| 1 | /* $Id: render.c,v 1.1 2000-02-09 08:47:36 jeroen Exp $ */
|
|---|
| 2 | /*
|
|---|
| 3 | ** License Applicability. Except to the extent portions of this file are
|
|---|
| 4 | ** made subject to an alternative license as permitted in the SGI Free
|
|---|
| 5 | ** Software License B, Version 1.0 (the "License"), the contents of this
|
|---|
| 6 | ** file are subject only to the provisions of the License. You may not use
|
|---|
| 7 | ** this file except in compliance with the License. You may obtain a copy
|
|---|
| 8 | ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
|
|---|
| 9 | ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
|
|---|
| 10 | **
|
|---|
| 11 | ** http://oss.sgi.com/projects/FreeB
|
|---|
| 12 | **
|
|---|
| 13 | ** Note that, as provided in the License, the Software is distributed on an
|
|---|
| 14 | ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
|
|---|
| 15 | ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
|
|---|
| 16 | ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
|
|---|
| 17 | ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
|
|---|
| 18 | **
|
|---|
| 19 | ** Original Code. The Original Code is: OpenGL Sample Implementation,
|
|---|
| 20 | ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
|---|
| 21 | ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
|---|
| 22 | ** Copyright in any portions created by third parties is as indicated
|
|---|
| 23 | ** elsewhere herein. All Rights Reserved.
|
|---|
| 24 | **
|
|---|
| 25 | ** Additional Notice Provisions: The application programming interfaces
|
|---|
| 26 | ** established by SGI in conjunction with the Original Code are The
|
|---|
| 27 | ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
|
|---|
| 28 | ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
|
|---|
| 29 | ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
|
|---|
| 30 | ** Window System(R) (Version 1.3), released October 19, 1998. This software
|
|---|
| 31 | ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
|
|---|
| 32 | ** published by SGI, but has not been independently verified as being
|
|---|
| 33 | ** compliant with the OpenGL(R) version 1.2.1 Specification.
|
|---|
| 34 | **
|
|---|
| 35 | */
|
|---|
| 36 | /*
|
|---|
| 37 | ** Author: Eric Veach, July 1994.
|
|---|
| 38 | **
|
|---|
| 39 | ** $Date: 2000-02-09 08:47:36 $ $Revision: 1.1 $
|
|---|
| 40 | ** $Header: /home/ktk/tmp/odin/2007/netlabs.cvs/odin32/src/opengl/glu/tess/render.c,v 1.1 2000-02-09 08:47:36 jeroen Exp $
|
|---|
| 41 | */
|
|---|
| 42 |
|
|---|
| 43 | #include "gluos.h"
|
|---|
| 44 | #include <assert.h>
|
|---|
| 45 | #include <stddef.h>
|
|---|
| 46 | #include "mesh.h"
|
|---|
| 47 | #include "tess.h"
|
|---|
| 48 | #include "render.h"
|
|---|
| 49 |
|
|---|
| 50 | #define TRUE 1
|
|---|
| 51 | #define FALSE 0
|
|---|
| 52 |
|
|---|
| 53 | /* This structure remembers the information we need about a primitive
|
|---|
| 54 | * to be able to render it later, once we have determined which
|
|---|
| 55 | * primitive is able to use the most triangles.
|
|---|
| 56 | */
|
|---|
| 57 | struct FaceCount {
|
|---|
| 58 | long size; /* number of triangles used */
|
|---|
| 59 | GLUhalfEdge *eStart; /* edge where this primitive starts */
|
|---|
| 60 | void (*render)(GLUtesselator *, GLUhalfEdge *, long);
|
|---|
| 61 | /* routine to render this primitive */
|
|---|
| 62 | };
|
|---|
| 63 |
|
|---|
| 64 | static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
|
|---|
| 65 | static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
|
|---|
| 66 |
|
|---|
| 67 | static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
|
|---|
| 68 | static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
|
|---|
| 69 | static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
|
|---|
| 70 | long size );
|
|---|
| 71 |
|
|---|
| 72 | static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
|
|---|
| 73 | static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
|
|---|
| 74 |
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 | /************************ Strips and Fans decomposition ******************/
|
|---|
| 78 |
|
|---|
| 79 | /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
|
|---|
| 80 | * fans, strips, and separate triangles. A substantial effort is made
|
|---|
| 81 | * to use as few rendering primitives as possible (ie. to make the fans
|
|---|
| 82 | * and strips as large as possible).
