1 | /*
|
---|
2 | ** THIS SOFTWARE IS SUBJECT TO COPYRIGHT PROTECTION AND IS OFFERED ONLY
|
---|
3 | ** PURSUANT TO THE 3DFX GLIDE GENERAL PUBLIC LICENSE. THERE IS NO RIGHT
|
---|
4 | ** TO USE THE GLIDE TRADEMARK WITHOUT PRIOR WRITTEN PERMISSION OF 3DFX
|
---|
5 | ** INTERACTIVE, INC. A COPY OF THIS LICENSE MAY BE OBTAINED FROM THE
|
---|
6 | ** DISTRIBUTOR OR BY CONTACTING 3DFX INTERACTIVE INC(info@3dfx.com).
|
---|
7 | ** THIS PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
|
---|
8 | ** EXPRESSED OR IMPLIED. SEE THE 3DFX GLIDE GENERAL PUBLIC LICENSE FOR A
|
---|
9 | ** FULL TEXT OF THE NON-WARRANTY PROVISIONS.
|
---|
10 | **
|
---|
11 | ** USE, DUPLICATION OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO
|
---|
12 | ** RESTRICTIONS AS SET FORTH IN SUBDIVISION (C)(1)(II) OF THE RIGHTS IN
|
---|
13 | ** TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS 252.227-7013,
|
---|
14 | ** AND/OR IN SIMILAR OR SUCCESSOR CLAUSES IN THE FAR, DOD OR NASA FAR
|
---|
15 | ** SUPPLEMENT. UNPUBLISHED RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF
|
---|
16 | ** THE UNITED STATES.
|
---|
17 | **
|
---|
18 | ** COPYRIGHT 3DFX INTERACTIVE, INC. 1999, ALL RIGHTS RESERVED
|
---|
19 | **
|
---|
20 | **
|
---|
21 | ** $Revision: 1.1 $
|
---|
22 | ** $Date: 2000-02-25 00:33:55 $
|
---|
23 | **
|
---|
24 | */
|
---|
25 |
|
---|
26 | #include <stdlib.h>
|
---|
27 | #include <stdio.h>
|
---|
28 |
|
---|
29 | #include <3dfx.h>
|
---|
30 | #define FX_DLL_DEFINITION
|
---|
31 | #include <fxdll.h>
|
---|
32 | #include <fxmemmap.h>
|
---|
33 | #include "fxpci.h"
|
---|
34 | #include "pcilib.h"
|
---|
35 |
|
---|
36 | #if __WIN32__
|
---|
37 | #include <windows.h>
|
---|
38 | #include "fxw32.h"
|
---|
39 | #elif defined(__DOS32__)
|
---|
40 | #include <fxdpmi.h>
|
---|
41 | #endif
|
---|
42 |
|
---|
43 | /*---------------------------------------------------------------------------
|
---|
44 | **
|
---|
45 | ** MTRR Code
|
---|
46 | **
|
---|
47 | ** It's possible that this code belongs elsewhere, but since it
|
---|
48 | ** communicates with the VXD, it needs to be in here for now. If at
|
---|
49 | ** some later date, we rearchitecth the whole VXD thing, then we
|
---|
50 | ** should revisit this code and find a good place for it.
|
---|
51 | *----------------------------------------------------------------------------*/
|
---|
52 |
|
---|
53 | #define MTRR_VALID 0x800
|
---|
54 | #define MTRR_BASE_FIRST 0x200
|
---|
55 | #define MTRR_MASK_FIRST 0x201
|
---|
56 | #define MTRR_BASE_LAST 0x20e
|
---|
57 | #define MTRR_MASK_LAST 0x20f
|
---|
58 |
|
---|
59 | /* NB: Although the intel docs say that the last 2 mtrr's are reserved for
|
---|
60 | * os use only win9x doesn't play nice and claims entries in the 'user' range.
|
---|
61 | * To make things as happy as possible we search the entire mtrr range.
