source: trunk/src/opengl/glu/tess/normal.c

Last change on this file was 2689, checked in by jeroen, 26 years ago

* empty log message *

File size: 8.0 KB
Line 
1/* $Id: normal.c,v 1.1 2000-02-09 08:47:35 jeroen Exp $ */
2/*
3** License Applicability. Except to the extent portions of this file are
4** made subject to an alternative license as permitted in the SGI Free
5** Software License B, Version 1.0 (the "License"), the contents of this
6** file are subject only to the provisions of the License. You may not use
7** this file except in compliance with the License. You may obtain a copy
8** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
9** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
10**
11** http://oss.sgi.com/projects/FreeB
12**
13** Note that, as provided in the License, the Software is distributed on an
14** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
15** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
16** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
17** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
18**
19** Original Code. The Original Code is: OpenGL Sample Implementation,
20** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
21** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
22** Copyright in any portions created by third parties is as indicated
23** elsewhere herein. All Rights Reserved.
24**
25** Additional Notice Provisions: The application programming interfaces
26** established by SGI in conjunction with the Original Code are The
27** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
28** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
29** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
30** Window System(R) (Version 1.3), released October 19, 1998. This software
31** was created using the OpenGL(R) version 1.2.1 Sample Implementation
32** published by SGI, but has not been independently verified as being
33** compliant with the OpenGL(R) version 1.2.1 Specification.
34**
35*/
36/*
37** Author: Eric Veach, July 1994.
38**
39** $Date: 2000-02-09 08:47:35 $ $Revision: 1.1 $
40** $Header: /home/ktk/tmp/odin/2007/netlabs.cvs/odin32/src/opengl/glu/tess/normal.c,v 1.1 2000-02-09 08:47:35 jeroen Exp $
41*/
42
43#include "gluos.h"
44#include "mesh.h"
45#include "tess.h"
46#include "normal.h"
47#include <math.h>
48#include <assert.h>
49
50#define TRUE 1
51#define FALSE 0
52
53#define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
54
55static void Normalize( GLdouble v[3] )
56{
57 GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
58
59 assert( len > 0 );
60 len = sqrt( len );
61 v[0] /= len;
62 v[1] /= len;
63 v[2] /= len;
64}
65
66#define ABS(x) ((x) < 0 ? -(x) : (x))
67
68static int LongAxis( GLdouble v[3] )
69{
70 int i = 0;
71
72 if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
73 if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
74 return i;
75}
76
77static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
78{
79 GLUvertex *v, *v1, *v2;
80 GLdouble c, tLen2, maxLen2;
81 GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
82 GLUvertex *maxVert[3], *minVert[3];
83 GLUvertex *vHead = &tess->mesh->vHead;
84 int i;
85
86 maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
87 minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
88
89 for( v = vHead->next; v != vHead; v = v->next ) {
90 for( i = 0; i < 3; ++i ) {
91 c = v->coords[i];
92 if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
93 if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
94 }
95 }
96
97 /* Find two vertices separated by at least 1/sqrt(3) of the maximum
98 * distance between any two vertices
99 */
100 i = 0;
101 if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
102 if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
103 if( minVal[i] >= maxVal[i] ) {
104 /* All vertices are the same -- normal doesn't matter */
105 norm[0] = 0; norm[1] = 0; norm[2] = 1;
106 return;
107 }
108
109 /* Look for a third vertex which forms the triangle with maximum area
110 * (Length of normal == twice the triangle area)
111 */
112 maxLen2 = 0;
113 v1 = minVert[i];
114 v2 = maxVert[i];
115 d1[0] = v1->coords[0] - v2->coords[0];
116 d1[1] = v1->coords[1] - v2->coords[1];
117 d1[2] = v1->coords[2] - v2->coords[2];
118 for( v = vHead->next; v != vHead; v = v->next ) {
119 d2[0] = v->coords[0] - v2->coords[0];
120 d2[1] = v->coords[1] - v2->coords[1];
