source: trunk/src/opengl/mesa/eval.c@ 2959

Last change on this file since 2959 was 2938, checked in by sandervl, 25 years ago

created

File size: 80.4 KB
Line 
1/* $Id: eval.c,v 1.1 2000-02-29 00:50:03 sandervl Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version: 3.1
6 *
7 * Copyright (C) 1999 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * eval.c was written by
30 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
31 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
32 *
33 * My original implementation of evaluators was simplistic and didn't
34 * compute surface normal vectors properly. Bernd and Volker applied
35 * used more sophisticated methods to get better results.
36 *
37 * Thanks guys!
38 */
39
40
41#ifdef PC_HEADER
42#include "all.h"
43#else
44#ifndef XFree86Server
45#include <math.h>
46#include <stdlib.h>
47#include <string.h>
48#else
49#include "GL/xf86glx.h"
50#endif
51#include "context.h"
52#include "eval.h"
53#include "macros.h"
54#include "mmath.h"
55#include "types.h"
56#include "vbcull.h"
57#include "vbfill.h"
58#include "vbxform.h"
59#endif
60
61
62static GLfloat inv_tab[MAX_EVAL_ORDER];
63
64/*
65 * Do one-time initialization for evaluators.
66 */
67void gl_init_eval( void )
68{
69 static int init_flag = 0;
70 GLuint i;
71
72 /* Compute a table of nCr (combination) values used by the
73 * Bernstein polynomial generator.
74 */
75
76 /* KW: precompute 1/x for useful x.
77 */
78 if (init_flag==0)
79 {
80 for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
81 inv_tab[i] = 1.0 / i;
82 }
83
84 init_flag = 1;
85}
86
87
88
89/*
90 * Horner scheme for Bezier curves
91 *
92 * Bezier curves can be computed via a Horner scheme.
93 * Horner is numerically less stable than the de Casteljau
94 * algorithm, but it is faster. For curves of degree n
95 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
96 * Since stability is not important for displaying curve
97 * points I decided to use the Horner scheme.
98 *
99 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
100 * written as
101 *
102 * (([3] [3] ) [3] ) [3]
103 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
104 *
105 * [n]
106 * where s=1-t and the binomial coefficients [i]. These can
107 * be computed iteratively using the identity:
108 *
109 * [n] [n ] [n]
110 * [i] = (n-i+1)/i * [i-1] and [0] = 1
111 */
112
113
114static void
115horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
116 GLuint dim, GLuint order)
117{
118 GLfloat s, powert;
119 GLuint i, k, bincoeff;
120
121 if(order >= 2)
122 {
123 bincoeff = order-1;
124 s = 1.0-t;
125
126 for(k=0; k<dim; k++)
127 out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
128
129 for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
130 {
131 bincoeff *= order-i;
132 bincoeff *= inv_tab[i];
133
134 for(k=0; k<dim; k++)
135 out[k] = s*out[k] + bincoeff*powert*cp[k];
136 }
137 }
138 else /* order=1 -> constant curve */
139 {
140 for(k=0; k<dim; k++)
141 out[k] = cp[k];
142 }
143}
144
145/*
146 * Tensor product Bezier surfaces
147 *
148 * Again the Horner scheme is used to compute a point on a
149 * TP Bezier surface. First a control polygon for a curve
150 * on the surface in one parameter direction is computed,
151 * then the point on the curve for the other parameter
152 * direction is evaluated.
153 *
154 * To store the curve control polygon additional storage
155 * for max(uorder,vorder) points is needed in the
156 * control net cn.
157 */
158
159static void
160horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
161 GLuint dim, GLuint uorder, GLuint vorder)
162{
163 GLfloat *cp = cn + uorder*vorder*dim;
164 GLuint i, uinc = vorder*dim;
165
166 if(vorder > uorder)
167 {
168 if(uorder >= 2)
169 {
170 GLfloat s, poweru;
171 GLuint j, k, bincoeff;
172
173 /* Compute the control polygon for the surface-curve in u-direction */
174 for(j=0; j<vorder; j++)
175 {
176 GLfloat *ucp = &cn[j*dim];
177
178 /* Each control point is the point for parameter u on a */
179 /* curve defined by the control polygons in u-direction */
180 bincoeff = uorder-1;
181 s = 1.0-u;
182
183 for(k=0; k<dim; k++)
184 cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
185
186 for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
187 i++, poweru*=u, ucp +=uinc)
188 {
189 bincoeff *= uorder-i;
190 bincoeff *= inv_tab[i];
191
192 for(k=0; k<dim; k++)
193 cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
194 }
195 }
196
197 /* Evaluate curve point in v */
198 horner_bezier_curve(cp, out, v, dim, vorder);
199 }
200 else /* uorder=1 -> cn defines a curve in v */
201 horner_bezier_curve(cn, out, v, dim, vorder);
202 }
203 else /* vorder <= uorder */
204 {
205 if(vorder > 1)
206 {
207 GLuint i;
208
209 /* Compute the control polygon for the surface-curve in u-direction */
210 for(i=0; i<uorder; i++, cn += uinc)
211 {
212 /* For constant i all cn[i][j] (j=0..vorder) are located */
213 /* on consecutive memory locations, so we can use */
214 /* horner_bezier_curve to compute the control points */
215
216 horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
217 }
218
219 /* Evaluate curve point in u */
220 horner_bezier_curve(cp, out, u, dim, uorder);
221 }
222 else /* vorder=1 -> cn defines a curve in u */
223 horner_bezier_curve(cn, out, u, dim, uorder);
224 }
225}
226
227/*
228 * The direct de Casteljau algorithm is used when a point on the
229 * surface and the tangent directions spanning the tangent plane
230 * should be computed (this is needed to compute normals to the
231 * surface). In this case the de Casteljau algorithm approach is
232 * nicer because a point and the partial derivatives can be computed
233 * at the same time. To get the correct tangent length du and dv
234 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
235 * Since only the directions are needed, this scaling step is omitted.
236 *
237 * De Casteljau needs additional storage for uorder*vorder
238 * values in the control net cn.
239 */
240
241static void
242de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
243 GLfloat u, GLfloat v, GLuint dim,
244 GLuint uorder, GLuint vorder)
245{
246 GLfloat *dcn = cn + uorder*vorder*dim;
247 GLfloat us = 1.0-u, vs = 1.0-v;
248 GLuint h, i, j, k;
249 GLuint minorder = uorder < vorder ? uorder : vorder;
250 GLuint uinc = vorder*dim;
251 GLuint dcuinc = vorder;
252
253 /* Each component is evaluated separately to save buffer space */
254 /* This does not drasticaly decrease the performance of the */
255 /* algorithm. If additional storage for (uorder-1)*(vorder-1) */
256 /* points would be available, the components could be accessed */
257 /* in the innermost loop which could lead to less cache misses. */
258
259#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
260#define DCN(I, J) dcn[(I)*dcuinc+(J)]
261 if(minorder < 3)
262 {
263 if(uorder==vorder)
264 {
265 for(k=0; k<dim; k++)
266 {
267 /* Derivative direction in u */
268 du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
269 v*(CN(1,1,k) - CN(0,1,k));
270
271 /* Derivative direction in v */
272 dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
273 u*(CN(1,1,k) - CN(1,0,k));
274
275 /* bilinear de Casteljau step */
276 out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
277 u*(vs*CN(1,0,k) + v*CN(1,1,k));
278 }
279 }
280 else if(minorder == uorder)
281 {
282 for(k=0; k<dim; k++)
283 {
284 /* bilinear de Casteljau step */
285 DCN(1,0) = CN(1,0,k) - CN(0,0,k);
286 DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
287
288 for(j=0; j<vorder-1; j++)
289 {
290 /* for the derivative in u */
291 DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
292 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
293
294 /* for the `point' */
295 DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
296 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
297 }
298
299 /* remaining linear de Casteljau steps until the second last step */
300 for(h=minorder; h<vorder-1; h++)
301 for(j=0; j<vorder-h; j++)
302 {
303 /* for the derivative in u */
304 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
305
306 /* for the `point' */
307 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
308 }
309
310 /* derivative direction in v */
311 dv[k] = DCN(0,1) - DCN(0,0);
312
313 /* derivative direction in u */
314 du[k] = vs*DCN(1,0) + v*DCN(1,1);
315
316 /* last linear de Casteljau step */
317 out[k] = vs*DCN(0,0) + v*DCN(0,1);
318 }
319 }
320 else /* minorder == vorder */
321 {
322 for(k=0; k<dim; k++)
323 {
324 /* bilinear de Casteljau step */
325 DCN(0,1) = CN(0,1,k) - CN(0,0,k);
326 DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
327 for(i=0; i<uorder-1; i++)
328 {
329 /* for the derivative in v */
330 DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
331 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
332
333 /* for the `point' */
334 DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
335 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
336 }
337
338 /* remaining linear de Casteljau steps until the second last step */
339 for(h=minorder; h<uorder-1; h++)
340 for(i=0; i<uorder-h; i++)
341 {
342 /* for the derivative in v */
343 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
344
345 /* for the `point' */
346 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
347 }
348
349 /* derivative direction in u */
350 du[k] = DCN(1,0) - DCN(0,0);
351
352 /* derivative direction in v */
353 dv[k] = us*DCN(0,1) + u*DCN(1,1);
354
355 /* last linear de Casteljau step */
356 out[k] = us*DCN(0,0) + u*DCN(1,0);
357 }
358 }
359 }
360 else if(uorder == vorder)
361 {
362 for(k=0; k<dim; k++)
363 {
364 /* first bilinear de Casteljau step */
365 for(i=0; i<uorder-1; i++)
366 {
367 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
368 for(j=0; j<vorder-1; j++)
369 {
370 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
371 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
372 }
373 }
374
375 /* remaining bilinear de Casteljau steps until the second last step */
376 for(h=2; h<minorder-1; h++)
377 for(i=0; i<uorder-h; i++)
378 {
379 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
380 for(j=0; j<vorder-h; j++)
381 {
382 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
383 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
384 }
385 }
386
387 /* derivative direction in u */
388 du[k] = vs*(DCN(1,0) - DCN(0,0)) +
389 v*(DCN(1,1) - DCN(0,1));
390
391 /* derivative direction in v */
392 dv[k] = us*(DCN(0,1) - DCN(0,0)) +
393 u*(DCN(1,1) - DCN(1,0));
394
395 /* last bilinear de Casteljau step */
396 out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
397 u*(vs*DCN(1,0) + v*DCN(1,1));
398 }
399 }
400 else if(minorder == uorder)
401 {
402 for(k=0; k<dim; k++)
403 {
404 /* first bilinear de Casteljau step */
405 for(i=0; i<uorder-1; i++)
406 {
407 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
408 for(j=0; j<vorder-1; j++)
409 {
410 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
411 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
412 }
413 }
414
415 /* remaining bilinear de Casteljau steps until the second last step */
416 for(h=2; h<minorder-1; h++)
417 for(i=0; i<uorder-h; i++)
418 {
419 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
420 for(j=0; j<vorder-h; j++)
421 {
422 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
423 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
424 }
425 }
426
427 /* last bilinear de Casteljau step */
428 DCN(2,0) = DCN(1,0) - DCN(0,0);
429 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
430 for(j=0; j<vorder-1; j++)
431 {
432 /* for the derivative in u */
433 DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
434 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
435
436 /* for the `point' */
437 DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
438 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
439 }
440
441 /* remaining linear de Casteljau steps until the second last step */
442 for(h=minorder; h<vorder-1; h++)
443 for(j=0; j<vorder-h; j++)
444 {
445 /* for the derivative in u */
446 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
447
448 /* for the `point' */
449 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
450 }
451
452 /* derivative direction in v */
453 dv[k] = DCN(0,1) - DCN(0,0);
454
455 /* derivative direction in u */
456 du[k] = vs*DCN(2,0) + v*DCN(2,1);
457
458 /* last linear de Casteljau step */
459 out[k] = vs*DCN(0,0) + v*DCN(0,1);
460 }
461 }
462 else /* minorder == vorder */
463 {
464 for(k=0; k<dim; k++)
465 {
466 /* first bilinear de Casteljau step */
467 for(i=0; i<uorder-1; i++)
468 {
469 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
470 for(j=0; j<vorder-1; j++)
471 {
472 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
473 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
474 }
475 }
476
477 /* remaining bilinear de Casteljau steps until the second last step */
478 for(h=2; h<minorder-1; h++)
479 for(i=0; i<uorder-h; i++)
480 {
481 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
482 for(j=0; j<vorder-h; j++)
483 {
484 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
485 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
486 }
487 }
488
489 /* last bilinear de Casteljau step */
490 DCN(0,2) = DCN(0,1) - DCN(0,0);
491 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
492 for(i=0; i<uorder-1; i++)
493 {
494 /* for the derivative in v */
495 DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
496 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
497
498 /* for the `point' */
499 DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
500 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
501 }
502
503 /* remaining linear de Casteljau steps until the second last step */
504 for(h=minorder; h<uorder-1; h++)
505 for(i=0; i<uorder-h; i++)
506 {
507 /* for the derivative in v */
508 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
509
510 /* for the `point' */
511 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
512 }
513
514 /* derivative direction in u */
515 du[k] = DCN(1,0) - DCN(0,0);
516
517 /* derivative direction in v */
518 dv[k] = us*DCN(0,2) + u*DCN(1,2);
519
520 /* last linear de Casteljau step */
521 out[k] = us*DCN(0,0) + u*DCN(1,0);
522 }
523 }
524#undef DCN
525#undef CN
526}
527
528/*
529 * Return the number of components per control point for any type of
530 * evaluator. Return 0 if bad target.
