source: trunk/src/opengl/glu/tess/sweep.c

Last change on this file was 2689, checked in by jeroen, 26 years ago

* empty log message *

File size: 47.9 KB
Line 
1/* $Id: sweep.c,v 1.1 2000-02-09 08:47:37 jeroen Exp $ */
2/*
3** License Applicability. Except to the extent portions of this file are
4** made subject to an alternative license as permitted in the SGI Free
5** Software License B, Version 1.0 (the "License"), the contents of this
6** file are subject only to the provisions of the License. You may not use
7** this file except in compliance with the License. You may obtain a copy
8** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
9** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
10**
11** http://oss.sgi.com/projects/FreeB
12**
13** Note that, as provided in the License, the Software is distributed on an
14** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
15** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
16** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
17** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
18**
19** Original Code. The Original Code is: OpenGL Sample Implementation,
20** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
21** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
22** Copyright in any portions created by third parties is as indicated
23** elsewhere herein. All Rights Reserved.
24**
25** Additional Notice Provisions: The application programming interfaces
26** established by SGI in conjunction with the Original Code are The
27** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
28** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
29** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
30** Window System(R) (Version 1.3), released October 19, 1998. This software
31** was created using the OpenGL(R) version 1.2.1 Sample Implementation
32** published by SGI, but has not been independently verified as being
33** compliant with the OpenGL(R) version 1.2.1 Specification.
34**
35*/
36/*
37** Author: Eric Veach, July 1994.
38**
39** $Date: 2000-02-09 08:47:37 $ $Revision: 1.1 $
40** $Header: /home/ktk/tmp/odin/2007/netlabs.cvs/odin32/src/opengl/glu/tess/sweep.c,v 1.1 2000-02-09 08:47:37 jeroen Exp $
41*/
42
43#include "gluos.h"
44#include <assert.h>
45#include <stddef.h>
46#include <setjmp.h> /* longjmp */
47#include <limits.h> /* LONG_MAX */
48
49#include "mesh.h"
50#include "geom.h"
51#include "tess.h"
52#include "dict.h"
53#include "priorityq.h"
54#include "memalloc.h"
55#include "sweep.h"
56
57#define TRUE 1
58#define FALSE 0
59
60#ifdef FOR_TRITE_TEST_PROGRAM
61extern void DebugEvent( GLUtesselator *tess );
62#else
63#define DebugEvent( tess )
64#endif
65
66/*
67 * Invariants for the Edge Dictionary.
68 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
69 * at any valid location of the sweep event
70 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
71 * share a common endpoint
72 * - for each e, e->Dst has been processed, but not e->Org
73 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
74 * where "event" is the current sweep line event.
75 * - no edge e has zero length
76 *
77 * Invariants for the Mesh (the processed portion).
78 * - the portion of the mesh left of the sweep line is a planar graph,
79 * ie. there is *some* way to embed it in the plane
80 * - no processed edge has zero length
81 * - no two processed vertices have identical coordinates
82 * - each "inside" region is monotone, ie. can be broken into two chains
83 * of monotonically increasing vertices according to VertLeq(v1,v2)
84 * - a non-invariant: these chains may intersect (very slightly)
85 *
86 * Invariants for the Sweep.
87 * - if none of the edges incident to the event vertex have an activeRegion
88 * (ie. none of these edges are in the edge dictionary), then the vertex
89 * has only right-going edges.
90 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
91 * by ConnectRightVertex), then it is the only right-going edge from
92 * its associated vertex. (This says that these edges exist only
93 * when it is necessary.)
94 */
95
96#ifndef __WIN32OS2__
97#define MAX(x,y) ((x) >= (y) ? (x) : (y))
98#define MIN(x,y) ((x) <= (y) ? (x) : (y))
99#endif
100
101/* When we merge two edges into one, we need to compute the combined
102 * winding of the new edge.
103 */
104#define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
105 eDst->Sym->winding += eSrc->Sym->winding)
106
107static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
108static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
109static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );
110
111static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
112 ActiveRegion *reg2 )
113/*
114 * Both edges must be directed from right to left (this is the canonical
115 * direction for the upper edge of each region).
116 *
117 * The strategy is to evaluate a "t" value for each edge at the
118 * current sweep line position, given by tess->event. The calculations
119 * are designed to be very stable, but of course they are not perfect.
120 *
121 * Special case: if both edge destinations are at the sweep event,
122 * we sort the edges by slope (they would otherwise compare equally).
123 */
124{
125 GLUvertex *event = tess->event;
126 GLUhalfEdge *e1, *e2;
127 GLdouble t1, t2;
128
129 e1 = reg1->eUp;
130 e2 = reg2->eUp;
131
132 if( e1->Dst == event ) {
133 if( e2->Dst == event ) {
134 /* Two edges right of the sweep line which meet at the sweep event.
135 * Sort them by slope.
136 */
137 if( VertLeq( e1->Org, e2->Org )) {
138 return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
139 }
140 return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
141 }
142 return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
143 }
144 if( e2->Dst == event ) {
145 return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
146 }
147
148 /* General case - compute signed distance *from* e1, e2 to event */
149 t1 = EdgeEval( e1->Dst, event, e1->Org );
150 t2 = EdgeEval( e2->Dst, event, e2->Org );
151 return (t1 >= t2);
152}
153
154
155static void DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
156{
157 if( reg->fixUpperEdge ) {
158 /* It was created with zero winding number, so it better be
159 * deleted with zero winding number (ie. it better not get merged
160 * with a real edge).
161 */
162 assert( reg->eUp->winding == 0 );
163 }
164 reg->eUp->activeRegion = NULL;
165 dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */
166 memFree( reg );
167}
168
169
170static int FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
171/*
172 * Replace an upper edge which needs fixing (see ConnectRightVertex).