|
|---|
| 83 | *
|
|---|
| 84 | * The rendering output is provided as callbacks (see the api).
|
|---|
| 85 | */
|
|---|
| 86 | void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
|
|---|
| 87 | {
|
|---|
| 88 | GLUface *f;
|
|---|
| 89 |
|
|---|
| 90 | /* Make a list of separate triangles so we can render them all at once */
|
|---|
| 91 | tess->lonelyTriList = NULL;
|
|---|
| 92 |
|
|---|
| 93 | for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
|
|---|
| 94 | f->marked = FALSE;
|
|---|
| 95 | }
|
|---|
| 96 | for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
|
|---|
| 97 |
|
|---|
| 98 | /* We examine all faces in an arbitrary order. Whenever we find
|
|---|
| 99 | * an unprocessed face F, we output a group of faces including F
|
|---|
| 100 | * whose size is maximum.
|
|---|
| 101 | */
|
|---|
| 102 | if( f->inside && ! f->marked ) {
|
|---|
| 103 | RenderMaximumFaceGroup( tess, f );
|
|---|
| 104 | assert( f->marked );
|
|---|
| 105 | }
|
|---|
| 106 | }
|
|---|
| 107 | if( tess->lonelyTriList != NULL ) {
|
|---|
| 108 | RenderLonelyTriangles( tess, tess->lonelyTriList );
|
|---|
| 109 | tess->lonelyTriList = NULL;
|
|---|
| 110 | }
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 |
|
|---|
| 114 | static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
|
|---|
| 115 | {
|
|---|
| 116 | /* We want to find the largest triangle fan or strip of unmarked faces
|
|---|
| 117 | * which includes the given face fOrig. There are 3 possible fans
|
|---|
| 118 | * passing through fOrig (one centered at each vertex), and 3 possible
|
|---|
| 119 | * strips (one for each CCW permutation of the vertices). Our strategy
|
|---|
| 120 | * is to try all of these, and take the primitive which uses the most
|
|---|
| 121 | * triangles (a greedy approach).
|
|---|
| 122 | */
|
|---|
| 123 | GLUhalfEdge *e = fOrig->anEdge;
|
|---|
| 124 | struct FaceCount max, newFace;
|
|---|
| 125 |
|
|---|
| 126 | max.size = 1;
|
|---|
| 127 | max.eStart = e;
|
|---|
| 128 | max.render = &RenderTriangle;
|
|---|
| 129 |
|
|---|
| 130 | if( ! tess->flagBoundary ) {
|
|---|
| 131 | newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
|
|---|
| 132 | newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
|
|---|
| 133 | newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
|
|---|
| 134 |
|
|---|
| 135 | newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
|
|---|
| 136 | newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
|
|---|
| 137 | newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
|
|---|
| 138 | }
|
|---|
| 139 | (*(max.render))( tess, max.eStart, max.size );
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 |
|
|---|
| 143 | /* Macros which keep track of faces we have marked temporarily, and allow
|
|---|
| 144 | * us to backtrack when necessary. With triangle fans, this is not
|
|---|
| 145 | * really necessary, since the only awkward case is a loop of triangles
|
|---|
| 146 | * around a single origin vertex. However with strips the situation is
|
|---|
| 147 | * more complicated, and we need a general tracking method like the
|
|---|
| 148 | * one here.
|
|---|
| 149 | */
|
|---|
| 150 | #define Marked(f) (! (f)->inside || (f)->marked)
|
|---|
| 151 |
|
|---|
| 152 | #define AddToTrail(f,t) ((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
|
|---|
| 153 |
|
|---|
| 154 | #define FreeTrail(t) if( 1 ) { \
|
|---|
| 155 | while( (t) != NULL ) { \
|
|---|
| 156 | (t)->marked = FALSE; t = (t)->trail; \
|
|---|
| 157 | } \
|
|---|
| 158 | } else /* absorb trailing semicolon */
|
|---|
| 159 |
|
|---|
| 160 |
|
|---|
| 161 |
|
|---|
| 162 | static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
|
|---|
| 163 | {
|
|---|
| 164 | /* eOrig->Lface is the face we want to render. We want to find the size
|
|---|
| 165 | * of a maximal fan around eOrig->Org. To do this we just walk around
|
|---|
| 166 | * the origin vertex as far as possible in both directions.