531 */
532
533static GLint components( GLenum target )
534{
535 switch (target) {
536 case GL_MAP1_VERTEX_3: return 3;
537 case GL_MAP1_VERTEX_4: return 4;
538 case GL_MAP1_INDEX: return 1;
539 case GL_MAP1_COLOR_4: return 4;
540 case GL_MAP1_NORMAL: return 3;
541 case GL_MAP1_TEXTURE_COORD_1: return 1;
542 case GL_MAP1_TEXTURE_COORD_2: return 2;
543 case GL_MAP1_TEXTURE_COORD_3: return 3;
544 case GL_MAP1_TEXTURE_COORD_4: return 4;
545 case GL_MAP2_VERTEX_3: return 3;
546 case GL_MAP2_VERTEX_4: return 4;
547 case GL_MAP2_INDEX: return 1;
548 case GL_MAP2_COLOR_4: return 4;
549 case GL_MAP2_NORMAL: return 3;
550 case GL_MAP2_TEXTURE_COORD_1: return 1;
551 case GL_MAP2_TEXTURE_COORD_2: return 2;
552 case GL_MAP2_TEXTURE_COORD_3: return 3;
553 case GL_MAP2_TEXTURE_COORD_4: return 4;
554 default: return 0;
555 }
556}
557
558
559/**********************************************************************/
560/*** Copy and deallocate control points ***/
561/**********************************************************************/
562
563
564/*
565 * Copy 1-parametric evaluator control points from user-specified
566 * memory space to a buffer of contiguous control points.
567 * Input: see glMap1f for details
568 * Return: pointer to buffer of contiguous control points or NULL if out
569 * of memory.
570 */
571GLfloat *gl_copy_map_points1f( GLenum target,
572 GLint ustride, GLint uorder,
573 const GLfloat *points )
574{
575 GLfloat *buffer, *p;
576 GLint i, k, size = components(target);
577
578 if (!points || size==0) {
579 return NULL;
580 }
581
582 buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
583
584 if(buffer)
585 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
586 for(k=0; k<size; k++)
587 *p++ = points[k];
588
589 return buffer;
590}
591
592
593
594/*
595 * Same as above but convert doubles to floats.
596 */
597GLfloat *gl_copy_map_points1d( GLenum target,
598 GLint ustride, GLint uorder,
599 const GLdouble *points )
600{
601 GLfloat *buffer, *p;
602 GLint i, k, size = components(target);
603
604 if (!points || size==0) {
605 return NULL;
606 }
607
608 buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
609
610 if(buffer)
611 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
612 for(k=0; k<size; k++)
613 *p++ = (GLfloat) points[k];
614
615 return buffer;
616}
617
618
619
620/*
621 * Copy 2-parametric evaluator control points from user-specified
622 * memory space to a buffer of contiguous control points.
623 * Additional memory is allocated to be used by the horner and
624 * de Casteljau evaluation schemes.
625 *
626 * Input: see glMap2f for details
627 * Return: pointer to buffer of contiguous control points or NULL if out
628 * of memory.
629 */
630GLfloat *gl_copy_map_points2f( GLenum target,
631 GLint ustride, GLint uorder,
632 GLint vstride, GLint vorder,
633 const GLfloat *points )
634{
635 GLfloat *buffer, *p;
636 GLint i, j, k, size, dsize, hsize;
637 GLint uinc;
638
639 size = components(target);
640
641 if (!points || size==0) {
642 return NULL;
643 }
644
645 /* max(uorder, vorder) additional points are used in */
646 /* horner evaluation and uorder*vorder additional */
647 /* values are needed for de Casteljau */
648 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
649 hsize = (uorder > vorder ? uorder : vorder)*size;
650
651 if(hsize>dsize)
652 buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
653 else
654 buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
655
656 /* compute the increment value for the u-loop */
657 uinc = ustride - vorder*vstride;
658
659 if (buffer)
660 for (i=0, p=buffer; i<uorder; i++, points += uinc)
661 for (j=0; j<vorder; j++, points += vstride)
662 for (k=0; k<size; k++)
663 *p++ = points[k];
664
665 return buffer;
666}
667
668
669
670/*
671 * Same as above but convert doubles to floats.
672 */
673GLfloat *gl_copy_map_points2d(GLenum target,
674 GLint ustride, GLint uorder,
675 GLint vstride, GLint vorder,
676 const GLdouble *points )
677{
678 GLfloat *buffer, *p;
679 GLint i, j, k, size, hsize, dsize;
680 GLint uinc;
681
682 size = components(target);
683
684 if (!points || size==0) {
685 return NULL;
686 }
687
688 /* max(uorder, vorder) additional points are used in */
689 /* horner evaluation and uorder*vorder additional */
690 /* values are needed for de Casteljau */
691 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
692 hsize = (uorder > vorder ? uorder : vorder)*size;
693
694 if(hsize>dsize)
695 buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
696 else
697 buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
698
699 /* compute the increment value for the u-loop */
700 uinc = ustride - vorder*vstride;
701
702 if (buffer)
703 for (i=0, p=buffer; i<uorder; i++, points += uinc)
704 for (j=0; j<vorder; j++, points += vstride)
705 for (k=0; k<size; k++)
706 *p++ = (GLfloat) points[k];
707
708 return buffer;
709}
710
711
712/*
713 * This function is called by the display list deallocator function to
714 * specify that a given set of control points are no longer needed.
715 */
716void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
717{
718 struct gl_1d_map *map1 = NULL;
719 struct gl_2d_map *map2 = NULL;
720
721 switch (target) {
722 case GL_MAP1_VERTEX_3:
723 map1 = &ctx->EvalMap.Map1Vertex3;
724 break;
725 case GL_MAP1_VERTEX_4:
726 map1 = &ctx->EvalMap.Map1Vertex4;
727 break;
728 case GL_MAP1_INDEX:
729 map1 = &ctx->EvalMap.Map1Index;
730 break;
731 case GL_MAP1_COLOR_4:
732 map1 = &ctx->EvalMap.Map1Color4;
733 break;
734 case GL_MAP1_NORMAL:
735 map1 = &ctx->EvalMap.Map1Normal;
736 break;
737 case GL_MAP1_TEXTURE_COORD_1:
738 map1 = &ctx->EvalMap.Map1Texture1;
739 break;
740 case GL_MAP1_TEXTURE_COORD_2:
741 map1 = &ctx->EvalMap.Map1Texture2;
742 break;
743 case GL_MAP1_TEXTURE_COORD_3:
744 map1 = &ctx->EvalMap.Map1Texture3;
745 break;
746 case GL_MAP1_TEXTURE_COORD_4:
747 map1 = &ctx->EvalMap.Map1Texture4;
748 break;
749 case GL_MAP2_VERTEX_3:
750 map2 = &ctx->EvalMap.Map2Vertex3;
751 break;
752 case GL_MAP2_VERTEX_4:
753 map2 = &ctx->EvalMap.Map2Vertex4;
754 break;
755 case GL_MAP2_INDEX:
756 map2 = &ctx->EvalMap.Map2Index;
757 break;
758 case GL_MAP2_COLOR_4:
759 map2 = &ctx->EvalMap.Map2Color4;
760 break;
761 case GL_MAP2_NORMAL:
762 map2 = &ctx->EvalMap.Map2Normal;
763 break;
764 case GL_MAP2_TEXTURE_COORD_1:
765 map2 = &ctx->EvalMap.Map2Texture1;
766 break;
767 case GL_MAP2_TEXTURE_COORD_2:
768 map2 = &ctx->EvalMap.Map2Texture2;
769 break;
770 case GL_MAP2_TEXTURE_COORD_3:
771 map2 = &ctx->EvalMap.Map2Texture3;
772 break;
773 case GL_MAP2_TEXTURE_COORD_4:
774 map2 = &ctx->EvalMap.Map2Texture4;
775 break;
776 default:
777 gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
778 return;
779 }
780
781 if (map1) {
782 if (data==map1->Points) {
783 /* The control points in the display list are currently */
784 /* being used so we can mark them as discard-able. */
785 map1->Retain = GL_FALSE;
786 }
787 else {
788 /* The control points in the display list are not currently */
789 /* being used. */
790 FREE( data );
791 }
792 }
793 if (map2) {
794 if (data==map2->Points) {
795 /* The control points in the display list are currently */
796 /* being used so we can mark them as discard-able. */
797 map2->Retain = GL_FALSE;
798 }
799 else {
800 /* The control points in the display list are not currently */
801 /* being used. */
802 FREE( data );
803 }
804 }
805
806}
807
808
809
810/**********************************************************************/
811/*** API entry points ***/
812/**********************************************************************/
813
814
815/*
816 * Note that the array of control points must be 'unpacked' at this time.
817 * Input: retain - if TRUE, this control point data is also in a display
818 * list and can't be freed until the list is freed.
