1 |
|
---|
2 |
|
---|
3 | /* Long (arbitrary precision) integer object implementation */
|
---|
4 |
|
---|
5 | /* XXX The functional organization of this file is terrible */
|
---|
6 |
|
---|
7 | #include "Python.h"
|
---|
8 | #include "longintrepr.h"
|
---|
9 |
|
---|
10 | #include <ctype.h>
|
---|
11 |
|
---|
12 | /* For long multiplication, use the O(N**2) school algorithm unless
|
---|
13 | * both operands contain more than KARATSUBA_CUTOFF digits (this
|
---|
14 | * being an internal Python long digit, in base BASE).
|
---|
15 | */
|
---|
16 | #define KARATSUBA_CUTOFF 70
|
---|
17 | #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
|
---|
18 |
|
---|
19 | /* For exponentiation, use the binary left-to-right algorithm
|
---|
20 | * unless the exponent contains more than FIVEARY_CUTOFF digits.
|
---|
21 | * In that case, do 5 bits at a time. The potential drawback is that
|
---|
22 | * a table of 2**5 intermediate results is computed.
|
---|
23 | */
|
---|
24 | #define FIVEARY_CUTOFF 8
|
---|
25 |
|
---|
26 | #define ABS(x) ((x) < 0 ? -(x) : (x))
|
---|
27 |
|
---|
28 | #undef MIN
|
---|
29 | #undef MAX
|
---|
30 | #define MAX(x, y) ((x) < (y) ? (y) : (x))
|
---|
31 | #define MIN(x, y) ((x) > (y) ? (y) : (x))
|
---|
32 |
|
---|
33 | /* Forward */
|
---|
34 | static PyLongObject *long_normalize(PyLongObject *);
|
---|
35 | static PyLongObject *mul1(PyLongObject *, wdigit);
|
---|
36 | static PyLongObject *muladd1(PyLongObject *, wdigit, wdigit);
|
---|
37 | static PyLongObject *divrem1(PyLongObject *, digit, digit *);
|
---|
38 | static PyObject *long_format(PyObject *aa, int base, int addL);
|
---|
39 |
|
---|
40 | #define SIGCHECK(PyTryBlock) \
|
---|
41 | if (--_Py_Ticker < 0) { \
|
---|
42 | _Py_Ticker = _Py_CheckInterval; \
|
---|
43 | if (PyErr_CheckSignals()) PyTryBlock \
|
---|
44 | }
|
---|
45 |
|
---|
46 | /* Normalize (remove leading zeros from) a long int object.
|
---|
47 | Doesn't attempt to free the storage--in most cases, due to the nature
|
---|
48 | of the algorithms used, this could save at most be one word anyway. */
|
---|
49 |
|
---|
50 | static PyLongObject *
|
---|
51 | long_normalize(register PyLongObject *v)
|
---|
52 | {
|
---|
53 | Py_ssize_t j = ABS(v->ob_size);
|
---|
54 | Py_ssize_t i = j;
|
---|
55 |
|
---|
56 | while (i > 0 && v->ob_digit[i-1] == 0)
|
---|
57 | --i;
|
---|
58 | if (i != j)
|
---|
59 | v->ob_size = (v->ob_size < 0) ? -(i) : i;
|
---|
60 | return v;
|
---|
61 | }
|
---|
62 |
|
---|
63 | /* Allocate a new long int object with size digits.
|
---|
64 | Return NULL and set exception if we run out of memory. */
|
---|
65 |
|
---|
66 | PyLongObject *
|
---|
67 | _PyLong_New(Py_ssize_t size)
|
---|
68 | {
|
---|
69 | if (size > PY_SSIZE_T_MAX) {
|
---|
70 | PyErr_NoMemory();
|
---|
71 | return NULL;
|
---|
72 | }
|
---|
73 | return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size);
|
---|
74 | }
|
---|
75 |
|
---|
76 | PyObject *
|
---|
77 | _PyLong_Copy(PyLongObject *src)
|
---|
78 | {
|
---|
79 | PyLongObject *result;
|
---|
80 | Py_ssize_t i;
|
---|
81 |
|
---|
82 | assert(src != NULL);
|
---|
83 | i = src->ob_size;
|
---|
84 | if (i < 0)
|
---|
85 | i = -(i);
|
---|
86 | result = _PyLong_New(i);
|
---|
87 | if (result != NULL) {
|
---|
88 | result->ob_size = src->ob_size;
|
---|
89 | while (--i >= 0)
|
---|
90 | result->ob_digit[i] = src->ob_digit[i];
|
---|
91 | }
|
---|
92 | return (PyObject *)result;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /* Create a new long int object from a C long int */
|
---|
96 |
|
---|
97 | PyObject *
|
---|
98 | PyLong_FromLong(long ival)
|
---|
99 | {
|
---|
100 | PyLongObject *v;
|
---|
101 | unsigned long t; /* unsigned so >> doesn't propagate sign bit */
|
---|
102 | int ndigits = 0;
|
---|
103 | int negative = 0;
|
---|
104 |
|
---|
105 | if (ival < 0) {
|
---|
106 | ival = -ival;
|
---|
107 | negative = 1;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /* Count the number of Python digits.
|
---|
111 | We used to pick 5 ("big enough for anything"), but that's a
|
---|
112 | waste of time and space given that 5*15 = 75 bits are rarely
|
---|
113 | needed. */
|
---|
114 | t = (unsigned long)ival;
|
---|
115 | while (t) {
|
---|
116 | ++ndigits;
|
---|
117 | t >>= SHIFT;
|
---|
118 | }
|
---|
119 | v = _PyLong_New(ndigits);
|
---|
120 | if (v != NULL) {
|
---|
121 | digit *p = v->ob_digit;
|
---|
122 | v->ob_size = negative ? -ndigits : ndigits;
|
---|
123 | t = (unsigned long)ival;
|
---|
124 | while (t) {
|
---|
125 | *p++ = (digit)(t & MASK);
|
---|
126 | t >>= SHIFT;
|
---|
127 | }
|
---|
128 | }
|
---|
129 | return (PyObject *)v;
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* Create a new long int object from a C unsigned long int */
|
---|
133 |
|
---|
134 | PyObject *
|
---|
135 | PyLong_FromUnsignedLong(unsigned long ival)
|
---|
136 | {
|
---|
137 | PyLongObject *v;
|
---|
138 | unsigned long t;
|
---|
139 | int ndigits = 0;
|
---|
140 |
|
---|
141 | /* Count the number of Python digits. */
|
---|
142 | t = (unsigned long)ival;
|
---|
143 | while (t) {
|
---|
144 | ++ndigits;
|
---|
145 | t >>= SHIFT;
|
---|
146 | }
|
---|
147 | v = _PyLong_New(ndigits);
|
---|
148 | if (v != NULL) {
|
---|
149 | digit *p = v->ob_digit;
|
---|
150 | v->ob_size = ndigits;
|
---|
151 | while (ival) {
|
---|
152 | *p++ = (digit)(ival & MASK);
|
---|
153 | ival >>= SHIFT;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | return (PyObject *)v;
|
---|
157 | }
|
---|
158 |
|
---|
159 | /* Create a new long int object from a C double */
|
---|
160 |
|
---|
161 | PyObject *
|
---|
162 | PyLong_FromDouble(double dval)
|
---|
163 | {
|
---|
164 | PyLongObject *v;
|
---|
165 | double frac;
|
---|
166 | int i, ndig, expo, neg;
|
---|
167 | neg = 0;
|
---|
168 | if (Py_IS_INFINITY(dval)) {
|
---|
169 | PyErr_SetString(PyExc_OverflowError,
|
---|
170 | "cannot convert float infinity to long");
|
---|
171 | return NULL;
|
---|
172 | }
|
---|
173 | if (dval < 0.0) {
|
---|
174 | neg = 1;
|
---|
175 | dval = -dval;
|
---|
176 | }
|
---|
177 | frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
|
---|
178 | if (expo <= 0)
|
---|
179 | return PyLong_FromLong(0L);
|
---|
180 | ndig = (expo-1) / SHIFT + 1; /* Number of 'digits' in result */
|
---|
181 | v = _PyLong_New(ndig);
|
---|
182 | if (v == NULL)
|
---|
183 | return NULL;
|
---|
184 | frac = ldexp(frac, (expo-1) % SHIFT + 1);
|
---|
185 | for (i = ndig; --i >= 0; ) {
|
---|
186 | long bits = (long)frac;
|
---|
187 | v->ob_digit[i] = (digit) bits;
|
---|
188 | frac = frac - (double)bits;
|
---|
189 | frac = ldexp(frac, SHIFT);
|
---|
190 | }
|
---|
191 | if (neg)
|
---|
192 | v->ob_size = -(v->ob_size);
|
---|
193 | return (PyObject *)v;
|
---|
194 | }
|
---|
195 |
|
---|
196 | /* Get a C long int from a long int object.