|
---|
62 | */
|
---|
63 | #define MTRR_FIRST 0
|
---|
64 | #define MTRR_LAST 7
|
---|
65 |
|
---|
66 | /* AMD K6 has only two MTRRs */
|
---|
67 | #define MTRR_LAST_AMDK6 1
|
---|
68 |
|
---|
69 | #define MTRRPHYSBASE2MSR(mtrr) ((mtrr << 1) + MTRR_BASE_FIRST)
|
---|
70 | #define MTRRPHYSMASK2MSR(mtrr) ((mtrr << 1) + MTRR_MASK_FIRST)
|
---|
71 | #define MSR2MTRR(msr) (((msr) - 0x201) >> 1)
|
---|
72 |
|
---|
73 | /*
|
---|
74 | ** A Note On MTRRs:
|
---|
75 | **
|
---|
76 | ** MTRRs are special cases of MSRs (model specific registers). They
|
---|
77 | ** work in pairs, specified as follows (the number is the MSR number):
|
---|
78 | */
|
---|
79 | #define MTRR_PHYSBASE_0 0x200
|
---|
80 | #define MTRR_PHYSMASK_0 0x201
|
---|
81 | #define MTRR_PHYSBASE_1 0x202
|
---|
82 | #define MTRR_PHYSMASK_1 0x203
|
---|
83 | #define MTRR_PHYSBASE_2 0x204
|
---|
84 | #define MTRR_PHYSMASK_2 0x205
|
---|
85 | #define MTRR_PHYSBASE_3 0x206
|
---|
86 | #define MTRR_PHYSMASK_3 0x207
|
---|
87 | #define MTRR_PHYSBASE_4 0x208
|
---|
88 | #define MTRR_PHYSMASK_4 0x209
|
---|
89 | #define MTRR_PHYSBASE_5 0x20a
|
---|
90 | #define MTRR_PHYSMASK_5 0x20b
|
---|
91 |
|
---|
92 | /*
|
---|
93 | ** The MTRRs of the AMD K6 are not compatible to the MTRRs on Intel
|
---|
94 | ** processors. There are two MTRRs which are in a single MSR.
|
---|
95 | */
|
---|
96 |
|
---|
97 | #define MTRR_MSR_AMDK6 0xC0000085
|
---|
98 |
|
---|
99 | /*
|
---|
100 | ** So, the PHYSBASE_N is the base address for a particular MTRR and
|
---|
101 | ** uses a whole MSR. It has the type encoded in the bottom three
|
---|
102 | ** nibbles (12 bits).
|
---|
103 | **
|
---|
104 | ** The PHYSMASK_N is the physical mask for a particular MTRR and uses
|
---|
105 | ** the MSR immediately following the MSR which specifies the physical
|
---|
106 | ** base and type.
|
---|
107 | **
|
---|
108 | ** See the headers of the functions genPhysBase and genPhysMask to
|
---|
109 | ** find out how to generate the PhysBase value and the PhysMask
|
---|
110 | ** value. If you want to see the place from which this information
|
---|
111 | ** was obtained, refer to the document Pentium(r) Pro Family
|
---|
112 | ** Developer's Manual Volume 3: Operating System Writer's Guide,
|
---|
113 | ** Chpater 11: Memory Cache Control. Note that the terms PhysBase
|
---|
114 | ** and PhysMask come from there.
|
---|
115 | */
|
---|
116 |
|
---|
117 | /* genPhysBase - Generate PhysBase
|
---|
118 | **
|
---|
119 | ** MTRRPhysBase:
|
---|
120 | ** Bits 7:0 Memory Type
|
---|
121 | ** Bits 11:8 Reserved
|
---|
122 | ** Bits 35:12 PhysBase
|
---|
123 | ** Bits 63:36 Reserved
|
---|
124 | **
|
---|
125 | ** The Intel P6 documentation pines away about how the PhysBase field
|
---|
126 | ** of this register contains an integer power of two multiple of
|
---|
127 | ** 0x1000, but guess what? The number (if it has a legal value) is
|
---|
128 | ** already set up that way, so, we just leave it TF alone, and then
|
---|
129 | ** OR in the type (the types specified in fxpci.h match the Intel
|
---|
130 | ** P6 mem types indentically).