819 */
820void gl_Map1f( GLcontext* ctx, GLenum target,
821 GLfloat u1, GLfloat u2, GLint stride,
822 GLint order, const GLfloat *points, GLboolean retain )
823{
824 GLint k;
825
826 if (!points) {
827 gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
828 return;
829 }
830
831 /* may be a new stride after copying control points */
832 stride = components( target );
833
834 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
835
836 if (u1==u2) {
837 gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
838 return;
839 }
840
841 if (order<1 || order>MAX_EVAL_ORDER) {
842 gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
843 return;
844 }
845
846 k = components( target );
847 if (k==0) {
848 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
849 }
850
851 if (stride < k) {
852 gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
853 return;
854 }
855
856 switch (target) {
857 case GL_MAP1_VERTEX_3:
858 ctx->EvalMap.Map1Vertex3.Order = order;
859 ctx->EvalMap.Map1Vertex3.u1 = u1;
860 ctx->EvalMap.Map1Vertex3.u2 = u2;
861 ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
862 if (ctx->EvalMap.Map1Vertex3.Points
863 && !ctx->EvalMap.Map1Vertex3.Retain) {
864 FREE( ctx->EvalMap.Map1Vertex3.Points );
865 }
866 ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
867 ctx->EvalMap.Map1Vertex3.Retain = retain;
868 break;
869 case GL_MAP1_VERTEX_4:
870 ctx->EvalMap.Map1Vertex4.Order = order;
871 ctx->EvalMap.Map1Vertex4.u1 = u1;
872 ctx->EvalMap.Map1Vertex4.u2 = u2;
873 ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
874 if (ctx->EvalMap.Map1Vertex4.Points
875 && !ctx->EvalMap.Map1Vertex4.Retain) {
876 FREE( ctx->EvalMap.Map1Vertex4.Points );
877 }
878 ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
879 ctx->EvalMap.Map1Vertex4.Retain = retain;
880 break;
881 case GL_MAP1_INDEX:
882 ctx->EvalMap.Map1Index.Order = order;
883 ctx->EvalMap.Map1Index.u1 = u1;
884 ctx->EvalMap.Map1Index.u2 = u2;
885 ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
886 if (ctx->EvalMap.Map1Index.Points
887 && !ctx->EvalMap.Map1Index.Retain) {
888 FREE( ctx->EvalMap.Map1Index.Points );
889 }
890 ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
891 ctx->EvalMap.Map1Index.Retain = retain;
892 break;
893 case GL_MAP1_COLOR_4:
894 ctx->EvalMap.Map1Color4.Order = order;
895 ctx->EvalMap.Map1Color4.u1 = u1;
896 ctx->EvalMap.Map1Color4.u2 = u2;
897 ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
898 if (ctx->EvalMap.Map1Color4.Points
899 && !ctx->EvalMap.Map1Color4.Retain) {
900 FREE( ctx->EvalMap.Map1Color4.Points );
901 }
902 ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
903 ctx->EvalMap.Map1Color4.Retain = retain;
904 break;
905 case GL_MAP1_NORMAL:
906 ctx->EvalMap.Map1Normal.Order = order;
907 ctx->EvalMap.Map1Normal.u1 = u1;
908 ctx->EvalMap.Map1Normal.u2 = u2;
909 ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
910 if (ctx->EvalMap.Map1Normal.Points
911 && !ctx->EvalMap.Map1Normal.Retain) {
912 FREE( ctx->EvalMap.Map1Normal.Points );
913 }
914 ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
915 ctx->EvalMap.Map1Normal.Retain = retain;
916 break;
917 case GL_MAP1_TEXTURE_COORD_1:
918 ctx->EvalMap.Map1Texture1.Order = order;
919 ctx->EvalMap.Map1Texture1.u1 = u1;
920 ctx->EvalMap.Map1Texture1.u2 = u2;
921 ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
922 if (ctx->EvalMap.Map1Texture1.Points
923 && !ctx->EvalMap.Map1Texture1.Retain) {
924 FREE( ctx->EvalMap.Map1Texture1.Points );
925 }
926 ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
927 ctx->EvalMap.Map1Texture1.Retain = retain;
928 break;
929 case GL_MAP1_TEXTURE_COORD_2:
930 ctx->EvalMap.Map1Texture2.Order = order;
931 ctx->EvalMap.Map1Texture2.u1 = u1;
932 ctx->EvalMap.Map1Texture2.u2 = u2;
933 ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
934 if (ctx->EvalMap.Map1Texture2.Points
935 && !ctx->EvalMap.Map1Texture2.Retain) {
936 FREE( ctx->EvalMap.Map1Texture2.Points );
937 }
938 ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
939 ctx->EvalMap.Map1Texture2.Retain = retain;
940 break;
941 case GL_MAP1_TEXTURE_COORD_3:
942 ctx->EvalMap.Map1Texture3.Order = order;
943 ctx->EvalMap.Map1Texture3.u1 = u1;
944 ctx->EvalMap.Map1Texture3.u2 = u2;
945 ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
946 if (ctx->EvalMap.Map1Texture3.Points
947 && !ctx->EvalMap.Map1Texture3.Retain) {
948 FREE( ctx->EvalMap.Map1Texture3.Points );
949 }
950 ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
951 ctx->EvalMap.Map1Texture3.Retain = retain;
952 break;
953 case GL_MAP1_TEXTURE_COORD_4:
954 ctx->EvalMap.Map1Texture4.Order = order;
955 ctx->EvalMap.Map1Texture4.u1 = u1;
956 ctx->EvalMap.Map1Texture4.u2 = u2;
957 ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
958 if (ctx->EvalMap.Map1Texture4.Points
959 && !ctx->EvalMap.Map1Texture4.Retain) {
960 FREE( ctx->EvalMap.Map1Texture4.Points );
961 }
962 ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
963 ctx->EvalMap.Map1Texture4.Retain = retain;
964 break;
965 default:
966 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
967 }
968}
969
970
971
972
973/*
974 * Note that the array of control points must be 'unpacked' at this time.
975 * Input: retain - if TRUE, this control point data is also in a display
976 * list and can't be freed until the list is freed.
977 */
978void gl_Map2f( GLcontext* ctx, GLenum target,
979 GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
980 GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
981 const GLfloat *points, GLboolean retain )
982{
983 GLint k;
984
985 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
986
987 if (u1==u2) {
988 gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
989 return;
990 }
991
992 if (v1==v2) {
993 gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
994 return;
995 }
996
997 if (uorder<1 || uorder>MAX_EVAL_ORDER) {
998 gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
999 return;
1000 }
1001
1002 if (vorder<1 || vorder>MAX_EVAL_ORDER) {
1003 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
1004 return;
1005 }
1006
1007 k = components( target );
1008 if (k==0) {
1009 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1010 }
1011
1012 if (ustride < k) {
1013 gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
1014 return;
1015 }
1016 if (vstride < k) {
1017 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
1018 return;
1019 }
1020
1021 switch (target) {
1022 case GL_MAP2_VERTEX_3:
1023 ctx->EvalMap.Map2Vertex3.Uorder = uorder;
1024 ctx->EvalMap.Map2Vertex3.u1 = u1;
1025 ctx->EvalMap.Map2Vertex3.u2 = u2;
1026 ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
1027 ctx->EvalMap.Map2Vertex3.Vorder = vorder;
1028 ctx->EvalMap.Map2Vertex3.v1 = v1;
1029 ctx->EvalMap.Map2Vertex3.v2 = v2;
1030 ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
1031 if (ctx->EvalMap.Map2Vertex3.Points
1032 && !ctx->EvalMap.Map2Vertex3.Retain) {
1033 FREE( ctx->EvalMap.Map2Vertex3.Points );
1034 }
1035 ctx->EvalMap.Map2Vertex3.Retain = retain;
1036 ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
1037 break;
1038 case GL_MAP2_VERTEX_4:
1039 ctx->EvalMap.Map2Vertex4.Uorder = uorder;
1040 ctx->EvalMap.Map2Vertex4.u1 = u1;
1041 ctx->EvalMap.Map2Vertex4.u2 = u2;
1042 ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
1043 ctx->EvalMap.Map2Vertex4.Vorder = vorder;
1044 ctx->EvalMap.Map2Vertex4.v1 = v1;
1045 ctx->EvalMap.Map2Vertex4.v2 = v2;
1046 ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
1047 if (ctx->EvalMap.Map2Vertex4.Points
1048 && !ctx->EvalMap.Map2Vertex4.Retain) {
1049 FREE( ctx->EvalMap.Map2Vertex4.Points );
1050 }
1051 ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
1052 ctx->EvalMap.Map2Vertex4.Retain = retain;
1053 break;
1054 case GL_MAP2_INDEX:
1055 ctx->EvalMap.Map2Index.Uorder = uorder;
1056 ctx->EvalMap.Map2Index.u1 = u1;
1057 ctx->EvalMap.Map2Index.u2 = u2;
1058 ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
1059 ctx->EvalMap.Map2Index.Vorder = vorder;
1060 ctx->EvalMap.Map2Index.v1 = v1;
1061 ctx->EvalMap.Map2Index.v2 = v2;
1062 ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
1063 if (ctx->EvalMap.Map2Index.Points
1064 && !ctx->EvalMap.Map2Index.Retain) {
1065 FREE( ctx->EvalMap.Map2Index.Points );
1066 }
1067 ctx->EvalMap.Map2Index.Retain = retain;
1068 ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
1069 break;
1070 case GL_MAP2_COLOR_4:
1071 ctx->EvalMap.Map2Color4.Uorder = uorder;
1072 ctx->EvalMap.Map2Color4.u1 = u1;
1073 ctx->EvalMap.Map2Color4.u2 = u2;
1074 ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
1075 ctx->EvalMap.Map2Color4.Vorder = vorder;
1076 ctx->EvalMap.Map2Color4.v1 = v1;
1077 ctx->EvalMap.Map2Color4.v2 = v2;
1078 ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
1079 if (ctx->EvalMap.Map2Color4.Points
1080 && !ctx->EvalMap.Map2Color4.Retain) {
1081 FREE( ctx->EvalMap.Map2Color4.Points );
1082 }
1083 ctx->EvalMap.Map2Color4.Retain = retain;
1084 ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
1085 break;
1086 case GL_MAP2_NORMAL:
1087 ctx->EvalMap.Map2Normal.Uorder = uorder;
1088 ctx->EvalMap.Map2Normal.u1 = u1;
1089 ctx->EvalMap.Map2Normal.u2 = u2;
1090 ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
1091 ctx->EvalMap.Map2Normal.Vorder = vorder;
1092 ctx->EvalMap.Map2Normal.v1 = v1;
1093 ctx->EvalMap.Map2Normal.v2 = v2;
1094 ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
1095 if (ctx->EvalMap.Map2Normal.Points
1096 && !ctx->EvalMap.Map2Normal.Retain) {
1097 FREE( ctx->EvalMap.Map2Normal.Points );
1098 }
1099 ctx->EvalMap.Map2Normal.Retain = retain;
1100 ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
1101 break;
1102 case GL_MAP2_TEXTURE_COORD_1:
1103 ctx->EvalMap.Map2Texture1.Uorder = uorder;
1104 ctx->EvalMap.Map2Texture1.u1 = u1;
1105 ctx->EvalMap.Map2Texture1.u2 = u2;
1106 ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
1107 ctx->EvalMap.Map2Texture1.Vorder = vorder;
1108 ctx->EvalMap.Map2Texture1.v1 = v1;
1109 ctx->EvalMap.Map2Texture1.v2 = v2;
1110 ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
1111 if (ctx->EvalMap.Map2Texture1.Points
1112 && !ctx->EvalMap.Map2Texture1.Retain) {
1113 FREE( ctx->EvalMap.Map2Texture1.Points );
1114 }
1115 ctx->EvalMap.Map2Texture1.Retain = retain;
1116 ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
1117 break;
1118 case GL_MAP2_TEXTURE_COORD_2:
1119 ctx->EvalMap.Map2Texture2.Uorder = uorder;
1120 ctx->EvalMap.Map2Texture2.u1 = u1;