173 */
174{
175 assert( reg->fixUpperEdge );
176 if ( !__gl_meshDelete( reg->eUp ) ) return 0;
177 reg->fixUpperEdge = FALSE;
178 reg->eUp = newEdge;
179 newEdge->activeRegion = reg;
180
181 return 1;
182}
183
184static ActiveRegion *TopLeftRegion( ActiveRegion *reg )
185{
186 GLUvertex *org = reg->eUp->Org;
187 GLUhalfEdge *e;
188
189 /* Find the region above the uppermost edge with the same origin */
190 do {
191 reg = RegionAbove( reg );
192 } while( reg->eUp->Org == org );
193
194 /* If the edge above was a temporary edge introduced by ConnectRightVertex,
195 * now is the time to fix it.
196 */
197 if( reg->fixUpperEdge ) {
198 e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
199 if (e == NULL) return NULL;
200 if ( !FixUpperEdge( reg, e ) ) return NULL;
201 reg = RegionAbove( reg );
202 }
203 return reg;
204}
205
206static ActiveRegion *TopRightRegion( ActiveRegion *reg )
207{
208 GLUvertex *dst = reg->eUp->Dst;
209
210 /* Find the region above the uppermost edge with the same destination */
211 do {
212 reg = RegionAbove( reg );
213 } while( reg->eUp->Dst == dst );
214 return reg;
215}
216
217static ActiveRegion *AddRegionBelow( GLUtesselator *tess,
218 ActiveRegion *regAbove,
219 GLUhalfEdge *eNewUp )
220/*
221 * Add a new active region to the sweep line, *somewhere* below "regAbove"
222 * (according to where the new edge belongs in the sweep-line dictionary).
223 * The upper edge of the new region will be "eNewUp".
224 * Winding number and "inside" flag are not updated.
225 */
226{
227 ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
228 if (regNew == NULL) longjmp(tess->env,1);
229
230 regNew->eUp = eNewUp;
231 /* __gl_dictListInsertBefore */
232 regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
233 if (regNew->nodeUp == NULL) longjmp(tess->env,1);
234 regNew->fixUpperEdge = FALSE;
235 regNew->sentinel = FALSE;
236 regNew->dirty = FALSE;
237
238 eNewUp->activeRegion = regNew;
239 return regNew;
240}
241
242static GLboolean IsWindingInside( GLUtesselator *tess, int n )
243{
244 switch( tess->windingRule ) {
245 case GLU_TESS_WINDING_ODD:
246 return (n & 1);
247 case GLU_TESS_WINDING_NONZERO:
248 return (n != 0);
249 case GLU_TESS_WINDING_POSITIVE:
250 return (n > 0);
251 case GLU_TESS_WINDING_NEGATIVE:
252 return (n < 0);
253 case GLU_TESS_WINDING_ABS_GEQ_TWO:
254 return (n >= 2) || (n <= -2);
255 }
256 /*LINTED*/
257 assert( FALSE );
258 /*NOTREACHED*/
259
260 return 0; /* Elim compiler warning */
261}
262
263
264static void ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
265{
266 reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
267 reg->inside = IsWindingInside( tess, reg->windingNumber );
268}
269
270
271static void FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
272/*
273 * Delete a region from the sweep line. This happens when the upper
274 * and lower chains of a region meet (at a vertex on the sweep line).
275 * The "inside" flag is copied to the appropriate mesh face (we could
276 * not do this before -- since the structure of the mesh is always
277 * changing, this face may not have even existed until now).
278 */
279{
280 GLUhalfEdge *e = reg->eUp;
281 GLUface *f = e->Lface;
282
283 f->inside = reg->inside;
284 f->anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */
285 DeleteRegion( tess, reg );
286}
287
288
289static GLUhalfEdge *FinishLeftRegions( GLUtesselator *tess,
290 ActiveRegion *regFirst, ActiveRegion *regLast )
291/*
292 * We are given a vertex with one or more left-going edges. All affected
293 * edges should be in the edge dictionary. Starting at regFirst->eUp,
294 * we walk down deleting all regions where both edges have the same
295 * origin vOrg. At the same time we copy the "inside" flag from the
296 * active region to the face, since at this point each face will belong
297 * to at most one region (this was not necessarily true until this point
298 * in the sweep). The walk stops at the region above regLast; if regLast
299 * is NULL we walk as far as possible. At the same time we relink the
300 * mesh if necessary, so that the ordering of edges around vOrg is the
301 * same as in the dictionary.
302 */
303{
304 ActiveRegion *reg, *regPrev;
305 GLUhalfEdge *e, *ePrev;
306
307 regPrev = regFirst;
308 ePrev = regFirst->eUp;
309 while( regPrev != regLast ) {
310 regPrev->fixUpperEdge = FALSE; /* placement was OK */
311 reg = RegionBelow( regPrev );
312 e = reg->eUp;
313 if( e->Org != ePrev->Org ) {
314 if( ! reg->fixUpperEdge ) {
315 /* Remove the last left-going edge. Even though there are no further
316 * edges in the dictionary with this origin, there may be further
317 * such edges in the mesh (if we are adding left edges to a vertex
318 * that has already been processed). Thus it is important to call
319 * FinishRegion rather than just DeleteRegion.
320 */
321 FinishRegion( tess, regPrev );
322 break;
323 }
324 /* If the edge below was a temporary edge introduced by
325 * ConnectRightVertex, now is the time to fix it.
326 */
327 e = __gl_meshConnect( ePrev->Lprev, e->Sym );
328 if (e == NULL) longjmp(tess->env,1);
329 if ( !FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
330 }
331
332 /* Relink edges so that ePrev->Onext == e */
333 if( ePrev->Onext != e ) {
334 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
335 if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
336 }
337 FinishRegion( tess, regPrev ); /* may change reg->eUp */
338 ePrev = reg->eUp;
339 regPrev = reg;
340 }
341 return ePrev;
342}
343
344
345static void AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
346 GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
347 GLboolean cleanUp )
348/*
349 * Purpose: insert right-going edges into the edge dictionary, and update
350 * winding numbers and mesh connectivity appropriately. All right-going
351 * edges share a common origin vOrg. Edges are inserted CCW starting at
352 * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any
353 * left-going edges already processed, then eTopLeft must be the edge
354 * such that an imaginary upward vertical segment from vOrg would be
355 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
356 * should be NULL.
