( GLvector1ui *out,
2332 CONST GLvector1ui *in,
2333 const GLuint *flags,
2334 GLuint start )
2335{
2336 GLuint *to = out->data;
2337 CONST GLuint *from = in->data;
2338 GLuint i;
2339
2340 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2341 if (!(flags[i] & VERT_EVAL_ANY))
2342 to[i] = from[i];
2343
2344 out->start = VEC_ELT(out, GLuint, start);
2345 return out;
2346}
2347
2348
2349/* KW: Rewrote this to perform eval on a whole buffer at once.
2350 * Only evaluates active data items, and avoids scribbling
2351 * the source buffer if we are running from a display list.
2352 *
2353 * If the user (in this case looser) sends eval coordinates
2354 * or runs a display list containing eval coords with no
2355 * vertex maps enabled, we have to either copy all non-eval
2356 * data to a new buffer, or find a way of working around
2357 * the eval data. I choose the second option.
2358 *
2359 * KW: This code not reached by cva - use IM to access storage.
2360 */
2361void gl_eval_vb( struct vertex_buffer *VB )
2362{
2363 struct immediate *IM = VB->IM;
2364 GLcontext *ctx = VB->ctx;
2365 GLuint req = ctx->CVA.elt.inputs;
2366 GLfloat (*coord)[4] = VB->ObjPtr->data;
2367 GLuint *flags = VB->Flag;
2368 GLuint new_flags = 0;
2369
2370
2371 GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
2372 GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
2373 GLuint all_eval = IM->AndFlag & VERT_EVAL_ANY;
2374
2375 /* Handle the degenerate cases.
2376 */
2377 if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
2378 VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
2379 VB->EarlyCull = 0;
2380 any_eval1 = GL_FALSE;
2381 }
2382
2383 if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
2384 VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
2385 VB->EarlyCull = 0;
2386 any_eval2 = GL_FALSE;
2387 }
2388
2389 /* KW: This really is a degenerate case - doing this disables
2390 * culling, and causes dummy values for the missing vertices to be
2391 * transformed and clip tested. It also forces the individual
2392 * cliptesting of each primitive in vb_render. I wish there was a
2393 * nice alternative, but I can't say I want to put effort into
2394 * optimizing such a bad usage of the library - I'd much rather
2395 * work on useful changes.
2396 */
2397 if (VB->PurgeFlags) {
2398 if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB->Start;
2399 gl_purge_vertices( VB );
2400 if (!any_eval1 && !any_eval2) return;
2401 } else
2402 VB->IndirectCount = VB->Count;
2403
2404 /* Translate points into coords.
2405 */
2406 if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1))
2407 {
2408 eval_points1( IM->Obj, coord, flags, IM->Start,
2409 ctx->Eval.MapGrid1du,
2410 ctx->Eval.MapGrid1u1);
2411
2412 coord = IM->Obj;
2413 }
2414
2415 if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2))
2416 {
2417 eval_points2( IM->Obj, coord, flags, IM->Start,
2418 ctx->Eval.MapGrid2du,
2419 ctx->Eval.MapGrid2u1,
2420 ctx->Eval.MapGrid2dv,
2421 ctx->Eval.MapGrid2v1 );
2422
2423 coord = IM->Obj;
2424 }
2425
2426 /* Perform the evaluations on active data elements.