|
|---|
| 167 | */
|
|---|
| 168 | struct FaceCount newFace = { 0, NULL, &RenderFan };
|
|---|
| 169 | GLUface *trail = NULL;
|
|---|
| 170 | GLUhalfEdge *e;
|
|---|
| 171 |
|
|---|
| 172 | for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
|
|---|
| 173 | AddToTrail( e->Lface, trail );
|
|---|
| 174 | ++newFace.size;
|
|---|
| 175 | }
|
|---|
| 176 | for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
|
|---|
| 177 | AddToTrail( e->Rface, trail );
|
|---|
| 178 | ++newFace.size;
|
|---|
| 179 | }
|
|---|
| 180 | newFace.eStart = e;
|
|---|
| 181 | /*LINTED*/
|
|---|
| 182 | FreeTrail( trail );
|
|---|
| 183 | return newFace;
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 |
|
|---|
| 187 | #define IsEven(n) (((n) & 1) == 0)
|
|---|
| 188 |
|
|---|
| 189 | static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
|
|---|
| 190 | {
|
|---|
| 191 | /* Here we are looking for a maximal strip that contains the vertices
|
|---|
| 192 | * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
|
|---|
| 193 | * reverse, such that all triangles are oriented CCW).
|
|---|
| 194 | *
|
|---|
| 195 | * Again we walk forward and backward as far as possible. However for
|
|---|
| 196 | * strips there is a twist: to get CCW orientations, there must be
|
|---|
| 197 | * an *even* number of triangles in the strip on one side of eOrig.
|
|---|
| 198 | * We walk the strip starting on a side with an even number of triangles;
|
|---|
| 199 | * if both side have an odd number, we are forced to shorten one side.
|
|---|
| 200 | */
|
|---|
| 201 | struct FaceCount newFace = { 0, NULL, &RenderStrip };
|
|---|
| 202 | long headSize = 0, tailSize = 0;
|
|---|
| 203 | GLUface *trail = NULL;
|
|---|
| 204 | GLUhalfEdge *e, *eTail, *eHead;
|
|---|
| 205 |
|
|---|
| 206 | for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
|
|---|
| 207 | AddToTrail( e->Lface, trail );
|
|---|
| 208 | ++tailSize;
|
|---|
| 209 | e = e->Dprev;
|
|---|
| 210 | if( Marked( e->Lface )) break;
|
|---|
| 211 | AddToTrail( e->Lface, trail );
|
|---|
| 212 | }
|
|---|
| 213 | eTail = e;
|
|---|
| 214 |
|
|---|
| 215 | for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
|
|---|
| 216 | AddToTrail( e->Rface, trail );
|
|---|
| 217 | ++headSize;
|
|---|
| 218 | e = e->Oprev;
|
|---|
| 219 | if( Marked( e->Rface )) break;
|
|---|
| 220 | AddToTrail( e->Rface, trail );
|
|---|
| 221 | }
|
|---|
| 222 | eHead = e;
|
|---|
| 223 |
|
|---|
| 224 | newFace.size = tailSize + headSize;
|
|---|
| 225 | if( IsEven( tailSize )) {
|
|---|
| 226 | newFace.eStart = eTail->Sym;
|
|---|
| 227 | } else if( IsEven( headSize )) {
|
|---|
| 228 | newFace.eStart = eHead;
|
|---|
| 229 | } else {
|
|---|
| 230 | /* Both sides have odd length, we must shorten one of them. In fact,
|
|---|
| 231 | * we must start from eHead to guarantee inclusion of eOrig->Lface.
|
|---|
| 232 | */
|
|---|
| 233 | --newFace.size;
|
|---|
| 234 | newFace.eStart = eHead->Onext;
|
|---|
| 235 | }
|
|---|
| 236 | /*LINTED*/
|
|---|
| 237 | FreeTrail( trail );
|
|---|
| 238 | return newFace;
|
|---|
| 239 | }
|
|---|
| 240 |
|
|---|
| 241 |
|
|---|
| 242 | static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
|
|---|
| 243 | {
|
|---|
| 244 | /* Just add the triangle to a triangle list, so we can render all
|
|---|
| 245 | * the separate triangles at once.
|
|---|
| 246 | */
|
|---|
| 247 | assert( size == 1 );
|
|---|
| 248 | AddToTrail( e->Lface, tess->lonelyTriList );
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 |
|
|---|
| 252 | static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
|
|---|
| 253 | {
|
|---|
| 254 | /* Now we render all the separate triangles which could not be
|
|---|
| 255 | * grouped into a triangle fan or strip.