|
---|
131 | */
|
---|
132 | static FxBool
|
---|
133 | genPhysBase(FxU32 physBaseAddress, PciMemType type, FxU32 *physBase)
|
---|
134 | {
|
---|
135 | FxBool
|
---|
136 | ret = FXFALSE;
|
---|
137 |
|
---|
138 | /* Validate type */
|
---|
139 | switch (type) {
|
---|
140 | case PciMemTypeUncacheable:
|
---|
141 | case PciMemTypeWriteCombining:
|
---|
142 | case PciMemTypeWriteThrough:
|
---|
143 | case PciMemTypeWriteProtected:
|
---|
144 | case PciMemTypeWriteback:
|
---|
145 | break;
|
---|
146 | default:
|
---|
147 | /* Invalid Type */
|
---|
148 | return ret;
|
---|
149 | break;
|
---|
150 | }
|
---|
151 |
|
---|
152 | /* Validate base address -- make sure it's on a 4K boundary */
|
---|
153 | if (physBaseAddress & 0xfff) {
|
---|
154 | /* Invalid start address */
|
---|
155 | return ret;
|
---|
156 | }
|
---|
157 |
|
---|
158 | /*
|
---|
159 | ** We now have a valid size and type.
|
---|
160 | ** Generate the MTRR value for PhysBase.
|
---|
161 | */
|
---|
162 | *physBase = physBaseAddress | type;
|
---|
163 |
|
---|
164 | return (ret = FXTRUE);
|
---|
165 |
|
---|
166 | } /* genPhysBase */
|
---|
167 |
|
---|
168 | /* genPhysMask - Generate PhysMask:
|
---|
169 | **
|
---|
170 | ** MTRRPhysMask:
|
---|
171 | ** Bits 10:0 Reserved
|
---|
172 | ** Bit 11 Valid
|
---|
173 | ** Bits 35:12 PhysMask
|
---|
174 | ** Bits 63:36 Reserved
|
---|
175 | **
|
---|
176 | ** The PhysMask field works as follows:
|
---|
177 | ** from Bit 12 to bit 35, there are N zeros, and m ones, where n is
|
---|
178 | ** the power of two to multiply by 4069 to get the size you want,
|
---|
179 | ** and m is 35 - n. i.e.:
|
---|
180 | **
|
---|
181 | ** size = 2^n * 0x1000
|
---|
182 | ** m = 35 - m
|
---|
183 | **
|
---|
184 | ** Since we have the lowBit from above, we know which power of 2
|
---|
185 | ** the size is, so we simply need to shift it right by 12 to see
|
---|
186 | ** how many of the bits between 12 an 35 are 0. We then shift
|
---|
187 | ** 0xffffffff left by that many bits to get the right mask.
|
---|
188 | **
|
---|
189 | */
|
---|
190 | static FxBool
|
---|
191 | genPhysMask(FxU32 physSize, FxU32 *physMask)
|
---|
192 | {
|
---|
193 | FxBool
|
---|
194 | ret = FXFALSE;
|
---|
195 |
|
---|
196 | FxU32
|
---|
197 | bitRes,
|
---|
198 | lowBit;
|
---|
199 |
|
---|
200 | /*
|
---|
201 | ** Validate size
|
---|
202 | **
|
---|
203 | ** Size must be an integer power of 2, and it must be greater than
|
---|
204 | ** 4K (4096d, 1000h, 10000o, 1000000000000b :-)
|
---|
205 | */
|
---|
206 |
|
---|
207 | /* Do it this way instead of a mask, so we find zero if it's there */
|
---|
208 | if (physSize < 0x1000) {
|
---|
209 | /* invalid size */
|
---|
210 | return ret;
|
---|
211 | }
|
---|
212 |
|
---|
213 | /*
|
---|
214 | ** Make sure it's an integer power of 2:
|
---|
215 | ** Any power of 2 (except 0) ANDed with its
|
---|
216 | ** integer predecessor is always 0.
|
---|
217 | */
|
---|
218 | if (physSize & (physSize - 1)) {
|
---|
219 | return ret;
|
---|
220 | }
|
---|
221 |
|
---|
222 | /* Find the lowest bit set in physSize */
|
---|
223 | lowBit = 11;
|
---|
224 | do {
|
---|
225 | ++lowBit;
|
---|
226 | bitRes = (physSize >> lowBit) & 1;
|
---|
227 | } while ((bitRes == 0) && (lowBit < 0x20));
|
---|
228 |
|
---|
229 |
|
---|
230 | /* See above for explanation of 0x800 (2**11) */
|
---|
231 | *physMask = (0xffffffff << lowBit) | MTRR_VALID;
|
---|
232 |
|
---|
233 | return (ret = FXTRUE);
|
---|
234 |
|
---|
235 | } /* genPhysMask */
|
---|
236 |
|
---|
237 | /* Computes bit pattern to program into a K6-style MTRR based on the desired
|
---|
238 | ** memory range base address, size, and type. Returns FXFALSE if memory type
|
---|
239 | ** unsupported, block size out of range, or block size not power of 2, or
|
---|
240 | ** base address not multiple of block size.