357 */
358{
359 ActiveRegion *reg, *regPrev;
360 GLUhalfEdge *e, *ePrev;
361 int firstTime = TRUE;
362
363 /* Insert the new right-going edges in the dictionary */
364 e = eFirst;
365 do {
366 assert( VertLeq( e->Org, e->Dst ));
367 AddRegionBelow( tess, regUp, e->Sym );
368 e = e->Onext;
369 } while ( e != eLast );
370
371 /* Walk *all* right-going edges from e->Org, in the dictionary order,
372 * updating the winding numbers of each region, and re-linking the mesh
373 * edges to match the dictionary ordering (if necessary).
374 */
375 if( eTopLeft == NULL ) {
376 eTopLeft = RegionBelow( regUp )->eUp->Rprev;
377 }
378 regPrev = regUp;
379 ePrev = eTopLeft;
380 for( ;; ) {
381 reg = RegionBelow( regPrev );
382 e = reg->eUp->Sym;
383 if( e->Org != ePrev->Org ) break;
384
385 if( e->Onext != ePrev ) {
386 /* Unlink e from its current position, and relink below ePrev */
387 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
388 if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
389 }
390 /* Compute the winding number and "inside" flag for the new regions */
391 reg->windingNumber = regPrev->windingNumber - e->winding;
392 reg->inside = IsWindingInside( tess, reg->windingNumber );
393
394 /* Check for two outgoing edges with same slope -- process these
395 * before any intersection tests (see example in __gl_computeInterior).
396 */
397 regPrev->dirty = TRUE;
398 if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
399 AddWinding( e, ePrev );
400 DeleteRegion( tess, regPrev );
401 if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
402 }
403 firstTime = FALSE;
404 regPrev = reg;
405 ePrev = e;
406 }
407 regPrev->dirty = TRUE;
408 assert( regPrev->windingNumber - e->winding == reg->windingNumber );
409
410 if( cleanUp ) {
411 /* Check for intersections between newly adjacent edges. */
412 WalkDirtyRegions( tess, regPrev );
413 }
414}
415
416
417static void CallCombine( GLUtesselator *tess, GLUvertex *isect,
418 void *data[4], GLfloat weights[4], int needed )
419{
420 GLdouble coords[3];
421
422 /* Copy coord data in case the callback changes it. */
423 coords[0] = isect->coords[0];
424 coords[1] = isect->coords[1];
425 coords[2] = isect->coords[2];
426
427 isect->data = NULL;
428 CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
429 if( isect->data == NULL ) {
430 if( ! needed ) {
431 isect->data = data[0];
432 } else if( ! tess->fatalError ) {
433 /* The only way fatal error is when two edges are found to intersect,
434 * but the user has not provided the callback necessary to handle
435 * generated intersection points.
436 */
437 CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK );
438 tess->fatalError = TRUE;
439 }
440 }
441}
442
443static void SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
444 GLUhalfEdge *e2 )
445/*
446 * Two vertices with idential coordinates are combined into one.
447 * e1->Org is kept, while e2->Org is discarded.
448 */
449{
450 void *data[4] = { NULL, NULL, NULL, NULL };
451 GLfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };
452
453 data[0] = e1->Org->data;
454 data[1] = e2->Org->data;
455 CallCombine( tess, e1->Org, data, weights, FALSE );
456 if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1);
457}
458
459static void VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
460 GLfloat *weights )
461/*
462 * Find some weights which describe how the intersection vertex is
463 * a linear combination of "org" and "dest". Each of the two edges
464 * which generated "isect" is allocated 50% of the weight; each edge
465 * splits the weight between its org and dst according to the
466 * relative distance to "isect".
467 */
468{
469 GLdouble t1 = VertL1dist( org, isect );
470 GLdouble t2 = VertL1dist( dst, isect );
471
472 weights[0] = 0.5 * t2 / (t1 + t2);
473 weights[1] = 0.5 * t1 / (t1 + t2);
474 isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
475 isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
476 isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
477}
478
479
480static void GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
481 GLUvertex *orgUp, GLUvertex *dstUp,
482 GLUvertex *orgLo, GLUvertex *dstLo )
483/*
484 * We've computed a new intersection point, now we need a "data" pointer
485 * from the user so that we can refer to this new vertex in the
486 * rendering callbacks.
487 */
488{
489 void *data[4];
490 GLfloat weights[4];
491
492 data[0] = orgUp->data;
493 data[1] = dstUp->data;
494 data[2] = orgLo->data;
495 data[3] = dstLo->data;
496
497 isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
498 VertexWeights( isect, orgUp, dstUp, &weights[0] );
499 VertexWeights( isect, orgLo, dstLo, &weights[2] );
500
501 CallCombine( tess, isect, data, weights, TRUE );
502}
503
504static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
505/*
506 * Check the upper and lower edge of "regUp", to make sure that the
507 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
508 * origin is leftmost).
509 *
510 * The main purpose is to splice right-going edges with the same
511 * dest vertex and nearly identical slopes (ie. we can't distinguish
512 * the slopes numerically). However the splicing can also help us
513 * to recover from numerical errors. For example, suppose at one
514 * point we checked eUp and eLo, and decided that eUp->Org is barely
515 * above eLo. Then later, we split eLo into two edges (eg. from
516 * a splice operation like this one). This can change the result of
517 * our test so that now eUp->Org is incident to eLo, or barely below it.
518 * We must correct this condition to maintain the dictionary invariants.
519 *
520 * One possibility is to check these edges for intersection again
521 * (ie. CheckForIntersect). This is what we do if possible. However
522 * CheckForIntersect requires that tess->event lies between eUp and eLo,
523 * so that it has something to fall back on when the intersection
524 * calculation gives us an unusable answer. So, for those cases where
525 * we can't check for intersection, this routine fixes the problem
526 * by just splicing the offending vertex into the other edge.
