1 | #include "Python.h"
|
---|
2 |
|
---|
3 | #ifdef WITH_PYMALLOC
|
---|
4 |
|
---|
5 | /* An object allocator for Python.
|
---|
6 |
|
---|
7 | Here is an introduction to the layers of the Python memory architecture,
|
---|
8 | showing where the object allocator is actually used (layer +2), It is
|
---|
9 | called for every object allocation and deallocation (PyObject_New/Del),
|
---|
10 | unless the object-specific allocators implement a proprietary allocation
|
---|
11 | scheme (ex.: ints use a simple free list). This is also the place where
|
---|
12 | the cyclic garbage collector operates selectively on container objects.
|
---|
13 |
|
---|
14 |
|
---|
15 | Object-specific allocators
|
---|
16 | _____ ______ ______ ________
|
---|
17 | [ int ] [ dict ] [ list ] ... [ string ] Python core |
|
---|
18 | +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
|
---|
19 | _______________________________ | |
|
---|
20 | [ Python's object allocator ] | |
|
---|
21 | +2 | ####### Object memory ####### | <------ Internal buffers ------> |
|
---|
22 | ______________________________________________________________ |
|
---|
23 | [ Python's raw memory allocator (PyMem_ API) ] |
|
---|
24 | +1 | <----- Python memory (under PyMem manager's control) ------> | |
|
---|
25 | __________________________________________________________________
|
---|
26 | [ Underlying general-purpose allocator (ex: C library malloc) ]
|
---|
27 | 0 | <------ Virtual memory allocated for the python process -------> |
|
---|
28 |
|
---|
29 | =========================================================================
|
---|
30 | _______________________________________________________________________
|
---|
31 | [ OS-specific Virtual Memory Manager (VMM) ]
|
---|
32 | -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
|
---|
33 | __________________________________ __________________________________
|
---|
34 | [ ] [ ]
|
---|
35 | -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
|
---|
36 |
|
---|
37 | */
|
---|
38 | /*==========================================================================*/
|
---|
39 |
|
---|
40 | /* A fast, special-purpose memory allocator for small blocks, to be used
|
---|
41 | on top of a general-purpose malloc -- heavily based on previous art. */
|
---|
42 |
|
---|
43 | /* Vladimir Marangozov -- August 2000 */
|
---|
44 |
|
---|
45 | /*
|
---|
46 | * "Memory management is where the rubber meets the road -- if we do the wrong
|
---|
47 | * thing at any level, the results will not be good. And if we don't make the
|
---|
48 | * levels work well together, we are in serious trouble." (1)
|
---|
49 | *
|
---|
50 | * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
|
---|
51 | * "Dynamic Storage Allocation: A Survey and Critical Review",
|
---|
52 | * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
|
---|
53 | */
|
---|
54 |
|
---|
55 | /* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
|
---|
56 |
|
---|
57 | /*==========================================================================*/
|
---|
58 |
|
---|
59 | /*
|
---|
60 | * Allocation strategy abstract:
|
---|
61 | *
|
---|
62 | * For small requests, the allocator sub-allocates <Big> blocks of memory.
|
---|
63 | * Requests greater than 256 bytes are routed to the system's allocator.
|
---|
64 | *
|
---|
65 | * Small requests are grouped in size classes spaced 8 bytes apart, due
|
---|
66 | * to the required valid alignment of the returned address. Requests of
|
---|
67 | * a particular size are serviced from memory pools of 4K (one VMM page).
|
---|
68 | * Pools are fragmented on demand and contain free lists of blocks of one
|
---|
69 | * particular size class. In other words, there is a fixed-size allocator
|
---|
70 | * for each size class. Free pools are shared by the different allocators
|
---|
71 | * thus minimizing the space reserved for a particular size class.
|
---|
72 | *
|
---|
73 | * This allocation strategy is a variant of what is known as "simple
|
---|
74 | * segregated storage based on array of free lists". The main drawback of
|
---|
75 | * simple segregated storage is that we might end up with lot of reserved
|
---|
76 | * memory for the different free lists, which degenerate in time. To avoid
|
---|
77 | * this, we partition each free list in pools and we share dynamically the
|
---|
78 | * reserved space between all free lists. This technique is quite efficient
|
---|
79 | * for memory intensive programs which allocate mainly small-sized blocks.
|
---|
80 | *
|
---|
81 | * For small requests we have the following table:
|
---|
82 | *
|
---|
83 | * Request in bytes Size of allocated block Size class idx
|
---|
84 | * ----------------------------------------------------------------
|
---|
85 | * 1-8 8 0
|
---|
86 | * 9-16 16 1
|
---|
87 | * 17-24 24 2
|
---|
88 | * 25-32 32 3
|
---|
89 | * 33-40 40 4
|
---|
90 | * 41-48 48 5
|
---|
91 | * 49-56 56 6
|
---|
92 | * 57-64 64 7
|
---|
93 | * 65-72 72 8
|
---|
94 | * ... ... ...
|
---|
95 | * 241-248 248 30
|
---|
96 | * 249-256 256 31
|
---|
97 | *
|
---|
98 | * 0, 257 and up: routed to the underlying allocator.
|
---|
99 | */
|
---|
100 |
|
---|
101 | /*==========================================================================*/
|
---|
102 |
|
---|
103 | /*
|
---|
104 | * -- Main tunable settings section --
|
---|
105 | */
|
---|
106 |
|
---|
107 | /*
|
---|
108 | * Alignment of addresses returned to the user. 8-bytes alignment works
|
---|
109 | * on most current architectures (with 32-bit or 64-bit address busses).
|
---|
110 | * The alignment value is also used for grouping small requests in size
|
---|
111 | * classes spaced ALIGNMENT bytes apart.
|
---|
112 | *
|
---|
113 | * You shouldn't change this unless you know what you are doing.
|
---|
114 | */
|
---|
115 | #define ALIGNMENT 8 /* must be 2^N */
|
---|
116 | #define ALIGNMENT_SHIFT 3
|
---|
117 | #define ALIGNMENT_MASK (ALIGNMENT - 1)
|
---|
118 |
|
---|
119 | /* Return the number of bytes in size class I, as a uint. */
|
---|
120 | #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
|
---|
121 |
|
---|
122 | /*
|
---|
123 | * Max size threshold below which malloc requests are considered to be
|
---|
124 | * small enough in order to use preallocated memory pools. You can tune
|
---|
125 | * this value according to your application behaviour and memory needs.
|
---|
126 | *
|
---|
127 | * The following invariants must hold:
|
---|
128 | * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
|
---|
129 | * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
|
---|
130 | *
|
---|
131 | * Although not required, for better performance and space efficiency,
|
---|
132 | * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
|
---|
133 | */
|
---|
134 | #define SMALL_REQUEST_THRESHOLD 256
|
---|
135 | #define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
|
---|
136 |
|
---|
137 | /*
|
---|
138 | * The system's VMM page size can be obtained on most unices with a
|
---|
139 | * getpagesize() call or deduced from various header files. To make
|
---|
140 | * things simpler, we assume that it is 4K, which is OK for most systems.
|
---|
141 | * It is probably better if this is the native page size, but it doesn't
|
---|
142 | * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
|
---|
143 | * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
|
---|
144 | * violation fault. 4K is apparently OK for all the platforms that python
|
---|
145 | * currently targets.
|
---|
146 | */
|
---|
147 | #define SYSTEM_PAGE_SIZE (4 * 1024)
|
---|
148 | #define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
|
---|
149 |
|
---|
150 | /*
|
---|
151 | * Maximum amount of memory managed by the allocator for small requests.
|
---|
152 | */
|
---|
153 | #ifdef WITH_MEMORY_LIMITS
|
---|
154 | #ifndef SMALL_MEMORY_LIMIT
|
---|
155 | #define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
|
---|
156 | #endif
|
---|
157 | #endif
|
---|
158 |
|
---|
159 | /*
|
---|
160 | * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
|
---|
161 | * on a page boundary. This is a reserved virtual address space for the
|
---|
162 | * current process (obtained through a malloc call). In no way this means
|
---|
163 | * that the memory arenas will be used entirely. A malloc(<Big>) is usually
|
---|
164 | * an address range reservation for <Big> bytes, unless all pages within this
|
---|
165 | * space are referenced subsequently. So malloc'ing big blocks and not using
|
---|
166 | * them does not mean "wasting memory". It's an addressable range wastage...
|
---|
167 | *
|
---|
168 | * Therefore, allocating arenas with malloc is not optimal, because there is
|
---|
169 | * some address space wastage, but this is the most portable way to request
|
---|
170 | * memory from the system across various platforms.
|
---|
171 | */
|
---|
172 | #define ARENA_SIZE (256 << 10) /* 256KB */
|
---|
173 |
|
---|
174 | #ifdef WITH_MEMORY_LIMITS
|
---|
175 | #define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
|
---|
176 | #endif
|
---|
177 |
|
---|
178 | /*
|
---|
179 | * Size of the pools used for small blocks. Should be a power of 2,
|
---|
180 | * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
|
---|
181 | */
|
---|
182 | #define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
|
---|
183 | #define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
|
---|
184 |
|
---|
185 | /*
|
---|
186 | * -- End of tunable settings section --
|
---|
187 | */
|
---|
188 |
|
---|
189 | /*==========================================================================*/
|
---|
190 |
|
---|
191 | /*
|
---|
192 | * Locking
|
---|
193 | *
|
---|
194 | * To reduce lock contention, it would probably be better to refine the
|
---|
195 | * crude function locking with per size class locking. I'm not positive
|
---|
196 | * however, whether it's worth switching to such locking policy because
|
---|
197 | * of the performance penalty it might introduce.
|
---|
198 | *
|
---|
199 | * The following macros describe the simplest (should also be the fastest)
|
---|
200 | * lock object on a particular platform and the init/fini/lock/unlock
|
---|
201 | * operations on it. The locks defined here are not expected to be recursive
|
---|
202 | * because it is assumed that they will always be called in the order:
|
---|
203 | * INIT, [LOCK, UNLOCK]*, FINI.
|
---|
204 | */
|
---|
205 |
|
---|
206 | /*
|
---|
207 | * Python's threads are serialized, so object malloc locking is disabled.