|
---|
197 | Returns -1 and sets an error condition if overflow occurs. */
|
---|
198 |
|
---|
199 | long
|
---|
200 | PyLong_AsLong(PyObject *vv)
|
---|
201 | {
|
---|
202 | /* This version by Tim Peters */
|
---|
203 | register PyLongObject *v;
|
---|
204 | unsigned long x, prev;
|
---|
205 | Py_ssize_t i;
|
---|
206 | int sign;
|
---|
207 |
|
---|
208 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
209 | if (vv != NULL && PyInt_Check(vv))
|
---|
210 | return PyInt_AsLong(vv);
|
---|
211 | PyErr_BadInternalCall();
|
---|
212 | return -1;
|
---|
213 | }
|
---|
214 | v = (PyLongObject *)vv;
|
---|
215 | i = v->ob_size;
|
---|
216 | sign = 1;
|
---|
217 | x = 0;
|
---|
218 | if (i < 0) {
|
---|
219 | sign = -1;
|
---|
220 | i = -(i);
|
---|
221 | }
|
---|
222 | while (--i >= 0) {
|
---|
223 | prev = x;
|
---|
224 | x = (x << SHIFT) + v->ob_digit[i];
|
---|
225 | if ((x >> SHIFT) != prev)
|
---|
226 | goto overflow;
|
---|
227 | }
|
---|
228 | /* Haven't lost any bits, but if the sign bit is set we're in
|
---|
229 | * trouble *unless* this is the min negative number. So,
|
---|
230 | * trouble iff sign bit set && (positive || some bit set other
|
---|
231 | * than the sign bit).
|
---|
232 | */
|
---|
233 | if ((long)x < 0 && (sign > 0 || (x << 1) != 0))
|
---|
234 | goto overflow;
|
---|
235 | return (long)x * sign;
|
---|
236 |
|
---|
237 | overflow:
|
---|
238 | PyErr_SetString(PyExc_OverflowError,
|
---|
239 | "long int too large to convert to int");
|
---|
240 | return -1;
|
---|
241 | }
|
---|
242 |
|
---|
243 | /* Get a Py_ssize_t from a long int object.
|
---|
244 | Returns -1 and sets an error condition if overflow occurs. */
|
---|
245 |
|
---|
246 | Py_ssize_t
|
---|
247 | _PyLong_AsSsize_t(PyObject *vv) {
|
---|
248 | register PyLongObject *v;
|
---|
249 | size_t x, prev;
|
---|
250 | Py_ssize_t i;
|
---|
251 | int sign;
|
---|
252 |
|
---|
253 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
254 | PyErr_BadInternalCall();
|
---|
255 | return -1;
|
---|
256 | }
|
---|
257 | v = (PyLongObject *)vv;
|
---|
258 | i = v->ob_size;
|
---|
259 | sign = 1;
|
---|
260 | x = 0;
|
---|
261 | if (i < 0) {
|
---|
262 | sign = -1;
|
---|
263 | i = -(i);
|
---|
264 | }
|
---|
265 | while (--i >= 0) {
|
---|
266 | prev = x;
|
---|
267 | x = (x << SHIFT) + v->ob_digit[i];
|
---|
268 | if ((x >> SHIFT) != prev)
|
---|
269 | goto overflow;
|
---|
270 | }
|
---|
271 | /* Haven't lost any bits, but if the sign bit is set we're in
|
---|
272 | * trouble *unless* this is the min negative number. So,
|
---|
273 | * trouble iff sign bit set && (positive || some bit set other
|
---|
274 | * than the sign bit).
|
---|
275 | */
|
---|
276 | if ((Py_ssize_t)x < 0 && (sign > 0 || (x << 1) != 0))
|
---|
277 | goto overflow;
|
---|
278 | return (Py_ssize_t)x * sign;
|
---|
279 |
|
---|
280 | overflow:
|
---|
281 | PyErr_SetString(PyExc_OverflowError,
|
---|
282 | "long int too large to convert to int");
|
---|
283 | return -1;
|
---|
284 | }
|
---|
285 |
|
---|
286 | /* Get a C unsigned long int from a long int object.
|
---|
287 | Returns -1 and sets an error condition if overflow occurs. */
|
---|
288 |
|
---|
289 | unsigned long
|
---|
290 | PyLong_AsUnsignedLong(PyObject *vv)
|
---|
291 | {
|
---|
292 | register PyLongObject *v;
|
---|
293 | unsigned long x, prev;
|
---|
294 | Py_ssize_t i;
|
---|
295 |
|
---|
296 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
297 | if (vv != NULL && PyInt_Check(vv)) {
|
---|
298 | long val = PyInt_AsLong(vv);
|
---|
299 | if (val < 0) {
|
---|
300 | PyErr_SetString(PyExc_OverflowError,
|
---|
301 | "can't convert negative value to unsigned long");
|
---|
302 | return (unsigned long) -1;
|
---|
303 | }
|
---|
304 | return val;
|
---|
305 | }
|
---|
306 | PyErr_BadInternalCall();
|
---|
307 | return (unsigned long) -1;
|
---|
308 | }
|
---|
309 | v = (PyLongObject *)vv;
|
---|
310 | i = v->ob_size;
|
---|
311 | x = 0;
|
---|
312 | if (i < 0) {
|
---|
313 | PyErr_SetString(PyExc_OverflowError,
|
---|
314 | "can't convert negative value to unsigned long");
|
---|
315 | return (unsigned long) -1;
|
---|
316 | }
|
---|
317 | while (--i >= 0) {
|
---|
318 | prev = x;
|
---|
319 | x = (x << SHIFT) + v->ob_digit[i];
|
---|
320 | if ((x >> SHIFT) != prev) {
|
---|
321 | PyErr_SetString(PyExc_OverflowError,
|
---|
322 | "long int too large to convert");
|
---|
323 | return (unsigned long) -1;
|
---|
324 | }
|
---|
325 | }
|
---|
326 | return x;
|
---|
327 | }
|
---|
328 |
|
---|
329 | /* Get a C unsigned long int from a long int object, ignoring the high bits.
