| 1 | /* $Id: geom.c,v 1.1 2000-02-09 08:47:34 jeroen Exp $ */
|
|---|
| 2 | /*
|
|---|
| 3 | ** License Applicability. Except to the extent portions of this file are
|
|---|
| 4 | ** made subject to an alternative license as permitted in the SGI Free
|
|---|
| 5 | ** Software License B, Version 1.0 (the "License"), the contents of this
|
|---|
| 6 | ** file are subject only to the provisions of the License. You may not use
|
|---|
| 7 | ** this file except in compliance with the License. You may obtain a copy
|
|---|
| 8 | ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
|
|---|
| 9 | ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
|
|---|
| 10 | **
|
|---|
| 11 | ** http://oss.sgi.com/projects/FreeB
|
|---|
| 12 | **
|
|---|
| 13 | ** Note that, as provided in the License, the Software is distributed on an
|
|---|
| 14 | ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
|
|---|
| 15 | ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
|
|---|
| 16 | ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
|
|---|
| 17 | ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
|
|---|
| 18 | **
|
|---|
| 19 | ** Original Code. The Original Code is: OpenGL Sample Implementation,
|
|---|
| 20 | ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
|---|
| 21 | ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
|---|
| 22 | ** Copyright in any portions created by third parties is as indicated
|
|---|
| 23 | ** elsewhere herein. All Rights Reserved.
|
|---|
| 24 | **
|
|---|
| 25 | ** Additional Notice Provisions: The application programming interfaces
|
|---|
| 26 | ** established by SGI in conjunction with the Original Code are The
|
|---|
| 27 | ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
|
|---|
| 28 | ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
|
|---|
| 29 | ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
|
|---|
| 30 | ** Window System(R) (Version 1.3), released October 19, 1998. This software
|
|---|
| 31 | ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
|
|---|
| 32 | ** published by SGI, but has not been independently verified as being
|
|---|
| 33 | ** compliant with the OpenGL(R) version 1.2.1 Specification.
|
|---|
| 34 | **
|
|---|
| 35 | */
|
|---|
| 36 | /*
|
|---|
| 37 | ** Author: Eric Veach, July 1994.
|
|---|
| 38 | **
|
|---|
| 39 | ** $Date: 2000-02-09 08:47:34 $ $Revision: 1.1 $
|
|---|
| 40 | ** $Header: /home/ktk/tmp/odin/2007/netlabs.cvs/odin32/src/opengl/glu/tess/geom.c,v 1.1 2000-02-09 08:47:34 jeroen Exp $
|
|---|
| 41 | */
|
|---|
| 42 |
|
|---|
| 43 | #include "gluos.h"
|
|---|
| 44 | #include <assert.h>
|
|---|
| 45 | #include "mesh.h"
|
|---|
| 46 | #include "geom.h"
|
|---|
| 47 |
|
|---|
| 48 | int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
|
|---|
| 49 | {
|
|---|
| 50 | /* Returns TRUE if u is lexicographically <= v. */
|
|---|
| 51 |
|
|---|
| 52 | return VertLeq( u, v );
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 | GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|---|
| 56 | {
|
|---|
| 57 | /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
|
|---|
| 58 | * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
|---|
| 59 | * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
|
|---|
| 60 | * If uw is vertical (and thus passes thru v), the result is zero.
|
|---|
| 61 | *
|
|---|
| 62 | * The calculation is extremely accurate and stable, even when v
|
|---|
| 63 | * is very close to u or w. In particular if we set v->t = 0 and
|
|---|
| 64 | * let r be the negated result (this evaluates (uw)(v->s)), then
|
|---|
| 65 | * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
|
|---|
| 66 | */
|
|---|
| 67 | GLdouble gapL, gapR;
|
|---|
| 68 |
|
|---|
| 69 | assert( VertLeq( u, v ) && VertLeq( v, w ));
|
|---|
| 70 |
|
|---|
| 71 | gapL = v->s - u->s;
|
|---|
| 72 | gapR = w->s - v->s;
|
|---|
| 73 |
|
|---|
| 74 | if( gapL + gapR > 0 ) {
|
|---|
| 75 | if( gapL < gapR ) {
|
|---|
| 76 | return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
|
|---|
| 77 | } else {
|
|---|
| 78 | return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
|
|---|
| 79 | }
|
|---|
| 80 | }
|
|---|
| 81 | /* vertical line */
|
|---|
| 82 | return 0;
|
|---|
| 83 | }
|
|---|
| 84 |
|
|---|
| 85 | GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|---|
| 86 | {
|
|---|
| 87 | /* Returns a number whose sign matches EdgeEval(u,v,w) but which
|
|---|
| 88 | * is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
|---|
| 89 | * as v is above, on, or below the edge uw.