527 * This is a guaranteed solution, no matter how degenerate things get.
528 * Basically this is a combinatorial solution to a numerical problem.
529 */
530{
531 ActiveRegion *regLo = RegionBelow(regUp);
532 GLUhalfEdge *eUp = regUp->eUp;
533 GLUhalfEdge *eLo = regLo->eUp;
534
535 if( VertLeq( eUp->Org, eLo->Org )) {
536 if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;
537
538 /* eUp->Org appears to be below eLo */
539 if( ! VertEq( eUp->Org, eLo->Org )) {
540 /* Splice eUp->Org into eLo */
541 if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
542 if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
543 regUp->dirty = regLo->dirty = TRUE;
544
545 } else if( eUp->Org != eLo->Org ) {
546 /* merge the two vertices, discarding eUp->Org */
547 pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
548 SpliceMergeVertices( tess, eLo->Oprev, eUp );
549 }
550 } else {
551 if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;
552
553 /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
554 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
555 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
556 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
557 }
558 return TRUE;
559}
560
561static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
562/*
563 * Check the upper and lower edge of "regUp", to make sure that the
564 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
565 * destination is rightmost).
566 *
567 * Theoretically, this should always be true. However, splitting an edge
568 * into two pieces can change the results of previous tests. For example,
569 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
570 * is barely above eLo. Then later, we split eLo into two edges (eg. from
571 * a splice operation like this one). This can change the result of
572 * the test so that now eUp->Dst is incident to eLo, or barely below it.
573 * We must correct this condition to maintain the dictionary invariants
574 * (otherwise new edges might get inserted in the wrong place in the
575 * dictionary, and bad stuff will happen).
576 *
577 * We fix the problem by just splicing the offending vertex into the
578 * other edge.
579 */
580{
581 ActiveRegion *regLo = RegionBelow(regUp);
582 GLUhalfEdge *eUp = regUp->eUp;
583 GLUhalfEdge *eLo = regLo->eUp;
584 GLUhalfEdge *e;
585
586 assert( ! VertEq( eUp->Dst, eLo->Dst ));
587
588 if( VertLeq( eUp->Dst, eLo->Dst )) {
589 if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;
590
591 /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
592 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
593 e = __gl_meshSplitEdge( eUp );
594 if (e == NULL) longjmp(tess->env,1);
595 if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
596 e->Lface->inside = regUp->inside;
597 } else {
598 if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;
599
600 /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
601 regUp->dirty = regLo->dirty = TRUE;
602 e = __gl_meshSplitEdge( eLo );
603 if (e == NULL) longjmp(tess->env,1);
604 if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
605 e->Rface->inside = regUp->inside;
606 }
607 return TRUE;
608}
609
610
611static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
612/*
613 * Check the upper and lower edges of the given region to see if
614 * they intersect. If so, create the intersection and add it
615 * to the data structures.
616 *
617 * Returns TRUE if adding the new intersection resulted in a recursive
618 * call to AddRightEdges(); in this case all "dirty" regions have been
619 * checked for intersections, and possibly regUp has been deleted.
620 */
621{
622 ActiveRegion *regLo = RegionBelow(regUp);
623 GLUhalfEdge *eUp = regUp->eUp;
624 GLUhalfEdge *eLo = regLo->eUp;
625 GLUvertex *orgUp = eUp->Org;
626 GLUvertex *orgLo = eLo->Org;
627 GLUvertex *dstUp = eUp->Dst;
628 GLUvertex *dstLo = eLo->Dst;
629 GLdouble tMinUp, tMaxLo;
630 GLUvertex isect, *orgMin;
631 GLUhalfEdge *e;
632
633 assert( ! VertEq( dstLo, dstUp ));
634 assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
635 assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
636 assert( orgUp != tess->event && orgLo != tess->event );
637 assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
638
639 if( orgUp == orgLo ) return FALSE; /* right endpoints are the same */
640
641 tMinUp = MIN( orgUp->t, dstUp->t );
642 tMaxLo = MAX( orgLo->t, dstLo->t );
643 if( tMinUp > tMaxLo ) return FALSE; /* t ranges do not overlap */
644
645 if( VertLeq( orgUp, orgLo )) {
646 if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
647 } else {
648 if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
649 }
650
651 /* At this point the edges intersect, at least marginally */
652 DebugEvent( tess );
653
654 __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
655 /* The following properties are guaranteed: */
656 assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
657 assert( isect.t <= MAX( orgLo->t, dstLo->t ));
658 assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
659 assert( isect.s <= MAX( orgLo->s, orgUp->s ));
660
661 if( VertLeq( &isect, tess->event )) {
662 /* The intersection point lies slightly to the left of the sweep line,
663 * so move it until it''s slightly to the right of the sweep line.
664 * (If we had perfect numerical precision, this would never happen
665 * in the first place). The easiest and safest thing to do is
666 * replace the intersection by tess->event.
667 */
668 isect.s = tess->event->s;
669 isect.t = tess->event->t;
670 }
671 /* Similarly, if the computed intersection lies to the right of the
672 * rightmost origin (which should rarely happen), it can cause
673 * unbelievable inefficiency on sufficiently degenerate inputs.
674 * (If you have the test program, try running test54.d with the
675 * "X zoom" option turned on).
676 */
677 orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
678 if( VertLeq( orgMin, &isect )) {
679 isect.s = orgMin->s;
680 isect.t = orgMin->t;
681 }
682
683 if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
684 /* Easy case -- intersection at one of the right endpoints */
685 (void) CheckForRightSplice( tess, regUp );
686 return FALSE;
687 }
688
689 if( (! VertEq( dstUp, tess->event )
690 && EdgeSign( dstUp, tess->event, &isect ) >= 0)
691 || (! VertEq( dstLo, tess->event )
692 && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
693 {
694 /* Very unusual -- the new upper or lower edge would pass on the
695 * wrong side of the sweep event, or through it. This can happen
696 * due to very small numerical errors in the intersection calculation.