|
---|
330 | Returns -1 and sets an error condition if an error occurs. */
|
---|
331 |
|
---|
332 | unsigned long
|
---|
333 | PyLong_AsUnsignedLongMask(PyObject *vv)
|
---|
334 | {
|
---|
335 | register PyLongObject *v;
|
---|
336 | unsigned long x;
|
---|
337 | Py_ssize_t i;
|
---|
338 | int sign;
|
---|
339 |
|
---|
340 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
341 | if (vv != NULL && PyInt_Check(vv))
|
---|
342 | return PyInt_AsUnsignedLongMask(vv);
|
---|
343 | PyErr_BadInternalCall();
|
---|
344 | return (unsigned long) -1;
|
---|
345 | }
|
---|
346 | v = (PyLongObject *)vv;
|
---|
347 | i = v->ob_size;
|
---|
348 | sign = 1;
|
---|
349 | x = 0;
|
---|
350 | if (i < 0) {
|
---|
351 | sign = -1;
|
---|
352 | i = -i;
|
---|
353 | }
|
---|
354 | while (--i >= 0) {
|
---|
355 | x = (x << SHIFT) + v->ob_digit[i];
|
---|
356 | }
|
---|
357 | return x * sign;
|
---|
358 | }
|
---|
359 |
|
---|
360 | int
|
---|
361 | _PyLong_Sign(PyObject *vv)
|
---|
362 | {
|
---|
363 | PyLongObject *v = (PyLongObject *)vv;
|
---|
364 |
|
---|
365 | assert(v != NULL);
|
---|
366 | assert(PyLong_Check(v));
|
---|
367 |
|
---|
368 | return v->ob_size == 0 ? 0 : (v->ob_size < 0 ? -1 : 1);
|
---|
369 | }
|
---|
370 |
|
---|
371 | size_t
|
---|
372 | _PyLong_NumBits(PyObject *vv)
|
---|
373 | {
|
---|
374 | PyLongObject *v = (PyLongObject *)vv;
|
---|
375 | size_t result = 0;
|
---|
376 | Py_ssize_t ndigits;
|
---|
377 |
|
---|
378 | assert(v != NULL);
|
---|
379 | assert(PyLong_Check(v));
|
---|
380 | ndigits = ABS(v->ob_size);
|
---|
381 | assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
|
---|
382 | if (ndigits > 0) {
|
---|
383 | digit msd = v->ob_digit[ndigits - 1];
|
---|
384 |
|
---|
385 | result = (ndigits - 1) * SHIFT;
|
---|
386 | if (result / SHIFT != (size_t)(ndigits - 1))
|
---|
387 | goto Overflow;
|
---|
388 | do {
|
---|
389 | ++result;
|
---|
390 | if (result == 0)
|
---|
391 | goto Overflow;
|
---|
392 | msd >>= 1;
|
---|
393 | } while (msd);
|
---|
394 | }
|
---|
395 | return result;
|
---|
396 |
|
---|
397 | Overflow:
|
---|
398 | PyErr_SetString(PyExc_OverflowError, "long has too many bits "
|
---|
399 | "to express in a platform size_t");
|
---|
400 | return (size_t)-1;
|
---|
401 | }
|
---|
402 |
|
---|
403 | PyObject *
|
---|
404 | _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
|
---|
405 | int little_endian, int is_signed)
|
---|
406 | {
|
---|
407 | const unsigned char* pstartbyte;/* LSB of bytes */
|
---|
408 | int incr; /* direction to move pstartbyte */
|
---|
409 | const unsigned char* pendbyte; /* MSB of bytes */
|
---|
410 | size_t numsignificantbytes; /* number of bytes that matter */
|
---|
411 | size_t ndigits; /* number of Python long digits */
|
---|
412 | PyLongObject* v; /* result */
|
---|
413 | int idigit = 0; /* next free index in v->ob_digit */
|
---|
414 |
|
---|
415 | if (n == 0)
|
---|
416 | return PyLong_FromLong(0L);
|
---|
417 |
|
---|
418 | if (little_endian) {
|
---|
419 | pstartbyte = bytes;
|
---|
420 | pendbyte = bytes + n - 1;
|
---|
421 | incr = 1;
|
---|
422 | }
|
---|
423 | else {
|
---|
424 | pstartbyte = bytes + n - 1;
|
---|
425 | pendbyte = bytes;
|
---|
426 | incr = -1;
|
---|
427 | }
|
---|
428 |
|
---|
429 | if (is_signed)
|
---|
430 | is_signed = *pendbyte >= 0x80;
|
---|
431 |
|
---|
432 | /* Compute numsignificantbytes. This consists of finding the most
|
---|
433 | significant byte. Leading 0 bytes are insignficant if the number
|
---|
434 | is positive, and leading 0xff bytes if negative. */
|
---|
435 | {
|
---|
436 | size_t i;
|
---|
437 | const unsigned char* p = pendbyte;
|
---|
438 | const int pincr = -incr; /* search MSB to LSB */
|
---|
439 | const unsigned char insignficant = is_signed ? 0xff : 0x00;
|
---|
440 |
|
---|
441 | for (i = 0; i < n; ++i, p += pincr) {
|
---|
442 | if (*p != insignficant)
|
---|
443 | break;
|
---|
444 | }
|
---|
445 | numsignificantbytes = n - i;
|
---|
446 | /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
|
---|
447 | actually has 2 significant bytes. OTOH, 0xff0001 ==
|
---|
448 | -0x00ffff, so we wouldn't *need* to bump it there; but we
|
---|
449 | do for 0xffff = -0x0001. To be safe without bothering to
|
---|
450 | check every case, bump it regardless. */
|
---|
451 | if (is_signed && numsignificantbytes < n)
|
---|
452 | ++numsignificantbytes;
|
---|
453 | }
|
---|
454 |
|
---|
455 | /* How many Python long digits do we need? We have
|
---|
456 | 8*numsignificantbytes bits, and each Python long digit has SHIFT
|
---|
457 | bits, so it's the ceiling of the quotient. */
|
---|
458 | ndigits = (numsignificantbytes * 8 + SHIFT - 1) / SHIFT;
|
---|
459 | if (ndigits > (size_t)INT_MAX)
|
---|
460 | return PyErr_NoMemory();
|
---|
461 | v = _PyLong_New((int)ndigits);
|
---|
462 | if (v == NULL)
|
---|
463 | return NULL;
|
---|
464 |
|
---|
465 | /* Copy the bits over. The tricky parts are computing 2's-comp on
|
---|
466 | the fly for signed numbers, and dealing with the mismatch between
|
---|
467 | 8-bit bytes and (probably) 15-bit Python digits.*/
|
---|
468 | {
|
---|
469 | size_t i;
|
---|
470 | twodigits carry = 1; /* for 2's-comp calculation */
|
---|
471 | twodigits accum = 0; /* sliding register */
|
---|
472 | unsigned int accumbits = 0; /* number of bits in accum */
|
---|
473 | const unsigned char* p = pstartbyte;
|
---|
474 |
|
---|
475 | for (i = 0; i < numsignificantbytes; ++i, p += incr) {
|
---|
476 | twodigits thisbyte = *p;
|
---|
477 | /* Compute correction for 2's comp, if needed. */
|
---|
478 | if (is_signed) {
|
---|
479 | thisbyte = (0xff ^ thisbyte) + carry;
|
---|
480 | carry = thisbyte >> 8;
|
---|
481 | thisbyte &= 0xff;
|
---|
482 | }
|
---|
483 | /* Because we're going LSB to MSB, thisbyte is
|
---|
484 | more significant than what's already in accum,
|
---|
485 | so needs to be prepended to accum. */
|
---|
486 | accum |= thisbyte << accumbits;
|
---|
487 | accumbits += 8;
|
---|
488 | if (accumbits >= SHIFT) {
|
---|
489 | /* There's enough to fill a Python digit. */
|
---|
490 | assert(idigit < (int)ndigits);
|
---|
491 | v->ob_digit[idigit] = (digit)(accum & MASK);
|
---|
492 | ++idigit;
|
---|
493 | accum >>= SHIFT;
|
---|
494 | accumbits -= SHIFT;
|
---|
495 | assert(accumbits < SHIFT);
|
---|
496 | }
|
---|
497 | }
|
---|
498 | assert(accumbits < SHIFT);
|
---|
499 | if (accumbits) {
|
---|
500 | assert(idigit < (int)ndigits);
|
---|
501 | v->ob_digit[idigit] = (digit)accum;
|
---|
502 | ++idigit;
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | v->ob_size = is_signed ? -idigit : idigit;
|
---|
507 | return (PyObject *)long_normalize(v);
|
---|
508 | }
|
---|
509 |
|
---|
510 | int
|
---|
511 | _PyLong_AsByteArray(PyLongObject* v,
|
---|
512 | unsigned char* bytes, size_t n,
|
---|
513 | int little_endian, int is_signed)
|
---|
514 | {
|
---|
515 | int i; /* index into v->ob_digit */
|
---|
516 | Py_ssize_t ndigits; /* |v->ob_size| */
|
---|
517 | twodigits accum; /* sliding register */
|
---|
518 | unsigned int accumbits; /* # bits in accum */
|
---|
519 | int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
|
---|
520 | twodigits carry; /* for computing 2's-comp */
|
---|
521 | size_t j; /* # bytes filled */
|
---|
522 | unsigned char* p; /* pointer to next byte in bytes */
|
---|
523 | int pincr; /* direction to move p */
|
---|
524 |
|
---|
525 | assert(v != NULL && PyLong_Check(v));
|
---|
526 |
|
---|
527 | if (v->ob_size < 0) {
|
---|
528 | ndigits = -(v->ob_size);
|
---|
529 | if (!is_signed) {
|
---|
530 | PyErr_SetString(PyExc_TypeError,
|
---|
531 | "can't convert negative long to unsigned");
|
---|
532 | return -1;
|
---|
533 | }
|
---|
534 | do_twos_comp = 1;
|
---|
535 | }
|
---|
536 | else {
|
---|
537 | ndigits = v->ob_size;
|
---|
538 | do_twos_comp = 0;
|
---|
539 | }
|
---|
540 |
|
---|
541 | if (little_endian) {
|
---|
542 | p = bytes;
|
---|
543 | pincr = 1;
|
---|
544 | }
|
---|
545 | else {
|
---|
546 | p = bytes + n - 1;
|
---|
547 | pincr = -1;
|
---|
548 | }
|
---|
549 |
|
---|
550 | /* Copy over all the Python digits.
