1 | /* $Id: render.c,v 1.1 2000-02-09 08:47:36 jeroen Exp $ */
|
---|
2 | /*
|
---|
3 | ** License Applicability. Except to the extent portions of this file are
|
---|
4 | ** made subject to an alternative license as permitted in the SGI Free
|
---|
5 | ** Software License B, Version 1.0 (the "License"), the contents of this
|
---|
6 | ** file are subject only to the provisions of the License. You may not use
|
---|
7 | ** this file except in compliance with the License. You may obtain a copy
|
---|
8 | ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
|
---|
9 | ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
|
---|
10 | **
|
---|
11 | ** http://oss.sgi.com/projects/FreeB
|
---|
12 | **
|
---|
13 | ** Note that, as provided in the License, the Software is distributed on an
|
---|
14 | ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
|
---|
15 | ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
|
---|
16 | ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
|
---|
17 | ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
|
---|
18 | **
|
---|
19 | ** Original Code. The Original Code is: OpenGL Sample Implementation,
|
---|
20 | ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
---|
21 | ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
---|
22 | ** Copyright in any portions created by third parties is as indicated
|
---|
23 | ** elsewhere herein. All Rights Reserved.
|
---|
24 | **
|
---|
25 | ** Additional Notice Provisions: The application programming interfaces
|
---|
26 | ** established by SGI in conjunction with the Original Code are The
|
---|
27 | ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
|
---|
28 | ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
|
---|
29 | ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
|
---|
30 | ** Window System(R) (Version 1.3), released October 19, 1998. This software
|
---|
31 | ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
|
---|
32 | ** published by SGI, but has not been independently verified as being
|
---|
33 | ** compliant with the OpenGL(R) version 1.2.1 Specification.
|
---|
34 | **
|
---|
35 | */
|
---|
36 | /*
|
---|
37 | ** Author: Eric Veach, July 1994.
|
---|
38 | **
|
---|
39 | ** $Date: 2000-02-09 08:47:36 $ $Revision: 1.1 $
|
---|
40 | ** $Header: /home/ktk/tmp/odin/2007/netlabs.cvs/odin32/src/opengl/glu/tess/render.c,v 1.1 2000-02-09 08:47:36 jeroen Exp $
|
---|
41 | */
|
---|
42 |
|
---|
43 | #include "gluos.h"
|
---|
44 | #include <assert.h>
|
---|
45 | #include <stddef.h>
|
---|
46 | #include "mesh.h"
|
---|
47 | #include "tess.h"
|
---|
48 | #include "render.h"
|
---|
49 |
|
---|
50 | #define TRUE 1
|
---|
51 | #define FALSE 0
|
---|
52 |
|
---|
53 | /* This structure remembers the information we need about a primitive
|
---|
54 | * to be able to render it later, once we have determined which
|
---|
55 | * primitive is able to use the most triangles.
|
---|
56 | */
|
---|
57 | struct FaceCount {
|
---|
58 | long size; /* number of triangles used */
|
---|
59 | GLUhalfEdge *eStart; /* edge where this primitive starts */
|
---|
60 | void (*render)(GLUtesselator *, GLUhalfEdge *, long);
|
---|
61 | /* routine to render this primitive */
|
---|
62 | };
|
---|
63 |
|
---|
64 | static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
|
---|
65 | static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
|
---|
66 |
|
---|
67 | static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
|
---|
68 | static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
|
---|
69 | static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
|
---|
70 | long size );
|
---|
71 |
|
---|
72 | static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
|
---|
73 | static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
|
---|
74 |
|
---|
75 |
|
---|
76 |
|
---|
77 | /************************ Strips and Fans decomposition ******************/
|
---|
78 |
|
---|
79 | /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
|
---|
80 | * fans, strips, and separate triangles. A substantial effort is made
|
---|
81 | * to use as few rendering primitives as possible (ie. to make the fans
|
---|
82 | * and strips as large as possible).