697 */
698 if( dstLo == tess->event ) {
699 /* Splice dstLo into eUp, and process the new region(s) */
700 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
701 if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
702 regUp = TopLeftRegion( regUp );
703 if (regUp == NULL) longjmp(tess->env,1);
704 eUp = RegionBelow(regUp)->eUp;
705 FinishLeftRegions( tess, RegionBelow(regUp), regLo );
706 AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
707 return TRUE;
708 }
709 if( dstUp == tess->event ) {
710 /* Splice dstUp into eLo, and process the new region(s) */
711 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
712 if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
713 regLo = regUp;
714 regUp = TopRightRegion( regUp );
715 e = RegionBelow(regUp)->eUp->Rprev;
716 regLo->eUp = eLo->Oprev;
717 eLo = FinishLeftRegions( tess, regLo, NULL );
718 AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
719 return TRUE;
720 }
721 /* Special case: called from ConnectRightVertex. If either
722 * edge passes on the wrong side of tess->event, split it
723 * (and wait for ConnectRightVertex to splice it appropriately).
724 */
725 if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
726 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
727 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
728 eUp->Org->s = tess->event->s;
729 eUp->Org->t = tess->event->t;
730 }
731 if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
732 regUp->dirty = regLo->dirty = TRUE;
733 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
734 eLo->Org->s = tess->event->s;
735 eLo->Org->t = tess->event->t;
736 }
737 /* leave the rest for ConnectRightVertex */
738 return FALSE;
739 }
740
741 /* General case -- split both edges, splice into new vertex.
742 * When we do the splice operation, the order of the arguments is
743 * arbitrary as far as correctness goes. However, when the operation
744 * creates a new face, the work done is proportional to the size of
745 * the new face. We expect the faces in the processed part of
746 * the mesh (ie. eUp->Lface) to be smaller than the faces in the
747 * unprocessed original contours (which will be eLo->Oprev->Lface).
748 */
749 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
750 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
751 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
752 eUp->Org->s = isect.s;
753 eUp->Org->t = isect.t;
754 eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
755 if (eUp->Org->pqHandle == LONG_MAX) {
756 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
757 tess->pq = NULL;
758 longjmp(tess->env,1);
759 }
760 GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
761 RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
762 return FALSE;
763}
764
765static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
766/*
767 * When the upper or lower edge of any region changes, the region is
768 * marked "dirty". This routine walks through all the dirty regions
769 * and makes sure that the dictionary invariants are satisfied
770 * (see the comments at the beginning of this file). Of course
771 * new dirty regions can be created as we make changes to restore
772 * the invariants.
773 */
774{
775 ActiveRegion *regLo = RegionBelow(regUp);
776 GLUhalfEdge *eUp, *eLo;
777
778 for( ;; ) {
779 /* Find the lowest dirty region (we walk from the bottom up). */
780 while( regLo->dirty ) {
781 regUp = regLo;
782 regLo = RegionBelow(regLo);
783 }
784 if( ! regUp->dirty ) {
785 regLo = regUp;
786 regUp = RegionAbove( regUp );
787 if( regUp == NULL || ! regUp->dirty ) {
788 /* We've walked all the dirty regions */
789 return;
790 }
791 }
792 regUp->dirty = FALSE;
793 eUp = regUp->eUp;
794 eLo = regLo->eUp;
795
796 if( eUp->Dst != eLo->Dst ) {
797 /* Check that the edge ordering is obeyed at the Dst vertices. */
798 if( CheckForLeftSplice( tess, regUp )) {
799
800 /* If the upper or lower edge was marked fixUpperEdge, then
801 * we no longer need it (since these edges are needed only for
802 * vertices which otherwise have no right-going edges).
803 */
804 if( regLo->fixUpperEdge ) {
805 DeleteRegion( tess, regLo );
806 if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
807 regLo = RegionBelow( regUp );
808 eLo = regLo->eUp;
809 } else if( regUp->fixUpperEdge ) {
810 DeleteRegion( tess, regUp );
811 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
812 regUp = RegionAbove( regLo );
813 eUp = regUp->eUp;
814 }
815 }
816 }
817 if( eUp->Org != eLo->Org ) {
818 if( eUp->Dst != eLo->Dst
819 && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
820 && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
821 {
822 /* When all else fails in CheckForIntersect(), it uses tess->event
823 * as the intersection location. To make this possible, it requires
824 * that tess->event lie between the upper and lower edges, and also
825 * that neither of these is marked fixUpperEdge (since in the worst
826 * case it might splice one of these edges into tess->event, and
827 * violate the invariant that fixable edges are the only right-going
828 * edge from their associated vertex).
829 */
830 if( CheckForIntersect( tess, regUp )) {
831 /* WalkDirtyRegions() was called recursively; we're done */
832 return;
833 }
834 } else {
835 /* Even though we can't use CheckForIntersect(), the Org vertices
836 * may violate the dictionary edge ordering. Check and correct this.
837 */
838 (void) CheckForRightSplice( tess, regUp );
839 }
840 }
841 if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
842 /* A degenerate loop consisting of only two edges -- delete it. */
843 AddWinding( eLo, eUp );
844 DeleteRegion( tess, regUp );
845 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
846 regUp = RegionAbove( regLo );
847 }
848 }
849}
850
851
852static void ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
853 GLUhalfEdge *eBottomLeft )
854/*
855 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
856 * to the unprocessed portion of the mesh. Since there are no right-going
857 * edges, two regions (one above vEvent and one below) are being merged
858 * into one. "regUp" is the upper of these two regions.
859 *
860 * There are two reasons for doing this (adding a right-going edge):
861 * - if the two regions being merged are "inside", we must add an edge
862 * to keep them separated (the combined region would not be monotone).
863 * - in any case, we must leave some record of vEvent in the dictionary,
864 * so that we can merge vEvent with features that we have not seen yet.