|
---|
208 | */
|
---|
209 | #define SIMPLELOCK_DECL(lock) /* simple lock declaration */
|
---|
210 | #define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
|
---|
211 | #define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
|
---|
212 | #define SIMPLELOCK_LOCK(lock) /* acquire released lock */
|
---|
213 | #define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
|
---|
214 |
|
---|
215 | /*
|
---|
216 | * Basic types
|
---|
217 | * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
|
---|
218 | */
|
---|
219 | #undef uchar
|
---|
220 | #define uchar unsigned char /* assuming == 8 bits */
|
---|
221 |
|
---|
222 | #undef uint
|
---|
223 | #define uint unsigned int /* assuming >= 16 bits */
|
---|
224 |
|
---|
225 | #undef ulong
|
---|
226 | #define ulong unsigned long /* assuming >= 32 bits */
|
---|
227 |
|
---|
228 | #undef uptr
|
---|
229 | #define uptr Py_uintptr_t
|
---|
230 |
|
---|
231 | /* When you say memory, my mind reasons in terms of (pointers to) blocks */
|
---|
232 | typedef uchar block;
|
---|
233 |
|
---|
234 | /* Pool for small blocks. */
|
---|
235 | struct pool_header {
|
---|
236 | union { block *_padding;
|
---|
237 | uint count; } ref; /* number of allocated blocks */
|
---|
238 | block *freeblock; /* pool's free list head */
|
---|
239 | struct pool_header *nextpool; /* next pool of this size class */
|
---|
240 | struct pool_header *prevpool; /* previous pool "" */
|
---|
241 | uint arenaindex; /* index into arenas of base adr */
|
---|
242 | uint szidx; /* block size class index */
|
---|
243 | uint nextoffset; /* bytes to virgin block */
|
---|
244 | uint maxnextoffset; /* largest valid nextoffset */
|
---|
245 | };
|
---|
246 |
|
---|
247 | typedef struct pool_header *poolp;
|
---|
248 |
|
---|
249 | /* Record keeping for arenas. */
|
---|
250 | struct arena_object {
|
---|
251 | /* The address of the arena, as returned by malloc. Note that 0
|
---|
252 | * will never be returned by a successful malloc, and is used
|
---|
253 | * here to mark an arena_object that doesn't correspond to an
|
---|
254 | * allocated arena.
|
---|
255 | */
|
---|
256 | uptr address;
|
---|
257 |
|
---|
258 | /* Pool-aligned pointer to the next pool to be carved off. */
|
---|
259 | block* pool_address;
|
---|
260 |
|
---|
261 | /* The number of available pools in the arena: free pools + never-
|
---|
262 | * allocated pools.
|
---|
263 | */
|
---|
264 | uint nfreepools;
|
---|
265 |
|
---|
266 | /* The total number of pools in the arena, whether or not available. */
|
---|
267 | uint ntotalpools;
|
---|
268 |
|
---|
269 | /* Singly-linked list of available pools. */
|
---|
270 | struct pool_header* freepools;
|
---|
271 |
|
---|
272 | /* Whenever this arena_object is not associated with an allocated
|
---|
273 | * arena, the nextarena member is used to link all unassociated
|
---|
274 | * arena_objects in the singly-linked `unused_arena_objects` list.
|
---|
275 | * The prevarena member is unused in this case.
|
---|
276 | *
|
---|
277 | * When this arena_object is associated with an allocated arena
|
---|
278 | * with at least one available pool, both members are used in the
|
---|
279 | * doubly-linked `usable_arenas` list, which is maintained in
|
---|
280 | * increasing order of `nfreepools` values.
|
---|
281 | *
|
---|
282 | * Else this arena_object is associated with an allocated arena
|
---|
283 | * all of whose pools are in use. `nextarena` and `prevarena`
|
---|
284 | * are both meaningless in this case.
|
---|
285 | */
|
---|
286 | struct arena_object* nextarena;
|
---|
287 | struct arena_object* prevarena;
|
---|
288 | };
|
---|
289 |
|
---|
290 | #undef ROUNDUP
|
---|
291 | #define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
|
---|
292 | #define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
|
---|
293 |
|
---|
294 | #define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
|
---|
295 |
|
---|
296 | /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
|
---|
297 | #define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
|
---|
298 |
|
---|
299 | /* Return total number of blocks in pool of size index I, as a uint. */
|
---|
300 | #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
|
---|
301 |
|
---|
302 | /*==========================================================================*/
|
---|
303 |
|
---|
304 | /*
|
---|
305 | * This malloc lock
|
---|
306 | */
|
---|
307 | SIMPLELOCK_DECL(_malloc_lock)
|
---|
308 | #define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
|
---|
309 | #define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
|
---|
310 | #define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
|
---|
311 | #define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
|
---|
312 |
|
---|
313 | /*
|
---|
314 | * Pool table -- headed, circular, doubly-linked lists of partially used pools.
|
---|
315 |
|
---|
316 | This is involved. For an index i, usedpools[i+i] is the header for a list of
|
---|
317 | all partially used pools holding small blocks with "size class idx" i. So
|
---|
318 | usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
|
---|
319 | 16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
|
---|
320 |
|
---|
321 | Pools are carved off an arena's highwater mark (an arena_object's pool_address
|
---|
322 | member) as needed. Once carved off, a pool is in one of three states forever
|
---|
323 | after:
|
---|
324 |
|
---|
325 | used == partially used, neither empty nor full
|
---|
326 | At least one block in the pool is currently allocated, and at least one
|
---|
327 | block in the pool is not currently allocated (note this implies a pool
|
---|
328 | has room for at least two blocks).
|
---|
329 | This is a pool's initial state, as a pool is created only when malloc
|
---|
330 | needs space.
|
---|
331 | The pool holds blocks of a fixed size, and is in the circular list headed
|
---|
332 | at usedpools[i] (see above). It's linked to the other used pools of the
|
---|
333 | same size class via the pool_header's nextpool and prevpool members.
|
---|
334 | If all but one block is currently allocated, a malloc can cause a
|
---|
335 | transition to the full state. If all but one block is not currently
|
---|
336 | allocated, a free can cause a transition to the empty state.
|
---|
337 |
|
---|
338 | full == all the pool's blocks are currently allocated
|
---|
339 | On transition to full, a pool is unlinked from its usedpools[] list.
|
---|
340 | It's not linked to from anything then anymore, and its nextpool and
|
---|
341 | prevpool members are meaningless until it transitions back to used.
|
---|
342 | A free of a block in a full pool puts the pool back in the used state.
|
---|
343 | Then it's linked in at the front of the appropriate usedpools[] list, so
|
---|
344 | that the next allocation for its size class will reuse the freed block.
|
---|
345 |
|
---|
346 | empty == all the pool's blocks are currently available for allocation
|
---|
347 | On transition to empty, a pool is unlinked from its usedpools[] list,
|
---|
348 | and linked to the front of its arena_object's singly-linked freepools list,
|
---|
349 | via its nextpool member. The prevpool member has no meaning in this case.
|
---|
350 | Empty pools have no inherent size class: the next time a malloc finds
|
---|
351 | an empty list in usedpools[], it takes the first pool off of freepools.
|
---|
352 | If the size class needed happens to be the same as the size class the pool
|
---|
353 | last had, some pool initialization can be skipped.
|
---|
354 |
|
---|
355 |
|
---|
356 | Block Management
|
---|
357 |
|
---|
358 | Blocks within pools are again carved out as needed. pool->freeblock points to
|
---|
359 | the start of a singly-linked list of free blocks within the pool. When a
|
---|
360 | block is freed, it's inserted at the front of its pool's freeblock list. Note
|
---|
361 | that the available blocks in a pool are *not* linked all together when a pool
|
---|
362 | is initialized. Instead only "the first two" (lowest addresses) blocks are
|
---|
363 | set up, returning the first such block, and setting pool->freeblock to a
|
---|
364 | one-block list holding the second such block. This is consistent with that
|
---|
365 | pymalloc strives at all levels (arena, pool, and block) never to touch a piece
|
---|
366 | of memory until it's actually needed.
|
---|
367 |
|
---|
368 | So long as a pool is in the used state, we're certain there *is* a block
|
---|
369 | available for allocating, and pool->freeblock is not NULL. If pool->freeblock
|
---|
370 | points to the end of the free list before we've carved the entire pool into
|
---|
371 | blocks, that means we simply haven't yet gotten to one of the higher-address
|
---|
372 | blocks. The offset from the pool_header to the start of "the next" virgin
|
---|
373 | block is stored in the pool_header nextoffset member, and the largest value
|
---|
374 | of nextoffset that makes sense is stored in the maxnextoffset member when a
|
---|
375 | pool is initialized. All the blocks in a pool have been passed out at least
|
---|
376 | once when and only when nextoffset > maxnextoffset.
|
---|
377 |
|
---|
378 |
|
---|
379 | Major obscurity: While the usedpools vector is declared to have poolp
|
---|
380 | entries, it doesn't really. It really contains two pointers per (conceptual)
|
---|
381 | poolp entry, the nextpool and prevpool members of a pool_header. The
|
---|
382 | excruciating initialization code below fools C so that
|
---|
383 |
|
---|
384 | usedpool[i+i]
|
---|
385 |
|
---|
386 | "acts like" a genuine poolp, but only so long as you only reference its
|
---|
387 | nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
|
---|
388 | compensating for that a pool_header's nextpool and prevpool members
|
---|
389 | immediately follow a pool_header's first two members:
|
---|
390 |
|
---|
391 | union { block *_padding;
|
---|
392 | uint count; } ref;
|
---|
393 | block *freeblock;
|
---|
394 |
|
---|
395 | each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
|
---|
396 | contains is a fudged-up pointer p such that *if* C believes it's a poolp
|
---|
397 | pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
|
---|
398 | circular list is empty).
|
---|
399 |
|
---|
400 | It's unclear why the usedpools setup is so convoluted. It could be to
|
---|
401 | minimize the amount of cache required to hold this heavily-referenced table
|
---|
402 | (which only *needs* the two interpool pointer members of a pool_header). OTOH,
|
---|
403 | referencing code has to remember to "double the index" and doing so isn't
|
---|
404 | free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
|
---|
405 | on that C doesn't insert any padding anywhere in a pool_header at or before
|
---|
406 | the prevpool member.
|
---|
407 | **************************************************************************** */
|
---|
408 |
|
---|
409 | #define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
|
---|
410 | #define PT(x) PTA(x), PTA(x)
|
---|
411 |
|
---|
412 | static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
|
---|
413 | PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
|
---|
414 | #if NB_SMALL_SIZE_CLASSES > 8
|
---|
415 | , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
|
---|
416 | #if NB_SMALL_SIZE_CLASSES > 16
|
---|
417 | , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
|
---|
418 | #if NB_SMALL_SIZE_CLASSES > 24
|
---|
419 | , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
|
---|
420 | #if NB_SMALL_SIZE_CLASSES > 32
|
---|
421 | , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
|
---|
422 | #if NB_SMALL_SIZE_CLASSES > 40
|
---|
423 | , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
|
---|
424 | #if NB_SMALL_SIZE_CLASSES > 48
|
---|
425 | , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
|
---|
426 | #if NB_SMALL_SIZE_CLASSES > 56
|
---|
427 | , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
|
---|
428 | #endif /* NB_SMALL_SIZE_CLASSES > 56 */
|
---|
429 | #endif /* NB_SMALL_SIZE_CLASSES > 48 */
|
---|
430 | #endif /* NB_SMALL_SIZE_CLASSES > 40 */
|
---|
431 | #endif /* NB_SMALL_SIZE_CLASSES > 32 */
|
---|
432 | #endif /* NB_SMALL_SIZE_CLASSES > 24 */
|
---|
433 | #endif /* NB_SMALL_SIZE_CLASSES > 16 */
|
---|
434 | #endif /* NB_SMALL_SIZE_CLASSES > 8 */
|
---|
435 | };
|
---|
436 |
|
---|
437 | /*==========================================================================
|
---|
438 | Arena management.