2427 */
2428 if (req & VERT_INDEX)
2429 {
2430 GLvector1ui *in_index = VB->IndexPtr;
2431 GLvector1ui *out_index = &IM->v.Index;
2432
2433 if (ctx->Eval.Map1Index && any_eval1)
2434 VB->IndexPtr = eval1_1ui( out_index, coord, flags, IM->Start,
2435 &ctx->EvalMap.Map1Index );
2436
2437 if (ctx->Eval.Map2Index && any_eval2)
2438 VB->IndexPtr = eval2_1ui( out_index, coord, flags, IM->Start,
2439 &ctx->EvalMap.Map2Index );
2440
2441 if (VB->IndexPtr != in_index) {
2442 new_flags |= VERT_INDEX;
2443 if (!all_eval)
2444 VB->IndexPtr = copy_1ui( out_index, in_index, flags, IM->Start );
2445 }
2446 }
2447
2448 if (req & VERT_RGBA)
2449 {
2450 GLvector4ub *in_color = VB->ColorPtr;
2451 GLvector4ub *out_color = &IM->v.Color;
2452
2453 if (ctx->Eval.Map1Color4 && any_eval1)
2454 VB->ColorPtr = eval1_color( out_color, coord, flags, IM->Start,
2455 &ctx->EvalMap.Map1Color4 );
2456
2457 if (ctx->Eval.Map2Color4 && any_eval2)
2458 VB->ColorPtr = eval2_color( out_color, coord, flags, IM->Start,
2459 &ctx->EvalMap.Map2Color4 );
2460
2461 if (VB->ColorPtr != in_color) {
2462 new_flags |= VERT_RGBA;
2463 if (!all_eval)
2464 VB->ColorPtr = copy_4ub( out_color, in_color, flags, IM->Start );
2465 }
2466
2467 VB->Color[0] = VB->Color[1] = VB->ColorPtr;
2468 }
2469
2470
2471 if (req & VERT_NORM)
2472 {
2473 GLvector3f *in_normal = VB->NormalPtr;
2474 GLvector3f *out_normal = &IM->v.Normal;
2475
2476 if (ctx->Eval.Map1Normal && any_eval1)
2477 VB->NormalPtr = eval1_norm( out_normal, coord, flags, IM->Start,
2478 &ctx->EvalMap.Map1Normal );
2479
2480 if (ctx->Eval.Map2Normal && any_eval2)
2481 VB->NormalPtr = eval2_norm( out_normal, coord, flags, IM->Start,
2482 &ctx->EvalMap.Map2Normal );
2483
2484 if (VB->NormalPtr != in_normal) {
2485 new_flags |= VERT_NORM;
2486 if (!all_eval)
2487 VB->NormalPtr = copy_3f( out_normal, in_normal, flags, IM->Start );
2488 }
2489 }
2490
2491
2492 if (req & VERT_TEX_ANY(0))
2493 {
2494 GLvector4f *tc = VB->TexCoordPtr[0];
2495 GLvector4f *in = tc;
2496 GLvector4f *out = &IM->v.TexCoord[0];
2497
2498 if (any_eval1) {
2499 if (ctx->Eval.Map1TextureCoord4)
2500 tc = eval1_4f( out, coord, flags, IM->Start,
2501 4, &ctx->EvalMap.Map1Texture4);
2502 else if (ctx->Eval.Map1TextureCoord3)
2503 tc = eval1_4f( out, coord, flags, IM->Start, 3,
2504 &ctx->EvalMap.Map1Texture3);
2505 else if (ctx->Eval.Map1TextureCoord2)
2506 tc = eval1_4f( out, coord, flags, IM->Start, 2,
2507 &ctx->EvalMap.Map1Texture2);
2508 else if (ctx->Eval.Map1TextureCoord1)
2509 tc = eval1_4f( out, coord, flags, IM->Start, 1,
2510 &ctx->EvalMap.Map1Texture1);
2511 }
2512
2513 if (any_eval2) {
2514 if (ctx->Eval.Map2TextureCoord4)
2515 tc = eval2_4f( out, coord, flags, IM->Start,
2516 4, &ctx->EvalMap.Map2Texture4);
2517 else if (ctx->Eval.Map2TextureCoord3)
2518 tc = eval2_4f( out, coord, flags, IM->Start,
2519 3, &ctx->EvalMap.Map2Texture3);
2520 else if (ctx->Eval.Map2TextureCoord2)
2521 tc = eval2_4f( out, coord, flags, IM->Start,
2522 2, &ctx->EvalMap.Map2Texture2);
2523 else if (ctx->Eval.Map2TextureCoord1)
2524 tc = eval2_4f( out, coord, flags, IM->Start,
2525 1, &ctx->EvalMap.Map2Texture1);
2526 }
2527
2528 if (tc != in) {
2529 new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
2530 if (!all_eval)
2531 tc = copy_4f( out, in, flags, IM->Start );
2532 }
2533
2534 VB->TexCoordPtr[0] = tc;
2535 }
2536
2537
2538 {
2539 GLvector4f *in = VB->ObjPtr;