|
---|
83 | *
|
---|
84 | * The rendering output is provided as callbacks (see the api).
|
---|
85 | */
|
---|
86 | void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
|
---|
87 | {
|
---|
88 | GLUface *f;
|
---|
89 |
|
---|
90 | /* Make a list of separate triangles so we can render them all at once */
|
---|
91 | tess->lonelyTriList = NULL;
|
---|
92 |
|
---|
93 | for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
|
---|
94 | f->marked = FALSE;
|
---|
95 | }
|
---|
96 | for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
|
---|
97 |
|
---|
98 | /* We examine all faces in an arbitrary order. Whenever we find
|
---|
99 | * an unprocessed face F, we output a group of faces including F
|
---|
100 | * whose size is maximum.
|
---|
101 | */
|
---|
102 | if( f->inside && ! f->marked ) {
|
---|
103 | RenderMaximumFaceGroup( tess, f );
|
---|
104 | assert( f->marked );
|
---|
105 | }
|
---|
106 | }
|
---|
107 | if( tess->lonelyTriList != NULL ) {
|
---|
108 | RenderLonelyTriangles( tess, tess->lonelyTriList );
|
---|
109 | tess->lonelyTriList = NULL;
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
|
---|
115 | {
|
---|
116 | /* We want to find the largest triangle fan or strip of unmarked faces
|
---|
117 | * which includes the given face fOrig. There are 3 possible fans
|
---|
118 | * passing through fOrig (one centered at each vertex), and 3 possible
|
---|
119 | * strips (one for each CCW permutation of the vertices). Our strategy
|
---|
120 | * is to try all of these, and take the primitive which uses the most
|
---|
121 | * triangles (a greedy approach).
|
---|
122 | */
|
---|
123 | GLUhalfEdge *e = fOrig->anEdge;
|
---|
124 | struct FaceCount max, newFace;
|
---|
125 |
|
---|
126 | max.size = 1;
|
---|
127 | max.eStart = e;
|
---|
128 | max.render = &RenderTriangle;
|
---|
129 |
|
---|
130 | if( ! tess->flagBoundary ) {
|
---|
131 | newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
|
---|
132 | newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
|
---|
133 | newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
|
---|
134 |
|
---|
135 | newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
|
---|
136 | newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
|
---|
137 | newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
|
---|
138 | }
|
---|
139 | (*(max.render))( tess, max.eStart, max.size );
|
---|
140 | }
|
---|
141 |
|
---|
142 |
|
---|
143 | /* Macros which keep track of faces we have marked temporarily, and allow
|
---|
144 | * us to backtrack when necessary. With triangle fans, this is not
|
---|
145 | * really necessary, since the only awkward case is a loop of triangles
|
---|
146 | * around a single origin vertex. However with strips the situation is
|
---|
147 | * more complicated, and we need a general tracking method like the
|
---|
148 | * one here.
|
---|
149 | */
|
---|
150 | #define Marked(f) (! (f)->inside || (f)->marked)
|
---|
151 |
|
---|
152 | #define AddToTrail(f,t) ((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
|
---|
153 |
|
---|
154 | #define FreeTrail(t) if( 1 ) { \
|
---|
155 | while( (t) != NULL ) { \
|
---|
156 | (t)->marked = FALSE; t = (t)->trail; \
|
---|
157 | } \
|
---|
158 | } else /* absorb trailing semicolon */
|
---|
159 |
|
---|
160 |
|
---|
161 |
|
---|
162 | static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
|
---|
163 | {
|
---|
164 | /* eOrig->Lface is the face we want to render. We want to find the size
|
---|
165 | * of a maximal fan around eOrig->Org. To do this we just walk around
|
---|
166 | * the origin vertex as far as possible in both directions.