|
---|
439 |
|
---|
440 | `arenas` is a vector of arena_objects. It contains maxarenas entries, some of
|
---|
441 | which may not be currently used (== they're arena_objects that aren't
|
---|
442 | currently associated with an allocated arena). Note that arenas proper are
|
---|
443 | separately malloc'ed.
|
---|
444 |
|
---|
445 | Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
|
---|
446 | we do try to free() arenas, and use some mild heuristic strategies to increase
|
---|
447 | the likelihood that arenas eventually can be freed.
|
---|
448 |
|
---|
449 | unused_arena_objects
|
---|
450 |
|
---|
451 | This is a singly-linked list of the arena_objects that are currently not
|
---|
452 | being used (no arena is associated with them). Objects are taken off the
|
---|
453 | head of the list in new_arena(), and are pushed on the head of the list in
|
---|
454 | PyObject_Free() when the arena is empty. Key invariant: an arena_object
|
---|
455 | is on this list if and only if its .address member is 0.
|
---|
456 |
|
---|
457 | usable_arenas
|
---|
458 |
|
---|
459 | This is a doubly-linked list of the arena_objects associated with arenas
|
---|
460 | that have pools available. These pools are either waiting to be reused,
|
---|
461 | or have not been used before. The list is sorted to have the most-
|
---|
462 | allocated arenas first (ascending order based on the nfreepools member).
|
---|
463 | This means that the next allocation will come from a heavily used arena,
|
---|
464 | which gives the nearly empty arenas a chance to be returned to the system.
|
---|
465 | In my unscientific tests this dramatically improved the number of arenas
|
---|
466 | that could be freed.
|
---|
467 |
|
---|
468 | Note that an arena_object associated with an arena all of whose pools are
|
---|
469 | currently in use isn't on either list.
|
---|
470 | */
|
---|
471 |
|
---|
472 | /* Array of objects used to track chunks of memory (arenas). */
|
---|
473 | static struct arena_object* arenas = NULL;
|
---|
474 | /* Number of slots currently allocated in the `arenas` vector. */
|
---|
475 | static uint maxarenas = 0;
|
---|
476 |
|
---|
477 | /* The head of the singly-linked, NULL-terminated list of available
|
---|
478 | * arena_objects.
|
---|
479 | */
|
---|
480 | static struct arena_object* unused_arena_objects = NULL;
|
---|
481 |
|
---|
482 | /* The head of the doubly-linked, NULL-terminated at each end, list of
|
---|
483 | * arena_objects associated with arenas that have pools available.
|
---|
484 | */
|
---|
485 | static struct arena_object* usable_arenas = NULL;
|
---|
486 |
|
---|
487 | /* How many arena_objects do we initially allocate?
|
---|
488 | * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
|
---|
489 | * `arenas` vector.
|
---|
490 | */
|
---|
491 | #define INITIAL_ARENA_OBJECTS 16
|
---|
492 |
|
---|
493 | /* Number of arenas allocated that haven't been free()'d. */
|
---|
494 | static size_t narenas_currently_allocated = 0;
|
---|
495 |
|
---|
496 | #ifdef PYMALLOC_DEBUG
|
---|
497 | /* Total number of times malloc() called to allocate an arena. */
|
---|
498 | static size_t ntimes_arena_allocated = 0;
|
---|
499 | /* High water mark (max value ever seen) for narenas_currently_allocated. */
|
---|
500 | static size_t narenas_highwater = 0;
|
---|
501 | #endif
|
---|
502 |
|
---|
503 | /* Allocate a new arena. If we run out of memory, return NULL. Else
|
---|
504 | * allocate a new arena, and return the address of an arena_object
|
---|
505 | * describing the new arena. It's expected that the caller will set
|
---|
506 | * `usable_arenas` to the return value.
|
---|
507 | */
|
---|
508 | static struct arena_object*
|
---|
509 | new_arena(void)
|
---|
510 | {
|
---|
511 | struct arena_object* arenaobj;
|
---|
512 | uint excess; /* number of bytes above pool alignment */
|
---|
513 |
|
---|
514 | #ifdef PYMALLOC_DEBUG
|
---|
515 | if (Py_GETENV("PYTHONMALLOCSTATS"))
|
---|
516 | _PyObject_DebugMallocStats();
|
---|
517 | #endif
|
---|
518 | if (unused_arena_objects == NULL) {
|
---|
519 | uint i;
|
---|
520 | uint numarenas;
|
---|
521 | size_t nbytes;
|
---|
522 |
|
---|
523 | /* Double the number of arena objects on each allocation.
|
---|
524 | * Note that it's possible for `numarenas` to overflow.
|
---|
525 | */
|
---|
526 | numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
|
---|
527 | if (numarenas <= maxarenas)
|
---|
528 | return NULL; /* overflow */
|
---|
529 | nbytes = numarenas * sizeof(*arenas);
|
---|
530 | if (nbytes / sizeof(*arenas) != numarenas)
|
---|
531 | return NULL; /* overflow */
|
---|
532 | arenaobj = (struct arena_object *)realloc(arenas, nbytes);
|
---|
533 | if (arenaobj == NULL)
|
---|
534 | return NULL;
|
---|
535 | arenas = arenaobj;
|
---|
536 |
|
---|
537 | /* We might need to fix pointers that were copied. However,
|
---|
538 | * new_arena only gets called when all the pages in the
|
---|
539 | * previous arenas are full. Thus, there are *no* pointers
|
---|
540 | * into the old array. Thus, we don't have to worry about
|
---|
541 | * invalid pointers. Just to be sure, some asserts:
|
---|
542 | */
|
---|
543 | assert(usable_arenas == NULL);
|
---|
544 | assert(unused_arena_objects == NULL);
|
---|
545 |
|
---|
546 | /* Put the new arenas on the unused_arena_objects list. */
|
---|
547 | for (i = maxarenas; i < numarenas; ++i) {
|
---|
548 | arenas[i].address = 0; /* mark as unassociated */
|
---|
549 | arenas[i].nextarena = i < numarenas - 1 ?
|
---|
550 | &arenas[i+1] : NULL;
|
---|
551 | }
|
---|
552 |
|
---|
553 | /* Update globals. */
|
---|
554 | unused_arena_objects = &arenas[maxarenas];
|
---|
555 | maxarenas = numarenas;
|
---|
556 | }
|
---|
557 |
|
---|
558 | /* Take the next available arena object off the head of the list. */
|
---|
559 | assert(unused_arena_objects != NULL);
|
---|
560 | arenaobj = unused_arena_objects;
|
---|
561 | unused_arena_objects = arenaobj->nextarena;
|
---|
562 | assert(arenaobj->address == 0);
|
---|
563 | arenaobj->address = (uptr)malloc(ARENA_SIZE);
|
---|
564 | if (arenaobj->address == 0) {
|
---|
565 | /* The allocation failed: return NULL after putting the
|
---|
566 | * arenaobj back.
|
---|
567 | */
|
---|
568 | arenaobj->nextarena = unused_arena_objects;
|
---|
569 | unused_arena_objects = arenaobj;
|
---|
570 | return NULL;
|
---|
571 | }
|
---|
572 |
|
---|
573 | ++narenas_currently_allocated;
|
---|
574 | #ifdef PYMALLOC_DEBUG
|
---|
575 | ++ntimes_arena_allocated;
|
---|
576 | if (narenas_currently_allocated > narenas_highwater)
|
---|
577 | narenas_highwater = narenas_currently_allocated;
|
---|
578 | #endif
|
---|
579 | arenaobj->freepools = NULL;
|
---|
580 | /* pool_address <- first pool-aligned address in the arena
|
---|
581 | nfreepools <- number of whole pools that fit after alignment */
|
---|
582 | arenaobj->pool_address = (block*)arenaobj->address;
|
---|
583 | arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
|
---|
584 | assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
|
---|
585 | excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
|
---|
586 | if (excess != 0) {
|
---|
587 | --arenaobj->nfreepools;
|
---|
588 | arenaobj->pool_address += POOL_SIZE - excess;
|
---|
589 | }
|
---|
590 | arenaobj->ntotalpools = arenaobj->nfreepools;
|
---|
591 |
|
---|
592 | return arenaobj;
|
---|
593 | }
|
---|
594 |
|
---|
595 | /*
|
---|
596 | Py_ADDRESS_IN_RANGE(P, POOL)
|
---|
597 |
|
---|
598 | Return true if and only if P is an address that was allocated by pymalloc.
|
---|
599 | POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
|
---|
600 | (the caller is asked to compute this because the macro expands POOL more than
|
---|
601 | once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
|
---|
602 | variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
|
---|
603 | called on every alloc/realloc/free, micro-efficiency is important here).
|
---|
604 |
|
---|
605 | Tricky: Let B be the arena base address associated with the pool, B =
|
---|
606 | arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
|
---|
607 |
|
---|
608 | B <= P < B + ARENA_SIZE
|
---|
609 |
|
---|
610 | Subtracting B throughout, this is true iff
|
---|
611 |
|
---|
612 | 0 <= P-B < ARENA_SIZE
|
---|
613 |
|
---|
614 | By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
|
---|
615 |
|
---|
616 | Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
|
---|
617 | before the first arena has been allocated. `arenas` is still NULL in that
|
---|
618 | case. We're relying on that maxarenas is also 0 in that case, so that
|
---|
619 | (POOL)->arenaindex < maxarenas must be false, saving us from trying to index
|
---|
620 | into a NULL arenas.
|
---|
621 |
|
---|
622 | Details: given P and POOL, the arena_object corresponding to P is AO =
|
---|
623 | arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
|
---|
624 | stores, etc), POOL is the correct address of P's pool, AO.address is the
|
---|
625 | correct base address of the pool's arena, and P must be within ARENA_SIZE of
|
---|
626 | AO.address. In addition, AO.address is not 0 (no arena can start at address 0
|
---|
627 | (NULL)). Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
|
---|
628 | controls P.
|
---|
629 |
|
---|
630 | Now suppose obmalloc does not control P (e.g., P was obtained via a direct
|
---|
631 | call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
|
---|
632 | in this case -- it may even be uninitialized trash. If the trash arenaindex
|
---|
633 | is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
|
---|
634 | control P.
