1 | /* $Id: tessmono.c,v 1.1 2000-02-09 08:47:38 jeroen Exp $ */
|
---|
2 | /*
|
---|
3 | ** License Applicability. Except to the extent portions of this file are
|
---|
4 | ** made subject to an alternative license as permitted in the SGI Free
|
---|
5 | ** Software License B, Version 1.0 (the "License"), the contents of this
|
---|
6 | ** file are subject only to the provisions of the License. You may not use
|
---|
7 | ** this file except in compliance with the License. You may obtain a copy
|
---|
8 | ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
|
---|
9 | ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
|
---|
10 | **
|
---|
11 | ** http://oss.sgi.com/projects/FreeB
|
---|
12 | **
|
---|
13 | ** Note that, as provided in the License, the Software is distributed on an
|
---|
14 | ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
|
---|
15 | ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
|
---|
16 | ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
|
---|
17 | ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
|
---|
18 | **
|
---|
19 | ** Original Code. The Original Code is: OpenGL Sample Implementation,
|
---|
20 | ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
---|
21 | ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
---|
22 | ** Copyright in any portions created by third parties is as indicated
|
---|
23 | ** elsewhere herein. All Rights Reserved.
|
---|
24 | **
|
---|
25 | ** Additional Notice Provisions: The application programming interfaces
|
---|
26 | ** established by SGI in conjunction with the Original Code are The
|
---|
27 | ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
|
---|
28 | ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
|
---|
29 | ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
|
---|
30 | ** Window System(R) (Version 1.3), released October 19, 1998. This software
|
---|
31 | ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
|
---|
32 | ** published by SGI, but has not been independently verified as being
|
---|
33 | ** compliant with the OpenGL(R) version 1.2.1 Specification.
|
---|
34 | **
|
---|
35 | */
|
---|
36 | /*
|
---|
37 | ** Author: Eric Veach, July 1994.
|
---|
38 | **
|
---|
39 | ** $Date: 2000-02-09 08:47:38 $ $Revision: 1.1 $
|
---|
40 | ** $Header: /home/ktk/tmp/odin/2007/netlabs.cvs/odin32/src/opengl/glu/tess/tessmono.c,v 1.1 2000-02-09 08:47:38 jeroen Exp $
|
---|
41 | */
|
---|
42 |
|
---|
43 | #include "gluos.h"
|
---|
44 | #include <stdlib.h>
|
---|
45 | #include "geom.h"
|
---|
46 | #include "mesh.h"
|
---|
47 | #include "tessmono.h"
|
---|
48 | #include <assert.h>
|
---|
49 |
|
---|
50 | #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
|
---|
51 | eDst->Sym->winding += eSrc->Sym->winding)
|
---|
52 |
|
---|
53 | /* __gl_meshTessellateMonoRegion( face ) tessellates a monotone region
|
---|
54 | * (what else would it do??) The region must consist of a single
|
---|
55 | * loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this
|
---|
56 | * case means that any vertical line intersects the interior of the
|
---|
57 | * region in a single interval.
|
---|
58 | *
|
---|
59 | * Tessellation consists of adding interior edges (actually pairs of
|
---|
60 | * half-edges), to split the region into non-overlapping triangles.
|
---|
61 | *
|
---|
62 | * The basic idea is explained in Preparata and Shamos (which I don''t
|
---|
63 | * have handy right now), although their implementation is more
|
---|
64 | * complicated than this one. The are two edge chains, an upper chain
|
---|
65 | * and a lower chain. We process all vertices from both chains in order,
|
---|
66 | * from right to left.
|
---|
67 | *
|
---|
68 | * The algorithm ensures that the following invariant holds after each
|
---|
69 | * vertex is processed: the untessellated region consists of two
|
---|
70 | * chains, where one chain (say the upper) is a single edge, and
|
---|
71 | * the other chain is concave. The left vertex of the single edge
|
---|
72 | * is always to the left of all vertices in the concave chain.
|
---|
73 | *
|
---|
74 | * Each step consists of adding the rightmost unprocessed vertex to one
|
---|
75 | * of the two chains, and forming a fan of triangles from the rightmost
|
---|
76 | * of two chain endpoints. Determining whether we can add each triangle
|
---|
77 | * to the fan is a simple orientation test. By making the fan as large
|
---|
78 | * as possible, we restore the invariant (check it yourself).
|
---|
79 | */
|
---|
80 | int __gl_meshTessellateMonoRegion( GLUface *face )
|
---|
81 | {
|
---|
82 | GLUhalfEdge *up, *lo;
|
---|
83 |
|
---|
84 | /* All edges are oriented CCW around the boundary of the region.
|
---|
85 | * First, find the half-edge whose origin vertex is rightmost.
|
---|
86 | * Since the sweep goes from left to right, face->anEdge should
|
---|
87 | * be close to the edge we want.
|
---|
88 | */
|
---|
89 | up = face->anEdge;
|
---|
90 | assert( up->Lnext != up && up->Lnext->Lnext != up );
|
---|
91 |
|
---|
92 | for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev )
|
---|
93 | ;
|
---|
94 | for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext )
|
---|
95 | ;
|
---|
96 | lo = up->Lprev;
|
---|
97 |
|
---|
98 | while( up->Lnext != lo ) {
|
---|
99 | if( VertLeq( up->Dst, lo->Org )) {
|
---|
100 | /* up->Dst is on the left. It is safe to form triangles from lo->Org.