|
---|
167 | */
|
---|
168 | struct FaceCount newFace = { 0, NULL, &RenderFan };
|
---|
169 | GLUface *trail = NULL;
|
---|
170 | GLUhalfEdge *e;
|
---|
171 |
|
---|
172 | for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
|
---|
173 | AddToTrail( e->Lface, trail );
|
---|
174 | ++newFace.size;
|
---|
175 | }
|
---|
176 | for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
|
---|
177 | AddToTrail( e->Rface, trail );
|
---|
178 | ++newFace.size;
|
---|
179 | }
|
---|
180 | newFace.eStart = e;
|
---|
181 | /*LINTED*/
|
---|
182 | FreeTrail( trail );
|
---|
183 | return newFace;
|
---|
184 | }
|
---|
185 |
|
---|
186 |
|
---|
187 | #define IsEven(n) (((n) & 1) == 0)
|
---|
188 |
|
---|
189 | static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
|
---|
190 | {
|
---|
191 | /* Here we are looking for a maximal strip that contains the vertices
|
---|
192 | * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
|
---|
193 | * reverse, such that all triangles are oriented CCW).
|
---|
194 | *
|
---|
195 | * Again we walk forward and backward as far as possible. However for
|
---|
196 | * strips there is a twist: to get CCW orientations, there must be
|
---|
197 | * an *even* number of triangles in the strip on one side of eOrig.
|
---|
198 | * We walk the strip starting on a side with an even number of triangles;
|
---|
199 | * if both side have an odd number, we are forced to shorten one side.
|
---|
200 | */
|
---|
201 | struct FaceCount newFace = { 0, NULL, &RenderStrip };
|
---|
202 | long headSize = 0, tailSize = 0;
|
---|
203 | GLUface *trail = NULL;
|
---|
204 | GLUhalfEdge *e, *eTail, *eHead;
|
---|
205 |
|
---|
206 | for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
|
---|
207 | AddToTrail( e->Lface, trail );
|
---|
208 | ++tailSize;
|
---|
209 | e = e->Dprev;
|
---|
210 | if( Marked( e->Lface )) break;
|
---|
211 | AddToTrail( e->Lface, trail );
|
---|
212 | }
|
---|
213 | eTail = e;
|
---|
214 |
|
---|
215 | for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
|
---|
216 | AddToTrail( e->Rface, trail );
|
---|
217 | ++headSize;
|
---|
218 | e = e->Oprev;
|
---|
219 | if( Marked( e->Rface )) break;
|
---|
220 | AddToTrail( e->Rface, trail );
|
---|
221 | }
|
---|
222 | eHead = e;
|
---|
223 |
|
---|
224 | newFace.size = tailSize + headSize;
|
---|
225 | if( IsEven( tailSize )) {
|
---|
226 | newFace.eStart = eTail->Sym;
|
---|
227 | } else if( IsEven( headSize )) {
|
---|
228 | newFace.eStart = eHead;
|
---|
229 | } else {
|
---|
230 | /* Both sides have odd length, we must shorten one of them. In fact,
|
---|
231 | * we must start from eHead to guarantee inclusion of eOrig->Lface.
|
---|
232 | */
|
---|
233 | --newFace.size;
|
---|
234 | newFace.eStart = eHead->Onext;
|
---|
235 | }
|
---|
236 | /*LINTED*/
|
---|
237 | FreeTrail( trail );
|
---|
238 | return newFace;
|
---|
239 | }
|
---|
240 |
|
---|
241 |
|
---|
242 | static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
|
---|
243 | {
|
---|
244 | /* Just add the triangle to a triangle list, so we can render all
|
---|
245 | * the separate triangles at once.
|
---|
246 | */
|
---|
247 | assert( size == 1 );
|
---|
248 | AddToTrail( e->Lface, tess->lonelyTriList );
|
---|
249 | }
|
---|
250 |
|
---|
251 |
|
---|
252 | static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
|
---|
253 | {
|
---|
254 | /* Now we render all the separate triangles which could not be
|
---|
255 | * grouped into a triangle fan or strip.
