source: trunk/src/opengl/glu/tess/geom.c

Last change on this file was 2689, checked in by jeroen, 26 years ago

* empty log message *

File size: 9.4 KB
Line 
1/* $Id: geom.c,v 1.1 2000-02-09 08:47:34 jeroen Exp $ */
2/*
3** License Applicability. Except to the extent portions of this file are
4** made subject to an alternative license as permitted in the SGI Free
5** Software License B, Version 1.0 (the "License"), the contents of this
6** file are subject only to the provisions of the License. You may not use
7** this file except in compliance with the License. You may obtain a copy
8** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
9** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
10**
11** http://oss.sgi.com/projects/FreeB
12**
13** Note that, as provided in the License, the Software is distributed on an
14** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
15** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
16** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
17** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
18**
19** Original Code. The Original Code is: OpenGL Sample Implementation,
20** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
21** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
22** Copyright in any portions created by third parties is as indicated
23** elsewhere herein. All Rights Reserved.
24**
25** Additional Notice Provisions: The application programming interfaces
26** established by SGI in conjunction with the Original Code are The
27** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
28** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
29** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
30** Window System(R) (Version 1.3), released October 19, 1998. This software
31** was created using the OpenGL(R) version 1.2.1 Sample Implementation
32** published by SGI, but has not been independently verified as being
33** compliant with the OpenGL(R) version 1.2.1 Specification.
34**
35*/
36/*
37** Author: Eric Veach, July 1994.
38**
39** $Date: 2000-02-09 08:47:34 $ $Revision: 1.1 $
40** $Header: /home/ktk/tmp/odin/2007/netlabs.cvs/odin32/src/opengl/glu/tess/geom.c,v 1.1 2000-02-09 08:47:34 jeroen Exp $
41*/
42
43#include "gluos.h"
44#include <assert.h>
45#include "mesh.h"
46#include "geom.h"
47
48int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
49{
50 /* Returns TRUE if u is lexicographically <= v. */
51
52 return VertLeq( u, v );
53}
54
55GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
56{
57 /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
58 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
59 * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
60 * If uw is vertical (and thus passes thru v), the result is zero.
61 *
62 * The calculation is extremely accurate and stable, even when v
63 * is very close to u or w. In particular if we set v->t = 0 and
64 * let r be the negated result (this evaluates (uw)(v->s)), then
65 * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
66 */
67 GLdouble gapL, gapR;
68
69 assert( VertLeq( u, v ) && VertLeq( v, w ));
70
71 gapL = v->s - u->s;
72 gapR = w->s - v->s;
73
74 if( gapL + gapR > 0 ) {
75 if( gapL < gapR ) {
76 return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
77 } else {
78 return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
79 }
80 }
81 /* vertical line */
82 return 0;
83}
84
85GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
86{
87 /* Returns a number whose sign matches EdgeEval(u,v,w) but which
88 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
89 * as v is above, on, or below the edge uw.
90 */
91 GLdouble gapL, gapR;
92
93 assert( VertLeq( u, v ) && VertLeq( v, w ));
94
95 gapL = v->s - u->s;
96 gapR = w->s - v->s;
97
98 if( gapL + gapR > 0 ) {
99 return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
100 }
101 /* vertical line */
102 return 0;
103}
104
105
106/***********************************************************************
107 * Define versions of EdgeSign, EdgeEval with s and t transposed.
108 */
109
110GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
111{
112 /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
113 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
114 * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
115 * If uw is vertical (and thus passes thru v), the result is zero.
116 *
117 * The calculation is extremely accurate and stable, even when v
118 * is very close to u or w. In particular if we set v->s = 0 and
119 * let r be the negated result (this evaluates (uw)(v->t)), then
120 * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
121 */
122 GLdouble gapL, gapR;
123
124 assert( TransLeq( u, v ) && TransLeq( v, w ));
125
126 gapL = v->t - u->t;
127 gapR = w->t - v->t;
128
129 if( gapL + gapR > 0 ) {
130 if( gapL < gapR ) {
131 return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