2540 GLvector4f *out = &IM->v.Obj;
2541 GLvector4f *obj = in;
2542
2543 if (any_eval1) {
2544 if (ctx->Eval.Map1Vertex4)
2545 obj = eval1_4f( out, coord, flags, IM->Start,
2546 4, &ctx->EvalMap.Map1Vertex4);
2547 else
2548 obj = eval1_4f( out, coord, flags, IM->Start,
2549 3, &ctx->EvalMap.Map1Vertex3);
2550 }
2551
2552 if (any_eval2) {
2553 if (ctx->Eval.Map2Vertex4)
2554 {
2555 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2556 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
2557 4, &ctx->EvalMap.Map2Vertex4 );
2558 else
2559 obj = eval2_4f( out, coord, flags, IM->Start,
2560 4, &ctx->EvalMap.Map2Vertex4);
2561 }
2562 else if (ctx->Eval.Map2Vertex3)
2563 {
2564 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2565 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
2566 3, &ctx->EvalMap.Map2Vertex3 );
2567 else
2568 obj = eval2_4f( out, coord, flags, IM->Start,
2569 3, &ctx->EvalMap.Map2Vertex3 );
2570 }
2571 }
2572
2573 if (obj != in && !all_eval)
2574 obj = copy_4f( out, in, flags, IM->Start );
2575
2576 VB->ObjPtr = obj;
2577 }
2578
2579 if (new_flags) {
2580 GLuint *oldflags = VB->Flag;
2581 GLuint *flags = VB->Flag = VB->EvaluatedFlags;
2582 GLuint i;
2583 GLuint count = VB->Count;
2584
2585 if (!flags) {
2586 VB->EvaluatedFlags = (GLuint *) MALLOC(VB->Size * sizeof(GLuint));
2587 flags = VB->Flag = VB->EvaluatedFlags;
2588 }
2589
2590 if (all_eval) {
2591 for (i = 0 ; i < count ; i++)
2592 flags[i] = oldflags[i] | new_flags;
2593 } else {
2594 GLuint andflag = ~0;
2595 for (i = 0 ; i < count ; i++) {
2596 if (oldflags[i] & VERT_EVAL_ANY)
2597 flags[i] = oldflags[i] | new_flags;
2598 andflag &= flags[i];
2599 }
2600 }
2601 }
2602}
2603
2604
2605void
2606_mesa_MapGrid1f( GLint un, GLfloat u1, GLfloat u2 )
2607{
2608 GET_CURRENT_CONTEXT(ctx);
2609 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
2610
2611 if (un<1) {
2612 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
2613 return;
2614 }
2615 ctx->Eval.MapGrid1un = un;
2616 ctx->Eval.MapGrid1u1 = u1;
2617 ctx->Eval.MapGrid1u2 = u2;
2618 ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
2619}
2620
2621
2622void
2623_mesa_MapGrid1d( GLint un, GLdouble u1, GLdouble u2 )
2624{
2625 _mesa_MapGrid1f( un, u1, u2 );
2626}
2627
2628
2629void
2630_mesa_MapGrid2f( GLint un, GLfloat u1, GLfloat u2,
2631 GLint vn, GLfloat v1, GLfloat v2 )
2632{
2633 GET_CURRENT_CONTEXT(ctx);
2634 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
2635 if (un<1) {
2636 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
2637 return;
2638 }
2639 if (vn<1) {
2640 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
2641 return;
2642 }
2643 ctx->Eval.MapGrid2un = un;
2644 ctx->Eval.MapGrid2u1 = u1;
2645 ctx->Eval.MapGrid2u2 = u2;
2646 ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
2647 ctx->Eval.MapGrid2vn = vn;
2648 ctx->Eval.MapGrid2v1 = v1;
2649 ctx->Eval.MapGrid2v2 = v2;
2650 ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
2651}
2652
2653
2654void
2655_mesa_MapGrid2d( GLint un, GLdouble u1, GLdouble u2,
2656 GLint vn, GLdouble v1, GLdouble v2 )
2657{
2658 _mesa_MapGrid2f( un, u1, u2, vn, v1, v2 );
2659}
2660
2661
2662
2663
2664/* KW: If are compiling, we don't know whether eval will produce a
2665 * vertex when it is run in the future. If this is pure immediate
2666 * mode, eval is a noop if neither vertex map is enabled.