|
---|
256 | */
|
---|
257 | GLUhalfEdge *e;
|
---|
258 | int newState;
|
---|
259 | int edgeState = -1; /* force edge state output for first vertex */
|
---|
260 |
|
---|
261 | CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
|
---|
262 |
|
---|
263 | for( ; f != NULL; f = f->trail ) {
|
---|
264 | /* Loop once for each edge (there will always be 3 edges) */
|
---|
265 |
|
---|
266 | e = f->anEdge;
|
---|
267 | do {
|
---|
268 | if( tess->flagBoundary ) {
|
---|
269 | /* Set the "edge state" to TRUE just before we output the
|
---|
270 | * first vertex of each edge on the polygon boundary.
|
---|
271 | */
|
---|
272 | newState = ! e->Rface->inside;
|
---|
273 | if( edgeState != newState ) {
|
---|
274 | edgeState = newState;
|
---|
275 | CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
|
---|
276 | }
|
---|
277 | }
|
---|
278 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
---|
279 |
|
---|
280 | e = e->Lnext;
|
---|
281 | } while( e != f->anEdge );
|
---|
282 | }
|
---|
283 | CALL_END_OR_END_DATA();
|
---|
284 | }
|
---|
285 |
|
---|
286 |
|
---|
287 | static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
|
---|
288 | {
|
---|
289 | /* Render as many CCW triangles as possible in a fan starting from
|
---|
290 | * edge "e". The fan *should* contain exactly "size" triangles
|
---|
291 | * (otherwise we've goofed up somewhere).
|
---|
292 | */
|
---|
293 | CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
|
---|
294 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
---|
295 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
---|
296 |
|
---|
297 | while( ! Marked( e->Lface )) {
|
---|
298 | e->Lface->marked = TRUE;
|
---|
299 | --size;
|
---|
300 | e = e->Onext;
|
---|
301 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
---|
302 | }
|
---|
303 |
|
---|
304 | assert( size == 0 );
|
---|
305 | CALL_END_OR_END_DATA();
|
---|
306 | }
|
---|
307 |
|
---|
308 |
|
---|
309 | static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
|
---|
310 | {
|
---|
311 | /* Render as many CCW triangles as possible in a strip starting from
|
---|
312 | * edge "e". The strip *should* contain exactly "size" triangles
|
---|
313 | * (otherwise we've goofed up somewhere).
|
---|
314 | */
|
---|
315 | CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
|
---|
316 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
---|
317 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
---|
318 |
|
---|
319 | while( ! Marked( e->Lface )) {
|
---|
320 | e->Lface->marked = TRUE;
|
---|
321 | --size;
|
---|
322 | e = e->Dprev;
|
---|
323 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
---|
324 | if( Marked( e->Lface )) break;
|
---|
325 |
|
---|
326 | e->Lface->marked = TRUE;
|
---|
327 | --size;
|
---|
328 | e = e->Onext;
|
---|
329 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
---|
330 | }
|
---|
331 |
|
---|
332 | assert( size == 0 );
|
---|
333 | CALL_END_OR_END_DATA();
|
---|
334 | }
|
---|
335 |
|
---|
336 |
|
---|
337 | /************************ Boundary contour decomposition ******************/
|
---|
338 |
|
---|
339 | /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
|
---|
340 | * contour for each face marked "inside". The rendering output is
|
---|
341 | * provided as callbacks (see the api).