132 } else {
133 return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
134 }
135 }
136 /* vertical line */
137 return 0;
138}
139
140GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
141{
142 /* Returns a number whose sign matches TransEval(u,v,w) but which
143 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
144 * as v is above, on, or below the edge uw.
145 */
146 GLdouble gapL, gapR;
147
148 assert( TransLeq( u, v ) && TransLeq( v, w ));
149
150 gapL = v->t - u->t;
151 gapR = w->t - v->t;
152
153 if( gapL + gapR > 0 ) {
154 return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
155 }
156 /* vertical line */
157 return 0;
158}
159
160
161int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
162{
163 /* For almost-degenerate situations, the results are not reliable.
164 * Unless the floating-point arithmetic can be performed without
165 * rounding errors, *any* implementation will give incorrect results
166 * on some degenerate inputs, so the client must have some way to
167 * handle this situation.
168 */
169 return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
170}
171
172/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
173 * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
174 * this in the rare case that one argument is slightly negative.
175 * The implementation is extremely stable numerically.
176 * In particular it guarantees that the result r satisfies
177 * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
178 * even when a and b differ greatly in magnitude.
179 */
180#ifdef __WIN32OS2__ /* JvdH - Modified, since VACPP generates a compiler*/
181 /* internal error on the #define below... */
182inline GLdouble RealInterpolate(GLdouble a,GLdouble b,GLdouble x,GLdouble y)
183{
184 a=(a<0)?0:a;
185 b=(b<0)?0:b;
186 return ((a <= b) ? ((b == 0) ? ((x+y) / 2)
187 : (x + (y-x) * (a/(a+b))))
188 : (y + (x-y) * (b/(a+b))));
189}
190
191#else
192#define RealInterpolate(a,x,b,y) \
193 (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
194 ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
195 : (x + (y-x) * (a/(a+b)))) \
196 : (y + (x-y) * (b/(a+b)))))
197#endif
198
199#ifndef FOR_TRITE_TEST_PROGRAM
200#define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
201#else
202
203/* Claim: the ONLY property the sweep algorithm relies on is that
204 * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
205 */
206#include <stdlib.h>
207extern int RandomInterpolate;
208
209GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
210{
211 return 0.0;
212 if( RandomInterpolate ) {
213 a = 1.2 * drand48() - 0.1;
214 a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
215 b = 1.0 - a;
216 }
217 return RealInterpolate(a,x,b,y);
218}
219
220#endif
221
222#define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
223
224void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
225 GLUvertex *o2, GLUvertex *d2,
226 GLUvertex *v )
227/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
228 * The computed point is guaranteed to lie in the intersection of the
229 * bounding rectangles defined by each edge.
230 */
231{
232 GLdouble z1, z2;
233
234 /* This is certainly not the most efficient way to find the intersection
235 * of two line segments, but it is very numerically stable.
236 *
237 * Strategy: find the two middle vertices in the VertLeq ordering,
238 * and interpolate the intersection s-value from these. Then repeat
239 * using the TransLeq ordering to find the intersection t-value.
240 */
241
242 if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
243 if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
244 if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
245
246 if( ! VertLeq( o2, d1 )) {
247 v->s = (o2->s + d1->s) / 2;
248 } else if( VertLeq( d1, d2 )) {
249 z1 = EdgeEval( o1, o2, d1 );
250 z2 = EdgeEval( o2, d1, d2 );
251 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
252 v->s = Interpolate( z1, o2->s, z2, d1->s );
253 } else {
254 z1 = EdgeSign( o1, o2, d1 );
255 z2 = -EdgeSign( o1, d2, d1 );
256 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
257 v->s = Interpolate( z1, o2->s, z2, d2->s );
258 }
259
260 /* Now repeat the process for t */
261
262 if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
263 if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
264 if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
265
266 if( ! TransLeq( o2, d1 )) {
267 v->t = (o2->t + d1->t) / 2;
268 } else if( TransLeq( d1, d2 )) {
269 z1 = TransEval( o1, o2, d1 );
270 z2 = TransEval( o2, d1, d2 );
271 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
272 v->t = Interpolate( z1, o2->t, z2, d1->t );
273 } else {
274 z1 = TransSign( o1, o2, d1 );
275 z2 = -TransSign( o1, d2, d1 );
276 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
277 v->t = Interpolate( z1, o2->t, z2, d2->t );
278 }
279}
Note: See TracBrowser for help on using the repository browser.