865 * For example, maybe there is a vertical edge which passes just to
866 * the right of vEvent; we would like to splice vEvent into this edge.
867 *
868 * However, we don't want to connect vEvent to just any vertex. We don''t
869 * want the new edge to cross any other edges; otherwise we will create
870 * intersection vertices even when the input data had no self-intersections.
871 * (This is a bad thing; if the user's input data has no intersections,
872 * we don't want to generate any false intersections ourselves.)
873 *
874 * Our eventual goal is to connect vEvent to the leftmost unprocessed
875 * vertex of the combined region (the union of regUp and regLo).
876 * But because of unseen vertices with all right-going edges, and also
877 * new vertices which may be created by edge intersections, we don''t
878 * know where that leftmost unprocessed vertex is. In the meantime, we
879 * connect vEvent to the closest vertex of either chain, and mark the region
880 * as "fixUpperEdge". This flag says to delete and reconnect this edge
881 * to the next processed vertex on the boundary of the combined region.
882 * Quite possibly the vertex we connected to will turn out to be the
883 * closest one, in which case we won''t need to make any changes.
884 */
885{
886 GLUhalfEdge *eNew;
887 GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
888 ActiveRegion *regLo = RegionBelow(regUp);
889 GLUhalfEdge *eUp = regUp->eUp;
890 GLUhalfEdge *eLo = regLo->eUp;
891 int degenerate = FALSE;
892
893 if( eUp->Dst != eLo->Dst ) {
894 (void) CheckForIntersect( tess, regUp );
895 }
896
897 /* Possible new degeneracies: upper or lower edge of regUp may pass
898 * through vEvent, or may coincide with new intersection vertex
899 */
900 if( VertEq( eUp->Org, tess->event )) {
901 if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
902 regUp = TopLeftRegion( regUp );
903 if (regUp == NULL) longjmp(tess->env,1);
904 eTopLeft = RegionBelow( regUp )->eUp;
905 FinishLeftRegions( tess, RegionBelow(regUp), regLo );
906 degenerate = TRUE;
907 }
908 if( VertEq( eLo->Org, tess->event )) {
909 if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
910 eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
911 degenerate = TRUE;
912 }
913 if( degenerate ) {
914 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
915 return;
916 }
917
918 /* Non-degenerate situation -- need to add a temporary, fixable edge.
919 * Connect to the closer of eLo->Org, eUp->Org.
920 */
921 if( VertLeq( eLo->Org, eUp->Org )) {
922 eNew = eLo->Oprev;
923 } else {
924 eNew = eUp;
925 }
926 eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
927 if (eNew == NULL) longjmp(tess->env,1);
928
929 /* Prevent cleanup, otherwise eNew might disappear before we've even
930 * had a chance to mark it as a temporary edge.
931 */
932 AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
933 eNew->Sym->activeRegion->fixUpperEdge = TRUE;
934 WalkDirtyRegions( tess, regUp );
935}
936
937/* Because vertices at exactly the same location are merged together
938 * before we process the sweep event, some degenerate cases can't occur.
939 * However if someone eventually makes the modifications required to
940 * merge features which are close together, the cases below marked
941 * TOLERANCE_NONZERO will be useful. They were debugged before the
942 * code to merge identical vertices in the main loop was added.
943 */
944#define TOLERANCE_NONZERO FALSE
945
946static void ConnectLeftDegenerate( GLUtesselator *tess,
947 ActiveRegion *regUp, GLUvertex *vEvent )
948/*
949 * The event vertex lies exacty on an already-processed edge or vertex.
950 * Adding the new vertex involves splicing it into the already-processed
951 * part of the mesh.
952 */
953{
954 GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
955 ActiveRegion *reg;
956
957 e = regUp->eUp;
958 if( VertEq( e->Org, vEvent )) {
959 /* e->Org is an unprocessed vertex - just combine them, and wait
960 * for e->Org to be pulled from the queue
961 */
962 assert( TOLERANCE_NONZERO );
963 SpliceMergeVertices( tess, e, vEvent->anEdge );
964 return;
965 }
966
967 if( ! VertEq( e->Dst, vEvent )) {
968 /* General case -- splice vEvent into edge e which passes through it */
969 if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
970 if( regUp->fixUpperEdge ) {
971 /* This edge was fixable -- delete unused portion of original edge */
972 if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
973 regUp->fixUpperEdge = FALSE;
974 }
975 if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
976 SweepEvent( tess, vEvent ); /* recurse */
977 return;
978 }
979
980 /* vEvent coincides with e->Dst, which has already been processed.
981 * Splice in the additional right-going edges.
982 */
983 assert( TOLERANCE_NONZERO );
984 regUp = TopRightRegion( regUp );
985 reg = RegionBelow( regUp );
986 eTopRight = reg->eUp->Sym;
987 eTopLeft = eLast = eTopRight->Onext;
988 if( reg->fixUpperEdge ) {
989 /* Here e->Dst has only a single fixable edge going right.
990 * We can delete it since now we have some real right-going edges.
991 */
992 assert( eTopLeft != eTopRight ); /* there are some left edges too */
993 DeleteRegion( tess, reg );
994 if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
995 eTopRight = eTopLeft->Oprev;
996 }
997 if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
998 if( ! EdgeGoesLeft( eTopLeft )) {
999 /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
1000 eTopLeft = NULL;
1001 }
1002 AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
1003}
1004
1005
1006static void ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
1007/*
1008 * Purpose: connect a "left" vertex (one where both edges go right)
1009 * to the processed portion of the mesh. Let R be the active region
1010 * containing vEvent, and let U and L be the upper and lower edge
1011 * chains of R. There are two possibilities:
1012 *
1013 * - the normal case: split R into two regions, by connecting vEvent to
1014 * the rightmost vertex of U or L lying to the left of the sweep line
1015 *
1016 * - the degenerate case: if vEvent is close enough to U or L, we
1017 * merge vEvent into that edge chain. The subcases are:
1018 * - merging with the rightmost vertex of U or L
1019 * - merging with the active edge of U or L
1020 * - merging with an already-processed portion of U or L
1021 */
1022{
1023 ActiveRegion *regUp, *regLo, *reg;
1024 GLUhalfEdge *eUp, *eLo, *eNew;
1025 ActiveRegion tmp;
1026
1027 /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
1028
1029 /* Get a pointer to the active region containing vEvent */
1030 tmp.eUp = vEvent->anEdge->Sym;
1031 /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
1032 regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
1033 regLo = RegionBelow( regUp );
1034 eUp = regUp->eUp;
1035 eLo = regLo->eUp;
1036
1037 /* Try merging with U or L first */
1038 if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
1039 ConnectLeftDegenerate( tess, regUp, vEvent );
1040 return;
1041 }
1042
1043 /* Connect vEvent to rightmost processed vertex of either chain.