|
|---|
| 256 | */
|
|---|
| 257 | GLUhalfEdge *e;
|
|---|
| 258 | int newState;
|
|---|
| 259 | int edgeState = -1; /* force edge state output for first vertex */
|
|---|
| 260 |
|
|---|
| 261 | CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
|
|---|
| 262 |
|
|---|
| 263 | for( ; f != NULL; f = f->trail ) {
|
|---|
| 264 | /* Loop once for each edge (there will always be 3 edges) */
|
|---|
| 265 |
|
|---|
| 266 | e = f->anEdge;
|
|---|
| 267 | do {
|
|---|
| 268 | if( tess->flagBoundary ) {
|
|---|
| 269 | /* Set the "edge state" to TRUE just before we output the
|
|---|
| 270 | * first vertex of each edge on the polygon boundary.
|
|---|
| 271 | */
|
|---|
| 272 | newState = ! e->Rface->inside;
|
|---|
| 273 | if( edgeState != newState ) {
|
|---|
| 274 | edgeState = newState;
|
|---|
| 275 | CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
|
|---|
| 276 | }
|
|---|
| 277 | }
|
|---|
| 278 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
|---|
| 279 |
|
|---|
| 280 | e = e->Lnext;
|
|---|
| 281 | } while( e != f->anEdge );
|
|---|
| 282 | }
|
|---|
| 283 | CALL_END_OR_END_DATA();
|
|---|
| 284 | }
|
|---|
| 285 |
|
|---|
| 286 |
|
|---|
| 287 | static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
|
|---|
| 288 | {
|
|---|
| 289 | /* Render as many CCW triangles as possible in a fan starting from
|
|---|
| 290 | * edge "e". The fan *should* contain exactly "size" triangles
|
|---|
| 291 | * (otherwise we've goofed up somewhere).
|
|---|
| 292 | */
|
|---|
| 293 | CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
|
|---|
| 294 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
|---|
| 295 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
|---|
| 296 |
|
|---|
| 297 | while( ! Marked( e->Lface )) {
|
|---|
| 298 | e->Lface->marked = TRUE;
|
|---|
| 299 | --size;
|
|---|
| 300 | e = e->Onext;
|
|---|
| 301 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
|---|
| 302 | }
|
|---|
| 303 |
|
|---|
| 304 | assert( size == 0 );
|
|---|
| 305 | CALL_END_OR_END_DATA();
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 |
|
|---|
| 309 | static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
|
|---|
| 310 | {
|
|---|
| 311 | /* Render as many CCW triangles as possible in a strip starting from
|
|---|
| 312 | * edge "e". The strip *should* contain exactly "size" triangles
|
|---|
| 313 | * (otherwise we've goofed up somewhere).
|
|---|
| 314 | */
|
|---|
| 315 | CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
|
|---|
| 316 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
|---|
| 317 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
|---|
| 318 |
|
|---|
| 319 | while( ! Marked( e->Lface )) {
|
|---|
| 320 | e->Lface->marked = TRUE;
|
|---|
| 321 | --size;
|
|---|
| 322 | e = e->Dprev;
|
|---|
| 323 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
|---|
| 324 | if( Marked( e->Lface )) break;
|
|---|
| 325 |
|
|---|
| 326 | e->Lface->marked = TRUE;
|
|---|
| 327 | --size;
|
|---|
| 328 | e = e->Onext;
|
|---|
| 329 | CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 | assert( size == 0 );
|
|---|
| 333 | CALL_END_OR_END_DATA();
|
|---|
| 334 | }
|
|---|
| 335 |
|
|---|
| 336 |
|
|---|
| 337 | /************************ Boundary contour decomposition ******************/
|
|---|
| 338 |
|
|---|
| 339 | /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
|
|---|
| 340 | * contour for each face marked "inside". The rendering output is
|
|---|
| 341 | * provided as callbacks (see the api).
|
|---|
| 342 | */
|
|---|
| 343 | void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
|
|---|
| 344 | {
|
|---|
| 345 | GLUface *f;
|
|---|
| 346 | GLUhalfEdge *e;
|
|---|
| 347 |
|
|---|
| 348 | for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
|
|---|
| 349 | if( f->inside ) {
|
|---|
| 350 | CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
|
|---|
| 351 | e = f->anEdge;
|
|---|
| 352 | do {
|
|---|
| 353 | CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
|
|---|
| 354 | e = e->Lnext;
|
|---|
| 355 | } while( e != f->anEdge );
|
|---|
| 356 | CALL_END_OR_END_DATA();
|
|---|
| 357 | }
|
|---|
| 358 | }
|
|---|
| 359 | }
|
|---|
| 360 |
|
|---|
| 361 |
|
|---|
| 362 | /************************ Quick-and-dirty decomposition ******************/
|
|---|
| 363 |
|
|---|
| 364 | #define SIGN_INCONSISTENT 2
|
|---|
| 365 |
|
|---|
| 366 | static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
|
|---|
| 367 | /*
|
|---|
| 368 | * If check==FALSE, we compute the polygon normal and place it in norm[].