1121 ctx->EvalMap.Map2Texture2.u2 = u2;
1122 ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
1123 ctx->EvalMap.Map2Texture2.Vorder = vorder;
1124 ctx->EvalMap.Map2Texture2.v1 = v1;
1125 ctx->EvalMap.Map2Texture2.v2 = v2;
1126 ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
1127 if (ctx->EvalMap.Map2Texture2.Points
1128 && !ctx->EvalMap.Map2Texture2.Retain) {
1129 FREE( ctx->EvalMap.Map2Texture2.Points );
1130 }
1131 ctx->EvalMap.Map2Texture2.Retain = retain;
1132 ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
1133 break;
1134 case GL_MAP2_TEXTURE_COORD_3:
1135 ctx->EvalMap.Map2Texture3.Uorder = uorder;
1136 ctx->EvalMap.Map2Texture3.u1 = u1;
1137 ctx->EvalMap.Map2Texture3.u2 = u2;
1138 ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
1139 ctx->EvalMap.Map2Texture3.Vorder = vorder;
1140 ctx->EvalMap.Map2Texture3.v1 = v1;
1141 ctx->EvalMap.Map2Texture3.v2 = v2;
1142 ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
1143 if (ctx->EvalMap.Map2Texture3.Points
1144 && !ctx->EvalMap.Map2Texture3.Retain) {
1145 FREE( ctx->EvalMap.Map2Texture3.Points );
1146 }
1147 ctx->EvalMap.Map2Texture3.Retain = retain;
1148 ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
1149 break;
1150 case GL_MAP2_TEXTURE_COORD_4:
1151 ctx->EvalMap.Map2Texture4.Uorder = uorder;
1152 ctx->EvalMap.Map2Texture4.u1 = u1;
1153 ctx->EvalMap.Map2Texture4.u2 = u2;
1154 ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
1155 ctx->EvalMap.Map2Texture4.Vorder = vorder;
1156 ctx->EvalMap.Map2Texture4.v1 = v1;
1157 ctx->EvalMap.Map2Texture4.v2 = v2;
1158 ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
1159 if (ctx->EvalMap.Map2Texture4.Points
1160 && !ctx->EvalMap.Map2Texture4.Retain) {
1161 FREE( ctx->EvalMap.Map2Texture4.Points );
1162 }
1163 ctx->EvalMap.Map2Texture4.Retain = retain;
1164 ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
1165 break;
1166 default:
1167 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1168 }
1169}
1170
1171
1172
1173
1174
1175void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
1176{
1177 GLint i, n;
1178 GLfloat *data;
1179
1180 switch (query) {
1181 case GL_COEFF:
1182 switch (target) {
1183 case GL_MAP1_COLOR_4:
1184 data = ctx->EvalMap.Map1Color4.Points;
1185 n = ctx->EvalMap.Map1Color4.Order * 4;
1186 break;
1187 case GL_MAP1_INDEX:
1188 data = ctx->EvalMap.Map1Index.Points;
1189 n = ctx->EvalMap.Map1Index.Order;
1190 break;
1191 case GL_MAP1_NORMAL:
1192 data = ctx->EvalMap.Map1Normal.Points;
1193 n = ctx->EvalMap.Map1Normal.Order * 3;
1194 break;
1195 case GL_MAP1_TEXTURE_COORD_1:
1196 data = ctx->EvalMap.Map1Texture1.Points;
1197 n = ctx->EvalMap.Map1Texture1.Order * 1;
1198 break;
1199 case GL_MAP1_TEXTURE_COORD_2:
1200 data = ctx->EvalMap.Map1Texture2.Points;
1201 n = ctx->EvalMap.Map1Texture2.Order * 2;
1202 break;
1203 case GL_MAP1_TEXTURE_COORD_3:
1204 data = ctx->EvalMap.Map1Texture3.Points;
1205 n = ctx->EvalMap.Map1Texture3.Order * 3;
1206 break;
1207 case GL_MAP1_TEXTURE_COORD_4:
1208 data = ctx->EvalMap.Map1Texture4.Points;
1209 n = ctx->EvalMap.Map1Texture4.Order * 4;
1210 break;
1211 case GL_MAP1_VERTEX_3:
1212 data = ctx->EvalMap.Map1Vertex3.Points;
1213 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1214 break;
1215 case GL_MAP1_VERTEX_4:
1216 data = ctx->EvalMap.Map1Vertex4.Points;
1217 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1218 break;
1219 case GL_MAP2_COLOR_4:
1220 data = ctx->EvalMap.Map2Color4.Points;
1221 n = ctx->EvalMap.Map2Color4.Uorder
1222 * ctx->EvalMap.Map2Color4.Vorder * 4;
1223 break;
1224 case GL_MAP2_INDEX:
1225 data = ctx->EvalMap.Map2Index.Points;
1226 n = ctx->EvalMap.Map2Index.Uorder
1227 * ctx->EvalMap.Map2Index.Vorder;
1228 break;
1229 case GL_MAP2_NORMAL:
1230 data = ctx->EvalMap.Map2Normal.Points;
1231 n = ctx->EvalMap.Map2Normal.Uorder
1232 * ctx->EvalMap.Map2Normal.Vorder * 3;
1233 break;
1234 case GL_MAP2_TEXTURE_COORD_1:
1235 data = ctx->EvalMap.Map2Texture1.Points;
1236 n = ctx->EvalMap.Map2Texture1.Uorder
1237 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1238 break;
1239 case GL_MAP2_TEXTURE_COORD_2:
1240 data = ctx->EvalMap.Map2Texture2.Points;
1241 n = ctx->EvalMap.Map2Texture2.Uorder
1242 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1243 break;
1244 case GL_MAP2_TEXTURE_COORD_3:
1245 data = ctx->EvalMap.Map2Texture3.Points;
1246 n = ctx->EvalMap.Map2Texture3.Uorder
1247 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1248 break;
1249 case GL_MAP2_TEXTURE_COORD_4:
1250 data = ctx->EvalMap.Map2Texture4.Points;
1251 n = ctx->EvalMap.Map2Texture4.Uorder
1252 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1253 break;
1254 case GL_MAP2_VERTEX_3:
1255 data = ctx->EvalMap.Map2Vertex3.Points;
1256 n = ctx->EvalMap.Map2Vertex3.Uorder
1257 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1258 break;
1259 case GL_MAP2_VERTEX_4:
1260 data = ctx->EvalMap.Map2Vertex4.Points;
1261 n = ctx->EvalMap.Map2Vertex4.Uorder
1262 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1263 break;
1264 default:
1265 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1266 return;
1267 }
1268 if (data) {
1269 for (i=0;i<n;i++) {
1270 v[i] = data[i];
1271 }
1272 }
1273 break;
1274 case GL_ORDER:
1275 switch (target) {
1276 case GL_MAP1_COLOR_4:
1277 *v = ctx->EvalMap.Map1Color4.Order;
1278 break;
1279 case GL_MAP1_INDEX:
1280 *v = ctx->EvalMap.Map1Index.Order;
1281 break;
1282 case GL_MAP1_NORMAL:
1283 *v = ctx->EvalMap.Map1Normal.Order;
1284 break;
1285 case GL_MAP1_TEXTURE_COORD_1:
1286 *v = ctx->EvalMap.Map1Texture1.Order;
1287 break;
1288 case GL_MAP1_TEXTURE_COORD_2:
1289 *v = ctx->EvalMap.Map1Texture2.Order;
1290 break;
1291 case GL_MAP1_TEXTURE_COORD_3:
1292 *v = ctx->EvalMap.Map1Texture3.Order;
1293 break;
1294 case GL_MAP1_TEXTURE_COORD_4:
1295 *v = ctx->EvalMap.Map1Texture4.Order;
1296 break;
1297 case GL_MAP1_VERTEX_3:
1298 *v = ctx->EvalMap.Map1Vertex3.Order;
1299 break;
1300 case GL_MAP1_VERTEX_4:
1301 *v = ctx->EvalMap.Map1Vertex4.Order;
1302 break;
1303 case GL_MAP2_COLOR_4:
1304 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1305 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1306 break;
1307 case GL_MAP2_INDEX:
1308 v[0] = ctx->EvalMap.Map2Index.Uorder;
1309 v[1] = ctx->EvalMap.Map2Index.Vorder;
1310 break;
1311 case GL_MAP2_NORMAL:
1312 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1313 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1314 break;
1315 case GL_MAP2_TEXTURE_COORD_1:
1316 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1317 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1318 break;
1319 case GL_MAP2_TEXTURE_COORD_2:
1320 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1321 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1322 break;
1323 case GL_MAP2_TEXTURE_COORD_3:
1324 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1325 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1326 break;
1327 case GL_MAP2_TEXTURE_COORD_4:
1328 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1329 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1330 break;
1331 case GL_MAP2_VERTEX_3:
1332 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1333 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1334 break;
1335 case GL_MAP2_VERTEX_4:
1336 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1337 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1338 break;
1339 default:
1340 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1341 return;
1342 }
1343 break;
1344 case GL_DOMAIN:
1345 switch (target) {
1346 case GL_MAP1_COLOR_4:
1347 v[0] = ctx->EvalMap.Map1Color4.u1;
1348 v[1] = ctx->EvalMap.Map1Color4.u2;
1349 break;
1350 case GL_MAP1_INDEX:
1351 v[0] = ctx->EvalMap.Map1Index.u1;
1352 v[1] = ctx->EvalMap.Map1Index.u2;
1353 break;
1354 case GL_MAP1_NORMAL:
1355 v[0] = ctx->EvalMap.Map1Normal.u1;
1356 v[1] = ctx->EvalMap.Map1Normal.u2;
1357 break;
1358 case GL_MAP1_TEXTURE_COORD_1:
1359 v[0] = ctx->EvalMap.Map1Texture1.u1;
1360 v[1] = ctx->EvalMap.Map1Texture1.u2;
1361 break;
1362 case GL_MAP1_TEXTURE_COORD_2:
1363 v[0] = ctx->EvalMap.Map1Texture2.u1;
1364 v[1] = ctx->EvalMap.Map1Texture2.u2;
1365 break;
1366 case GL_MAP1_TEXTURE_COORD_3:
1367 v[0] = ctx->EvalMap.Map1Texture3.u1;
1368 v[1] = ctx->EvalMap.Map1Texture3.u2;
1369 break;
1370 case GL_MAP1_TEXTURE_COORD_4:
1371 v[0] = ctx->EvalMap.Map1Texture4.u1;
1372 v[1] = ctx->EvalMap.Map1Texture4.u2;
1373 break;
1374 case GL_MAP1_VERTEX_3:
1375 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1376 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1377 break;
1378 case GL_MAP1_VERTEX_4:
1379 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1380 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1381 break;
1382 case GL_MAP2_COLOR_4:
1383 v[0] = ctx->EvalMap.Map2Color4.u1;
1384 v[1] = ctx->EvalMap.Map2Color4.u2;
1385 v[2] = ctx->EvalMap.Map2Color4.v1;
1386 v[3] = ctx->EvalMap.Map2Color4.v2;
1387 break;
1388 case GL_MAP2_INDEX:
1389 v[0] = ctx->EvalMap.Map2Index.u1;
1390 v[1] = ctx->EvalMap.Map2Index.u2;
1391 v[2] = ctx->EvalMap.Map2Index.v1;
1392 v[3] = ctx->EvalMap.Map2Index.v2;
1393 break;
1394 case GL_MAP2_NORMAL:
1395 v[0] = ctx->EvalMap.Map2Normal.u1;
1396 v[1] = ctx->EvalMap.Map2Normal.u2;
1397 v[2] = ctx->EvalMap.Map2Normal.v1;
1398 v[3] = ctx->EvalMap.Map2Normal.v2;
1399 break;
1400 case GL_MAP2_TEXTURE_COORD_1:
1401 v[0] = ctx->EvalMap.Map2Texture1.u1;
1402 v[1] = ctx->EvalMap.Map2Texture1.u2;
1403 v[2] = ctx->EvalMap.Map2Texture1.v1;
1404 v[3] = ctx->EvalMap.Map2Texture1.v2;
1405 break;
1406 case GL_MAP2_TEXTURE_COORD_2:
1407 v[0] = ctx->EvalMap.Map2Texture2.u1;
1408 v[1] = ctx->EvalMap.Map2Texture2.u2;
1409 v[2] = ctx->EvalMap.Map2Texture2.v1;
1410 v[3] = ctx->EvalMap.Map2Texture2.v2;
1411 break;
1412 case GL_MAP2_TEXTURE_COORD_3:
1413 v[0] = ctx->EvalMap.Map2Texture3.u1;
1414 v[1] = ctx->EvalMap.Map2Texture3.u2;
1415 v[2] = ctx->EvalMap.Map2Texture3.v1;
1416 v[3] = ctx->EvalMap.Map2Texture3.v2;
1417 break;
1418 case GL_MAP2_TEXTURE_COORD_4:
1419 v[0] = ctx->EvalMap.Map2Texture4.u1;
1420 v[1] = ctx->EvalMap.Map2Texture4.u2;
1421 v[2] = ctx->EvalMap.Map2Texture4.v1;
1422 v[3] = ctx->EvalMap.Map2Texture4.v2;
1423 break;
1424 case GL_MAP2_VERTEX_3:
1425 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1426 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1427 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1428 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1429 break;
1430 case GL_MAP2_VERTEX_4:
1431 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1432 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1433 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1434 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1435 break;
1436 default:
1437 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1438 }
1439 break;
1440 default:
1441 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
1442 }
1443}
1444
1445
1446void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
1447{
1448 GLint i, n;
1449 GLfloat *data;
1450
1451 switch (query) {
1452 case GL_COEFF:
1453 switch (target) {
1454 case GL_MAP1_COLOR_4:
1455 data = ctx->EvalMap.Map1Color4.Points;
1456 n = ctx->EvalMap.Map1Color4.Order * 4;
1457 break;
1458 case GL_MAP1_INDEX:
1459 data = ctx->EvalMap.Map1Index.Points;
1460 n = ctx->EvalMap.Map1Index.Order;
1461 break;
1462 case GL_MAP1_NORMAL:
1463 data = ctx->EvalMap.Map1Normal.Points;
1464 n = ctx->EvalMap.Map1Normal.Order * 3;
1465 break;
1466 case GL_MAP1_TEXTURE_COORD_1:
1467 data = ctx->EvalMap.Map1Texture1.Points;
1468 n = ctx->EvalMap.Map1Texture1.Order * 1;
1469 break;
1470 case GL_MAP1_TEXTURE_COORD_2:
1471 data = ctx->EvalMap.Map1Texture2.Points;
1472 n = ctx->EvalMap.Map1Texture2.Order * 2;
1473 break;
1474 case GL_MAP1_TEXTURE_COORD_3:
1475 data = ctx->EvalMap.Map1Texture3.Points;
1476 n = ctx->EvalMap.Map1Texture3.Order * 3;
1477 break;
1478 case GL_MAP1_TEXTURE_COORD_4:
1479 data = ctx->EvalMap.Map1Texture4.Points;
1480 n = ctx->EvalMap.Map1Texture4.Order * 4;
1481 break;
1482 case GL_MAP1_VERTEX_3:
1483 data = ctx->EvalMap.Map1Vertex3.Points;
1484 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1485 break;
1486 case GL_MAP1_VERTEX_4:
1487 data = ctx->EvalMap.Map1Vertex4.Points;
1488 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1489 break;
1490 case GL_MAP2_COLOR_4:
1491 data = ctx->EvalMap.Map2Color4.Points;
1492 n = ctx->EvalMap.Map2Color4.Uorder
1493 * ctx->EvalMap.Map2Color4.Vorder * 4;
1494 break;
1495 case GL_MAP2_INDEX:
1496 data = ctx->EvalMap.Map2Index.Points;
1497 n = ctx->EvalMap.Map2Index.Uorder
1498 * ctx->EvalMap.Map2Index.Vorder;
1499 break;
1500 case GL_MAP2_NORMAL:
1501 data = ctx->EvalMap.Map2Normal.Points;
1502 n = ctx->EvalMap.Map2Normal.Uorder
1503 * ctx->EvalMap.Map2Normal.Vorder * 3;
1504 break;
1505 case GL_MAP2_TEXTURE_COORD_1:
1506 data = ctx->EvalMap.Map2Texture1.Points;
1507 n = ctx->EvalMap.Map2Texture1.Uorder
1508 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1509 break;
1510 case GL_MAP2_TEXTURE_COORD_2:
1511 data = ctx->EvalMap.Map2Texture2.Points;
1512 n = ctx->EvalMap.Map2Texture2.Uorder
1513 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1514 break;
1515 case GL_MAP2_TEXTURE_COORD_3:
1516 data = ctx->EvalMap.Map2Texture3.Points;
1517 n = ctx->EvalMap.Map2Texture3.Uorder
1518 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1519 break;
1520 case GL_MAP2_TEXTURE_COORD_4:
1521 data = ctx->EvalMap.Map2Texture4.Points;
1522 n = ctx->EvalMap.Map2Texture4.Uorder
1523 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1524 break;
1525 case GL_MAP2_VERTEX_3:
1526 data = ctx->EvalMap.Map2Vertex3.Points;
1527 n = ctx->EvalMap.Map2Vertex3.Uorder
1528 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1529 break;
1530 case GL_MAP2_VERTEX_4:
1531 data = ctx->EvalMap.Map2Vertex4.Points;
1532 n = ctx->EvalMap.Map2Vertex4.Uorder
1533 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1534 break;
1535 default:
1536 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1537 return;
1538 }
1539 if (data) {
1540 for (i=0;i<n;i++) {
1541 v[i] = data[i];
1542 }
1543 }
1544 break;
1545 case GL_ORDER:
1546 switch (target) {
1547 case GL_MAP1_COLOR_4:
1548 *v = ctx->EvalMap.Map1Color4.Order;
1549 break;
1550 case GL_MAP1_INDEX:
1551 *v = ctx->EvalMap.Map1Index.Order;
1552 break;
1553 case GL_MAP1_NORMAL:
1554 *v = ctx->EvalMap.Map1Normal.Order;
1555 break;
1556 case GL_MAP1_TEXTURE_COORD_1:
1557 *v = ctx->EvalMap.Map1Texture1.Order;
1558 break;
1559 case GL_MAP1_TEXTURE_COORD_2:
1560 *v = ctx->EvalMap.Map1Texture2.Order;
1561 break;
1562 case GL_MAP1_TEXTURE_COORD_3:
1563 *v = ctx->EvalMap.Map1Texture3.Order;
1564 break;
1565 case GL_MAP1_TEXTURE_COORD_4:
1566 *v = ctx->EvalMap.Map1Texture4.Order;
1567 break;
1568 case GL_MAP1_VERTEX_3:
1569 *v = ctx->EvalMap.Map1Vertex3.Order;
1570 break;
1571 case GL_MAP1_VERTEX_4:
1572 *v = ctx->EvalMap.Map1Vertex4.Order;
1573 break;
1574 case GL_MAP2_COLOR_4:
1575 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1576 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1577 break;
1578 case GL_MAP2_INDEX:
1579 v[0] = ctx->EvalMap.Map2Index.Uorder;
1580 v[1] = ctx->EvalMap.Map2Index.Vorder;
1581 break;
1582 case GL_MAP2_NORMAL:
1583 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1584 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1585 break;
1586 case GL_MAP2_TEXTURE_COORD_1:
1587 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1588 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1589 break;
1590 case GL_MAP2_TEXTURE_COORD_2:
1591 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1592 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1593 break;
1594 case GL_MAP2_TEXTURE_COORD_3:
1595 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1596 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1597 break;
1598 case GL_MAP2_TEXTURE_COORD_4:
1599 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1600 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1601 break;
1602 case GL_MAP2_VERTEX_3:
1603 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1604 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1605 break;
1606 case GL_MAP2_VERTEX_4:
1607 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1608 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1609 break;
1610 default:
1611 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1612 return;
1613 }
1614 break;
1615 case GL_DOMAIN:
1616 switch (target) {
1617 case GL_MAP1_COLOR_4:
1618 v[0] = ctx->EvalMap.Map1Color4.u1;
1619 v[1] = ctx->EvalMap.Map1Color4.u2;
1620 break;
1621 case GL_MAP1_INDEX:
1622 v[0] = ctx->EvalMap.Map1Index.u1;
1623 v[1] = ctx->EvalMap.Map1Index.u2;
1624 break;
1625 case GL_MAP1_NORMAL:
1626 v[0] = ctx->EvalMap.Map1Normal.u1;
1627 v[1] = ctx->EvalMap.Map1Normal.u2;
1628 break;
1629 case GL_MAP1_TEXTURE_COORD_1:
1630 v[0] = ctx->EvalMap.Map1Texture1.u1;
1631 v[1] = ctx->EvalMap.Map1Texture1.u2;
1632 break;
1633 case GL_MAP1_TEXTURE_COORD_2:
1634 v[0] = ctx->EvalMap.Map1Texture2.u1;
1635 v[1] = ctx->EvalMap.Map1Texture2.u2;
1636 break;
1637 case GL_MAP1_TEXTURE_COORD_3:
1638 v[0] = ctx->EvalMap.Map1Texture3.u1;
1639 v[1] = ctx->EvalMap.Map1Texture3.u2;
1640 break;
1641 case GL_MAP1_TEXTURE_COORD_4:
1642 v[0] = ctx->EvalMap.Map1Texture4.u1;
1643 v[1] = ctx->EvalMap.Map1Texture4.u2;
1644 break;
1645 case GL_MAP1_VERTEX_3:
1646 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1647 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1648 break;
1649 case GL_MAP1_VERTEX_4:
1650 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1651 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1652 break;
1653 case GL_MAP2_COLOR_4:
1654 v[0] = ctx->EvalMap.Map2Color4.u1;
1655 v[1] = ctx->EvalMap.Map2Color4.u2;
1656 v[2] = ctx->EvalMap.Map2Color4.v1;
1657 v[3] = ctx->EvalMap.Map2Color4.v2;
1658 break;
1659 case GL_MAP2_INDEX:
1660 v[0] = ctx->EvalMap.Map2Index.u1;
1661 v[1] = ctx->EvalMap.Map2Index.u2;
1662 v[2] = ctx->EvalMap.Map2Index.v1;
1663 v[3] = ctx->EvalMap.Map2Index.v2;
1664 break;
1665 case GL_MAP2_NORMAL:
1666 v[0] = ctx->EvalMap.Map2Normal.u1;
1667 v[1] = ctx->EvalMap.Map2Normal.u2;
1668 v[2] = ctx->EvalMap.Map2Normal.v1;
1669 v[3] = ctx->EvalMap.Map2Normal.v2;
1670 break;
1671 case GL_MAP2_TEXTURE_COORD_1:
1672 v[0] = ctx->EvalMap.Map2Texture1.u1;
1673 v[1] = ctx->EvalMap.Map2Texture1.u2;
1674 v[2] = ctx->EvalMap.Map2Texture1.v1;
1675 v[3] = ctx->EvalMap.Map2Texture1.v2;
1676 break;
1677 case GL_MAP2_TEXTURE_COORD_2:
1678 v[0] = ctx->EvalMap.Map2Texture2.u1;
1679 v[1] = ctx->EvalMap.Map2Texture2.u2;
1680 v[2] = ctx->EvalMap.Map2Texture2.v1;
1681 v[3] = ctx->EvalMap.Map2Texture2.v2;
1682 break;
1683 case GL_MAP2_TEXTURE_COORD_3:
1684 v[0] = ctx->EvalMap.Map2Texture3.u1;
1685 v[1] = ctx->EvalMap.Map2Texture3.u2;
1686 v[2] = ctx->EvalMap.Map2Texture3.v1;
1687 v[3] = ctx->EvalMap.Map2Texture3.v2;
1688 break;
1689 case GL_MAP2_TEXTURE_COORD_4:
1690 v[0] = ctx->EvalMap.Map2Texture4.u1;
1691 v[1] = ctx->EvalMap.Map2Texture4.u2;
1692 v[2] = ctx->EvalMap.Map2Texture4.v1;
1693 v[3] = ctx->EvalMap.Map2Texture4.v2;
1694 break;
1695 case GL_MAP2_VERTEX_3:
1696 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1697 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1698 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1699 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1700 break;
1701 case GL_MAP2_VERTEX_4:
1702 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1703 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1704 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1705 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1706 break;
1707 default:
1708 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1709 }
1710 break;
1711 default:
1712 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
1713 }
1714}
1715
1716
1717void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
1718{
1719 GLuint i, n;
1720 GLfloat *data;
1721
1722 switch (query) {
1723 case GL_COEFF:
1724 switch (target) {
1725 case GL_MAP1_COLOR_4:
1726 data = ctx->EvalMap.Map1Color4.Points;
1727 n = ctx->EvalMap.Map1Color4.Order * 4;
1728 break;
1729 case GL_MAP1_INDEX:
1730 data = ctx->EvalMap.Map1Index.Points;
1731 n = ctx->EvalMap.Map1Index.Order;
1732 break;
1733 case GL_MAP1_NORMAL:
1734 data = ctx->EvalMap.Map1Normal.Points;
1735 n = ctx->EvalMap.Map1Normal.Order * 3;
1736 break;
1737 case GL_MAP1_TEXTURE_COORD_1:
1738 data = ctx->EvalMap.Map1Texture1.Points;
1739 n = ctx->EvalMap.Map1Texture1.Order * 1;
1740 break;
1741 case GL_MAP1_TEXTURE_COORD_2:
1742 data = ctx->EvalMap.Map1Texture2.Points;
1743 n = ctx->EvalMap.Map1Texture2.Order * 2;
1744 break;
1745 case GL_MAP1_TEXTURE_COORD_3:
1746 data = ctx->EvalMap.Map1Texture3.Points;
1747 n = ctx->EvalMap.Map1Texture3.Order * 3;
1748 break;
1749 case GL_MAP1_TEXTURE_COORD_4:
1750 data = ctx->EvalMap.Map1Texture4.Points;
1751 n = ctx->EvalMap.Map1Texture4.Order * 4;
1752 break;