1044 * e->Dst is the vertex that we will connect to vEvent.
1045 */
1046 reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
1047
1048 if( regUp->inside || reg->fixUpperEdge) {
1049 if( reg == regUp ) {
1050 eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
1051 if (eNew == NULL) longjmp(tess->env,1);
1052 } else {
1053 GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
1054 if (tempHalfEdge == NULL) longjmp(tess->env,1);
1055
1056 eNew = tempHalfEdge->Sym;
1057 }
1058 if( reg->fixUpperEdge ) {
1059 if ( !FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
1060 } else {
1061 ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
1062 }
1063 SweepEvent( tess, vEvent );
1064 } else {
1065 /* The new vertex is in a region which does not belong to the polygon.
1066 * We don''t need to connect this vertex to the rest of the mesh.
1067 */
1068 AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
1069 }
1070}
1071
1072
1073static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
1074/*
1075 * Does everything necessary when the sweep line crosses a vertex.
1076 * Updates the mesh and the edge dictionary.
1077 */
1078{
1079 ActiveRegion *regUp, *reg;
1080 GLUhalfEdge *e, *eTopLeft, *eBottomLeft;
1081
1082 tess->event = vEvent; /* for access in EdgeLeq() */
1083 DebugEvent( tess );
1084
1085 /* Check if this vertex is the right endpoint of an edge that is
1086 * already in the dictionary. In this case we don't need to waste
1087 * time searching for the location to insert new edges.
1088 */
1089 e = vEvent->anEdge;
1090 while( e->activeRegion == NULL ) {
1091 e = e->Onext;
1092 if( e == vEvent->anEdge ) {
1093 /* All edges go right -- not incident to any processed edges */
1094 ConnectLeftVertex( tess, vEvent );
1095 return;
1096 }
1097 }
1098
1099 /* Processing consists of two phases: first we "finish" all the
1100 * active regions where both the upper and lower edges terminate
1101 * at vEvent (ie. vEvent is closing off these regions).
1102 * We mark these faces "inside" or "outside" the polygon according
1103 * to their winding number, and delete the edges from the dictionary.
1104 * This takes care of all the left-going edges from vEvent.
1105 */
1106 regUp = TopLeftRegion( e->activeRegion );
1107 if (regUp == NULL) longjmp(tess->env,1);
1108 reg = RegionBelow( regUp );
1109 eTopLeft = reg->eUp;
1110 eBottomLeft = FinishLeftRegions( tess, reg, NULL );
1111
1112 /* Next we process all the right-going edges from vEvent. This
1113 * involves adding the edges to the dictionary, and creating the
1114 * associated "active regions" which record information about the
1115 * regions between adjacent dictionary edges.
1116 */
1117 if( eBottomLeft->Onext == eTopLeft ) {
1118 /* No right-going edges -- add a temporary "fixable" edge */
1119 ConnectRightVertex( tess, regUp, eBottomLeft );
1120 } else {
1121 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
1122 }
1123}
1124
1125
1126/* Make the sentinel coordinates big enough that they will never be
1127 * merged with real input features. (Even with the largest possible
1128 * input contour and the maximum tolerance of 1.0, no merging will be
1129 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
1130 */
1131#define SENTINEL_COORD (4 * GLU_TESS_MAX_COORD)
1132
1133static void AddSentinel( GLUtesselator *tess, GLdouble t )
1134/*
1135 * We add two sentinel edges above and below all other edges,
1136 * to avoid special cases at the top and bottom.
1137 */
1138{
1139 GLUhalfEdge *e;
1140 ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
1141 if (reg == NULL) longjmp(tess->env,1);
1142
1143 e = __gl_meshMakeEdge( tess->mesh );
1144 if (e == NULL) longjmp(tess->env,1);
1145
1146 e->Org->s = SENTINEL_COORD;
1147 e->Org->t = t;
1148 e->Dst->s = -SENTINEL_COORD;
1149 e->Dst->t = t;
1150 tess->event = e->Dst; /* initialize it */
1151
1152 reg->eUp = e;
1153 reg->windingNumber = 0;
1154 reg->inside = FALSE;
1155 reg->fixUpperEdge = FALSE;
1156 reg->sentinel = TRUE;
1157 reg->dirty = FALSE;
1158 reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */
1159 if (reg->nodeUp == NULL) longjmp(tess->env,1);
1160}
1161
1162
1163static void InitEdgeDict( GLUtesselator *tess )
1164/*
1165 * We maintain an ordering of edge intersections with the sweep line.
1166 * This order is maintained in a dynamic dictionary.
1167 */
1168{
1169 /* __gl_dictListNewDict */
1170 tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq );
1171 if (tess->dict == NULL) longjmp(tess->env,1);
1172
1173 AddSentinel( tess, -SENTINEL_COORD );
1174 AddSentinel( tess, SENTINEL_COORD );
1175}
1176
1177
1178static void DoneEdgeDict( GLUtesselator *tess )
1179{
1180 ActiveRegion *reg;
1181 int fixedEdges = 0;
1182
1183 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1184 while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
1185 /*
1186 * At the end of all processing, the dictionary should contain
1187 * only the two sentinel edges, plus at most one "fixable" edge
1188 * created by ConnectRightVertex().