|
---|
635 |
|
---|
636 | Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
|
---|
637 | allocated arena, obmalloc controls all the memory in slice AO.address :
|
---|
638 | AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
|
---|
639 | so P doesn't lie in that slice, so the macro correctly reports that P is not
|
---|
640 | controlled by obmalloc.
|
---|
641 |
|
---|
642 | Finally, if P is not controlled by obmalloc and AO corresponds to an unused
|
---|
643 | arena_object (one not currently associated with an allocated arena),
|
---|
644 | AO.address is 0, and the second test in the macro reduces to:
|
---|
645 |
|
---|
646 | P < ARENA_SIZE
|
---|
647 |
|
---|
648 | If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
|
---|
649 | that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
|
---|
650 | of the test still passes, and the third clause (AO.address != 0) is necessary
|
---|
651 | to get the correct result: AO.address is 0 in this case, so the macro
|
---|
652 | correctly reports that P is not controlled by obmalloc (despite that P lies in
|
---|
653 | slice AO.address : AO.address + ARENA_SIZE).
|
---|
654 |
|
---|
655 | Note: The third (AO.address != 0) clause was added in Python 2.5. Before
|
---|
656 | 2.5, arenas were never free()'ed, and an arenaindex < maxarena always
|
---|
657 | corresponded to a currently-allocated arena, so the "P is not controlled by
|
---|
658 | obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
|
---|
659 | was impossible.
|
---|
660 |
|
---|
661 | Note that the logic is excruciating, and reading up possibly uninitialized
|
---|
662 | memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
|
---|
663 | creates problems for some memory debuggers. The overwhelming advantage is
|
---|
664 | that this test determines whether an arbitrary address is controlled by
|
---|
665 | obmalloc in a small constant time, independent of the number of arenas
|
---|
666 | obmalloc controls. Since this test is needed at every entry point, it's
|
---|
667 | extremely desirable that it be this fast.
|
---|
668 | */
|
---|
669 | #define Py_ADDRESS_IN_RANGE(P, POOL) \
|
---|
670 | ((POOL)->arenaindex < maxarenas && \
|
---|
671 | (uptr)(P) - arenas[(POOL)->arenaindex].address < (uptr)ARENA_SIZE && \
|
---|
672 | arenas[(POOL)->arenaindex].address != 0)
|
---|
673 |
|
---|
674 |
|
---|
675 | /* This is only useful when running memory debuggers such as
|
---|
676 | * Purify or Valgrind. Uncomment to use.
|
---|
677 | *
|
---|
678 | #define Py_USING_MEMORY_DEBUGGER
|
---|
679 | */
|
---|
680 |
|
---|
681 | #ifdef Py_USING_MEMORY_DEBUGGER
|
---|
682 |
|
---|
683 | /* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
|
---|
684 | * This leads to thousands of spurious warnings when using
|
---|
685 | * Purify or Valgrind. By making a function, we can easily
|
---|
686 | * suppress the uninitialized memory reads in this one function.
|
---|
687 | * So we won't ignore real errors elsewhere.
|
---|
688 | *
|
---|
689 | * Disable the macro and use a function.
|
---|
690 | */
|
---|
691 |
|
---|
692 | #undef Py_ADDRESS_IN_RANGE
|
---|
693 |
|
---|
694 | #if defined(__GNUC__) && (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1)
|
---|
695 | #define Py_NO_INLINE __attribute__((__noinline__))
|
---|
696 | #else
|
---|
697 | #define Py_NO_INLINE
|
---|
698 | #endif
|
---|
699 |
|
---|
700 | /* Don't make static, to try to ensure this isn't inlined. */
|
---|
701 | int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
|
---|
702 | #undef Py_NO_INLINE
|
---|
703 | #endif
|
---|
704 |
|
---|
705 | /*==========================================================================*/
|
---|
706 |
|
---|
707 | /* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
|
---|
708 | * from all other currently live pointers. This may not be possible.
|
---|
709 | */
|
---|
710 |
|
---|
711 | /*
|
---|
712 | * The basic blocks are ordered by decreasing execution frequency,
|
---|
713 | * which minimizes the number of jumps in the most common cases,
|
---|
714 | * improves branching prediction and instruction scheduling (small
|
---|
715 | * block allocations typically result in a couple of instructions).
|
---|
716 | * Unless the optimizer reorders everything, being too smart...
|
---|
717 | */
|
---|
718 |
|
---|
719 | #undef PyObject_Malloc
|
---|
720 | void *
|
---|
721 | PyObject_Malloc(size_t nbytes)
|
---|
722 | {
|
---|
723 | block *bp;
|
---|
724 | poolp pool;
|
---|
725 | poolp next;
|
---|
726 | uint size;
|
---|
727 |
|
---|
728 | /*
|
---|
729 | * This implicitly redirects malloc(0).
|
---|
730 | */
|
---|
731 | if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
|
---|
732 | LOCK();
|
---|
733 | /*
|
---|
734 | * Most frequent paths first
|
---|
735 | */
|
---|
736 | size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
|
---|
737 | pool = usedpools[size + size];
|
---|
738 | if (pool != pool->nextpool) {
|
---|
739 | /*
|
---|
740 | * There is a used pool for this size class.
|
---|
741 | * Pick up the head block of its free list.
|
---|
742 | */
|
---|
743 | ++pool->ref.count;
|
---|
744 | bp = pool->freeblock;
|
---|
745 | assert(bp != NULL);
|
---|
746 | if ((pool->freeblock = *(block **)bp) != NULL) {
|
---|
747 | UNLOCK();
|
---|
748 | return (void *)bp;
|
---|
749 | }
|
---|
750 | /*
|
---|
751 | * Reached the end of the free list, try to extend it.
|
---|
752 | */
|
---|
753 | if (pool->nextoffset <= pool->maxnextoffset) {
|
---|
754 | /* There is room for another block. */
|
---|
755 | pool->freeblock = (block*)pool +
|
---|
756 | pool->nextoffset;
|
---|
757 | pool->nextoffset += INDEX2SIZE(size);
|
---|
758 | *(block **)(pool->freeblock) = NULL;
|
---|
759 | UNLOCK();
|
---|
760 | return (void *)bp;
|
---|
761 | }
|
---|
762 | /* Pool is full, unlink from used pools. */
|
---|
763 | next = pool->nextpool;
|
---|
764 | pool = pool->prevpool;
|
---|
765 | next->prevpool = pool;
|
---|
766 | pool->nextpool = next;
|
---|
767 | UNLOCK();
|
---|
768 | return (void *)bp;
|
---|
769 | }
|
---|
770 |
|
---|
771 | /* There isn't a pool of the right size class immediately
|
---|
772 | * available: use a free pool.
|
---|
773 | */
|
---|
774 | if (usable_arenas == NULL) {
|
---|
775 | /* No arena has a free pool: allocate a new arena. */
|
---|
776 | #ifdef WITH_MEMORY_LIMITS
|
---|
777 | if (narenas_currently_allocated >= MAX_ARENAS) {
|
---|
778 | UNLOCK();
|
---|
779 | goto redirect;
|
---|
780 | }
|
---|
781 | #endif
|
---|
782 | usable_arenas = new_arena();
|
---|
783 | if (usable_arenas == NULL) {
|
---|
784 | UNLOCK();
|
---|
785 | goto redirect;
|
---|
786 | }
|
---|
787 | usable_arenas->nextarena =
|
---|
788 | usable_arenas->prevarena = NULL;
|
---|
789 | }
|
---|
790 | assert(usable_arenas->address != 0);
|
---|
791 |
|
---|
792 | /* Try to get a cached free pool. */
|
---|
793 | pool = usable_arenas->freepools;
|
---|
794 | if (pool != NULL) {
|
---|
795 | /* Unlink from cached pools. */
|
---|
796 | usable_arenas->freepools = pool->nextpool;
|
---|
797 |
|
---|
798 | /* This arena already had the smallest nfreepools
|
---|
799 | * value, so decreasing nfreepools doesn't change
|
---|
800 | * that, and we don't need to rearrange the
|
---|
801 | * usable_arenas list. However, if the arena has
|
---|
802 | * become wholly allocated, we need to remove its
|
---|
803 | * arena_object from usable_arenas.
|
---|
804 | */
|
---|
805 | --usable_arenas->nfreepools;
|
---|
806 | if (usable_arenas->nfreepools == 0) {
|
---|
807 | /* Wholly allocated: remove. */
|
---|
808 | assert(usable_arenas->freepools == NULL);
|
---|
809 | assert(usable_arenas->nextarena == NULL ||
|
---|
810 | usable_arenas->nextarena->prevarena ==
|
---|
811 | usable_arenas);
|
---|
812 |
|
---|
813 | usable_arenas = usable_arenas->nextarena;
|
---|
814 | if (usable_arenas != NULL) {
|
---|
815 | usable_arenas->prevarena = NULL;
|
---|
816 | assert(usable_arenas->address != 0);
|
---|
817 | }
|
---|
818 | }
|
---|
819 | else {
|
---|
820 | /* nfreepools > 0: it must be that freepools
|
---|
821 | * isn't NULL, or that we haven't yet carved
|
---|
822 | * off all the arena's pools for the first
|
---|
823 | * time.
|
---|
824 | */
|
---|
825 | assert(usable_arenas->freepools != NULL ||
|
---|
826 | usable_arenas->pool_address <=
|
---|
827 | (block*)usable_arenas->address +
|
---|
828 | ARENA_SIZE - POOL_SIZE);
|
---|
829 | }
|
---|
830 | init_pool:
|
---|
831 | /* Frontlink to used pools. */
|
---|
832 | next = usedpools[size + size]; /* == prev */
|
---|
833 | pool->nextpool = next;
|
---|
834 | pool->prevpool = next;
|
---|
835 | next->nextpool = pool;
|
---|
836 | next->prevpool = pool;
|
---|
837 | pool->ref.count = 1;
|
---|
838 | if (pool->szidx == size) {
|
---|
839 | /* Luckily, this pool last contained blocks
|
---|
840 | * of the same size class, so its header
|
---|
841 | * and free list are already initialized.
|
---|
842 | */
|
---|
843 | bp = pool->freeblock;
|
---|
844 | pool->freeblock = *(block **)bp;
|
---|
845 | UNLOCK();
|
---|
846 | return (void *)bp;
|
---|
847 | }
|
---|
848 | /*
|
---|
849 | * Initialize the pool header, set up the free list to
|
---|
850 | * contain just the second block, and return the first
|
---|
851 | * block.