1753 case GL_MAP1_VERTEX_3:
1754 data = ctx->EvalMap.Map1Vertex3.Points;
1755 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1756 break;
1757 case GL_MAP1_VERTEX_4:
1758 data = ctx->EvalMap.Map1Vertex4.Points;
1759 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1760 break;
1761 case GL_MAP2_COLOR_4:
1762 data = ctx->EvalMap.Map2Color4.Points;
1763 n = ctx->EvalMap.Map2Color4.Uorder
1764 * ctx->EvalMap.Map2Color4.Vorder * 4;
1765 break;
1766 case GL_MAP2_INDEX:
1767 data = ctx->EvalMap.Map2Index.Points;
1768 n = ctx->EvalMap.Map2Index.Uorder
1769 * ctx->EvalMap.Map2Index.Vorder;
1770 break;
1771 case GL_MAP2_NORMAL:
1772 data = ctx->EvalMap.Map2Normal.Points;
1773 n = ctx->EvalMap.Map2Normal.Uorder
1774 * ctx->EvalMap.Map2Normal.Vorder * 3;
1775 break;
1776 case GL_MAP2_TEXTURE_COORD_1:
1777 data = ctx->EvalMap.Map2Texture1.Points;
1778 n = ctx->EvalMap.Map2Texture1.Uorder
1779 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1780 break;
1781 case GL_MAP2_TEXTURE_COORD_2:
1782 data = ctx->EvalMap.Map2Texture2.Points;
1783 n = ctx->EvalMap.Map2Texture2.Uorder
1784 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1785 break;
1786 case GL_MAP2_TEXTURE_COORD_3:
1787 data = ctx->EvalMap.Map2Texture3.Points;
1788 n = ctx->EvalMap.Map2Texture3.Uorder
1789 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1790 break;
1791 case GL_MAP2_TEXTURE_COORD_4:
1792 data = ctx->EvalMap.Map2Texture4.Points;
1793 n = ctx->EvalMap.Map2Texture4.Uorder
1794 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1795 break;
1796 case GL_MAP2_VERTEX_3:
1797 data = ctx->EvalMap.Map2Vertex3.Points;
1798 n = ctx->EvalMap.Map2Vertex3.Uorder
1799 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1800 break;
1801 case GL_MAP2_VERTEX_4:
1802 data = ctx->EvalMap.Map2Vertex4.Points;
1803 n = ctx->EvalMap.Map2Vertex4.Uorder
1804 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1805 break;
1806 default:
1807 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1808 return;
1809 }
1810 if (data) {
1811 for (i=0;i<n;i++) {
1812 v[i] = ROUNDF(data[i]);
1813 }
1814 }
1815 break;
1816 case GL_ORDER:
1817 switch (target) {
1818 case GL_MAP1_COLOR_4:
1819 *v = ctx->EvalMap.Map1Color4.Order;
1820 break;
1821 case GL_MAP1_INDEX:
1822 *v = ctx->EvalMap.Map1Index.Order;
1823 break;
1824 case GL_MAP1_NORMAL:
1825 *v = ctx->EvalMap.Map1Normal.Order;
1826 break;
1827 case GL_MAP1_TEXTURE_COORD_1:
1828 *v = ctx->EvalMap.Map1Texture1.Order;
1829 break;
1830 case GL_MAP1_TEXTURE_COORD_2:
1831 *v = ctx->EvalMap.Map1Texture2.Order;
1832 break;
1833 case GL_MAP1_TEXTURE_COORD_3:
1834 *v = ctx->EvalMap.Map1Texture3.Order;
1835 break;
1836 case GL_MAP1_TEXTURE_COORD_4:
1837 *v = ctx->EvalMap.Map1Texture4.Order;
1838 break;
1839 case GL_MAP1_VERTEX_3:
1840 *v = ctx->EvalMap.Map1Vertex3.Order;
1841 break;
1842 case GL_MAP1_VERTEX_4:
1843 *v = ctx->EvalMap.Map1Vertex4.Order;
1844 break;
1845 case GL_MAP2_COLOR_4:
1846 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1847 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1848 break;
1849 case GL_MAP2_INDEX:
1850 v[0] = ctx->EvalMap.Map2Index.Uorder;
1851 v[1] = ctx->EvalMap.Map2Index.Vorder;
1852 break;
1853 case GL_MAP2_NORMAL:
1854 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1855 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1856 break;
1857 case GL_MAP2_TEXTURE_COORD_1:
1858 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1859 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1860 break;
1861 case GL_MAP2_TEXTURE_COORD_2:
1862 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1863 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1864 break;
1865 case GL_MAP2_TEXTURE_COORD_3:
1866 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1867 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1868 break;
1869 case GL_MAP2_TEXTURE_COORD_4:
1870 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1871 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1872 break;
1873 case GL_MAP2_VERTEX_3:
1874 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1875 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1876 break;
1877 case GL_MAP2_VERTEX_4:
1878 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1879 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1880 break;
1881 default:
1882 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1883 return;
1884 }
1885 break;
1886 case GL_DOMAIN:
1887 switch (target) {
1888 case GL_MAP1_COLOR_4:
1889 v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
1890 v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
1891 break;
1892 case GL_MAP1_INDEX:
1893 v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
1894 v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
1895 break;
1896 case GL_MAP1_NORMAL:
1897 v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
1898 v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
1899 break;
1900 case GL_MAP1_TEXTURE_COORD_1:
1901 v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
1902 v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
1903 break;
1904 case GL_MAP1_TEXTURE_COORD_2:
1905 v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
1906 v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
1907 break;
1908 case GL_MAP1_TEXTURE_COORD_3:
1909 v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
1910 v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
1911 break;
1912 case GL_MAP1_TEXTURE_COORD_4:
1913 v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
1914 v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
1915 break;
1916 case GL_MAP1_VERTEX_3:
1917 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
1918 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
1919 break;
1920 case GL_MAP1_VERTEX_4:
1921 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
1922 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
1923 break;
1924 case GL_MAP2_COLOR_4:
1925 v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
1926 v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
1927 v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
1928 v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
1929 break;
1930 case GL_MAP2_INDEX:
1931 v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
1932 v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
1933 v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
1934 v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
1935 break;
1936 case GL_MAP2_NORMAL:
1937 v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
1938 v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
1939 v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
1940 v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
1941 break;
1942 case GL_MAP2_TEXTURE_COORD_1:
1943 v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
1944 v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
1945 v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
1946 v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
1947 break;
1948 case GL_MAP2_TEXTURE_COORD_2:
1949 v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
1950 v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
1951 v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
1952 v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
1953 break;
1954 case GL_MAP2_TEXTURE_COORD_3:
1955 v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
1956 v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
1957 v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
1958 v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
1959 break;
1960 case GL_MAP2_TEXTURE_COORD_4:
1961 v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
1962 v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
1963 v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
1964 v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
1965 break;
1966 case GL_MAP2_VERTEX_3:
1967 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
1968 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
1969 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
1970 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
1971 break;
1972 case GL_MAP2_VERTEX_4:
1973 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
1974 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
1975 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
1976 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
1977 break;
1978 default:
1979 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1980 }
1981 break;
1982 default:
1983 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
1984 }
1985}
1986
1987
1988
1989static void eval_points1( GLfloat outcoord[][4],
1990 GLfloat coord[][4],
1991 const GLuint *flags,
1992 GLuint start,
1993 GLfloat du, GLfloat u1 )
1994{
1995 GLuint i;
1996 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
1997 if (flags[i] & VERT_EVAL_P1)
1998 outcoord[i][0] = coord[i][0] * du + u1;
1999 else if (flags[i] & VERT_EVAL_ANY) {
2000 outcoord[i][0] = coord[i][0];
2001 outcoord[i][1] = coord[i][1];
2002 }
2003}
2004
2005static void eval_points2( GLfloat outcoord[][4],
2006 GLfloat coord[][4],
2007 const GLuint *flags,
2008 GLuint start,
2009 GLfloat du, GLfloat u1,
2010 GLfloat dv, GLfloat v1 )
2011{
2012 GLuint i;
2013 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2014 if (flags[i] & VERT_EVAL_P2) {
2015 outcoord[i][0] = coord[i][0] * du + u1;
2016 outcoord[i][1] = coord[i][1] * dv + v1;
2017 } else if (flags[i] & VERT_EVAL_ANY) {
2018 outcoord[i][0] = coord[i][0];
2019 outcoord[i][1] = coord[i][1];
2020 }
2021}
2022
2023
2024static const GLubyte dirty_flags[5] = {
2025 0, /* not possible */
2026 VEC_DIRTY_0,
2027 VEC_DIRTY_1,
2028 VEC_DIRTY_2,
2029 VEC_DIRTY_3
2030};
2031
2032
2033static GLvector4f *eval1_4f( GLvector4f *dest,
2034 GLfloat coord[][4],
2035 const GLuint *flags,
2036 GLuint start,
2037 GLuint dimension,
2038 struct gl_1d_map *map )
2039{
2040 const GLfloat u1 = map->u1;
2041 const GLfloat du = map->du;
2042 GLfloat (*to)[4] = dest->data;
2043 GLuint i;
2044
2045 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2046 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2047 GLfloat u = (coord[i][0] - u1) * du;
2048 ASSIGN_4V(to[i], 0,0,0,1);
2049 horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
2050 }
2051
2052 dest->count = i;
2053 dest->start = VEC_ELT(dest, GLfloat, start);
2054 dest->size = MAX2(dest->size, dimension);
2055 dest->flags |= dirty_flags[dimension];