|
|---|
| 369 | * If check==TRUE, we check that each triangle in the fan from v0 has a
|
|---|
| 370 | * consistent orientation with respect to norm[]. If triangles are
|
|---|
| 371 | * consistently oriented CCW, return 1; if CW, return -1; if all triangles
|
|---|
| 372 | * are degenerate return 0; otherwise (no consistent orientation) return
|
|---|
| 373 | * SIGN_INCONSISTENT.
|
|---|
| 374 | */
|
|---|
| 375 | {
|
|---|
| 376 | CachedVertex *v0 = tess->cache;
|
|---|
| 377 | CachedVertex *vn = v0 + tess->cacheCount;
|
|---|
| 378 | CachedVertex *vc;
|
|---|
| 379 | GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
|
|---|
| 380 | int sign = 0;
|
|---|
| 381 |
|
|---|
| 382 | /* Find the polygon normal. It is important to get a reasonable
|
|---|
| 383 | * normal even when the polygon is self-intersecting (eg. a bowtie).
|
|---|
| 384 | * Otherwise, the computed normal could be very tiny, but perpendicular
|
|---|
| 385 | * to the true plane of the polygon due to numerical noise. Then all
|
|---|
| 386 | * the triangles would appear to be degenerate and we would incorrectly
|
|---|
| 387 | * decompose the polygon as a fan (or simply not render it at all).
|
|---|
| 388 | *
|
|---|
| 389 | * We use a sum-of-triangles normal algorithm rather than the more
|
|---|
| 390 | * efficient sum-of-trapezoids method (used in CheckOrientation()
|
|---|
| 391 | * in normal.c). This lets us explicitly reverse the signed area
|
|---|
| 392 | * of some triangles to get a reasonable normal in the self-intersecting
|
|---|
| 393 | * case.
|
|---|
| 394 | */
|
|---|
| 395 | if( ! check ) {
|
|---|
| 396 | norm[0] = norm[1] = norm[2] = 0.0;
|
|---|
| 397 | }
|
|---|
| 398 |
|
|---|
| 399 | vc = v0 + 1;
|
|---|
| 400 | xc = vc->coords[0] - v0->coords[0];
|
|---|
| 401 | yc = vc->coords[1] - v0->coords[1];
|
|---|
| 402 | zc = vc->coords[2] - v0->coords[2];
|
|---|
| 403 | while( ++vc < vn ) {
|
|---|
| 404 | xp = xc; yp = yc; zp = zc;
|
|---|
| 405 | xc = vc->coords[0] - v0->coords[0];
|
|---|
| 406 | yc = vc->coords[1] - v0->coords[1];
|
|---|
| 407 | zc = vc->coords[2] - v0->coords[2];
|
|---|
| 408 |
|
|---|
| 409 | /* Compute (vp - v0) cross (vc - v0) */
|
|---|
| 410 | n[0] = yp*zc - zp*yc;
|
|---|
| 411 | n[1] = zp*xc - xp*zc;
|
|---|
| 412 | n[2] = xp*yc - yp*xc;
|
|---|
| 413 |
|
|---|
| 414 | dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
|
|---|
| 415 | if( ! check ) {
|
|---|
| 416 | /* Reverse the contribution of back-facing triangles to get
|
|---|
| 417 | * a reasonable normal for self-intersecting polygons (see above)
|
|---|
| 418 | */
|
|---|
| 419 | if( dot >= 0 ) {
|
|---|
| 420 | norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
|
|---|
| 421 | } else {
|
|---|
| 422 | norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
|
|---|
| 423 | }
|
|---|
| 424 | } else if( dot != 0 ) {
|
|---|
| 425 | /* Check the new orientation for consistency with previous triangles */
|
|---|
| 426 | if( dot > 0 ) {
|
|---|
| 427 | if( sign < 0 ) return SIGN_INCONSISTENT;
|
|---|
| 428 | sign = 1;
|
|---|
| 429 | } else {
|
|---|
| 430 | if( sign > 0 ) return SIGN_INCONSISTENT;
|
|---|
| 431 | sign = -1;
|
|---|
| 432 | }
|
|---|
| 433 | }
|
|---|
| 434 | }
|
|---|
| 435 | return sign;
|
|---|
| 436 | }
|
|---|
| 437 |
|
|---|
| 438 | /* __gl_renderCache( tess ) takes a single contour and tries to render it
|
|---|
| 439 | * as a triangle fan. This handles convex polygons, as well as some
|
|---|
| 440 | * non-convex polygons if we get lucky.