121 d2[2] = v->coords[2] - v2->coords[2];
122 tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
123 tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
124 tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
125 tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
126 if( tLen2 > maxLen2 ) {
127 maxLen2 = tLen2;
128 norm[0] = tNorm[0];
129 norm[1] = tNorm[1];
130 norm[2] = tNorm[2];
131 }
132 }
133
134 if( maxLen2 <= 0 ) {
135 /* All points lie on a single line -- any decent normal will do */
136 norm[0] = norm[1] = norm[2] = 0;
137 norm[LongAxis(d1)] = 1;
138 }
139}
140
141
142static void CheckOrientation( GLUtesselator *tess )
143{
144 GLdouble area;
145 GLUface *f, *fHead = &tess->mesh->fHead;
146 GLUvertex *v, *vHead = &tess->mesh->vHead;
147 GLUhalfEdge *e;
148
149 /* When we compute the normal automatically, we choose the orientation
150 * so that the the sum of the signed areas of all contours is non-negative.
151 */
152 area = 0;
153 for( f = fHead->next; f != fHead; f = f->next ) {
154 e = f->anEdge;
155 if( e->winding <= 0 ) continue;
156 do {
157 area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
158 e = e->Lnext;
159 } while( e != f->anEdge );
160 }
161 if( area < 0 ) {
162 /* Reverse the orientation by flipping all the t-coordinates */
163 for( v = vHead->next; v != vHead; v = v->next ) {
164 v->t = - v->t;
165 }
166 tess->tUnit[0] = - tess->tUnit[0];
167 tess->tUnit[1] = - tess->tUnit[1];
168 tess->tUnit[2] = - tess->tUnit[2];
169 }
170}
171
172#ifdef FOR_TRITE_TEST_PROGRAM
173#include <stdlib.h>
174extern int RandomSweep;
175#define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
176#define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
177#else
178#if defined(SLANTED_SWEEP)
179/* The "feature merging" is not intended to be complete. There are
180 * special cases where edges are nearly parallel to the sweep line
181 * which are not implemented. The algorithm should still behave
182 * robustly (ie. produce a reasonable tesselation) in the presence
183 * of such edges, however it may miss features which could have been
184 * merged. We could minimize this effect by choosing the sweep line
185 * direction to be something unusual (ie. not parallel to one of the
186 * coordinate axes).
187 */
188#define S_UNIT_X 0.50941539564955385 /* Pre-normalized */
189#define S_UNIT_Y 0.86052074622010633
190#else
191#define S_UNIT_X 1.0
192#define S_UNIT_Y 0.0
193#endif
194#endif
195
196/* Determine the polygon normal and project vertices onto the plane
197 * of the polygon.
198 */
199void __gl_projectPolygon( GLUtesselator *tess )
200{
201 GLUvertex *v, *vHead = &tess->mesh->vHead;
202 GLdouble w, norm[3];
203 GLdouble *sUnit, *tUnit;
204 int i, computedNormal = FALSE;
205
206 norm[0] = tess->normal[0];
207 norm[1] = tess->normal[1];
208 norm[2] = tess->normal[2];
209 if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
210 ComputeNormal( tess, norm );
211 computedNormal = TRUE;
212 }
213 sUnit = tess->sUnit;
214 tUnit = tess->tUnit;
215 i = LongAxis( norm );
216
217#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
218 /* Choose the initial sUnit vector to be approximately perpendicular
219 * to the normal.
220 */
221 Normalize( norm );
222
223 sUnit[i] = 0;
224 sUnit[(i+1)%3] = S_UNIT_X;
225 sUnit[(i+2)%3] = S_UNIT_Y;
226
227 /* Now make it exactly perpendicular */
228 w = Dot( sUnit, norm );
229 sUnit[0] -= w * norm[0];
230 sUnit[1] -= w * norm[1];
231 sUnit[2] -= w * norm[2];
232 Normalize( sUnit );
233
234 /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
235 tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
236 tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
237 tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
238 Normalize( tUnit );
239#else
240 /* Project perpendicular to a coordinate axis -- better numerically */
241 sUnit[i] = 0;
242 sUnit[(i+1)%3] = S_UNIT_X;
243 sUnit[(i+2)%3] = S_UNIT_Y;
244
245 tUnit[i] = 0;
246 tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
247 tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
248#endif
249
250 /* Project the vertices onto the sweep plane */
251 for( v = vHead->next; v != vHead; v = v->next ) {
252 v->s = Dot( v->coords, sUnit );
253 v->t = Dot( v->coords, tUnit );
254 }
255 if( computedNormal ) {
256 CheckOrientation( tess );
257 }
258}
Note: See TracBrowser for help on using the repository browser.