2056 return dest;
2057}
2058
2059
2060static GLvector1ui *eval1_1ui( GLvector1ui *dest,
2061 GLfloat coord[][4],
2062 const GLuint *flags,
2063 GLuint start,
2064 struct gl_1d_map *map )
2065{
2066 const GLfloat u1 = map->u1;
2067 const GLfloat du = map->du;
2068 GLuint *to = dest->data;
2069 GLuint i;
2070
2071 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2072 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2073 GLfloat u = (coord[i][0] - u1) * du;
2074 GLfloat tmp;
2075 horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
2076 to[i] = (GLuint) (GLint) tmp;
2077 }
2078
2079 dest->start = VEC_ELT(dest, GLuint, start);
2080 dest->count = i;
2081 return dest;
2082}
2083
2084static GLvector3f *eval1_norm( GLvector3f *dest,
2085 GLfloat coord[][4],
2086 GLuint *flags, /* not const */
2087 GLuint start,
2088 struct gl_1d_map *map )
2089{
2090 const GLfloat u1 = map->u1;
2091 const GLfloat du = map->du;
2092 GLfloat (*to)[3] = dest->data;
2093 GLuint i;
2094
2095 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2096 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2097 GLfloat u = (coord[i][0] - u1) * du;
2098 horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
2099 flags[i+1] |= VERT_NORM; /* reset */
2100 }
2101
2102 dest->start = VEC_ELT(dest, GLfloat, start);
2103 dest->count = i;
2104 return dest;
2105}
2106
2107static GLvector4ub *eval1_color( GLvector4ub *dest,
2108 GLfloat coord[][4],
2109 GLuint *flags, /* not const */
2110 GLuint start,
2111 struct gl_1d_map *map )
2112{
2113 const GLfloat u1 = map->u1;
2114 const GLfloat du = map->du;
2115 GLubyte (*to)[4] = dest->data;
2116 GLuint i;
2117
2118 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2119 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2120 GLfloat u = (coord[i][0] - u1) * du;
2121 GLfloat fcolor[4];
2122 horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
2123 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2124 flags[i+1] |= VERT_RGBA; /* reset */
2125 }
2126
2127 dest->start = VEC_ELT(dest, GLubyte, start);
2128 dest->count = i;
2129 return dest;
2130}
2131
2132
2133
2134
2135static GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr,
2136 GLvector3f *norm_ptr,
2137 GLfloat coord[][4],
2138 GLuint *flags,
2139 GLuint start,
2140 GLuint dimension,
2141 struct gl_2d_map *map )
2142{
2143 const GLfloat u1 = map->u1;
2144 const GLfloat du = map->du;
2145 const GLfloat v1 = map->v1;
2146 const GLfloat dv = map->dv;
2147 GLfloat (*obj)[4] = obj_ptr->data;
2148 GLfloat (*normal)[3] = norm_ptr->data;
2149 GLuint i;
2150
2151 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2152 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2153 GLfloat u = (coord[i][0] - u1) * du;
2154 GLfloat v = (coord[i][1] - v1) * dv;
2155 GLfloat du[4], dv[4];
2156
2157 ASSIGN_4V(obj[i], 0,0,0,1);
2158 de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
2159 map->Uorder, map->Vorder);
2160
2161 CROSS3(normal[i], du, dv);
2162 NORMALIZE_3FV(normal[i]);
2163 flags[i+1] |= VERT_NORM;
2164 }
2165
2166 obj_ptr->start = VEC_ELT(obj_ptr, GLfloat, start);
2167 obj_ptr->count = i;
2168 obj_ptr->size = MAX2(obj_ptr->size, dimension);
2169 obj_ptr->flags |= dirty_flags[dimension];
2170 return obj_ptr;
2171}
2172
2173
2174static GLvector4f *eval2_4f( GLvector4f *dest,
2175 GLfloat coord[][4],
2176 const GLuint *flags,
2177 GLuint start,
2178 GLuint dimension,
2179 struct gl_2d_map *map )
2180{
2181 const GLfloat u1 = map->u1;
2182 const GLfloat du = map->du;
2183 const GLfloat v1 = map->v1;
2184 const GLfloat dv = map->dv;
2185 GLfloat (*to)[4] = dest->data;
2186 GLuint i;
2187
2188 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2189 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2190 GLfloat u = (coord[i][0] - u1) * du;
2191 GLfloat v = (coord[i][1] - v1) * dv;
2192 horner_bezier_surf(map->Points, to[i], u, v, dimension,
2193 map->Uorder, map->Vorder);
2194 }
2195
2196 dest->start = VEC_ELT(dest, GLfloat, start);
2197 dest->count = i;
2198 dest->size = MAX2(dest->size, dimension);
2199 dest->flags |= dirty_flags[dimension];
2200 return dest;
2201}
2202
2203
2204static GLvector3f *eval2_norm( GLvector3f *dest,
2205 GLfloat coord[][4],
2206 GLuint *flags,
2207 GLuint start,
2208 struct gl_2d_map *map )
2209{
2210 const GLfloat u1 = map->u1;
2211 const GLfloat du = map->du;
2212 const GLfloat v1 = map->v1;
2213 const GLfloat dv = map->dv;
2214 GLfloat (*to)[3] = dest->data;
2215 GLuint i;
2216
2217 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2218 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2219 GLfloat u = (coord[i][0] - u1) * du;
2220 GLfloat v = (coord[i][1] - v1) * dv;
2221 horner_bezier_surf(map->Points, to[i], u, v, 3,
2222 map->Uorder, map->Vorder);
2223 flags[i+1] |= VERT_NORM; /* reset */
2224 }
2225
2226 dest->start = VEC_ELT(dest, GLfloat, start);
2227 dest->count = i;
2228 return dest;
2229}
2230
2231
2232static GLvector1ui *eval2_1ui( GLvector1ui *dest,
2233 GLfloat coord[][4],
2234 const GLuint *flags,
2235 GLuint start,
2236 struct gl_2d_map *map )
2237{
2238 const GLfloat u1 = map->u1;
2239 const GLfloat du = map->du;
2240 const GLfloat v1 = map->v1;
2241 const GLfloat dv = map->dv;
2242 GLuint *to = dest->data;
2243 GLuint i;
2244
2245 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2246 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2247 GLfloat u = (coord[i][0] - u1) * du;
2248 GLfloat v = (coord[i][1] - v1) * dv;
2249 GLfloat tmp;
2250 horner_bezier_surf(map->Points, &tmp, u, v, 1,
2251 map->Uorder, map->Vorder);
2252
2253 to[i] = (GLuint) (GLint) tmp;
2254 }
2255
2256 dest->start = VEC_ELT(dest, GLuint, start);
2257 dest->count = i;
2258 return dest;
2259}
2260
2261
2262
2263static GLvector4ub *eval2_color( GLvector4ub *dest,
2264 GLfloat coord[][4],
2265 GLuint *flags,
2266 GLuint start,
2267 struct gl_2d_map *map )
2268{
2269 const GLfloat u1 = map->u1;
2270 const GLfloat du = map->du;
2271 const GLfloat v1 = map->v1;
2272 const GLfloat dv = map->dv;
2273 GLubyte (*to)[4] = dest->data;
2274 GLuint i;
2275
2276 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2277 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2278 GLfloat u = (coord[i][0] - u1) * du;
2279 GLfloat v = (coord[i][1] - v1) * dv;
2280 GLfloat fcolor[4];
2281 horner_bezier_surf(map->Points, fcolor, u, v, 4,
2282 map->Uorder, map->Vorder);
2283 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2284 flags[i+1] |= VERT_RGBA; /* reset */
2285 }
2286
2287 dest->start = VEC_ELT(dest, GLubyte, start);
2288 dest->count = i;
2289 return dest;
2290}
2291
2292
2293static GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in,
2294 const GLuint *flags,
2295 GLuint start )
2296{
2297 GLfloat (*to)[4] = out->data;
2298 GLfloat (*from)[4] = in->data;
2299 GLuint i;
2300
2301 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2302 if (!(flags[i] & VERT_EVAL_ANY))
2303 COPY_4FV( to[i], from[i] );
2304
2305 out->start = VEC_ELT(out, GLfloat, start);
2306 return out;
2307}
2308
2309static GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in,
2310 const GLuint *flags,
2311 GLuint start )
2312{
2313 GLfloat (*to)[3] = out->data;
2314 GLfloat (*from)[3] = in->data;
2315 GLuint i;
2316
2317 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2318 if (!(flags[i] & VERT_EVAL_ANY))
2319 COPY_3V( to[i], from[i] );
2320
2321 out->start = VEC_ELT(out, GLfloat, start);
2322 return out;
2323}
2324
2325static GLvector4ub *copy_4ub( GLvector4ub *out,
2326 CONST GLvector4ub *in,
2327 const GLuint *flags,
2328 GLuint start )
2329{
2330 GLubyte (*to)[4] = out->data;
2331 GLubyte (*from)[4] = in->data;
2332 GLuint i;
2333
2334 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2335 if (!(flags[i] & VERT_EVAL_ANY))
2336 COPY_4UBV( to[i], from[i] );
2337
2338 out->start = VEC_ELT(out, GLubyte, start);
2339 return out;
2340}
2341
2342static GLvector1ui *copy_1ui( GLvector1ui *out,
2343 CONST GLvector1ui *in,
2344 const GLuint *flags,
2345 GLuint start )
2346{
2347 GLuint *to = out->data;
2348 CONST GLuint *from = in->data;
2349 GLuint i;
2350
2351 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2352 if (!(flags[i] & VERT_EVAL_ANY))
2353 to[i] = from[i];
2354
2355 out->start = VEC_ELT(out, GLuint, start);
2356 return out;
2357}
2358
2359
2360/* KW: Rewrote this to perform eval on a whole buffer at once.
2361 * Only evaluates active data items, and avoids scribbling
2362 * the source buffer if we are running from a display list.
2363 *
2364 * If the user (in this case looser) sends eval coordinates
2365 * or runs a display list containing eval coords with no
2366 * vertex maps enabled, we have to either copy all non-eval
2367 * data to a new buffer, or find a way of working around
2368 * the eval data. I choose the second option.
2369 *
2370 * KW: This code not reached by cva - use IM to access storage.
2371 */
2372void gl_eval_vb( struct vertex_buffer *VB )
2373{
2374 struct immediate *IM = VB->IM;
2375 GLcontext *ctx = VB->ctx;
2376 GLuint req = ctx->CVA.elt.inputs;
2377 GLfloat (*coord)[4] = VB->ObjPtr->data;
2378 GLuint *flags = VB->Flag;
2379 GLuint new_flags = 0;
2380
2381
2382 GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
2383 GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
2384 GLuint all_eval = IM->AndFlag & VERT_EVAL_ANY;
2385
2386 /* Handle the degenerate cases.
2387 */
2388 if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
2389 VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
2390 VB->EarlyCull = 0;
2391 any_eval1 = GL_FALSE;
2392 }
2393
2394 if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
2395 VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
2396 VB->EarlyCull = 0;
2397 any_eval2 = GL_FALSE;
2398 }
2399
2400 /* KW: This really is a degenerate case - doing this disables
2401 * culling, and causes dummy values for the missing vertices to be
2402 * transformed and clip tested. It also forces the individual
2403 * cliptesting of each primitive in vb_render. I wish there was a
2404 * nice alternative, but I can't say I want to put effort into
2405 * optimizing such a bad usage of the library - I'd much rather
2406 * work on useful changes.
2407 */
2408 if (VB->PurgeFlags) {
2409 if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB->Start;
2410 gl_purge_vertices( VB );
2411 if (!any_eval1 && !any_eval2) return;
2412 } else
2413 VB->IndirectCount = VB->Count;
2414
2415 /* Translate points into coords.