|
---|
342 | */
|
---|
343 | void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
|
---|
344 | {
|
---|
345 | GLUface *f;
|
---|
346 | GLUhalfEdge *e;
|
---|
347 |
|
---|
348 | for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
|
---|
349 | if( f->inside ) {
|
---|
350 | CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
|
---|
351 | e = f->anEdge;
|
---|
352 | do {
|
---|
353 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
---|
354 | e = e->Lnext;
|
---|
355 | } while( e != f->anEdge );
|
---|
356 | CALL_END_OR_END_DATA();
|
---|
357 | }
|
---|
358 | }
|
---|
359 | }
|
---|
360 |
|
---|
361 |
|
---|
362 | /************************ Quick-and-dirty decomposition ******************/
|
---|
363 |
|
---|
364 | #define SIGN_INCONSISTENT 2
|
---|
365 |
|
---|
366 | static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
|
---|
367 | /*
|
---|
368 | * If check==FALSE, we compute the polygon normal and place it in norm[].
|
---|
369 | * If check==TRUE, we check that each triangle in the fan from v0 has a
|
---|
370 | * consistent orientation with respect to norm[]. If triangles are
|
---|
371 | * consistently oriented CCW, return 1; if CW, return -1; if all triangles
|
---|
372 | * are degenerate return 0; otherwise (no consistent orientation) return
|
---|
373 | * SIGN_INCONSISTENT.
|
---|
374 | */
|
---|
375 | {
|
---|
376 | CachedVertex *v0 = tess->cache;
|
---|
377 | CachedVertex *vn = v0 + tess->cacheCount;
|
---|
378 | CachedVertex *vc;
|
---|
379 | GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
|
---|
380 | int sign = 0;
|
---|
381 |
|
---|
382 | /* Find the polygon normal. It is important to get a reasonable
|
---|
383 | * normal even when the polygon is self-intersecting (eg. a bowtie).
|
---|
384 | * Otherwise, the computed normal could be very tiny, but perpendicular
|
---|
385 | * to the true plane of the polygon due to numerical noise. Then all
|
---|
386 | * the triangles would appear to be degenerate and we would incorrectly
|
---|
387 | * decompose the polygon as a fan (or simply not render it at all).
|
---|
388 | *
|
---|
389 | * We use a sum-of-triangles normal algorithm rather than the more
|
---|
390 | * efficient sum-of-trapezoids method (used in CheckOrientation()
|
---|
391 | * in normal.c). This lets us explicitly reverse the signed area
|
---|
392 | * of some triangles to get a reasonable normal in the self-intersecting
|
---|
393 | * case.
|
---|
394 | */
|
---|
395 | if( ! check ) {
|
---|
396 | norm[0] = norm[1] = norm[2] = 0.0;
|
---|
397 | }
|
---|
398 |
|
---|
399 | vc = v0 + 1;
|
---|
400 | xc = vc->coords[0] - v0->coords[0];
|
---|
401 | yc = vc->coords[1] - v0->coords[1];
|
---|
402 | zc = vc->coords[2] - v0->coords[2];
|
---|
403 | while( ++vc < vn ) {
|
---|
404 | xp = xc; yp = yc; zp = zc;
|
---|
405 | xc = vc->coords[0] - v0->coords[0];
|
---|
406 | yc = vc->coords[1] - v0->coords[1];
|
---|
407 | zc = vc->coords[2] - v0->coords[2];
|
---|
408 |
|
---|
409 | /* Compute (vp - v0) cross (vc - v0) */
|
---|
410 | n[0] = yp*zc - zp*yc;
|
---|
411 | n[1] = zp*xc - xp*zc;
|
---|
412 | n[2] = xp*yc - yp*xc;
|
---|
413 |
|
---|
414 | dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
|
---|
415 | if( ! check ) {
|
---|
416 | /* Reverse the contribution of back-facing triangles to get
|
---|
417 | * a reasonable normal for self-intersecting polygons (see above)
|
---|
418 | */
|
---|
419 | if( dot >= 0 ) {
|
---|
420 | norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
|
---|
421 | } else {
|
---|
422 | norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
|
---|
423 | }
|
---|
424 | } else if( dot != 0 ) {
|
---|
425 | /* Check the new orientation for consistency with previous triangles */
|
---|
426 | if( dot > 0 ) {
|
---|
427 | if( sign < 0 ) return SIGN_INCONSISTENT;
|
---|
428 | sign = 1;
|
---|
429 | } else {
|
---|
430 | if( sign > 0 ) return SIGN_INCONSISTENT;
|
---|
431 | sign = -1;
|
---|
432 | }
|
---|
433 | }
|
---|
434 | }
|
---|
435 | return sign;
|
---|
436 | }
|
---|
437 |
|
---|
438 | /* __gl_renderCache( tess ) takes a single contour and tries to render it
|
---|
439 | * as a triangle fan. This handles convex polygons, as well as some
|
---|
440 | * non-convex polygons if we get lucky.