|
---|
551 | It's crucial that every Python digit except for the MSD contribute
|
---|
552 | exactly SHIFT bits to the total, so first assert that the long is
|
---|
553 | normalized. */
|
---|
554 | assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
|
---|
555 | j = 0;
|
---|
556 | accum = 0;
|
---|
557 | accumbits = 0;
|
---|
558 | carry = do_twos_comp ? 1 : 0;
|
---|
559 | for (i = 0; i < ndigits; ++i) {
|
---|
560 | twodigits thisdigit = v->ob_digit[i];
|
---|
561 | if (do_twos_comp) {
|
---|
562 | thisdigit = (thisdigit ^ MASK) + carry;
|
---|
563 | carry = thisdigit >> SHIFT;
|
---|
564 | thisdigit &= MASK;
|
---|
565 | }
|
---|
566 | /* Because we're going LSB to MSB, thisdigit is more
|
---|
567 | significant than what's already in accum, so needs to be
|
---|
568 | prepended to accum. */
|
---|
569 | accum |= thisdigit << accumbits;
|
---|
570 | accumbits += SHIFT;
|
---|
571 |
|
---|
572 | /* The most-significant digit may be (probably is) at least
|
---|
573 | partly empty. */
|
---|
574 | if (i == ndigits - 1) {
|
---|
575 | /* Count # of sign bits -- they needn't be stored,
|
---|
576 | * although for signed conversion we need later to
|
---|
577 | * make sure at least one sign bit gets stored.
|
---|
578 | * First shift conceptual sign bit to real sign bit.
|
---|
579 | */
|
---|
580 | stwodigits s = (stwodigits)(thisdigit <<
|
---|
581 | (8*sizeof(stwodigits) - SHIFT));
|
---|
582 | unsigned int nsignbits = 0;
|
---|
583 | while ((s < 0) == do_twos_comp && nsignbits < SHIFT) {
|
---|
584 | ++nsignbits;
|
---|
585 | s <<= 1;
|
---|
586 | }
|
---|
587 | accumbits -= nsignbits;
|
---|
588 | }
|
---|
589 |
|
---|
590 | /* Store as many bytes as possible. */
|
---|
591 | while (accumbits >= 8) {
|
---|
592 | if (j >= n)
|
---|
593 | goto Overflow;
|
---|
594 | ++j;
|
---|
595 | *p = (unsigned char)(accum & 0xff);
|
---|
596 | p += pincr;
|
---|
597 | accumbits -= 8;
|
---|
598 | accum >>= 8;
|
---|
599 | }
|
---|
600 | }
|
---|
601 |
|
---|
602 | /* Store the straggler (if any). */
|
---|
603 | assert(accumbits < 8);
|
---|
604 | assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
|
---|
605 | if (accumbits > 0) {
|
---|
606 | if (j >= n)
|
---|
607 | goto Overflow;
|
---|
608 | ++j;
|
---|
609 | if (do_twos_comp) {
|
---|
610 | /* Fill leading bits of the byte with sign bits
|
---|
611 | (appropriately pretending that the long had an
|
---|
612 | infinite supply of sign bits). */
|
---|
613 | accum |= (~(twodigits)0) << accumbits;
|
---|
614 | }
|
---|
615 | *p = (unsigned char)(accum & 0xff);
|
---|
616 | p += pincr;
|
---|
617 | }
|
---|
618 | else if (j == n && n > 0 && is_signed) {
|
---|
619 | /* The main loop filled the byte array exactly, so the code
|
---|
620 | just above didn't get to ensure there's a sign bit, and the
|
---|
621 | loop below wouldn't add one either. Make sure a sign bit
|
---|
622 | exists. */
|
---|
623 | unsigned char msb = *(p - pincr);
|
---|
624 | int sign_bit_set = msb >= 0x80;
|
---|
625 | assert(accumbits == 0);
|
---|
626 | if (sign_bit_set == do_twos_comp)
|
---|
627 | return 0;
|
---|
628 | else
|
---|
629 | goto Overflow;
|
---|
630 | }
|
---|
631 |
|
---|
632 | /* Fill remaining bytes with copies of the sign bit. */
|
---|
633 | {
|
---|
634 | unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
|
---|
635 | for ( ; j < n; ++j, p += pincr)
|
---|
636 | *p = signbyte;
|
---|
637 | }
|
---|
638 |
|
---|
639 | return 0;
|
---|
640 |
|
---|
641 | Overflow:
|
---|
642 | PyErr_SetString(PyExc_OverflowError, "long too big to convert");
|
---|
643 | return -1;
|
---|
644 |
|
---|
645 | }
|
---|
646 |
|
---|
647 | double
|
---|
648 | _PyLong_AsScaledDouble(PyObject *vv, int *exponent)
|
---|
649 | {
|
---|
650 | /* NBITS_WANTED should be > the number of bits in a double's precision,
|
---|
651 | but small enough so that 2**NBITS_WANTED is within the normal double
|
---|
652 | range. nbitsneeded is set to 1 less than that because the most-significant
|
---|
653 | Python digit contains at least 1 significant bit, but we don't want to
|
---|
654 | bother counting them (catering to the worst case cheaply).
|
---|
655 |
|
---|
656 | 57 is one more than VAX-D double precision; I (Tim) don't know of a double
|
---|
657 | format with more precision than that; it's 1 larger so that we add in at
|
---|
658 | least one round bit to stand in for the ignored least-significant bits.
|
---|
659 | */
|
---|
660 | #define NBITS_WANTED 57
|
---|
661 | PyLongObject *v;
|
---|
662 | double x;
|
---|
663 | const double multiplier = (double)(1L << SHIFT);
|
---|
664 | Py_ssize_t i;
|
---|
665 | int sign;
|
---|
666 | int nbitsneeded;
|
---|
667 |
|
---|
668 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
669 | PyErr_BadInternalCall();
|
---|
670 | return -1;
|
---|
671 | }
|
---|
672 | v = (PyLongObject *)vv;
|
---|
673 | i = v->ob_size;
|
---|
674 | sign = 1;
|
---|
675 | if (i < 0) {
|
---|
676 | sign = -1;
|
---|
677 | i = -(i);
|
---|
678 | }
|
---|
679 | else if (i == 0) {
|
---|
680 | *exponent = 0;
|
---|
681 | return 0.0;
|
---|
682 | }
|
---|
683 | --i;
|
---|
684 | x = (double)v->ob_digit[i];
|
---|
685 | nbitsneeded = NBITS_WANTED - 1;
|
---|
686 | /* Invariant: i Python digits remain unaccounted for. */
|
---|
687 | while (i > 0 && nbitsneeded > 0) {
|
---|
688 | --i;
|
---|
689 | x = x * multiplier + (double)v->ob_digit[i];
|
---|
690 | nbitsneeded -= SHIFT;
|
---|
691 | }
|
---|
692 | /* There are i digits we didn't shift in. Pretending they're all
|
---|
693 | zeroes, the true value is x * 2**(i*SHIFT). */
|
---|
694 | *exponent = i;
|
---|
695 | assert(x > 0.0);
|
---|
696 | return x * sign;
|
---|
697 | #undef NBITS_WANTED
|
---|
698 | }
|
---|
699 |
|
---|
700 | /* Get a C double from a long int object. */
|
---|
701 |
|
---|
702 | double
|
---|
703 | PyLong_AsDouble(PyObject *vv)
|
---|
704 | {
|
---|
705 | int e = -1;
|
---|
706 | double x;
|
---|
707 |
|
---|
708 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
709 | PyErr_BadInternalCall();
|
---|
710 | return -1;
|
---|
711 | }
|
---|
712 | x = _PyLong_AsScaledDouble(vv, &e);
|
---|
713 | if (x == -1.0 && PyErr_Occurred())
|
---|
714 | return -1.0;
|
---|
715 | /* 'e' initialized to -1 to silence gcc-4.0.x, but it should be
|
---|
716 | set correctly after a successful _PyLong_AsScaledDouble() call */
|
---|
717 | assert(e >= 0);
|
---|
718 | if (e > INT_MAX / SHIFT)
|
---|
719 | goto overflow;
|
---|
720 | errno = 0;
|
---|
721 | x = ldexp(x, e * SHIFT);
|
---|
722 | if (Py_OVERFLOWED(x))
|
---|
723 | goto overflow;
|
---|
724 | return x;
|
---|
725 |
|
---|
726 | overflow:
|
---|
727 | PyErr_SetString(PyExc_OverflowError,
|
---|
728 | "long int too large to convert to float");
|
---|
729 | return -1.0;
|
---|
730 | }
|
---|
731 |
|
---|
732 | /* Create a new long (or int) object from a C pointer */
|
---|
733 |
|
---|
734 | PyObject *
|
---|
735 | PyLong_FromVoidPtr(void *p)
|
---|
736 | {
|
---|
737 | #if SIZEOF_VOID_P <= SIZEOF_LONG
|
---|
738 | if ((long)p < 0)
|
---|
739 | return PyLong_FromUnsignedLong((unsigned long)p);
|
---|
740 | return PyInt_FromLong((long)p);
|
---|
741 | #else
|
---|
742 |
|
---|
743 | #ifndef HAVE_LONG_LONG
|
---|
744 | # error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
|
---|
745 | #endif
|
---|
746 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
|
---|
747 | # error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
|
---|
748 | #endif
|
---|
749 | /* optimize null pointers */
|
---|
750 | if (p == NULL)
|
---|
751 | return PyInt_FromLong(0);
|
---|
752 | return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p);
|
---|
753 |
|
---|
754 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
|
---|
755 | }
|
---|
756 |
|
---|
757 | /* Get a C pointer from a long object (or an int object in some cases) */
|
---|
758 |
|
---|
759 | void *
|
---|
760 | PyLong_AsVoidPtr(PyObject *vv)
|
---|
761 | {
|
---|
762 | /* This function will allow int or long objects. If vv is neither,
|
---|
763 | then the PyLong_AsLong*() functions will raise the exception:
|
---|
764 | PyExc_SystemError, "bad argument to internal function"
|
---|
765 | */
|
---|
766 | #if SIZEOF_VOID_P <= SIZEOF_LONG
|
---|
767 | long x;
|
---|
768 |
|
---|
769 | if (PyInt_Check(vv))
|
---|
770 | x = PyInt_AS_LONG(vv);
|
---|
771 | else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
|
---|
772 | x = PyLong_AsLong(vv);
|
---|
773 | else
|
---|
774 | x = PyLong_AsUnsignedLong(vv);
|
---|
775 | #else
|
---|
776 |
|
---|
777 | #ifndef HAVE_LONG_LONG
|
---|
778 | # error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
|
---|
779 | #endif
|
---|
780 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
|
---|
781 | # error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
|
---|
782 | #endif
|
---|
783 | PY_LONG_LONG x;
|
---|
784 |
|
---|
785 | if (PyInt_Check(vv))
|
---|
786 | x = PyInt_AS_LONG(vv);
|
---|
787 | else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
|
---|
788 | x = PyLong_AsLongLong(vv);
|
---|
789 | else
|
---|
790 | x = PyLong_AsUnsignedLongLong(vv);
|
---|
791 |
|
---|
792 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
|
---|
793 |
|
---|
794 | if (x == -1 && PyErr_Occurred())
|
---|
795 | return NULL;
|
---|
796 | return (void *)x;
|
---|
797 | }
|
---|
798 |
|
---|
799 | #ifdef HAVE_LONG_LONG
|
---|
800 |
|
---|
801 | /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
|
---|
802 | * rewritten to use the newer PyLong_{As,From}ByteArray API.