|
---|
852 | */
|
---|
853 | pool->szidx = size;
|
---|
854 | size = INDEX2SIZE(size);
|
---|
855 | bp = (block *)pool + POOL_OVERHEAD;
|
---|
856 | pool->nextoffset = POOL_OVERHEAD + (size << 1);
|
---|
857 | pool->maxnextoffset = POOL_SIZE - size;
|
---|
858 | pool->freeblock = bp + size;
|
---|
859 | *(block **)(pool->freeblock) = NULL;
|
---|
860 | UNLOCK();
|
---|
861 | return (void *)bp;
|
---|
862 | }
|
---|
863 |
|
---|
864 | /* Carve off a new pool. */
|
---|
865 | assert(usable_arenas->nfreepools > 0);
|
---|
866 | assert(usable_arenas->freepools == NULL);
|
---|
867 | pool = (poolp)usable_arenas->pool_address;
|
---|
868 | assert((block*)pool <= (block*)usable_arenas->address +
|
---|
869 | ARENA_SIZE - POOL_SIZE);
|
---|
870 | pool->arenaindex = usable_arenas - arenas;
|
---|
871 | assert(&arenas[pool->arenaindex] == usable_arenas);
|
---|
872 | pool->szidx = DUMMY_SIZE_IDX;
|
---|
873 | usable_arenas->pool_address += POOL_SIZE;
|
---|
874 | --usable_arenas->nfreepools;
|
---|
875 |
|
---|
876 | if (usable_arenas->nfreepools == 0) {
|
---|
877 | assert(usable_arenas->nextarena == NULL ||
|
---|
878 | usable_arenas->nextarena->prevarena ==
|
---|
879 | usable_arenas);
|
---|
880 | /* Unlink the arena: it is completely allocated. */
|
---|
881 | usable_arenas = usable_arenas->nextarena;
|
---|
882 | if (usable_arenas != NULL) {
|
---|
883 | usable_arenas->prevarena = NULL;
|
---|
884 | assert(usable_arenas->address != 0);
|
---|
885 | }
|
---|
886 | }
|
---|
887 |
|
---|
888 | goto init_pool;
|
---|
889 | }
|
---|
890 |
|
---|
891 | /* The small block allocator ends here. */
|
---|
892 |
|
---|
893 | redirect:
|
---|
894 | /* Redirect the original request to the underlying (libc) allocator.
|
---|
895 | * We jump here on bigger requests, on error in the code above (as a
|
---|
896 | * last chance to serve the request) or when the max memory limit
|
---|
897 | * has been reached.
|
---|
898 | */
|
---|
899 | if (nbytes == 0)
|
---|
900 | nbytes = 1;
|
---|
901 | return (void *)malloc(nbytes);
|
---|
902 | }
|
---|
903 |
|
---|
904 | /* free */
|
---|
905 |
|
---|
906 | #undef PyObject_Free
|
---|
907 | void
|
---|
908 | PyObject_Free(void *p)
|
---|
909 | {
|
---|
910 | poolp pool;
|
---|
911 | block *lastfree;
|
---|
912 | poolp next, prev;
|
---|
913 | uint size;
|
---|
914 |
|
---|
915 | if (p == NULL) /* free(NULL) has no effect */
|
---|
916 | return;
|
---|
917 |
|
---|
918 | pool = POOL_ADDR(p);
|
---|
919 | if (Py_ADDRESS_IN_RANGE(p, pool)) {
|
---|
920 | /* We allocated this address. */
|
---|
921 | LOCK();
|
---|
922 | /* Link p to the start of the pool's freeblock list. Since
|
---|
923 | * the pool had at least the p block outstanding, the pool
|
---|
924 | * wasn't empty (so it's already in a usedpools[] list, or
|
---|
925 | * was full and is in no list -- it's not in the freeblocks
|
---|
926 | * list in any case).
|
---|
927 | */
|
---|
928 | assert(pool->ref.count > 0); /* else it was empty */
|
---|
929 | *(block **)p = lastfree = pool->freeblock;
|
---|
930 | pool->freeblock = (block *)p;
|
---|
931 | if (lastfree) {
|
---|
932 | struct arena_object* ao;
|
---|
933 | uint nf; /* ao->nfreepools */
|
---|
934 |
|
---|
935 | /* freeblock wasn't NULL, so the pool wasn't full,
|
---|
936 | * and the pool is in a usedpools[] list.
|
---|
937 | */
|
---|
938 | if (--pool->ref.count != 0) {
|
---|
939 | /* pool isn't empty: leave it in usedpools */
|
---|
940 | UNLOCK();
|
---|
941 | return;
|
---|
942 | }
|
---|
943 | /* Pool is now empty: unlink from usedpools, and
|
---|
944 | * link to the front of freepools. This ensures that
|
---|
945 | * previously freed pools will be allocated later
|
---|
946 | * (being not referenced, they are perhaps paged out).
|
---|
947 | */
|
---|
948 | next = pool->nextpool;
|
---|
949 | prev = pool->prevpool;
|
---|
950 | next->prevpool = prev;
|
---|
951 | prev->nextpool = next;
|
---|
952 |
|
---|
953 | /* Link the pool to freepools. This is a singly-linked
|
---|
954 | * list, and pool->prevpool isn't used there.
|
---|
955 | */
|
---|
956 | ao = &arenas[pool->arenaindex];
|
---|
957 | pool->nextpool = ao->freepools;
|
---|
958 | ao->freepools = pool;
|
---|
959 | nf = ++ao->nfreepools;
|
---|
960 |
|
---|
961 | /* All the rest is arena management. We just freed
|
---|
962 | * a pool, and there are 4 cases for arena mgmt:
|
---|
963 | * 1. If all the pools are free, return the arena to
|
---|
964 | * the system free().
|
---|
965 | * 2. If this is the only free pool in the arena,
|
---|
966 | * add the arena back to the `usable_arenas` list.
|
---|
967 | * 3. If the "next" arena has a smaller count of free
|
---|
968 | * pools, we have to "slide this arena right" to
|
---|
969 | * restore that usable_arenas is sorted in order of
|
---|
970 | * nfreepools.
|
---|
971 | * 4. Else there's nothing more to do.
|
---|
972 | */
|
---|
973 | if (nf == ao->ntotalpools) {
|
---|
974 | /* Case 1. First unlink ao from usable_arenas.
|
---|
975 | */
|
---|
976 | assert(ao->prevarena == NULL ||
|
---|
977 | ao->prevarena->address != 0);
|
---|
978 | assert(ao ->nextarena == NULL ||
|
---|
979 | ao->nextarena->address != 0);
|
---|
980 |
|
---|
981 | /* Fix the pointer in the prevarena, or the
|
---|
982 | * usable_arenas pointer.
|
---|
983 | */
|
---|
984 | if (ao->prevarena == NULL) {
|
---|
985 | usable_arenas = ao->nextarena;
|
---|
986 | assert(usable_arenas == NULL ||
|
---|
987 | usable_arenas->address != 0);
|
---|
988 | }
|
---|
989 | else {
|
---|
990 | assert(ao->prevarena->nextarena == ao);
|
---|
991 | ao->prevarena->nextarena =
|
---|
992 | ao->nextarena;
|
---|
993 | }
|
---|
994 | /* Fix the pointer in the nextarena. */
|
---|
995 | if (ao->nextarena != NULL) {
|
---|
996 | assert(ao->nextarena->prevarena == ao);
|
---|
997 | ao->nextarena->prevarena =
|
---|
998 | ao->prevarena;
|
---|
999 | }
|
---|
1000 | /* Record that this arena_object slot is
|
---|
1001 | * available to be reused.
|
---|
1002 | */
|
---|
1003 | ao->nextarena = unused_arena_objects;
|
---|
1004 | unused_arena_objects = ao;
|
---|
1005 |
|
---|
1006 | /* Free the entire arena. */
|
---|
1007 | free((void *)ao->address);
|
---|
1008 | ao->address = 0; /* mark unassociated */
|
---|
1009 | --narenas_currently_allocated;
|
---|
1010 |
|
---|
1011 | UNLOCK();
|
---|
1012 | return;
|
---|
1013 | }
|
---|
1014 | if (nf == 1) {
|
---|
1015 | /* Case 2. Put ao at the head of
|
---|
1016 | * usable_arenas. Note that because
|
---|
1017 | * ao->nfreepools was 0 before, ao isn't
|
---|
1018 | * currently on the usable_arenas list.
|
---|
1019 | */
|
---|
1020 | ao->nextarena = usable_arenas;
|
---|
1021 | ao->prevarena = NULL;
|
---|
1022 | if (usable_arenas)
|
---|
1023 | usable_arenas->prevarena = ao;
|
---|
1024 | usable_arenas = ao;
|
---|
1025 | assert(usable_arenas->address != 0);
|
---|
1026 |
|
---|
1027 | UNLOCK();
|
---|
1028 | return;
|
---|
1029 | }
|
---|
1030 | /* If this arena is now out of order, we need to keep
|
---|
1031 | * the list sorted. The list is kept sorted so that
|
---|
1032 | * the "most full" arenas are used first, which allows
|
---|
1033 | * the nearly empty arenas to be completely freed. In
|
---|
1034 | * a few un-scientific tests, it seems like this
|
---|
1035 | * approach allowed a lot more memory to be freed.
|
---|
1036 | */
|
---|
1037 | if (ao->nextarena == NULL ||
|
---|
1038 | nf <= ao->nextarena->nfreepools) {
|
---|
1039 | /* Case 4. Nothing to do. */
|
---|
1040 | UNLOCK();
|
---|
1041 | return;
|
---|
1042 | }
|
---|
1043 | /* Case 3: We have to move the arena towards the end
|
---|
1044 | * of the list, because it has more free pools than
|
---|
1045 | * the arena to its right.
|
---|
1046 | * First unlink ao from usable_arenas.
|
---|
1047 | */
|
---|
1048 | if (ao->prevarena != NULL) {
|
---|
1049 | /* ao isn't at the head of the list */
|
---|
1050 | assert(ao->prevarena->nextarena == ao);
|
---|
1051 | ao->prevarena->nextarena = ao->nextarena;
|
---|
1052 | }
|
---|
1053 | else {
|
---|
1054 | /* ao is at the head of the list */
|
---|
1055 | assert(usable_arenas == ao);
|
---|
1056 | usable_arenas = ao->nextarena;
|
---|
1057 | }
|
---|
1058 | ao->nextarena->prevarena = ao->prevarena;
|
---|
1059 |
|
---|
1060 | /* Locate the new insertion point by iterating over
|
---|
1061 | * the list, using our nextarena pointer.