|
---|
101 | * The EdgeGoesLeft test guarantees progress even when some triangles
|
---|
102 | * are CW, given that the upper and lower chains are truly monotone.
|
---|
103 | */
|
---|
104 | while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext )
|
---|
105 | || EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) {
|
---|
106 | GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
|
---|
107 | if (tempHalfEdge == NULL) return 0;
|
---|
108 | lo = tempHalfEdge->Sym;
|
---|
109 | }
|
---|
110 | lo = lo->Lprev;
|
---|
111 | } else {
|
---|
112 | /* lo->Org is on the left. We can make CCW triangles from up->Dst. */
|
---|
113 | while( lo->Lnext != up && (EdgeGoesRight( up->Lprev )
|
---|
114 | || EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) {
|
---|
115 | GLUhalfEdge *tempHalfEdge= __gl_meshConnect( up, up->Lprev );
|
---|
116 | if (tempHalfEdge == NULL) return 0;
|
---|
117 | up = tempHalfEdge->Sym;
|
---|
118 | }
|
---|
119 | up = up->Lnext;
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | /* Now lo->Org == up->Dst == the leftmost vertex. The remaining region
|
---|
124 | * can be tessellated in a fan from this leftmost vertex.
|
---|
125 | */
|
---|
126 | assert( lo->Lnext != up );
|
---|
127 | while( lo->Lnext->Lnext != up ) {
|
---|
128 | GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
|
---|
129 | if (tempHalfEdge == NULL) return 0;
|
---|
130 | lo = tempHalfEdge->Sym;
|
---|
131 | }
|
---|
132 |
|
---|
133 | return 1;
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | /* __gl_meshTessellateInterior( mesh ) tessellates each region of
|
---|
138 | * the mesh which is marked "inside" the polygon. Each such region
|
---|
139 | * must be monotone.
|
---|
140 | */
|
---|
141 | int __gl_meshTessellateInterior( GLUmesh *mesh )
|
---|
142 | {
|
---|
143 | GLUface *f, *next;
|
---|
144 |
|
---|
145 | /*LINTED*/
|
---|
146 | for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
|
---|
147 | /* Make sure we don''t try to tessellate the new triangles. */
|
---|
148 | next = f->next;
|
---|
149 | if( f->inside ) {
|
---|
150 | if ( !__gl_meshTessellateMonoRegion( f ) ) return 0;
|
---|
151 | }
|
---|
152 | }
|
---|
153 |
|
---|
154 | return 1;
|
---|
155 | }
|
---|
156 |
|
---|
157 |
|
---|
158 | /* __gl_meshDiscardExterior( mesh ) zaps (ie. sets to NULL) all faces
|
---|
159 | * which are not marked "inside" the polygon. Since further mesh operations
|
---|
160 | * on NULL faces are not allowed, the main purpose is to clean up the
|
---|
161 | * mesh so that exterior loops are not represented in the data structure.
|
---|
162 | */
|
---|
163 | void __gl_meshDiscardExterior( GLUmesh *mesh )
|
---|
164 | {
|
---|
165 | GLUface *f, *next;
|
---|
166 |
|
---|
167 | /*LINTED*/
|
---|
168 | for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
|
---|
169 | /* Since f will be destroyed, save its next pointer. */
|
---|
170 | next = f->next;
|
---|
171 | if( ! f->inside ) {
|
---|
172 | __gl_meshZapFace( f );
|
---|
173 | }
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | #define MARKED_FOR_DELETION 0x7fffffff
|
---|
178 |
|
---|
179 | /* __gl_meshSetWindingNumber( mesh, value, keepOnlyBoundary ) resets the
|
---|
180 | * winding numbers on all edges so that regions marked "inside" the
|
---|
181 | * polygon have a winding number of "value", and regions outside
|
---|
182 | * have a winding number of 0.
|
---|
183 | *
|
---|
184 | * If keepOnlyBoundary is TRUE, it also deletes all edges which do not
|
---|
185 | * separate an interior region from an exterior one.
|
---|
186 | */
|
---|
187 | int __gl_meshSetWindingNumber( GLUmesh *mesh, int value,
|
---|
188 | GLboolean keepOnlyBoundary )
|
---|
189 | {
|
---|
190 | GLUhalfEdge *e, *eNext;
|
---|
191 |
|
---|
192 | for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) {
|
---|
193 | eNext = e->next;
|
---|
194 | if( e->Rface->inside != e->Lface->inside ) {
|
---|
195 |
|
---|
196 | /* This is a boundary edge (one side is interior, one is exterior). */
|
---|
197 | e->winding = (e->Lface->inside) ? value : -value;
|
---|
198 | } else {
|
---|
199 |
|
---|
200 | /* Both regions are interior, or both are exterior. */
|
---|
201 | if( ! keepOnlyBoundary ) {
|
---|
202 | e->winding = 0;
|
---|
203 | } else {
|
---|
204 | if ( !__gl_meshDelete( e ) ) return 0;
|
---|
205 | }
|
---|
206 | }
|
---|
207 | }
|
---|
208 | return 1;
|
---|
209 | }
|
---|