2416 */
2417 if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1))
2418 {
2419 eval_points1( IM->Obj, coord, flags, IM->Start,
2420 ctx->Eval.MapGrid1du,
2421 ctx->Eval.MapGrid1u1);
2422
2423 coord = IM->Obj;
2424 }
2425
2426 if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2))
2427 {
2428 eval_points2( IM->Obj, coord, flags, IM->Start,
2429 ctx->Eval.MapGrid2du,
2430 ctx->Eval.MapGrid2u1,
2431 ctx->Eval.MapGrid2dv,
2432 ctx->Eval.MapGrid2v1 );
2433
2434 coord = IM->Obj;
2435 }
2436
2437 /* Perform the evaluations on active data elements.
2438 */
2439 if (req & VERT_INDEX)
2440 {
2441 GLvector1ui *in_index = VB->IndexPtr;
2442 GLvector1ui *out_index = &IM->v.Index;
2443
2444 if (ctx->Eval.Map1Index && any_eval1)
2445 VB->IndexPtr = eval1_1ui( out_index, coord, flags, IM->Start,
2446 &ctx->EvalMap.Map1Index );
2447
2448 if (ctx->Eval.Map2Index && any_eval2)
2449 VB->IndexPtr = eval2_1ui( out_index, coord, flags, IM->Start,
2450 &ctx->EvalMap.Map2Index );
2451
2452 if (VB->IndexPtr != in_index) {
2453 new_flags |= VERT_INDEX;
2454 if (!all_eval)
2455 VB->IndexPtr = copy_1ui( out_index, in_index, flags, IM->Start );
2456 }
2457 }
2458
2459 if (req & VERT_RGBA)
2460 {
2461 GLvector4ub *in_color = VB->ColorPtr;
2462 GLvector4ub *out_color = &IM->v.Color;
2463
2464 if (ctx->Eval.Map1Color4 && any_eval1)
2465 VB->ColorPtr = eval1_color( out_color, coord, flags, IM->Start,
2466 &ctx->EvalMap.Map1Color4 );
2467
2468 if (ctx->Eval.Map2Color4 && any_eval2)
2469 VB->ColorPtr = eval2_color( out_color, coord, flags, IM->Start,
2470 &ctx->EvalMap.Map2Color4 );
2471
2472 if (VB->ColorPtr != in_color) {
2473 new_flags |= VERT_RGBA;
2474 if (!all_eval)
2475 VB->ColorPtr = copy_4ub( out_color, in_color, flags, IM->Start );
2476 }
2477
2478 VB->Color[0] = VB->Color[1] = VB->ColorPtr;
2479 }
2480
2481
2482 if (req & VERT_NORM)
2483 {
2484 GLvector3f *in_normal = VB->NormalPtr;
2485 GLvector3f *out_normal = &IM->v.Normal;
2486
2487 if (ctx->Eval.Map1Normal && any_eval1)
2488 VB->NormalPtr = eval1_norm( out_normal, coord, flags, IM->Start,
2489 &ctx->EvalMap.Map1Normal );
2490
2491 if (ctx->Eval.Map2Normal && any_eval2)
2492 VB->NormalPtr = eval2_norm( out_normal, coord, flags, IM->Start,
2493 &ctx->EvalMap.Map2Normal );
2494
2495 if (VB->NormalPtr != in_normal) {
2496 new_flags |= VERT_NORM;
2497 if (!all_eval)
2498 VB->NormalPtr = copy_3f( out_normal, in_normal, flags, IM->Start );
2499 }
2500 }
2501
2502
2503 if (req & VERT_TEX_ANY(0))
2504 {
2505 GLvector4f *tc = VB->TexCoordPtr[0];
2506 GLvector4f *in = tc;
2507 GLvector4f *out = &IM->v.TexCoord[0];
2508
2509 if (any_eval1) {
2510 if (ctx->Eval.Map1TextureCoord4)
2511 tc = eval1_4f( out, coord, flags, IM->Start,
2512 4, &ctx->EvalMap.Map1Texture4);
2513 else if (ctx->Eval.Map1TextureCoord3)
2514 tc = eval1_4f( out, coord, flags, IM->Start, 3,
2515 &ctx->EvalMap.Map1Texture3);
2516 else if (ctx->Eval.Map1TextureCoord2)
2517 tc = eval1_4f( out, coord, flags, IM->Start, 2,
2518 &ctx->EvalMap.Map1Texture2);
2519 else if (ctx->Eval.Map1TextureCoord1)
2520 tc = eval1_4f( out, coord, flags, IM->Start, 1,
2521 &ctx->EvalMap.Map1Texture1);
2522 }
2523
2524 if (any_eval2) {
2525 if (ctx->Eval.Map2TextureCoord4)
2526 tc = eval2_4f( out, coord, flags, IM->Start,
2527 4, &ctx->EvalMap.Map2Texture4);
2528 else if (ctx->Eval.Map2TextureCoord3)
2529 tc = eval2_4f( out, coord, flags, IM->Start,
2530 3, &ctx->EvalMap.Map2Texture3);
2531 else if (ctx->Eval.Map2TextureCoord2)
2532 tc = eval2_4f( out, coord, flags, IM->Start,
2533 2, &ctx->EvalMap.Map2Texture2);
2534 else if (ctx->Eval.Map2TextureCoord1)
2535 tc = eval2_4f( out, coord, flags, IM->Start,
2536 1, &ctx->EvalMap.Map2Texture1);
2537 }
2538
2539 if (tc != in) {
2540 new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
2541 if (!all_eval)
2542 tc = copy_4f( out, in, flags, IM->Start );
2543 }
2544
2545 VB->TexCoordPtr[0] = tc;
2546 }
2547
2548
2549 {
2550 GLvector4f *in = VB->ObjPtr;
2551 GLvector4f *out = &IM->v.Obj;
2552 GLvector4f *obj = in;
2553
2554 if (any_eval1) {
2555 if (ctx->Eval.Map1Vertex4)
2556 obj = eval1_4f( out, coord, flags, IM->Start,
2557 4, &ctx->EvalMap.Map1Vertex4);
2558 else
2559 obj = eval1_4f( out, coord, flags, IM->Start,
2560 3, &ctx->EvalMap.Map1Vertex3);
2561 }
2562
2563 if (any_eval2) {
2564 if (ctx->Eval.Map2Vertex4)
2565 {
2566 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2567 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
2568 4, &ctx->EvalMap.Map2Vertex4 );
2569 else
2570 obj = eval2_4f( out, coord, flags, IM->Start,
2571 4, &ctx->EvalMap.Map2Vertex4);
2572 }
2573 else if (ctx->Eval.Map2Vertex3)
2574 {
2575 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2576 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
2577 3, &ctx->EvalMap.Map2Vertex3 );
2578 else
2579 obj = eval2_4f( out, coord, flags, IM->Start,
2580 3, &ctx->EvalMap.Map2Vertex3 );
2581 }
2582 }
2583
2584 if (obj != in && !all_eval)
2585 obj = copy_4f( out, in, flags, IM->Start );
2586
2587 VB->ObjPtr = obj;
2588 }
2589
2590 if (new_flags) {
2591 GLuint *oldflags = VB->Flag;
2592 GLuint *flags = VB->Flag = VB->EvaluatedFlags;
2593 GLuint i;
2594 GLuint count = VB->Count;
2595
2596 if (!flags) {
2597 VB->EvaluatedFlags = (GLuint *) MALLOC(VB->Size * sizeof(GLuint));
2598 flags = VB->Flag = VB->EvaluatedFlags;
2599 }
2600
2601 if (all_eval) {
2602 for (i = 0 ; i < count ; i++)
2603 flags[i] = oldflags[i] | new_flags;
2604 } else {
2605 GLuint andflag = ~0;
2606 for (i = 0 ; i < count ; i++) {
2607 if (oldflags[i] & VERT_EVAL_ANY)
2608 flags[i] = oldflags[i] | new_flags;
2609 andflag &= flags[i];
2610 }
2611 }
2612 }
2613}
2614
2615
2616void gl_MapGrid1f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2 )
2617{
2618 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
2619
2620 if (un<1) {
2621 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
2622 return;
2623 }
2624 ctx->Eval.MapGrid1un = un;
2625 ctx->Eval.MapGrid1u1 = u1;
2626 ctx->Eval.MapGrid1u2 = u2;
2627 ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
2628}
2629
2630
2631void gl_MapGrid2f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2,
2632 GLint vn, GLfloat v1, GLfloat v2 )
2633{
2634 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
2635 if (un<1) {
2636 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
2637 return;
2638 }
2639 if (vn<1) {
2640 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
2641 return;
2642 }
2643 ctx->Eval.MapGrid2un = un;
2644 ctx->Eval.MapGrid2u1 = u1;
2645 ctx->Eval.MapGrid2u2 = u2;
2646 ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
2647 ctx->Eval.MapGrid2vn = vn;
2648 ctx->Eval.MapGrid2v1 = v1;
2649 ctx->Eval.MapGrid2v2 = v2;
2650 ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
2651}
2652
2653
2654
2655void gl_EvalMesh1( GLcontext* ctx, GLenum mode, GLint i1, GLint i2 )
2656{
2657 GLint i;
2658 GLfloat u, du;
2659 GLenum prim;
2660
2661 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
2662
2663 switch (mode) {
2664 case GL_POINT:
2665 prim = GL_POINTS;
2666 break;
2667 case GL_LINE:
2668 prim = GL_LINE_STRIP;
2669 break;
2670 default:
2671 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
2672 return;
2673 }
2674
2675 /* No effect if vertex maps disabled.
2676 */
2677 if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3)
2678 return;
2679
2680 du = ctx->Eval.MapGrid1du;
2681 u = ctx->Eval.MapGrid1u1 + i1 * du;
2682
2683 /* KW: Could short-circuit this to avoid the immediate mechanism.
2684 */
2685 RESET_IMMEDIATE(ctx);
2686
2687 gl_Begin( ctx, prim );
2688 for (i=i1;i<=i2;i++,u+=du) {
2689 gl_EvalCoord1f( ctx, u );
2690 }
2691 gl_End(ctx);
2692}
2693
2694
2695
2696void gl_EvalMesh2( GLcontext* ctx,
2697 GLenum mode,
2698 GLint i1, GLint i2,
2699 GLint j1, GLint j2 )
2700{
2701 GLint i, j;
2702 GLfloat u, du, v, dv, v1, u1;
2703
2704 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
2705
2706 /* No effect if vertex maps disabled.
2707 */
2708 if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3)
2709 return;
2710
2711 du = ctx->Eval.MapGrid2du;
2712 dv = ctx->Eval.MapGrid2dv;
2713 v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
2714 u1 = ctx->Eval.MapGrid2u1 + i1 * du;
2715
2716 RESET_IMMEDIATE(ctx);
2717
2718 switch (mode) {
2719 case GL_POINT:
2720 gl_Begin( ctx, GL_POINTS );
2721 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2722 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2723 gl_EvalCoord2f( ctx, u, v );
2724 }
2725 }
2726 gl_End(ctx);
2727 break;
2728 case GL_LINE:
2729 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2730 gl_Begin( ctx, GL_LINE_STRIP );
2731 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2732 gl_EvalCoord2f( ctx, u, v );
2733 }
2734 gl_End(ctx);
2735 }
2736 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2737 gl_Begin( ctx, GL_LINE_STRIP );
2738 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2739 gl_EvalCoord2f( ctx, u, v );
2740 }
2741 gl_End(ctx);
2742 }
2743 break;
2744 case GL_FILL:
2745 for (v=v1,j=j1;j<j2;j++,v+=dv) {
2746 /* NOTE: a quad strip can't be used because the four */
2747 /* can't be guaranteed to be coplanar! */
2748 gl_Begin( ctx, GL_TRIANGLE_STRIP );
2749 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2750 gl_EvalCoord2f( ctx, u, v );
2751 gl_EvalCoord2f( ctx, u, v+dv );
2752 }
2753 gl_End(ctx);
2754 }
2755 break;
2756 default:
2757 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
2758 return;
2759 }
2760}
Note: See TracBrowser for help on using the repository browser.