|
---|
1062 | */
|
---|
1063 | while (ao->nextarena != NULL &&
|
---|
1064 | nf > ao->nextarena->nfreepools) {
|
---|
1065 | ao->prevarena = ao->nextarena;
|
---|
1066 | ao->nextarena = ao->nextarena->nextarena;
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | /* Insert ao at this point. */
|
---|
1070 | assert(ao->nextarena == NULL ||
|
---|
1071 | ao->prevarena == ao->nextarena->prevarena);
|
---|
1072 | assert(ao->prevarena->nextarena == ao->nextarena);
|
---|
1073 |
|
---|
1074 | ao->prevarena->nextarena = ao;
|
---|
1075 | if (ao->nextarena != NULL)
|
---|
1076 | ao->nextarena->prevarena = ao;
|
---|
1077 |
|
---|
1078 | /* Verify that the swaps worked. */
|
---|
1079 | assert(ao->nextarena == NULL ||
|
---|
1080 | nf <= ao->nextarena->nfreepools);
|
---|
1081 | assert(ao->prevarena == NULL ||
|
---|
1082 | nf > ao->prevarena->nfreepools);
|
---|
1083 | assert(ao->nextarena == NULL ||
|
---|
1084 | ao->nextarena->prevarena == ao);
|
---|
1085 | assert((usable_arenas == ao &&
|
---|
1086 | ao->prevarena == NULL) ||
|
---|
1087 | ao->prevarena->nextarena == ao);
|
---|
1088 |
|
---|
1089 | UNLOCK();
|
---|
1090 | return;
|
---|
1091 | }
|
---|
1092 | /* Pool was full, so doesn't currently live in any list:
|
---|
1093 | * link it to the front of the appropriate usedpools[] list.
|
---|
1094 | * This mimics LRU pool usage for new allocations and
|
---|
1095 | * targets optimal filling when several pools contain
|
---|
1096 | * blocks of the same size class.
|
---|
1097 | */
|
---|
1098 | --pool->ref.count;
|
---|
1099 | assert(pool->ref.count > 0); /* else the pool is empty */
|
---|
1100 | size = pool->szidx;
|
---|
1101 | next = usedpools[size + size];
|
---|
1102 | prev = next->prevpool;
|
---|
1103 | /* insert pool before next: prev <-> pool <-> next */
|
---|
1104 | pool->nextpool = next;
|
---|
1105 | pool->prevpool = prev;
|
---|
1106 | next->prevpool = pool;
|
---|
1107 | prev->nextpool = pool;
|
---|
1108 | UNLOCK();
|
---|
1109 | return;
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | /* We didn't allocate this address. */
|
---|
1113 | free(p);
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 | /* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
|
---|
1117 | * then as the Python docs promise, we do not treat this like free(p), and
|
---|
1118 | * return a non-NULL result.
|
---|
1119 | */
|
---|
1120 |
|
---|
1121 | #undef PyObject_Realloc
|
---|
1122 | void *
|
---|
1123 | PyObject_Realloc(void *p, size_t nbytes)
|
---|
1124 | {
|
---|
1125 | void *bp;
|
---|
1126 | poolp pool;
|
---|
1127 | size_t size;
|
---|
1128 |
|
---|
1129 | if (p == NULL)
|
---|
1130 | return PyObject_Malloc(nbytes);
|
---|
1131 |
|
---|
1132 | pool = POOL_ADDR(p);
|
---|
1133 | if (Py_ADDRESS_IN_RANGE(p, pool)) {
|
---|
1134 | /* We're in charge of this block */
|
---|
1135 | size = INDEX2SIZE(pool->szidx);
|
---|
1136 | if (nbytes <= size) {
|
---|
1137 | /* The block is staying the same or shrinking. If
|
---|
1138 | * it's shrinking, there's a tradeoff: it costs
|
---|
1139 | * cycles to copy the block to a smaller size class,
|
---|
1140 | * but it wastes memory not to copy it. The
|
---|
1141 | * compromise here is to copy on shrink only if at
|
---|
1142 | * least 25% of size can be shaved off.
|
---|
1143 | */
|
---|
1144 | if (4 * nbytes > 3 * size) {
|
---|
1145 | /* It's the same,
|
---|
1146 | * or shrinking and new/old > 3/4.
|
---|
1147 | */
|
---|
1148 | return p;
|
---|
1149 | }
|
---|
1150 | size = nbytes;
|
---|
1151 | }
|
---|
1152 | bp = PyObject_Malloc(nbytes);
|
---|
1153 | if (bp != NULL) {
|
---|
1154 | memcpy(bp, p, size);
|
---|
1155 | PyObject_Free(p);
|
---|
1156 | }
|
---|
1157 | return bp;
|
---|
1158 | }
|
---|
1159 | /* We're not managing this block. If nbytes <=
|
---|
1160 | * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
|
---|
1161 | * block. However, if we do, we need to copy the valid data from
|
---|
1162 | * the C-managed block to one of our blocks, and there's no portable
|
---|
1163 | * way to know how much of the memory space starting at p is valid.
|
---|
1164 | * As bug 1185883 pointed out the hard way, it's possible that the
|
---|
1165 | * C-managed block is "at the end" of allocated VM space, so that
|
---|
1166 | * a memory fault can occur if we try to copy nbytes bytes starting
|
---|
1167 | * at p. Instead we punt: let C continue to manage this block.
|
---|
1168 | */
|
---|
1169 | if (nbytes)
|
---|
1170 | return realloc(p, nbytes);
|
---|
1171 | /* C doesn't define the result of realloc(p, 0) (it may or may not
|
---|
1172 | * return NULL then), but Python's docs promise that nbytes==0 never
|
---|
1173 | * returns NULL. We don't pass 0 to realloc(), to avoid that endcase
|
---|
1174 | * to begin with. Even then, we can't be sure that realloc() won't
|
---|
1175 | * return NULL.
|
---|
1176 | */
|
---|
1177 | bp = realloc(p, 1);
|
---|
1178 | return bp ? bp : p;
|
---|
1179 | }
|
---|
1180 |
|
---|
1181 | #else /* ! WITH_PYMALLOC */
|
---|
1182 |
|
---|
1183 | /*==========================================================================*/
|
---|
1184 | /* pymalloc not enabled: Redirect the entry points to malloc. These will
|
---|
1185 | * only be used by extensions that are compiled with pymalloc enabled. */
|
---|
1186 |
|
---|
1187 | void *
|
---|
1188 | PyObject_Malloc(size_t n)
|
---|
1189 | {
|
---|
1190 | return PyMem_MALLOC(n);
|
---|
1191 | }
|
---|
1192 |
|
---|
1193 | void *
|
---|
1194 | PyObject_Realloc(void *p, size_t n)
|
---|
1195 | {
|
---|
1196 | return PyMem_REALLOC(p, n);
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | void
|
---|
1200 | PyObject_Free(void *p)
|
---|
1201 | {
|
---|
1202 | PyMem_FREE(p);
|
---|
1203 | }
|
---|
1204 | #endif /* WITH_PYMALLOC */
|
---|
1205 |
|
---|
1206 | #ifdef PYMALLOC_DEBUG
|
---|
1207 | /*==========================================================================*/
|
---|
1208 | /* A x-platform debugging allocator. This doesn't manage memory directly,
|
---|
1209 | * it wraps a real allocator, adding extra debugging info to the memory blocks.
|
---|
1210 | */
|
---|
1211 |
|
---|
1212 | /* Special bytes broadcast into debug memory blocks at appropriate times.
|
---|
1213 | * Strings of these are unlikely to be valid addresses, floats, ints or
|
---|
1214 | * 7-bit ASCII.
|
---|
1215 | */
|
---|
1216 | #undef CLEANBYTE
|
---|
1217 | #undef DEADBYTE
|
---|
1218 | #undef FORBIDDENBYTE
|
---|
1219 | #define CLEANBYTE 0xCB /* clean (newly allocated) memory */
|
---|
1220 | #define DEADBYTE 0xDB /* dead (newly freed) memory */
|
---|
1221 | #define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
|
---|
1222 |
|
---|
1223 | static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
|
---|
1224 |
|
---|
1225 | /* serialno is always incremented via calling this routine. The point is
|
---|
1226 | * to supply a single place to set a breakpoint.
|
---|
1227 | */
|
---|
1228 | static void
|
---|
1229 | bumpserialno(void)
|
---|
1230 | {
|
---|
1231 | ++serialno;
|
---|
1232 | }
|
---|
1233 |
|
---|
1234 | #define SST SIZEOF_SIZE_T
|
---|
1235 |
|
---|
1236 | /* Read sizeof(size_t) bytes at p as a big-endian size_t. */
|
---|
1237 | static size_t
|
---|
1238 | read_size_t(const void *p)
|
---|
1239 | {
|
---|
1240 | const uchar *q = (const uchar *)p;
|
---|
1241 | size_t result = *q++;
|
---|
1242 | int i;
|
---|
1243 |
|
---|
1244 | for (i = SST; --i > 0; ++q)
|
---|
1245 | result = (result << 8) | *q;
|
---|
1246 | return result;
|
---|
1247 | }
|
---|
1248 |
|
---|
1249 | /* Write n as a big-endian size_t, MSB at address p, LSB at
|
---|
1250 | * p + sizeof(size_t) - 1.
|
---|
1251 | */
|
---|
1252 | static void
|
---|
1253 | write_size_t(void *p, size_t n)
|
---|
1254 | {
|
---|
1255 | uchar *q = (uchar *)p + SST - 1;
|
---|
1256 | int i;
|
---|
1257 |
|
---|
1258 | for (i = SST; --i >= 0; --q) {
|
---|
1259 | *q = (uchar)(n & 0xff);
|
---|
1260 | n >>= 8;
|
---|
1261 | }
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | #ifdef Py_DEBUG
|
---|
1265 | /* Is target in the list? The list is traversed via the nextpool pointers.
|
---|
1266 | * The list may be NULL-terminated, or circular. Return 1 if target is in
|
---|
1267 | * list, else 0.
|
---|
1268 | */
|
---|
1269 | static int
|
---|
1270 | pool_is_in_list(const poolp target, poolp list)
|
---|
1271 | {
|
---|
1272 | poolp origlist = list;
|
---|
1273 | assert(target != NULL);
|
---|
1274 | if (list == NULL)
|
---|
1275 | return 0;
|
---|
1276 | do {
|
---|
1277 | if (target == list)
|
---|
1278 | return 1;
|
---|
1279 | list = list->nextpool;
|
---|
1280 | } while (list != NULL && list != origlist);
|
---|
1281 | return 0;
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | #else
|
---|
1285 | #define pool_is_in_list(X, Y) 1
|
---|
1286 |
|
---|
1287 | #endif /* Py_DEBUG */
|
---|
1288 |
|
---|
1289 | /* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and
|
---|
1290 | fills them with useful stuff, here calling the underlying malloc's result p:
|
---|
1291 |
|
---|
1292 | p[0: S]
|
---|
1293 | Number of bytes originally asked for. This is a size_t, big-endian (easier
|
---|
1294 | to read in a memory dump).
|
---|
1295 | p[S: 2*S]
|
---|
1296 | Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
|
---|
1297 | p[2*S: 2*S+n]
|
---|
1298 | The requested memory, filled with copies of CLEANBYTE.
|
---|
1299 | Used to catch reference to uninitialized memory.
|
---|
1300 | &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
|
---|
1301 | handled the request itself.