1189 */
1190 if( ! reg->sentinel ) {
1191 assert( reg->fixUpperEdge );
1192 assert( ++fixedEdges == 1 );
1193 }
1194 assert( reg->windingNumber == 0 );
1195 DeleteRegion( tess, reg );
1196/* __gl_meshDelete( reg->eUp );*/
1197 }
1198 dictDeleteDict( tess->dict ); /* __gl_dictListDeleteDict */
1199}
1200
1201
1202static void RemoveDegenerateEdges( GLUtesselator *tess )
1203/*
1204 * Remove zero-length edges, and contours with fewer than 3 vertices.
1205 */
1206{
1207 GLUhalfEdge *e, *eNext, *eLnext;
1208 GLUhalfEdge *eHead = &tess->mesh->eHead;
1209
1210 /*LINTED*/
1211 for( e = eHead->next; e != eHead; e = eNext ) {
1212 eNext = e->next;
1213 eLnext = e->Lnext;
1214
1215 if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
1216 /* Zero-length edge, contour has at least 3 edges */
1217
1218 SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */
1219 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
1220 e = eLnext;
1221 eLnext = e->Lnext;
1222 }
1223 if( eLnext->Lnext == e ) {
1224 /* Degenerate contour (one or two edges) */
1225
1226 if( eLnext != e ) {
1227 if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
1228 if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
1229 }
1230 if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
1231 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
1232 }
1233 }
1234}
1235
1236static int InitPriorityQ( GLUtesselator *tess )
1237/*
1238 * Insert all vertices into the priority queue which determines the
1239 * order in which vertices cross the sweep line.
1240 */
1241{
1242 PriorityQ *pq;
1243 GLUvertex *v, *vHead;
1244
1245 /* __gl_pqSortNewPriorityQ */
1246 pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
1247 if (pq == NULL) return 0;
1248
1249 vHead = &tess->mesh->vHead;
1250 for( v = vHead->next; v != vHead; v = v->next ) {
1251 v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */
1252 if (v->pqHandle == LONG_MAX) break;
1253 }
1254 if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */
1255 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
1256 tess->pq = NULL;
1257 return 0;
1258 }
1259
1260 return 1;
1261}
1262
1263
1264static void DonePriorityQ( GLUtesselator *tess )
1265{
1266 pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */
1267}
1268
1269
1270static int RemoveDegenerateFaces( GLUmesh *mesh )
1271/*
1272 * Delete any degenerate faces with only two edges. WalkDirtyRegions()
1273 * will catch almost all of these, but it won't catch degenerate faces
1274 * produced by splice operations on already-processed edges.
1275 * The two places this can happen are in FinishLeftRegions(), when
1276 * we splice in a "temporary" edge produced by ConnectRightVertex(),
1277 * and in CheckForLeftSplice(), where we splice already-processed
1278 * edges to ensure that our dictionary invariants are not violated
1279 * by numerical errors.
1280 *
1281 * In both these cases it is *very* dangerous to delete the offending
1282 * edge at the time, since one of the routines further up the stack
1283 * will sometimes be keeping a pointer to that edge.
1284 */
1285{
1286 GLUface *f, *fNext;
1287 GLUhalfEdge *e;
1288
1289 /*LINTED*/
1290 for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
1291 fNext = f->next;
1292 e = f->anEdge;
1293 assert( e->Lnext != e );
1294
1295 if( e->Lnext->Lnext == e ) {
1296 /* A face with only two edges */
1297 AddWinding( e->Onext, e );
1298 if ( !__gl_meshDelete( e ) ) return 0;
1299 }
1300 }
1301 return 1;
1302}
1303
1304int __gl_computeInterior( GLUtesselator *tess )
1305/*
1306 * __gl_computeInterior( tess ) computes the planar arrangement specified
1307 * by the given contours, and further subdivides this arrangement
1308 * into regions. Each region is marked "inside" if it belongs
1309 * to the polygon, according to the rule given by tess->windingRule.
1310 * Each interior region is guaranteed be monotone.
1311 */
1312{
1313 GLUvertex *v, *vNext;
1314
1315 tess->fatalError = FALSE;
1316
1317 /* Each vertex defines an event for our sweep line. Start by inserting
1318 * all the vertices in a priority queue. Events are processed in
1319 * lexicographic order, ie.
1320 *
1321 * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
1322 */
1323 RemoveDegenerateEdges( tess );
1324 if ( !InitPriorityQ( tess ) ) return 0; /* if error */
1325 InitEdgeDict( tess );
1326
1327 /* __gl_pqSortExtractMin */
1328 while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) {
1329 for( ;; ) {
1330 vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */
1331 if( vNext == NULL || ! VertEq( vNext, v )) break;
1332
1333 /* Merge together all vertices at exactly the same location.
1334 * This is more efficient than processing them one at a time,
1335 * simplifies the code (see ConnectLeftDegenerate), and is also
1336 * important for correct handling of certain degenerate cases.
1337 * For example, suppose there are two identical edges A and B
1338 * that belong to different contours (so without this code they would
1339 * be processed by separate sweep events). Suppose another edge C
1340 * crosses A and B from above. When A is processed, we split it
1341 * at its intersection point with C. However this also splits C,
1342 * so when we insert B we may compute a slightly different
1343 * intersection point. This might leave two edges with a small
1344 * gap between them. This kind of error is especially obvious
1345 * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
1346 */
1347 vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/
1348 SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
1349 }
1350 SweepEvent( tess, v );
1351 }
1352
1353 /* Set tess->event for debugging purposes */
1354 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1355 tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
1356 DebugEvent( tess );
1357 DoneEdgeDict( tess );
1358 DonePriorityQ( tess );
1359
1360 if ( !RemoveDegenerateFaces( tess->mesh ) ) return 0;
1361 __gl_meshCheckMesh( tess->mesh );
1362
1363 return 1;
1364}
Note: See TracBrowser for help on using the repository browser.