|
---|
241 | */
|
---|
242 |
|
---|
243 | static FxBool
|
---|
244 | genMTRRvalAmdK6(FxU32 physBaseAddress, FxU32 physSize, PciMemType type, FxU32 *MTRRval)
|
---|
245 | {
|
---|
246 | FxBool retVal = FXFALSE;
|
---|
247 | FxU32 memTypeBits = 0;
|
---|
248 | FxU32 physAddrMask;
|
---|
249 |
|
---|
250 | /* Validate memory type */
|
---|
251 |
|
---|
252 | if (type == PciMemTypeUncacheable) {
|
---|
253 | memTypeBits = 0x1;
|
---|
254 | }
|
---|
255 | else if (type == PciMemTypeWriteCombining) {
|
---|
256 | memTypeBits = 0x2;
|
---|
257 | }
|
---|
258 | else {
|
---|
259 | return retVal;
|
---|
260 | }
|
---|
261 |
|
---|
262 | /* Validate memory range size */
|
---|
263 |
|
---|
264 | if (physSize < 128*1024) { /* make sure size >= 128 K */
|
---|
265 | return retVal;
|
---|
266 | }
|
---|
267 |
|
---|
268 | if (physSize & (physSize - 1)) { /* make sure size is power of two */
|
---|
269 | return retVal;
|
---|
270 | }
|
---|
271 |
|
---|
272 | /* Validate base address */
|
---|
273 |
|
---|
274 | if (physBaseAddress % physSize) { /* make sure base is multiple of size */
|
---|
275 | return retVal;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /* Convert the range size into a mask */
|
---|
279 |
|
---|
280 | physAddrMask = 0x7FFF;
|
---|
281 | physSize >>=18; /* 128K --> 0, 256K --> 1, etc */
|
---|
282 | while (physSize) {
|
---|
283 | physAddrMask <<= 1;
|
---|
284 | physSize >>= 1;
|
---|
285 | }
|
---|
286 |
|
---|
287 | /* Now mask: 128K => 7FFF, 256K => 7FFE, 512K => 7FFC, ... , 4G => 0000 */
|
---|
288 |
|
---|
289 | *MTRRval = (((physBaseAddress >> 17) & 0x7FFF) << 17) |
|
---|
290 | (physAddrMask & 0x7FFF) << 2 |
|
---|
291 | memTypeBits;
|
---|
292 |
|
---|
293 | retVal = FXTRUE;
|
---|
294 |
|
---|
295 | return retVal;
|
---|
296 | }
|
---|
297 |
|
---|
298 | /*
|
---|
299 | ** pciFindMTRRMatch - find an MTRR that matches this one.
|
---|
300 | **
|
---|
301 | ** We return the MTRR number which is a special-case MSR calculated
|
---|
302 | ** in the following manner:
|
---|
303 | **
|
---|
304 | ** (matchBaseMSR - baseMTRR0) >> 2
|
---|
305 | */
|
---|
306 | FX_EXPORT FxBool FX_CSTYLE
|
---|
307 | pciFindMTRRMatch(FxU32 physBaseAddress, FxU32 physSize,
|
---|
308 | PciMemType type, FxU32 *mtrrNum)
|
---|
309 | {
|
---|
310 | FxBool
|
---|
311 | res,
|
---|
312 | foundMSR = FXFALSE,
|
---|
313 | rVal = FXFALSE;
|
---|
314 |
|
---|
315 | FxU32
|
---|
316 | lMTRR,
|
---|
317 | physBase, physMask;
|
---|
318 |
|
---|
319 | MSRInfo
|
---|
320 | inS, outS;
|
---|
321 |
|
---|
322 | /* Get PhysBase */
|
---|
323 | res = genPhysBase(physBaseAddress, type, &physBase);
|
---|
324 |
|
---|
325 | if (res == FXFALSE)
|
---|
326 | return rVal;
|
---|
327 |
|
---|
328 | /* Get PhysMask */
|
---|
329 | res = genPhysMask(physSize, &physMask);
|
---|
330 |
|
---|
331 | if (res == FXFALSE)
|
---|
332 | return rVal;
|
---|
333 |
|
---|
334 | inS.msrNum = MTRR_BASE_FIRST;
|
---|
335 |
|
---|
336 | lMTRR = 0;
|
---|
337 |
|
---|
338 | do {
|
---|
339 | DOGETMSR(inS,outS);
|
---|
340 |
|
---|
341 | if (outS.msrLo == physBase) {
|
---|
342 | inS.msrNum++;
|
---|
343 |
|
---|
344 | DOGETMSR(inS, outS);
|
---|
345 |
|
---|
346 | if (outS.msrLo == physMask) {
|
---|
347 | *mtrrNum = MSR2MTRR(inS.msrNum);
|
---|
348 | foundMSR = FXTRUE;
|
---|
349 | }
|
---|
350 | }
|
---|
351 | inS.msrNum++;
|
---|
352 | } while (!foundMSR && (inS.msrNum <= MTRR_BASE_LAST));
|
---|
353 |
|
---|
354 | if (foundMSR)
|
---|
355 | rVal = FXTRUE;
|
---|
356 |
|
---|
357 | return rVal;
|
---|
358 | } /* pciFindMTRRMatch */
|
---|
359 |
|
---|
360 | /*
|
---|
361 | ** pciFindFreeMTRR - find an MTRR that matches this one.