|
|---|
| 90 | */
|
|---|
| 91 | GLdouble gapL, gapR;
|
|---|
| 92 |
|
|---|
| 93 | assert( VertLeq( u, v ) && VertLeq( v, w ));
|
|---|
| 94 |
|
|---|
| 95 | gapL = v->s - u->s;
|
|---|
| 96 | gapR = w->s - v->s;
|
|---|
| 97 |
|
|---|
| 98 | if( gapL + gapR > 0 ) {
|
|---|
| 99 | return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
|
|---|
| 100 | }
|
|---|
| 101 | /* vertical line */
|
|---|
| 102 | return 0;
|
|---|
| 103 | }
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | /***********************************************************************
|
|---|
| 107 | * Define versions of EdgeSign, EdgeEval with s and t transposed.
|
|---|
| 108 | */
|
|---|
| 109 |
|
|---|
| 110 | GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|---|
| 111 | {
|
|---|
| 112 | /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
|
|---|
| 113 | * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
|---|
| 114 | * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
|
|---|
| 115 | * If uw is vertical (and thus passes thru v), the result is zero.
|
|---|
| 116 | *
|
|---|
| 117 | * The calculation is extremely accurate and stable, even when v
|
|---|
| 118 | * is very close to u or w. In particular if we set v->s = 0 and
|
|---|
| 119 | * let r be the negated result (this evaluates (uw)(v->t)), then
|
|---|
| 120 | * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
|
|---|
| 121 | */
|
|---|
| 122 | GLdouble gapL, gapR;
|
|---|
| 123 |
|
|---|
| 124 | assert( TransLeq( u, v ) && TransLeq( v, w ));
|
|---|
| 125 |
|
|---|
| 126 | gapL = v->t - u->t;
|
|---|
| 127 | gapR = w->t - v->t;
|
|---|
| 128 |
|
|---|
| 129 | if( gapL + gapR > 0 ) {
|
|---|
| 130 | if( gapL < gapR ) {
|
|---|
| 131 | return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
|
|---|
| 132 | } else {
|
|---|
| 133 | return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
|
|---|
| 134 | }
|
|---|
| 135 | }
|
|---|
| 136 | /* vertical line */
|
|---|
| 137 | return 0;
|
|---|
| 138 | }
|
|---|
| 139 |
|
|---|
| 140 | GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|---|
| 141 | {
|
|---|
| 142 | /* Returns a number whose sign matches TransEval(u,v,w) but which
|
|---|
| 143 | * is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
|---|
| 144 | * as v is above, on, or below the edge uw.
|
|---|
| 145 | */
|
|---|
| 146 | GLdouble gapL, gapR;
|
|---|
| 147 |
|
|---|
| 148 | assert( TransLeq( u, v ) && TransLeq( v, w ));
|
|---|
| 149 |
|
|---|
| 150 | gapL = v->t - u->t;
|
|---|
| 151 | gapR = w->t - v->t;
|
|---|
| 152 |
|
|---|
| 153 | if( gapL + gapR > 0 ) {
|
|---|
| 154 | return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
|
|---|
| 155 | }
|
|---|
| 156 | /* vertical line */
|
|---|
| 157 | return 0;
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 |
|
|---|
| 161 | int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|---|
| 162 | {
|
|---|
| 163 | /* For almost-degenerate situations, the results are not reliable.
|
|---|
| 164 | * Unless the floating-point arithmetic can be performed without
|
|---|
| 165 | * rounding errors, *any* implementation will give incorrect results
|
|---|
| 166 | * on some degenerate inputs, so the client must have some way to
|
|---|
| 167 | * handle this situation.
|
|---|
| 168 | */
|
|---|
| 169 | return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
|
|---|
| 173 | * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
|
|---|
| 174 | * this in the rare case that one argument is slightly negative.
|
|---|
| 175 | * The implementation is extremely stable numerically.
|
|---|
| 176 | * In particular it guarantees that the result r satisfies
|
|---|
| 177 | * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
|
|---|
| 178 | * even when a and b differ greatly in magnitude.