|
---|
1302 | p[2*S+n: 2*S+n+S]
|
---|
1303 | Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
|
---|
1304 | p[2*S+n+S: 2*S+n+2*S]
|
---|
1305 | A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
|
---|
1306 | and _PyObject_DebugRealloc.
|
---|
1307 | This is a big-endian size_t.
|
---|
1308 | If "bad memory" is detected later, the serial number gives an
|
---|
1309 | excellent way to set a breakpoint on the next run, to capture the
|
---|
1310 | instant at which this block was passed out.
|
---|
1311 | */
|
---|
1312 |
|
---|
1313 | void *
|
---|
1314 | _PyObject_DebugMalloc(size_t nbytes)
|
---|
1315 | {
|
---|
1316 | uchar *p; /* base address of malloc'ed block */
|
---|
1317 | uchar *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */
|
---|
1318 | size_t total; /* nbytes + 4*SST */
|
---|
1319 |
|
---|
1320 | bumpserialno();
|
---|
1321 | total = nbytes + 4*SST;
|
---|
1322 | if (total < nbytes)
|
---|
1323 | /* overflow: can't represent total as a size_t */
|
---|
1324 | return NULL;
|
---|
1325 |
|
---|
1326 | p = (uchar *)PyObject_Malloc(total);
|
---|
1327 | if (p == NULL)
|
---|
1328 | return NULL;
|
---|
1329 |
|
---|
1330 | write_size_t(p, nbytes);
|
---|
1331 | memset(p + SST, FORBIDDENBYTE, SST);
|
---|
1332 |
|
---|
1333 | if (nbytes > 0)
|
---|
1334 | memset(p + 2*SST, CLEANBYTE, nbytes);
|
---|
1335 |
|
---|
1336 | tail = p + 2*SST + nbytes;
|
---|
1337 | memset(tail, FORBIDDENBYTE, SST);
|
---|
1338 | write_size_t(tail + SST, serialno);
|
---|
1339 |
|
---|
1340 | return p + 2*SST;
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | /* The debug free first checks the 2*SST bytes on each end for sanity (in
|
---|
1344 | particular, that the FORBIDDENBYTEs are still intact).
|
---|
1345 | Then fills the original bytes with DEADBYTE.
|
---|
1346 | Then calls the underlying free.
|
---|
1347 | */
|
---|
1348 | void
|
---|
1349 | _PyObject_DebugFree(void *p)
|
---|
1350 | {
|
---|
1351 | uchar *q = (uchar *)p - 2*SST; /* address returned from malloc */
|
---|
1352 | size_t nbytes;
|
---|
1353 |
|
---|
1354 | if (p == NULL)
|
---|
1355 | return;
|
---|
1356 | _PyObject_DebugCheckAddress(p);
|
---|
1357 | nbytes = read_size_t(q);
|
---|
1358 | if (nbytes > 0)
|
---|
1359 | memset(q, DEADBYTE, nbytes);
|
---|
1360 | PyObject_Free(q);
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 | void *
|
---|
1364 | _PyObject_DebugRealloc(void *p, size_t nbytes)
|
---|
1365 | {
|
---|
1366 | uchar *q = (uchar *)p;
|
---|
1367 | uchar *tail;
|
---|
1368 | size_t total; /* nbytes + 4*SST */
|
---|
1369 | size_t original_nbytes;
|
---|
1370 | int i;
|
---|
1371 |
|
---|
1372 | if (p == NULL)
|
---|
1373 | return _PyObject_DebugMalloc(nbytes);
|
---|
1374 |
|
---|
1375 | _PyObject_DebugCheckAddress(p);
|
---|
1376 | bumpserialno();
|
---|
1377 | original_nbytes = read_size_t(q - 2*SST);
|
---|
1378 | total = nbytes + 4*SST;
|
---|
1379 | if (total < nbytes)
|
---|
1380 | /* overflow: can't represent total as a size_t */
|
---|
1381 | return NULL;
|
---|
1382 |
|
---|
1383 | if (nbytes < original_nbytes) {
|
---|
1384 | /* shrinking: mark old extra memory dead */
|
---|
1385 | memset(q + nbytes, DEADBYTE, original_nbytes - nbytes);
|
---|
1386 | }
|
---|
1387 |
|
---|
1388 | /* Resize and add decorations. */
|
---|
1389 | q = (uchar *)PyObject_Realloc(q - 2*SST, total);
|
---|
1390 | if (q == NULL)
|
---|
1391 | return NULL;
|
---|
1392 |
|
---|
1393 | write_size_t(q, nbytes);
|
---|
1394 | for (i = 0; i < SST; ++i)
|
---|
1395 | assert(q[SST + i] == FORBIDDENBYTE);
|
---|
1396 | q += 2*SST;
|
---|
1397 | tail = q + nbytes;
|
---|
1398 | memset(tail, FORBIDDENBYTE, SST);
|
---|
1399 | write_size_t(tail + SST, serialno);
|
---|
1400 |
|
---|
1401 | if (nbytes > original_nbytes) {
|
---|
1402 | /* growing: mark new extra memory clean */
|
---|
1403 | memset(q + original_nbytes, CLEANBYTE,
|
---|
1404 | nbytes - original_nbytes);
|
---|
1405 | }
|
---|
1406 |
|
---|
1407 | return q;
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 | /* Check the forbidden bytes on both ends of the memory allocated for p.
|
---|
1411 | * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
|
---|
1412 | * and call Py_FatalError to kill the program.
|
---|
1413 | */
|
---|
1414 | void
|
---|
1415 | _PyObject_DebugCheckAddress(const void *p)
|
---|
1416 | {
|
---|
1417 | const uchar *q = (const uchar *)p;
|
---|
1418 | char *msg;
|
---|
1419 | size_t nbytes;
|
---|
1420 | const uchar *tail;
|
---|
1421 | int i;
|
---|
1422 |
|
---|
1423 | if (p == NULL) {
|
---|
1424 | msg = "didn't expect a NULL pointer";
|
---|
1425 | goto error;
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | /* Check the stuff at the start of p first: if there's underwrite
|
---|
1429 | * corruption, the number-of-bytes field may be nuts, and checking
|
---|
1430 | * the tail could lead to a segfault then.
|
---|
1431 | */
|
---|
1432 | for (i = SST; i >= 1; --i) {
|
---|
1433 | if (*(q-i) != FORBIDDENBYTE) {
|
---|
1434 | msg = "bad leading pad byte";
|
---|
1435 | goto error;
|
---|
1436 | }
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | nbytes = read_size_t(q - 2*SST);
|
---|
1440 | tail = q + nbytes;
|
---|
1441 | for (i = 0; i < SST; ++i) {
|
---|
1442 | if (tail[i] != FORBIDDENBYTE) {
|
---|
1443 | msg = "bad trailing pad byte";
|
---|
1444 | goto error;
|
---|
1445 | }
|
---|
1446 | }
|
---|
1447 |
|
---|
1448 | return;
|
---|
1449 |
|
---|
1450 | error:
|
---|
1451 | _PyObject_DebugDumpAddress(p);
|
---|
1452 | Py_FatalError(msg);
|
---|
1453 | }
|
---|
1454 |
|
---|
1455 | /* Display info to stderr about the memory block at p. */
|
---|
1456 | void
|
---|
1457 | _PyObject_DebugDumpAddress(const void *p)
|
---|
1458 | {
|
---|
1459 | const uchar *q = (const uchar *)p;
|
---|
1460 | const uchar *tail;
|
---|
1461 | size_t nbytes, serial;
|
---|
1462 | int i;
|
---|
1463 | int ok;
|
---|
1464 |
|
---|
1465 | fprintf(stderr, "Debug memory block at address p=%p:\n", p);
|
---|
1466 | if (p == NULL)
|
---|
1467 | return;
|
---|
1468 |
|
---|
1469 | nbytes = read_size_t(q - 2*SST);
|
---|
1470 | fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally "
|
---|
1471 | "requested\n", nbytes);
|
---|
1472 |
|
---|
1473 | /* In case this is nuts, check the leading pad bytes first. */
|
---|
1474 | fprintf(stderr, " The %d pad bytes at p-%d are ", SST, SST);
|
---|
1475 | ok = 1;
|
---|
1476 | for (i = 1; i <= SST; ++i) {
|
---|
1477 | if (*(q-i) != FORBIDDENBYTE) {
|
---|
1478 | ok = 0;
|
---|
1479 | break;
|
---|
1480 | }
|
---|
1481 | }
|
---|
1482 | if (ok)
|
---|
1483 | fputs("FORBIDDENBYTE, as expected.\n", stderr);
|
---|
1484 | else {
|
---|
1485 | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
|
---|
1486 | FORBIDDENBYTE);
|
---|
1487 | for (i = SST; i >= 1; --i) {
|
---|
1488 | const uchar byte = *(q-i);
|
---|
1489 | fprintf(stderr, " at p-%d: 0x%02x", i, byte);
|
---|
1490 | if (byte != FORBIDDENBYTE)
|
---|
1491 | fputs(" *** OUCH", stderr);
|
---|
1492 | fputc('\n', stderr);
|
---|
1493 | }
|
---|
1494 |
|
---|
1495 | fputs(" Because memory is corrupted at the start, the "
|
---|
1496 | "count of bytes requested\n"
|
---|
1497 | " may be bogus, and checking the trailing pad "
|
---|
1498 | "bytes may segfault.\n", stderr);
|
---|
1499 | }
|
---|
1500 |
|
---|
1501 | tail = q + nbytes;
|
---|
1502 | fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail);
|
---|
1503 | ok = 1;
|
---|
1504 | for (i = 0; i < SST; ++i) {
|
---|
1505 | if (tail[i] != FORBIDDENBYTE) {
|
---|
1506 | ok = 0;
|
---|
1507 | break;
|
---|
1508 | }
|
---|
1509 | }
|
---|
1510 | if (ok)
|
---|
1511 | fputs("FORBIDDENBYTE, as expected.\n", stderr);
|
---|
1512 | else {
|
---|
1513 | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
|
---|
1514 | FORBIDDENBYTE);
|
---|
1515 | for (i = 0; i < SST; ++i) {
|
---|
1516 | const uchar byte = tail[i];
|
---|
1517 | fprintf(stderr, " at tail+%d: 0x%02x",
|
---|
1518 | i, byte);
|
---|
1519 | if (byte != FORBIDDENBYTE)
|
---|
1520 | fputs(" *** OUCH", stderr);
|
---|
1521 | fputc('\n', stderr);
|
---|
1522 | }
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | serial = read_size_t(tail + SST);
|
---|
1526 | fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T
|
---|
1527 | "u to debug malloc/realloc.\n", serial);
|
---|
1528 |
|
---|
1529 | if (nbytes > 0) {
|
---|
1530 | i = 0;
|
---|
1531 | fputs(" Data at p:", stderr);
|
---|
1532 | /* print up to 8 bytes at the start */
|
---|
1533 | while (q < tail && i < 8) {
|
---|
1534 | fprintf(stderr, " %02x", *q);
|
---|
1535 | ++i;
|
---|
1536 | ++q;
|
---|
1537 | }
|
---|
1538 | /* and up to 8 at the end */
|
---|
1539 | if (q < tail) {
|
---|
1540 | if (tail - q > 8) {
|
---|
1541 | fputs(" ...", stderr);
|
---|
1542 | q = tail - 8;
|
---|
1543 | }
|
---|
1544 | while (q < tail) {
|
---|
1545 | fprintf(stderr, " %02x", *q);
|
---|
1546 | ++q;
|
---|
1547 | }
|
---|
1548 | }
|
---|
1549 | fputc('\n', stderr);
|
---|
1550 | }
|
---|
1551 | }
|
---|
1552 |
|
---|
1553 | static size_t
|
---|
1554 | printone(const char* msg, size_t value)
|
---|
1555 | {
|
---|
1556 | int i, k;
|
---|
1557 | char buf[100];
|
---|
1558 | size_t origvalue = value;
|
---|
1559 |
|
---|
1560 | fputs(msg, stderr);
|
---|
1561 | for (i = (int)strlen(msg); i < 35; ++i)
|
---|
1562 | fputc(' ', stderr);
|
---|
1563 | fputc('=', stderr);
|
---|
1564 |
|
---|
1565 | /* Write the value with commas. */
|
---|
1566 | i = 22;
|
---|
1567 | buf[i--] = '\0';
|
---|
1568 | buf[i--] = '\n';
|
---|
1569 | k = 3;
|
---|
1570 | do {
|
---|
1571 | size_t nextvalue = value / 10;
|
---|
1572 | uint digit = (uint)(value - nextvalue * 10);
|
---|
1573 | value = nextvalue;
|
---|
1574 | buf[i--] = (char)(digit + '0');
|
---|
1575 | --k;
|
---|
1576 | if (k == 0 && value && i >= 0) {
|
---|
1577 | k = 3;
|
---|
1578 | buf[i--] = ',';
|
---|
1579 | }
|
---|
1580 | } while (value && i >= 0);
|
---|
1581 |
|
---|
1582 | while (i >= 0)
|
---|
1583 | buf[i--] = ' ';
|
---|
1584 | fputs(buf, stderr);
|
---|
1585 |
|
---|
1586 | return origvalue;
|
---|
1587 | }
|
---|
1588 |
|
---|
1589 | /* Print summary info to stderr about the state of pymalloc's structures.