|
---|
803 | */
|
---|
804 |
|
---|
805 | #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
|
---|
806 |
|
---|
807 | /* Create a new long int object from a C PY_LONG_LONG int. */
|
---|
808 |
|
---|
809 | PyObject *
|
---|
810 | PyLong_FromLongLong(PY_LONG_LONG ival)
|
---|
811 | {
|
---|
812 | PyLongObject *v;
|
---|
813 | unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */
|
---|
814 | int ndigits = 0;
|
---|
815 | int negative = 0;
|
---|
816 |
|
---|
817 | if (ival < 0) {
|
---|
818 | ival = -ival;
|
---|
819 | negative = 1;
|
---|
820 | }
|
---|
821 |
|
---|
822 | /* Count the number of Python digits.
|
---|
823 | We used to pick 5 ("big enough for anything"), but that's a
|
---|
824 | waste of time and space given that 5*15 = 75 bits are rarely
|
---|
825 | needed. */
|
---|
826 | t = (unsigned PY_LONG_LONG)ival;
|
---|
827 | while (t) {
|
---|
828 | ++ndigits;
|
---|
829 | t >>= SHIFT;
|
---|
830 | }
|
---|
831 | v = _PyLong_New(ndigits);
|
---|
832 | if (v != NULL) {
|
---|
833 | digit *p = v->ob_digit;
|
---|
834 | v->ob_size = negative ? -ndigits : ndigits;
|
---|
835 | t = (unsigned PY_LONG_LONG)ival;
|
---|
836 | while (t) {
|
---|
837 | *p++ = (digit)(t & MASK);
|
---|
838 | t >>= SHIFT;
|
---|
839 | }
|
---|
840 | }
|
---|
841 | return (PyObject *)v;
|
---|
842 | }
|
---|
843 |
|
---|
844 | /* Create a new long int object from a C unsigned PY_LONG_LONG int. */
|
---|
845 |
|
---|
846 | PyObject *
|
---|
847 | PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
|
---|
848 | {
|
---|
849 | PyLongObject *v;
|
---|
850 | unsigned PY_LONG_LONG t;
|
---|
851 | int ndigits = 0;
|
---|
852 |
|
---|
853 | /* Count the number of Python digits. */
|
---|
854 | t = (unsigned PY_LONG_LONG)ival;
|
---|
855 | while (t) {
|
---|
856 | ++ndigits;
|
---|
857 | t >>= SHIFT;
|
---|
858 | }
|
---|
859 | v = _PyLong_New(ndigits);
|
---|
860 | if (v != NULL) {
|
---|
861 | digit *p = v->ob_digit;
|
---|
862 | v->ob_size = ndigits;
|
---|
863 | while (ival) {
|
---|
864 | *p++ = (digit)(ival & MASK);
|
---|
865 | ival >>= SHIFT;
|
---|
866 | }
|
---|
867 | }
|
---|
868 | return (PyObject *)v;
|
---|
869 | }
|
---|
870 |
|
---|
871 | /* Create a new long int object from a C Py_ssize_t. */
|
---|
872 |
|
---|
873 | PyObject *
|
---|
874 | _PyLong_FromSsize_t(Py_ssize_t ival)
|
---|
875 | {
|
---|
876 | Py_ssize_t bytes = ival;
|
---|
877 | int one = 1;
|
---|
878 | return _PyLong_FromByteArray(
|
---|
879 | (unsigned char *)&bytes,
|
---|
880 | SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0);
|
---|
881 | }
|
---|
882 |
|
---|
883 | /* Create a new long int object from a C size_t. */
|
---|
884 |
|
---|
885 | PyObject *
|
---|
886 | _PyLong_FromSize_t(size_t ival)
|
---|
887 | {
|
---|
888 | size_t bytes = ival;
|
---|
889 | int one = 1;
|
---|
890 | return _PyLong_FromByteArray(
|
---|
891 | (unsigned char *)&bytes,
|
---|
892 | SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0);
|
---|
893 | }
|
---|
894 |
|
---|
895 | /* Get a C PY_LONG_LONG int from a long int object.
|
---|
896 | Return -1 and set an error if overflow occurs. */
|
---|
897 |
|
---|
898 | PY_LONG_LONG
|
---|
899 | PyLong_AsLongLong(PyObject *vv)
|
---|
900 | {
|
---|
901 | PY_LONG_LONG bytes;
|
---|
902 | int one = 1;
|
---|
903 | int res;
|
---|
904 |
|
---|
905 | if (vv == NULL) {
|
---|
906 | PyErr_BadInternalCall();
|
---|
907 | return -1;
|
---|
908 | }
|
---|
909 | if (!PyLong_Check(vv)) {
|
---|
910 | PyNumberMethods *nb;
|
---|
911 | PyObject *io;
|
---|
912 | if (PyInt_Check(vv))
|
---|
913 | return (PY_LONG_LONG)PyInt_AsLong(vv);
|
---|
914 | if ((nb = vv->ob_type->tp_as_number) == NULL ||
|
---|
915 | nb->nb_int == NULL) {
|
---|
916 | PyErr_SetString(PyExc_TypeError, "an integer is required");
|
---|
917 | return -1;
|
---|
918 | }
|
---|
919 | io = (*nb->nb_int) (vv);
|
---|
920 | if (io == NULL)
|
---|
921 | return -1;
|
---|
922 | if (PyInt_Check(io)) {
|
---|
923 | bytes = PyInt_AsLong(io);
|
---|
924 | Py_DECREF(io);
|
---|
925 | return bytes;
|
---|
926 | }
|
---|
927 | if (PyLong_Check(io)) {
|
---|
928 | bytes = PyLong_AsLongLong(io);
|
---|
929 | Py_DECREF(io);
|
---|
930 | return bytes;
|
---|
931 | }
|
---|
932 | Py_DECREF(io);
|
---|
933 | PyErr_SetString(PyExc_TypeError, "integer conversion failed");
|
---|
934 | return -1;
|
---|
935 | }
|
---|
936 |
|
---|
937 | res = _PyLong_AsByteArray(
|
---|
938 | (PyLongObject *)vv, (unsigned char *)&bytes,
|
---|
939 | SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
|
---|
940 |
|
---|
941 | /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
|
---|
942 | if (res < 0)
|
---|
943 | return (PY_LONG_LONG)-1;
|
---|
944 | else
|
---|
945 | return bytes;
|
---|
946 | }
|
---|
947 |
|
---|
948 | /* Get a C unsigned PY_LONG_LONG int from a long int object.