2667 *
2668 * Thus we need to have a check in the display list code or
2669 * elsewhere for eval(1,2) vertices in the case where
2670 * map(1,2)_vertex is disabled, and to purge those vertices from
2671 * the vb. This is currently done
2672 * via modifications to the cull_vb and render_vb operations, and
2673 * by using the existing cullmask mechanism for all other operations.
2674 */
2675
2676
2677/* KW: Because the eval values don't become 'current', fixup will flow
2678 * through these vertices, and then evaluation will write on top
2679 * of the fixup results.
2680 *
2681 * This is a little inefficient, but at least it is correct. This
2682 * could be short-circuited in the case where all vertices are
2683 * eval-vertices, or more generally by a cullmask in fixup.
2684 *
2685 * Note: using Obj to hold eval coord data. This data is actually
2686 * transformed if eval is disabled. But disabling eval & sending
2687 * eval coords is stupid, right?
2688 */
2689
2690
2691#define EVALCOORD1(IM, x) \
2692{ \
2693 GLuint count = IM->Count++; \
2694 IM->Flag[count] |= VERT_EVAL_C1; \
2695 ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \
2696 if (count == VB_MAX-1) \
2697 IM->maybe_transform_vb( IM ); \
2698}
2699
2700#define EVALCOORD2(IM, x, y) \
2701{ \
2702 GLuint count = IM->Count++; \
2703 IM->Flag[count] |= VERT_EVAL_C2; \
2704 ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \
2705 if (count == VB_MAX-1) \
2706 IM->maybe_transform_vb( IM ); \
2707}
2708
2709#define EVALPOINT1(IM, x) \
2710{ \
2711 GLuint count = IM->Count++; \
2712 IM->Flag[count] |= VERT_EVAL_P1; \
2713 ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \
2714 if (count == VB_MAX-1) \
2715 IM->maybe_transform_vb( IM ); \
2716}
2717
2718#define EVALPOINT2(IM, x, y) \
2719{ \
2720 GLuint count = IM->Count++; \
2721 IM->Flag[count] |= VERT_EVAL_P2; \
2722 ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \
2723 if (count == VB_MAX-1) \
2724 IM->maybe_transform_vb( IM ); \
2725}
2726
2727
2728/* Lame internal function:
2729 */
2730static void
2731eval_coord1f( GLcontext *CC, GLfloat u )
2732{
2733 struct immediate *i = CC->input;
2734 EVALCOORD1( i, u );
2735}
2736
2737
2738void
2739_mesa_EvalCoord1d( GLdouble u )
2740{
2741 GET_IMMEDIATE;
2742 EVALCOORD1( IM, (GLfloat) u );
2743}
2744
2745
2746void
2747_mesa_EvalCoord1f( GLfloat u )
2748{
2749 GET_IMMEDIATE;
2750 EVALCOORD1( IM, u );
2751}
2752
2753
2754void
2755_mesa_EvalCoord1dv( const GLdouble *u )
2756{
2757 GET_IMMEDIATE;
2758 EVALCOORD1( IM, (GLfloat) *u );
2759}
2760
2761
2762void
2763_mesa_EvalCoord1fv( const GLfloat *u )
2764{
2765 GET_IMMEDIATE;
2766 EVALCOORD1( IM, (GLfloat) *u );
2767}
2768
2769
2770void
2771_mesa_EvalCoord2d( GLdouble u, GLdouble v )
2772{
2773 GET_IMMEDIATE;
2774 EVALCOORD2( IM, (GLfloat) u, (GLfloat) v );
2775}
2776
2777
2778void
2779_mesa_EvalCoord2f( GLfloat u, GLfloat v )
2780{
2781 GET_IMMEDIATE;
2782 EVALCOORD2( IM, u, v );
2783}
2784
2785
2786/* Lame internal function:
2787 */
2788static void
2789eval_coord2f( GLcontext *CC, GLfloat u, GLfloat v )
2790{
2791 struct immediate *i = CC->input;
2792 EVALCOORD2( i, u, v );
2793}
2794
2795
2796void
2797_mesa_EvalCoord2dv( const GLdouble *u )
2798{