|
---|
441 | *
|
---|
442 | * Returns TRUE if the polygon was successfully rendered. The rendering
|
---|
443 | * output is provided as callbacks (see the api).
|
---|
444 | */
|
---|
445 | GLboolean __gl_renderCache( GLUtesselator *tess )
|
---|
446 | {
|
---|
447 | CachedVertex *v0 = tess->cache;
|
---|
448 | CachedVertex *vn = v0 + tess->cacheCount;
|
---|
449 | CachedVertex *vc;
|
---|
450 | GLdouble norm[3];
|
---|
451 | int sign;
|
---|
452 |
|
---|
453 | if( tess->cacheCount < 3 ) {
|
---|
454 | /* Degenerate contour -- no output */
|
---|
455 | return TRUE;
|
---|
456 | }
|
---|
457 |
|
---|
458 | norm[0] = tess->normal[0];
|
---|
459 | norm[1] = tess->normal[1];
|
---|
460 | norm[2] = tess->normal[2];
|
---|
461 | if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
|
---|
462 | ComputeNormal( tess, norm, FALSE );
|
---|
463 | }
|
---|
464 |
|
---|
465 | sign = ComputeNormal( tess, norm, TRUE );
|
---|
466 | if( sign == SIGN_INCONSISTENT ) {
|
---|
467 | /* Fan triangles did not have a consistent orientation */
|
---|
468 | return FALSE;
|
---|
469 | }
|
---|
470 | if( sign == 0 ) {
|
---|
471 | /* All triangles were degenerate */
|
---|
472 | return TRUE;
|
---|
473 | }
|
---|
474 |
|
---|
475 | /* Make sure we do the right thing for each winding rule */
|
---|
476 | switch( tess->windingRule ) {
|
---|
477 | case GLU_TESS_WINDING_ODD:
|
---|
478 | case GLU_TESS_WINDING_NONZERO:
|
---|
479 | break;
|
---|
480 | case GLU_TESS_WINDING_POSITIVE:
|
---|
481 | if( sign < 0 ) return TRUE;
|
---|
482 | break;
|
---|
483 | case GLU_TESS_WINDING_NEGATIVE:
|
---|
484 | if( sign > 0 ) return TRUE;
|
---|
485 | break;
|
---|
486 | case GLU_TESS_WINDING_ABS_GEQ_TWO:
|
---|
487 | return TRUE;
|
---|
488 | }
|
---|
489 |
|
---|
490 | CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
|
---|
491 | : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
|
---|
492 | : GL_TRIANGLES );
|
---|
493 |
|
---|
494 | CALL_VERTEX_OR_VERTEX_DATA( v0->data );
|
---|
495 | if( sign > 0 ) {
|
---|
496 | for( vc = v0+1; vc < vn; ++vc ) {
|
---|
497 | CALL_VERTEX_OR_VERTEX_DATA( vc->data );
|
---|
498 | }
|
---|
499 | } else {
|
---|
500 | for( vc = vn-1; vc > v0; --vc ) {
|
---|
501 | CALL_VERTEX_OR_VERTEX_DATA( vc->data );
|
---|
502 | }
|
---|
503 | }
|
---|
504 | CALL_END_OR_END_DATA();
|
---|
505 | return TRUE;
|
---|
506 | }
|
---|