|
---|
949 | Return -1 and set an error if overflow occurs. */
|
---|
950 |
|
---|
951 | unsigned PY_LONG_LONG
|
---|
952 | PyLong_AsUnsignedLongLong(PyObject *vv)
|
---|
953 | {
|
---|
954 | unsigned PY_LONG_LONG bytes;
|
---|
955 | int one = 1;
|
---|
956 | int res;
|
---|
957 |
|
---|
958 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
959 | PyErr_BadInternalCall();
|
---|
960 | return (unsigned PY_LONG_LONG)-1;
|
---|
961 | }
|
---|
962 |
|
---|
963 | res = _PyLong_AsByteArray(
|
---|
964 | (PyLongObject *)vv, (unsigned char *)&bytes,
|
---|
965 | SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
|
---|
966 |
|
---|
967 | /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
|
---|
968 | if (res < 0)
|
---|
969 | return (unsigned PY_LONG_LONG)res;
|
---|
970 | else
|
---|
971 | return bytes;
|
---|
972 | }
|
---|
973 |
|
---|
974 | /* Get a C unsigned long int from a long int object, ignoring the high bits.
|
---|
975 | Returns -1 and sets an error condition if an error occurs. */
|
---|
976 |
|
---|
977 | unsigned PY_LONG_LONG
|
---|
978 | PyLong_AsUnsignedLongLongMask(PyObject *vv)
|
---|
979 | {
|
---|
980 | register PyLongObject *v;
|
---|
981 | unsigned PY_LONG_LONG x;
|
---|
982 | Py_ssize_t i;
|
---|
983 | int sign;
|
---|
984 |
|
---|
985 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
986 | PyErr_BadInternalCall();
|
---|
987 | return (unsigned long) -1;
|
---|
988 | }
|
---|
989 | v = (PyLongObject *)vv;
|
---|
990 | i = v->ob_size;
|
---|
991 | sign = 1;
|
---|
992 | x = 0;
|
---|
993 | if (i < 0) {
|
---|
994 | sign = -1;
|
---|
995 | i = -i;
|
---|
996 | }
|
---|
997 | while (--i >= 0) {
|
---|
998 | x = (x << SHIFT) + v->ob_digit[i];
|
---|
999 | }
|
---|
1000 | return x * sign;
|
---|
1001 | }
|
---|
1002 | #undef IS_LITTLE_ENDIAN
|
---|
1003 |
|
---|
1004 | #endif /* HAVE_LONG_LONG */
|
---|
1005 |
|
---|
1006 |
|
---|
1007 | static int
|
---|
1008 | convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) {
|
---|
1009 | if (PyLong_Check(v)) {
|
---|
1010 | *a = (PyLongObject *) v;
|
---|
1011 | Py_INCREF(v);
|
---|
1012 | }
|
---|
1013 | else if (PyInt_Check(v)) {
|
---|
1014 | *a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v));
|
---|
1015 | }
|
---|
1016 | else {
|
---|
1017 | return 0;
|
---|
1018 | }
|
---|
1019 | if (PyLong_Check(w)) {
|
---|
1020 | *b = (PyLongObject *) w;
|
---|
1021 | Py_INCREF(w);
|
---|
1022 | }
|
---|
1023 | else if (PyInt_Check(w)) {
|
---|
1024 | *b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w));
|
---|
1025 | }
|
---|
1026 | else {
|
---|
1027 | Py_DECREF(*a);
|
---|
1028 | return 0;
|
---|
1029 | }
|
---|
1030 | return 1;
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | #define CONVERT_BINOP(v, w, a, b) \
|
---|
1034 | if (!convert_binop(v, w, a, b)) { \
|
---|
1035 | Py_INCREF(Py_NotImplemented); \
|
---|
1036 | return Py_NotImplemented; \
|
---|
1037 | }
|
---|
1038 |
|
---|
1039 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
|
---|
1040 | * is modified in place, by adding y to it. Carries are propagated as far as
|
---|
1041 | * x[m-1], and the remaining carry (0 or 1) is returned.
|
---|
1042 | */
|
---|
1043 | static digit
|
---|
1044 | v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
|
---|
1045 | {
|
---|
1046 | int i;
|
---|
1047 | digit carry = 0;
|
---|
1048 |
|
---|
1049 | assert(m >= n);
|
---|
1050 | for (i = 0; i < n; ++i) {
|
---|
1051 | carry += x[i] + y[i];
|
---|
1052 | x[i] = carry & MASK;
|
---|
1053 | carry >>= SHIFT;
|
---|
1054 | assert((carry & 1) == carry);
|
---|
1055 | }
|
---|
1056 | for (; carry && i < m; ++i) {
|
---|
1057 | carry += x[i];
|
---|
1058 | x[i] = carry & MASK;
|
---|
1059 | carry >>= SHIFT;
|
---|
1060 | assert((carry & 1) == carry);
|
---|
1061 | }
|
---|
1062 | return carry;
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
|
---|
1066 | * is modified in place, by subtracting y from it. Borrows are propagated as
|
---|
1067 | * far as x[m-1], and the remaining borrow (0 or 1) is returned.
|
---|
1068 | */
|
---|
1069 | static digit
|
---|
1070 | v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
|
---|
1071 | {
|
---|
1072 | int i;
|
---|
1073 | digit borrow = 0;
|
---|
1074 |
|
---|
1075 | assert(m >= n);
|
---|
1076 | for (i = 0; i < n; ++i) {
|
---|
1077 | borrow = x[i] - y[i] - borrow;
|
---|
1078 | x[i] = borrow & MASK;
|
---|
1079 | borrow >>= SHIFT;
|
---|
1080 | borrow &= 1; /* keep only 1 sign bit */
|
---|
1081 | }
|
---|
1082 | for (; borrow && i < m; ++i) {
|
---|
1083 | borrow = x[i] - borrow;
|
---|
1084 | x[i] = borrow & MASK;
|
---|
1085 | borrow >>= SHIFT;
|
---|
1086 | borrow &= 1;
|
---|
1087 | }
|
---|
1088 | return borrow;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | /* Multiply by a single digit, ignoring the sign. */
|
---|
1092 |
|
---|
1093 | static PyLongObject *
|
---|
1094 | mul1(PyLongObject *a, wdigit n)
|
---|
1095 | {
|
---|
1096 | return muladd1(a, n, (digit)0);
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 | /* Multiply by a single digit and add a single digit, ignoring the sign. */
|
---|
1100 |
|
---|
1101 | static PyLongObject *
|
---|
1102 | muladd1(PyLongObject *a, wdigit n, wdigit extra)
|
---|
1103 | {
|
---|
1104 | Py_ssize_t size_a = ABS(a->ob_size);
|
---|
1105 | PyLongObject *z = _PyLong_New(size_a+1);
|
---|
1106 | twodigits carry = extra;
|
---|
1107 | Py_ssize_t i;
|
---|
1108 |
|
---|
1109 | if (z == NULL)
|
---|
1110 | return NULL;
|
---|
1111 | for (i = 0; i < size_a; ++i) {
|
---|
1112 | carry += (twodigits)a->ob_digit[i] * n;
|
---|
1113 | z->ob_digit[i] = (digit) (carry & MASK);
|
---|
1114 | carry >>= SHIFT;
|
---|
1115 | }
|
---|
1116 | z->ob_digit[i] = (digit) carry;
|
---|
1117 | return long_normalize(z);
|
---|
1118 | }
|
---|
1119 |
|
---|
1120 | /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
|
---|
1121 | in pout, and returning the remainder. pin and pout point at the LSD.
|
---|
1122 | It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
|
---|
1123 | long_format, but that should be done with great care since longs are
|
---|
1124 | immutable. */
|
---|
1125 |
|
---|
1126 | static digit
|
---|
1127 | inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
|
---|
1128 | {
|
---|
1129 | twodigits rem = 0;
|
---|
1130 |
|
---|
1131 | assert(n > 0 && n <= MASK);
|
---|
1132 | pin += size;
|
---|
1133 | pout += size;
|
---|
1134 | while (--size >= 0) {
|
---|
1135 | digit hi;
|
---|
1136 | rem = (rem << SHIFT) + *--pin;
|
---|
1137 | *--pout = hi = (digit)(rem / n);
|
---|
1138 | rem -= hi * n;
|
---|
1139 | }
|
---|
1140 | return (digit)rem;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | /* Divide a long integer by a digit, returning both the quotient
|
---|
1144 | (as function result) and the remainder (through *prem).