|
|---|
| 441 | *
|
|---|
| 442 | * Returns TRUE if the polygon was successfully rendered. The rendering
|
|---|
| 443 | * output is provided as callbacks (see the api).
|
|---|
| 444 | */
|
|---|
| 445 | GLboolean __gl_renderCache( GLUtesselator *tess )
|
|---|
| 446 | {
|
|---|
| 447 | CachedVertex *v0 = tess->cache;
|
|---|
| 448 | CachedVertex *vn = v0 + tess->cacheCount;
|
|---|
| 449 | CachedVertex *vc;
|
|---|
| 450 | GLdouble norm[3];
|
|---|
| 451 | int sign;
|
|---|
| 452 |
|
|---|
| 453 | if( tess->cacheCount < 3 ) {
|
|---|
| 454 | /* Degenerate contour -- no output */
|
|---|
| 455 | return TRUE;
|
|---|
| 456 | }
|
|---|
| 457 |
|
|---|
| 458 | norm[0] = tess->normal[0];
|
|---|
| 459 | norm[1] = tess->normal[1];
|
|---|
| 460 | norm[2] = tess->normal[2];
|
|---|
| 461 | if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
|
|---|
| 462 | ComputeNormal( tess, norm, FALSE );
|
|---|
| 463 | }
|
|---|
| 464 |
|
|---|
| 465 | sign = ComputeNormal( tess, norm, TRUE );
|
|---|
| 466 | if( sign == SIGN_INCONSISTENT ) {
|
|---|
| 467 | /* Fan triangles did not have a consistent orientation */
|
|---|
| 468 | return FALSE;
|
|---|
| 469 | }
|
|---|
| 470 | if( sign == 0 ) {
|
|---|
| 471 | /* All triangles were degenerate */
|
|---|
| 472 | return TRUE;
|
|---|
| 473 | }
|
|---|
| 474 |
|
|---|
| 475 | /* Make sure we do the right thing for each winding rule */
|
|---|
| 476 | switch( tess->windingRule ) {
|
|---|
| 477 | case GLU_TESS_WINDING_ODD:
|
|---|
| 478 | case GLU_TESS_WINDING_NONZERO:
|
|---|
| 479 | break;
|
|---|
| 480 | case GLU_TESS_WINDING_POSITIVE:
|
|---|
| 481 | if( sign < 0 ) return TRUE;
|
|---|
| 482 | break;
|
|---|
| 483 | case GLU_TESS_WINDING_NEGATIVE:
|
|---|
| 484 | if( sign > 0 ) return TRUE;
|
|---|
| 485 | break;
|
|---|
| 486 | case GLU_TESS_WINDING_ABS_GEQ_TWO:
|
|---|
| 487 | return TRUE;
|
|---|
| 488 | }
|
|---|
| 489 |
|
|---|
| 490 | CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
|
|---|
| 491 | : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
|
|---|
| 492 | : GL_TRIANGLES );
|
|---|
| 493 |
|
|---|
| 494 | CALL_VERTEX_OR_VERTEX_DATA( v0->data );
|
|---|
| 495 | if( sign > 0 ) {
|
|---|
| 496 | for( vc = v0+1; vc < vn; ++vc ) {
|
|---|
| 497 | CALL_VERTEX_OR_VERTEX_DATA( vc->data );
|
|---|
| 498 | }
|
|---|
| 499 | } else {
|
|---|
| 500 | for( vc = vn-1; vc > v0; --vc ) {
|
|---|
| 501 | CALL_VERTEX_OR_VERTEX_DATA( vc->data );
|
|---|
| 502 | }
|
|---|
| 503 | }
|
|---|
| 504 | CALL_END_OR_END_DATA();
|
|---|
| 505 | return TRUE;
|
|---|
| 506 | }
|
|---|