2799 GET_IMMEDIATE;
2800 EVALCOORD2( IM, (GLfloat) u[0], (GLfloat) u[1] );
2801}
2802
2803
2804void
2805_mesa_EvalCoord2fv( const GLfloat *u )
2806{
2807 GET_IMMEDIATE;
2808 EVALCOORD2( IM, u[0], u[1] );
2809}
2810
2811
2812void
2813_mesa_EvalPoint1( GLint i )
2814{
2815 GET_IMMEDIATE;
2816 EVALPOINT1( IM, i );
2817}
2818
2819
2820void
2821_mesa_EvalPoint2( GLint i, GLint j )
2822{
2823 GET_IMMEDIATE;
2824 EVALPOINT2( IM, i, j );
2825}
2826
2827
2828
2829
2830
2831void
2832_mesa_EvalMesh1( GLenum mode, GLint i1, GLint i2 )
2833{
2834 GET_CURRENT_CONTEXT(ctx);
2835 GLint i;
2836 GLfloat u, du;
2837 GLenum prim;
2838
2839 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
2840
2841 switch (mode) {
2842 case GL_POINT:
2843 prim = GL_POINTS;
2844 break;
2845 case GL_LINE:
2846 prim = GL_LINE_STRIP;
2847 break;
2848 default:
2849 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
2850 return;
2851 }
2852
2853 /* No effect if vertex maps disabled.
2854 */
2855 if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3)
2856 return;
2857
2858 du = ctx->Eval.MapGrid1du;
2859 u = ctx->Eval.MapGrid1u1 + i1 * du;
2860
2861 /* KW: Could short-circuit this to avoid the immediate mechanism.
2862 */
2863 RESET_IMMEDIATE(ctx);
2864
2865 gl_Begin( ctx, prim );
2866 for (i=i1;i<=i2;i++,u+=du) {
2867 eval_coord1f( ctx, u );
2868 }
2869 gl_End(ctx);
2870}
2871
2872
2873
2874void
2875_mesa_EvalMesh2( GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2 )
2876{
2877 GET_CURRENT_CONTEXT(ctx);
2878 GLint i, j;
2879 GLfloat u, du, v, dv, v1, u1;
2880
2881 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
2882
2883 /* No effect if vertex maps disabled.
2884 */
2885 if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3)
2886 return;
2887
2888 du = ctx->Eval.MapGrid2du;
2889 dv = ctx->Eval.MapGrid2dv;
2890 v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
2891 u1 = ctx->Eval.MapGrid2u1 + i1 * du;
2892
2893 RESET_IMMEDIATE(ctx);
2894
2895 switch (mode) {
2896 case GL_POINT:
2897 gl_Begin( ctx, GL_POINTS );
2898 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2899 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2900 eval_coord2f( ctx, u, v );
2901 }
2902 }
2903 gl_End(ctx);
2904 break;
2905 case GL_LINE:
2906 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2907 gl_Begin( ctx, GL_LINE_STRIP );
2908 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2909 eval_coord2f( ctx, u, v );
2910 }
2911 gl_End(ctx);
2912 }
2913 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2914 gl_Begin( ctx, GL_LINE_STRIP );
2915 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2916 eval_coord2f( ctx, u, v );
2917 }
2918 gl_End(ctx);
2919 }
2920 break;
2921 case GL_FILL:
2922 for (v=v1,j=j1;j<j2;j++,v+=dv) {
2923 /* NOTE: a quad strip can't be used because the four */
2924 /* can't be guaranteed to be coplanar! */
2925 gl_Begin( ctx, GL_TRIANGLE_STRIP );
2926 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2927 eval_coord2f( ctx, u, v );
2928 eval_coord2f( ctx, u, v+dv );
2929 }
2930 gl_End(ctx);
2931 }
2932 break;
2933 default:
2934 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
2935 return;
2936 }
2937}
Note: See TracBrowser for help on using the repository browser.