|
|---|
| 179 | */
|
|---|
| 180 | #ifdef __WIN32OS2__ /* JvdH - Modified, since VACPP generates a compiler*/
|
|---|
| 181 | /* internal error on the #define below... */
|
|---|
| 182 | inline GLdouble RealInterpolate(GLdouble a,GLdouble b,GLdouble x,GLdouble y)
|
|---|
| 183 | {
|
|---|
| 184 | a=(a<0)?0:a;
|
|---|
| 185 | b=(b<0)?0:b;
|
|---|
| 186 | return ((a <= b) ? ((b == 0) ? ((x+y) / 2)
|
|---|
| 187 | : (x + (y-x) * (a/(a+b))))
|
|---|
| 188 | : (y + (x-y) * (b/(a+b))));
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | #else
|
|---|
| 192 | #define RealInterpolate(a,x,b,y) \
|
|---|
| 193 | (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
|
|---|
| 194 | ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
|
|---|
| 195 | : (x + (y-x) * (a/(a+b)))) \
|
|---|
| 196 | : (y + (x-y) * (b/(a+b)))))
|
|---|
| 197 | #endif
|
|---|
| 198 |
|
|---|
| 199 | #ifndef FOR_TRITE_TEST_PROGRAM
|
|---|
| 200 | #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
|
|---|
| 201 | #else
|
|---|
| 202 |
|
|---|
| 203 | /* Claim: the ONLY property the sweep algorithm relies on is that
|
|---|
| 204 | * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
|
|---|
| 205 | */
|
|---|
| 206 | #include <stdlib.h>
|
|---|
| 207 | extern int RandomInterpolate;
|
|---|
| 208 |
|
|---|
| 209 | GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
|
|---|
| 210 | {
|
|---|
| 211 | return 0.0;
|
|---|
| 212 | if( RandomInterpolate ) {
|
|---|
| 213 | a = 1.2 * drand48() - 0.1;
|
|---|
| 214 | a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
|
|---|
| 215 | b = 1.0 - a;
|
|---|
| 216 | }
|
|---|
| 217 | return RealInterpolate(a,x,b,y);
|
|---|
| 218 | }
|
|---|
| 219 |
|
|---|
| 220 | #endif
|
|---|
| 221 |
|
|---|
| 222 | #define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
|
|---|
| 223 |
|
|---|
| 224 | void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
|
|---|
| 225 | GLUvertex *o2, GLUvertex *d2,
|
|---|
| 226 | GLUvertex *v )
|
|---|
| 227 | /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
|
|---|
| 228 | * The computed point is guaranteed to lie in the intersection of the
|
|---|
| 229 | * bounding rectangles defined by each edge.
|
|---|
| 230 | */
|
|---|
| 231 | {
|
|---|
| 232 | GLdouble z1, z2;
|
|---|
| 233 |
|
|---|
| 234 | /* This is certainly not the most efficient way to find the intersection
|
|---|
| 235 | * of two line segments, but it is very numerically stable.
|
|---|
| 236 | *
|
|---|
| 237 | * Strategy: find the two middle vertices in the VertLeq ordering,
|
|---|
| 238 | * and interpolate the intersection s-value from these. Then repeat
|
|---|
| 239 | * using the TransLeq ordering to find the intersection t-value.
|
|---|
| 240 | */
|
|---|
| 241 |
|
|---|
| 242 | if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
|
|---|
| 243 | if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
|
|---|
| 244 | if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
|---|
| 245 |
|
|---|
| 246 | if( ! VertLeq( o2, d1 )) {
|
|---|
| 247 | v->s = (o2->s + d1->s) / 2;
|
|---|
| 248 | } else if( VertLeq( d1, d2 )) {
|
|---|
| 249 | z1 = EdgeEval( o1, o2, d1 );
|
|---|
| 250 | z2 = EdgeEval( o2, d1, d2 );
|
|---|
| 251 | if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|---|
| 252 | v->s = Interpolate( z1, o2->s, z2, d1->s );
|
|---|
| 253 | } else {
|
|---|
| 254 | z1 = EdgeSign( o1, o2, d1 );
|
|---|
| 255 | z2 = -EdgeSign( o1, d2, d1 );
|
|---|
| 256 | if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|---|
| 257 | v->s = Interpolate( z1, o2->s, z2, d2->s );
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | /* Now repeat the process for t */
|
|---|
| 261 |
|
|---|
| 262 | if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
|
|---|
| 263 | if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
|
|---|
| 264 | if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
|---|
| 265 |
|
|---|
| 266 | if( ! TransLeq( o2, d1 )) {
|
|---|
| 267 | v->t = (o2->t + d1->t) / 2;
|
|---|
| 268 | } else if( TransLeq( d1, d2 )) {
|
|---|
| 269 | z1 = TransEval( o1, o2, d1 );
|
|---|
| 270 | z2 = TransEval( o2, d1, d2 );
|
|---|
| 271 | if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|---|
| 272 | v->t = Interpolate( z1, o2->t, z2, d1->t );
|
|---|
| 273 | } else {
|
|---|
| 274 | z1 = TransSign( o1, o2, d1 );
|
|---|
| 275 | z2 = -TransSign( o1, d2, d1 );
|
|---|
| 276 | if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|---|
| 277 | v->t = Interpolate( z1, o2->t, z2, d2->t );
|
|---|
| 278 | }
|
|---|
| 279 | }
|
|---|