|
---|
1145 | The sign of a is ignored; n should not be zero. */
|
---|
1146 |
|
---|
1147 | static PyLongObject *
|
---|
1148 | divrem1(PyLongObject *a, digit n, digit *prem)
|
---|
1149 | {
|
---|
1150 | const Py_ssize_t size = ABS(a->ob_size);
|
---|
1151 | PyLongObject *z;
|
---|
1152 |
|
---|
1153 | assert(n > 0 && n <= MASK);
|
---|
1154 | z = _PyLong_New(size);
|
---|
1155 | if (z == NULL)
|
---|
1156 | return NULL;
|
---|
1157 | *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
|
---|
1158 | return long_normalize(z);
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | /* Convert a long int object to a string, using a given conversion base.
|
---|
1162 | Return a string object.
|
---|
1163 | If base is 8 or 16, add the proper prefix '0' or '0x'. */
|
---|
1164 |
|
---|
1165 | static PyObject *
|
---|
1166 | long_format(PyObject *aa, int base, int addL)
|
---|
1167 | {
|
---|
1168 | register PyLongObject *a = (PyLongObject *)aa;
|
---|
1169 | PyStringObject *str;
|
---|
1170 | Py_ssize_t i;
|
---|
1171 | Py_ssize_t size_a;
|
---|
1172 | char *p;
|
---|
1173 | int bits;
|
---|
1174 | char sign = '\0';
|
---|
1175 |
|
---|
1176 | if (a == NULL || !PyLong_Check(a)) {
|
---|
1177 | PyErr_BadInternalCall();
|
---|
1178 | return NULL;
|
---|
1179 | }
|
---|
1180 | assert(base >= 2 && base <= 36);
|
---|
1181 | size_a = ABS(a->ob_size);
|
---|
1182 |
|
---|
1183 | /* Compute a rough upper bound for the length of the string */
|
---|
1184 | i = base;
|
---|
1185 | bits = 0;
|
---|
1186 | while (i > 1) {
|
---|
1187 | ++bits;
|
---|
1188 | i >>= 1;
|
---|
1189 | }
|
---|
1190 | i = 5 + (addL ? 1 : 0) + (size_a*SHIFT + bits-1) / bits;
|
---|
1191 | str = (PyStringObject *) PyString_FromStringAndSize((char *)0, i);
|
---|
1192 | if (str == NULL)
|
---|
1193 | return NULL;
|
---|
1194 | p = PyString_AS_STRING(str) + i;
|
---|
1195 | *p = '\0';
|
---|
1196 | if (addL)
|
---|
1197 | *--p = 'L';
|
---|
1198 | if (a->ob_size < 0)
|
---|
1199 | sign = '-';
|
---|
1200 |
|
---|
1201 | if (a->ob_size == 0) {
|
---|
1202 | *--p = '0';
|
---|
1203 | }
|
---|
1204 | else if ((base & (base - 1)) == 0) {
|
---|
1205 | /* JRH: special case for power-of-2 bases */
|
---|
1206 | twodigits accum = 0;
|
---|
1207 | int accumbits = 0; /* # of bits in accum */
|
---|
1208 | int basebits = 1; /* # of bits in base-1 */
|
---|
1209 | i = base;
|
---|
1210 | while ((i >>= 1) > 1)
|
---|
1211 | ++basebits;
|
---|
1212 |
|
---|
1213 | for (i = 0; i < size_a; ++i) {
|
---|
1214 | accum |= (twodigits)a->ob_digit[i] << accumbits;
|
---|
1215 | accumbits += SHIFT;
|
---|
1216 | assert(accumbits >= basebits);
|
---|
1217 | do {
|
---|
1218 | char cdigit = (char)(accum & (base - 1));
|
---|
1219 | cdigit += (cdigit < 10) ? '0' : 'a'-10;
|
---|
1220 | assert(p > PyString_AS_STRING(str));
|
---|
1221 | *--p = cdigit;
|
---|
1222 | accumbits -= basebits;
|
---|
1223 | accum >>= basebits;
|
---|
1224 | } while (i < size_a-1 ? accumbits >= basebits :
|
---|
1225 | accum > 0);
|
---|
1226 | }
|
---|
1227 | }
|
---|
1228 | else {
|
---|
1229 | /* Not 0, and base not a power of 2. Divide repeatedly by
|
---|
1230 | base, but for speed use the highest power of base that
|
---|
1231 | fits in a digit. */
|
---|
1232 | Py_ssize_t size = size_a;
|
---|
1233 | digit *pin = a->ob_digit;
|
---|
1234 | PyLongObject *scratch;
|
---|
1235 | /* powbasw <- largest power of base that fits in a digit. */
|
---|
1236 | digit powbase = base; /* powbase == base ** power */
|
---|
1237 | int power = 1;
|
---|
1238 | for (;;) {
|
---|
1239 | unsigned long newpow = powbase * (unsigned long)base;
|
---|
1240 | if (newpow >> SHIFT) /* doesn't fit in a digit */
|
---|
1241 | break;
|
---|
1242 | powbase = (digit)newpow;
|
---|
1243 | ++power;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | /* Get a scratch area for repeated division. */
|
---|
1247 | scratch = _PyLong_New(size);
|
---|
1248 | if (scratch == NULL) {
|
---|
1249 | Py_DECREF(str);
|
---|
1250 | return NULL;
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 | /* Repeatedly divide by powbase. */
|
---|
1254 | do {
|
---|
1255 | int ntostore = power;
|
---|
1256 | digit rem = inplace_divrem1(scratch->ob_digit,
|
---|
1257 | pin, size, powbase);
|
---|
1258 | pin = scratch->ob_digit; /* no need to use a again */
|
---|
1259 | if (pin[size - 1] == 0)
|
---|
1260 | --size;
|
---|
1261 | SIGCHECK({
|
---|
1262 | Py_DECREF(scratch);
|
---|
1263 | Py_DECREF(str);
|
---|
1264 | return NULL;
|
---|
1265 | })
|
---|
1266 |
|
---|
1267 | /* Break rem into digits. */
|
---|
1268 | assert(ntostore > 0);
|
---|
1269 | do {
|
---|
1270 | digit nextrem = (digit)(rem / base);
|
---|
1271 | char c = (char)(rem - nextrem * base);
|
---|
1272 | assert(p > PyString_AS_STRING(str));
|
---|
1273 | c += (c < 10) ? '0' : 'a'-10;
|
---|
1274 | *--p = c;
|
---|
1275 | rem = nextrem;
|
---|
1276 | --ntostore;
|
---|
1277 | /* Termination is a bit delicate: must not
|
---|
1278 | store leading zeroes, so must get out if
|
---|
1279 | remaining quotient and rem are both 0. */
|
---|
1280 | } while (ntostore && (size || rem));
|
---|
1281 | } while (size != 0);
|
---|
1282 | Py_DECREF(scratch);
|
---|
1283 | }
|
---|
1284 |
|
---|
1285 | if (base == 8) {
|
---|
1286 | if (size_a != 0)
|
---|
1287 | *--p = '0';
|
---|
1288 | }
|
---|
1289 | else if (base == 16) {
|
---|
1290 | *--p = 'x';
|
---|
1291 | *--p = '0';
|
---|
1292 | }
|
---|
1293 | else if (base != 10) {
|
---|
1294 | *--p = '#';
|
---|
1295 | *--p = '0' + base%10;
|
---|
1296 | if (base > 10)
|
---|
1297 | *--p = '0' + base/10;
|
---|
1298 | }
|
---|
1299 | if (sign)
|
---|
1300 | *--p = sign;
|
---|
1301 | if (p != PyString_AS_STRING(str)) {
|
---|
1302 | char *q = PyString_AS_STRING(str);
|
---|
1303 | assert(p > q);
|
---|
1304 | do {
|
---|
1305 | } while ((*q++ = *p++) != '\0');
|
---|
1306 | q--;
|
---|
1307 | _PyString_Resize((PyObject **)&str,
|
---|
1308 | (int) (q - PyString_AS_STRING(str)));
|
---|
1309 | }
|
---|
1310 | return (PyObject *)str;
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | /* Table of digit values for 8-bit string -> integer conversion.
|
---|
1314 | * '0' maps to 0, ..., '9' maps to 9.
|
---|
1315 | * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
|
---|
1316 | * All other indices map to 37.
|
---|
1317 | * Note that when converting a base B string, a char c is a legitimate
|
---|
1318 | * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B.