|
---|
362 | **
|
---|
363 | ** We return the MTRR number which is a special-case MSR calculated
|
---|
364 | ** in the following manner:
|
---|
365 | **
|
---|
366 | ** (freeBaseMSR - baseMTRR0) >> 2
|
---|
367 | **
|
---|
368 | ** NOTE: This routine will return the lowest-numbered free MTRR
|
---|
369 | */
|
---|
370 | FX_EXPORT FxBool FX_CSTYLE
|
---|
371 | pciFindFreeMTRR(FxU32 *mtrrNum)
|
---|
372 | {
|
---|
373 | FxBool
|
---|
374 | foundFree = FXFALSE;
|
---|
375 |
|
---|
376 | MSRInfo
|
---|
377 | inS, outS;
|
---|
378 |
|
---|
379 | for (
|
---|
380 | inS.msrNum = MTRR_BASE_FIRST + 1;
|
---|
381 | (inS.msrNum < MTRR_BASE_LAST + 1) && !foundFree;
|
---|
382 | inS.msrNum += 2
|
---|
383 | ) {
|
---|
384 |
|
---|
385 | DOGETMSR(inS, outS);
|
---|
386 |
|
---|
387 | if ((outS.msrLo & 0x800) == 0) {
|
---|
388 | foundFree = FXTRUE;
|
---|
389 | *mtrrNum = MSR2MTRR(inS.msrNum);
|
---|
390 | }
|
---|
391 | }
|
---|
392 |
|
---|
393 | return foundFree;
|
---|
394 | } /* pciFindFreeMTRR */
|
---|
395 |
|
---|
396 | /*
|
---|
397 | ** pciSetMTRR - set up a specified MTRR based on physical address, physical
|
---|
398 | ** size, and type.
|
---|
399 | **
|
---|
400 | ** NOTE: A zero for the physical size results in the MTRR being
|
---|
401 | ** cleared.