|
---|
1590 | * In Py_DEBUG mode, also perform some expensive internal consistency
|
---|
1591 | * checks.
|
---|
1592 | */
|
---|
1593 | void
|
---|
1594 | _PyObject_DebugMallocStats(void)
|
---|
1595 | {
|
---|
1596 | uint i;
|
---|
1597 | const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
|
---|
1598 | /* # of pools, allocated blocks, and free blocks per class index */
|
---|
1599 | size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
---|
1600 | size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
---|
1601 | size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
---|
1602 | /* total # of allocated bytes in used and full pools */
|
---|
1603 | size_t allocated_bytes = 0;
|
---|
1604 | /* total # of available bytes in used pools */
|
---|
1605 | size_t available_bytes = 0;
|
---|
1606 | /* # of free pools + pools not yet carved out of current arena */
|
---|
1607 | uint numfreepools = 0;
|
---|
1608 | /* # of bytes for arena alignment padding */
|
---|
1609 | size_t arena_alignment = 0;
|
---|
1610 | /* # of bytes in used and full pools used for pool_headers */
|
---|
1611 | size_t pool_header_bytes = 0;
|
---|
1612 | /* # of bytes in used and full pools wasted due to quantization,
|
---|
1613 | * i.e. the necessarily leftover space at the ends of used and
|
---|
1614 | * full pools.
|
---|
1615 | */
|
---|
1616 | size_t quantization = 0;
|
---|
1617 | /* # of arenas actually allocated. */
|
---|
1618 | size_t narenas = 0;
|
---|
1619 | /* running total -- should equal narenas * ARENA_SIZE */
|
---|
1620 | size_t total;
|
---|
1621 | char buf[128];
|
---|
1622 |
|
---|
1623 | fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
|
---|
1624 | SMALL_REQUEST_THRESHOLD, numclasses);
|
---|
1625 |
|
---|
1626 | for (i = 0; i < numclasses; ++i)
|
---|
1627 | numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
|
---|
1628 |
|
---|
1629 | /* Because full pools aren't linked to from anything, it's easiest
|
---|
1630 | * to march over all the arenas. If we're lucky, most of the memory
|
---|
1631 | * will be living in full pools -- would be a shame to miss them.
|
---|
1632 | */
|
---|
1633 | for (i = 0; i < maxarenas; ++i) {
|
---|
1634 | uint poolsinarena;
|
---|
1635 | uint j;
|
---|
1636 | uptr base = arenas[i].address;
|
---|
1637 |
|
---|
1638 | /* Skip arenas which are not allocated. */
|
---|
1639 | if (arenas[i].address == (uptr)NULL)
|
---|
1640 | continue;
|
---|
1641 | narenas += 1;
|
---|
1642 |
|
---|
1643 | poolsinarena = arenas[i].ntotalpools;
|
---|
1644 | numfreepools += arenas[i].nfreepools;
|
---|
1645 |
|
---|
1646 | /* round up to pool alignment */
|
---|
1647 | if (base & (uptr)POOL_SIZE_MASK) {
|
---|
1648 | arena_alignment += POOL_SIZE;
|
---|
1649 | base &= ~(uptr)POOL_SIZE_MASK;
|
---|
1650 | base += POOL_SIZE;
|
---|
1651 | }
|
---|
1652 |
|
---|
1653 | /* visit every pool in the arena */
|
---|
1654 | assert(base <= (uptr) arenas[i].pool_address);
|
---|
1655 | for (j = 0;
|
---|
1656 | base < (uptr) arenas[i].pool_address;
|
---|
1657 | ++j, base += POOL_SIZE) {
|
---|
1658 | poolp p = (poolp)base;
|
---|
1659 | const uint sz = p->szidx;
|
---|
1660 | uint freeblocks;
|
---|
1661 |
|
---|
1662 | if (p->ref.count == 0) {
|
---|
1663 | /* currently unused */
|
---|
1664 | assert(pool_is_in_list(p, arenas[i].freepools));
|
---|
1665 | continue;
|
---|
1666 | }
|
---|
1667 | ++numpools[sz];
|
---|
1668 | numblocks[sz] += p->ref.count;
|
---|
1669 | freeblocks = NUMBLOCKS(sz) - p->ref.count;
|
---|
1670 | numfreeblocks[sz] += freeblocks;
|
---|
1671 | #ifdef Py_DEBUG
|
---|
1672 | if (freeblocks > 0)
|
---|
1673 | assert(pool_is_in_list(p, usedpools[sz + sz]));
|
---|
1674 | #endif
|
---|
1675 | }
|
---|
1676 | }
|
---|
1677 | assert(narenas == narenas_currently_allocated);
|
---|
1678 |
|
---|
1679 | fputc('\n', stderr);
|
---|
1680 | fputs("class size num pools blocks in use avail blocks\n"
|
---|
1681 | "----- ---- --------- ------------- ------------\n",
|
---|
1682 | stderr);
|
---|
1683 |
|
---|
1684 | for (i = 0; i < numclasses; ++i) {
|
---|
1685 | size_t p = numpools[i];
|
---|
1686 | size_t b = numblocks[i];
|
---|
1687 | size_t f = numfreeblocks[i];
|
---|
1688 | uint size = INDEX2SIZE(i);
|
---|
1689 | if (p == 0) {
|
---|
1690 | assert(b == 0 && f == 0);
|
---|
1691 | continue;
|
---|
1692 | }
|
---|
1693 | fprintf(stderr, "%5u %6u "
|
---|
1694 | "%11" PY_FORMAT_SIZE_T "u "
|
---|
1695 | "%15" PY_FORMAT_SIZE_T "u "
|
---|
1696 | "%13" PY_FORMAT_SIZE_T "u\n",
|
---|
1697 | i, size, p, b, f);
|
---|
1698 | allocated_bytes += b * size;
|
---|
1699 | available_bytes += f * size;
|
---|
1700 | pool_header_bytes += p * POOL_OVERHEAD;
|
---|
1701 | quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
|
---|
1702 | }
|
---|
1703 | fputc('\n', stderr);
|
---|
1704 | (void)printone("# times object malloc called", serialno);
|
---|
1705 |
|
---|
1706 | (void)printone("# arenas allocated total", ntimes_arena_allocated);
|
---|
1707 | (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
|
---|
1708 | (void)printone("# arenas highwater mark", narenas_highwater);
|
---|
1709 | (void)printone("# arenas allocated current", narenas);
|
---|
1710 |
|
---|
1711 | PyOS_snprintf(buf, sizeof(buf),
|
---|
1712 | "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
|
---|
1713 | narenas, ARENA_SIZE);
|
---|
1714 | (void)printone(buf, narenas * ARENA_SIZE);
|
---|
1715 |
|
---|
1716 | fputc('\n', stderr);
|
---|
1717 |
|
---|
1718 | total = printone("# bytes in allocated blocks", allocated_bytes);
|
---|
1719 | total += printone("# bytes in available blocks", available_bytes);
|
---|
1720 |
|
---|
1721 | PyOS_snprintf(buf, sizeof(buf),
|
---|
1722 | "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
|
---|
1723 | total += printone(buf, (size_t)numfreepools * POOL_SIZE);
|
---|
1724 |
|
---|
1725 | total += printone("# bytes lost to pool headers", pool_header_bytes);
|
---|
1726 | total += printone("# bytes lost to quantization", quantization);
|
---|
1727 | total += printone("# bytes lost to arena alignment", arena_alignment);
|
---|
1728 | (void)printone("Total", total);
|
---|
1729 | }
|
---|
1730 |
|
---|
1731 | #endif /* PYMALLOC_DEBUG */
|
---|
1732 |
|
---|
1733 | #ifdef Py_USING_MEMORY_DEBUGGER
|
---|
1734 | /* Make this function last so gcc won't inline it since the definition is
|
---|
1735 | * after the reference.
|
---|
1736 | */
|
---|
1737 | int
|
---|
1738 | Py_ADDRESS_IN_RANGE(void *P, poolp pool)
|
---|
1739 | {
|
---|
1740 | return pool->arenaindex < maxarenas &&
|
---|
1741 | (uptr)P - arenas[pool->arenaindex].address < (uptr)ARENA_SIZE &&
|
---|
1742 | arenas[pool->arenaindex].address != 0;
|
---|
1743 | }
|
---|
1744 | #endif
|
---|