|
---|
402 | **
|
---|
403 | */
|
---|
404 | FX_EXPORT FxBool FX_CSTYLE
|
---|
405 | pciSetMTRR(FxU32 mtrrNum, FxU32 physBaseAddr, FxU32 physSize,
|
---|
406 | PciMemType type)
|
---|
407 | {
|
---|
408 | FxBool
|
---|
409 | res,
|
---|
410 | rVal = FXFALSE;
|
---|
411 |
|
---|
412 | FxU32
|
---|
413 | physBase, physMask;
|
---|
414 |
|
---|
415 | MSRInfo
|
---|
416 | inS, outS;
|
---|
417 |
|
---|
418 | if (mtrrNum > MTRR_LAST)
|
---|
419 | return rVal;
|
---|
420 |
|
---|
421 |
|
---|
422 | inS.msrNum = MTRRPHYSBASE2MSR(mtrrNum);
|
---|
423 |
|
---|
424 | if (physSize == 0) {
|
---|
425 | /* Clear the MTRR */
|
---|
426 |
|
---|
427 | inS.msrLo = 0x0;
|
---|
428 | inS.msrHi = 0x0;
|
---|
429 |
|
---|
430 |
|
---|
431 | DOSETMSR(inS, outS);
|
---|
432 |
|
---|
433 | inS.msrNum++;
|
---|
434 |
|
---|
435 | DOSETMSR(inS, outS);
|
---|
436 |
|
---|
437 | } else {
|
---|
438 | /* Generate masks and set the MTRR */
|
---|
439 |
|
---|
440 | res = genPhysBase(physBaseAddr, type, &physBase);
|
---|
441 | if (res == FXFALSE)
|
---|
442 | return rVal;
|
---|
443 |
|
---|
444 | res = genPhysMask(physSize, &physMask);
|
---|
445 |
|
---|
446 | inS.msrLo = physBase;
|
---|
447 | inS.msrHi = 0x0;
|
---|
448 |
|
---|
449 | DOSETMSR(inS, outS);
|
---|
450 |
|
---|
451 | inS.msrNum++;
|
---|
452 | inS.msrLo = physMask;
|
---|
453 | inS.msrHi = 0xf;
|
---|
454 |
|
---|
455 | DOSETMSR(inS, outS);
|
---|
456 | }
|
---|
457 |
|
---|
458 | rVal = FXTRUE;
|
---|
459 |
|
---|
460 | return rVal;
|
---|
461 | } /* pciSetMTRR */
|
---|
462 |
|
---|
463 | /*
|
---|
464 | ** pciSetMTRRAmdK6 - set up the specified K6-style MTRR based on physical
|
---|
465 | ** address, physical size, and type.
|
---|
466 | **
|
---|
467 | ** NOTE: A zero for the physical size results in the MTRR being
|
---|
468 | ** cleared.
|
---|
469 | **
|
---|
470 | */
|
---|
471 | FX_EXPORT FxBool FX_CSTYLE
|
---|
472 | pciSetMTRRAmdK6(FxU32 mtrrNum, FxU32 physBaseAddr, FxU32 physSize,
|
---|
473 | PciMemType type)
|
---|
474 | {
|
---|
475 | FxBool
|
---|
476 | res,
|
---|
477 | rVal = FXFALSE;
|
---|
478 |
|
---|
479 | FxU32
|
---|
480 | MTRRval;
|
---|
481 |
|
---|
482 | MSRInfo
|
---|
483 | inS, outS;
|
---|
484 |
|
---|
485 | if (mtrrNum > MTRR_LAST_AMDK6)
|
---|
486 | return rVal;
|
---|
487 |
|
---|
488 | inS.msrNum = MTRR_MSR_AMDK6; /* One MSR for both MTRRs */
|
---|
489 |
|
---|
490 | if (physSize == 0) { /* size of 0 implies clear MTRR */
|
---|
491 |
|
---|
492 | DOGETMSR (inS, outS);
|
---|
493 |
|
---|
494 | inS.msrHi = outS.msrHi;
|
---|
495 | inS.msrLo = outS.msrLo;
|
---|
496 |
|
---|
497 | if (mtrrNum) {
|
---|
498 | inS.msrHi = 0x0; /* clear MTRR 1 */
|
---|
499 | }
|
---|
500 | else {
|
---|
501 | inS.msrLo = 0x0; /* clear MTRR 0 */
|
---|
502 | }
|
---|
503 |
|
---|
504 | DOSETMSR (inS, outS);
|
---|
505 | } else {
|
---|
506 | /* Generate masks and set the MTRR */
|
---|
507 | res = genMTRRvalAmdK6(physBaseAddr, physSize, type, &MTRRval);
|
---|
508 |
|
---|
509 | if (res == FXFALSE)
|
---|
510 | return rVal;
|
---|
511 |
|
---|
512 | DOGETMSR (inS, outS);
|
---|
513 |
|
---|
514 | inS.msrHi = outS.msrHi;
|
---|
515 | inS.msrLo = outS.msrLo;
|
---|
516 |
|
---|
517 | if (mtrrNum) {
|
---|
518 | inS.msrHi = MTRRval; /* program MTRR 1 */
|
---|
519 | }
|
---|
520 | else {
|
---|
521 | inS.msrLo = MTRRval; /* program MTRR 0 */
|
---|
522 | }
|
---|
523 |
|
---|
524 | DOSETMSR (inS, outS);
|
---|
525 | }
|
---|
526 |
|
---|
527 | rVal = FXTRUE;
|
---|
528 |
|
---|
529 | return rVal;
|
---|
530 | } /* pciSetMTRRAmdK6 */
|
---|
531 |
|
---|