|
---|
1319 | */
|
---|
1320 | int _PyLong_DigitValue[256] = {
|
---|
1321 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1322 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1323 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1324 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
|
---|
1325 | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
|
---|
1326 | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
|
---|
1327 | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
|
---|
1328 | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
|
---|
1329 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1330 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1331 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1332 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1333 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1334 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1335 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1336 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1337 | };
|
---|
1338 |
|
---|
1339 | /* *str points to the first digit in a string of base `base` digits. base
|
---|
1340 | * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
|
---|
1341 | * non-digit (which may be *str!). A normalized long is returned.
|
---|
1342 | * The point to this routine is that it takes time linear in the number of
|
---|
1343 | * string characters.
|
---|
1344 | */
|
---|
1345 | static PyLongObject *
|
---|
1346 | long_from_binary_base(char **str, int base)
|
---|
1347 | {
|
---|
1348 | char *p = *str;
|
---|
1349 | char *start = p;
|
---|
1350 | int bits_per_char;
|
---|
1351 | Py_ssize_t n;
|
---|
1352 | PyLongObject *z;
|
---|
1353 | twodigits accum;
|
---|
1354 | int bits_in_accum;
|
---|
1355 | digit *pdigit;
|
---|
1356 |
|
---|
1357 | assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
|
---|
1358 | n = base;
|
---|
1359 | for (bits_per_char = -1; n; ++bits_per_char)
|
---|
1360 | n >>= 1;
|
---|
1361 | /* n <- total # of bits needed, while setting p to end-of-string */
|
---|
1362 | n = 0;
|
---|
1363 | while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
|
---|
1364 | ++p;
|
---|
1365 | *str = p;
|
---|
1366 | n = (p - start) * bits_per_char;
|
---|
1367 | if (n / bits_per_char != p - start) {
|
---|
1368 | PyErr_SetString(PyExc_ValueError,
|
---|
1369 | "long string too large to convert");
|
---|
1370 | return NULL;
|
---|
1371 | }
|
---|
1372 | /* n <- # of Python digits needed, = ceiling(n/SHIFT). */
|
---|
1373 | n = (n + SHIFT - 1) / SHIFT;
|
---|
1374 | z = _PyLong_New(n);
|
---|
1375 | if (z == NULL)
|
---|
1376 | return NULL;
|
---|
1377 | /* Read string from right, and fill in long from left; i.e.,
|
---|
1378 | * from least to most significant in both.
|
---|
1379 | */
|
---|
1380 | accum = 0;
|
---|
1381 | bits_in_accum = 0;
|
---|
1382 | pdigit = z->ob_digit;
|
---|
1383 | while (--p >= start) {
|
---|
1384 | int k = _PyLong_DigitValue[Py_CHARMASK(*p)];
|
---|
1385 | assert(k >= 0 && k < base);
|
---|
1386 | accum |= (twodigits)(k << bits_in_accum);
|
---|
1387 | bits_in_accum += bits_per_char;
|
---|
1388 | if (bits_in_accum >= SHIFT) {
|
---|
1389 | *pdigit++ = (digit)(accum & MASK);
|
---|
1390 | assert(pdigit - z->ob_digit <= (int)n);
|
---|
1391 | accum >>= SHIFT;
|
---|
1392 | bits_in_accum -= SHIFT;
|
---|
1393 | assert(bits_in_accum < SHIFT);
|
---|
1394 | }
|
---|
1395 | }
|
---|
1396 | if (bits_in_accum) {
|
---|
1397 | assert(bits_in_accum <= SHIFT);
|
---|
1398 | *pdigit++ = (digit)accum;
|
---|
1399 | assert(pdigit - z->ob_digit <= (int)n);
|
---|
1400 | }
|
---|
1401 | while (pdigit - z->ob_digit < n)
|
---|
1402 | *pdigit++ = 0;
|
---|
1403 | return long_normalize(z);
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 | PyObject *
|
---|
1407 | PyLong_FromString(char *str, char **pend, int base)
|
---|
1408 | {
|
---|
1409 | int sign = 1;
|
---|
1410 | char *start, *orig_str = str;
|
---|
1411 | PyLongObject *z;
|
---|
1412 | PyObject *strobj, *strrepr;
|
---|
1413 | Py_ssize_t slen;
|
---|
1414 |
|
---|
1415 | if ((base != 0 && base < 2) || base > 36) {
|
---|
1416 | PyErr_SetString(PyExc_ValueError,
|
---|
1417 | "long() arg 2 must be >= 2 and <= 36");
|
---|
1418 | return NULL;
|
---|
1419 | }
|
---|
1420 | while (*str != '\0' && isspace(Py_CHARMASK(*str)))
|
---|
1421 | str++;
|
---|
1422 | if (*str == '+')
|
---|
1423 | ++str;
|
---|
1424 | else if (*str == '-') {
|
---|
1425 | ++str;
|
---|
1426 | sign = -1;
|
---|
1427 | }
|
---|
1428 | while (*str != '\0' && isspace(Py_CHARMASK(*str)))
|
---|
1429 | str++;
|
---|
1430 | if (base == 0) {
|
---|
1431 | if (str[0] != '0')
|
---|
1432 | base = 10;
|
---|
1433 | else if (str[1] == 'x' || str[1] == 'X')
|
---|
1434 | base = 16;
|
---|
1435 | else
|
---|
1436 | base = 8;
|
---|
1437 | }
|
---|
1438 | if (base == 16 && str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
|
---|
1439 | str += 2;
|
---|
1440 |
|
---|
1441 | start = str;
|
---|
1442 | if ((base & (base - 1)) == 0)
|
---|
1443 | z = long_from_binary_base(&str, base);
|
---|
1444 | else {
|
---|
1445 | /***
|
---|
1446 | Binary bases can be converted in time linear in the number of digits, because
|
---|
1447 | Python's representation base is binary. Other bases (including decimal!) use
|
---|
1448 | the simple quadratic-time algorithm below, complicated by some speed tricks.
|
---|
1449 |
|
---|
1450 | First some math: the largest integer that can be expressed in N base-B digits
|
---|
1451 | is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
|
---|
1452 | case number of Python digits needed to hold it is the smallest integer n s.t.
|
---|
1453 |
|
---|
1454 | BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
|
---|
1455 | BASE**n >= B**N [taking logs to base BASE]
|
---|
1456 | n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
|
---|
1457 |
|
---|
1458 | The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
|
---|
1459 | this quickly. A Python long with that much space is reserved near the start,
|
---|
1460 | and the result is computed into it.
|
---|
1461 |
|
---|
1462 | The input string is actually treated as being in base base**i (i.e., i digits
|
---|
1463 | are processed at a time), where two more static arrays hold:
|
---|
1464 |
|
---|
1465 | convwidth_base[base] = the largest integer i such that base**i <= BASE
|
---|
1466 | convmultmax_base[base] = base ** convwidth_base[base]
|
---|
1467 |
|
---|
1468 | The first of these is the largest i such that i consecutive input digits
|
---|
1469 | must fit in a single Python digit. The second is effectively the input
|
---|
1470 | base we're really using.
|
---|
1471 |
|
---|
1472 | Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
|
---|
1473 | convmultmax_base[base], the result is "simply"
|
---|
1474 |
|
---|
1475 | (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
|
---|
1476 |
|
---|
1477 | where B = convmultmax_base[base].
|
---|
1478 |
|
---|
1479 | Error analysis: as above, the number of Python digits `n` needed is worst-
|
---|
1480 | case
|
---|
1481 |
|
---|
1482 | n >= N * log(B)/log(BASE)
|
---|
1483 |
|
---|
1484 | where `N` is the number of input digits in base `B`. This is computed via
|
---|
1485 |
|
---|
1486 | size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
|
---|
1487 |
|
---|
1488 | below. Two numeric concerns are how much space this can waste, and whether
|
---|
1489 | the computed result can be too small. To be concrete, assume BASE = 2**15,
|
---|
1490 | which is the default (and it's unlikely anyone changes that).
|
---|
1491 |
|
---|
1492 | Waste isn't a problem: provided the first input digit isn't 0, the difference
|
---|
1493 | between the worst-case input with N digits and the smallest input with N
|
---|
1494 | digits is about a factor of B, but B is small compared to BASE so at most
|
---|
1495 | one allocated Python digit can remain unused on that count. If
|
---|
1496 | N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
|
---|
1497 | and adding 1 returns a result 1 larger than necessary. However, that can't
|
---|
1498 | happen: whenever B is a power of 2, long_from_binary_base() is called
|
---|
1499 | instead, and it's impossible for B**i to be an integer power of 2**15 when
|
---|
1500 | B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
|
---|
1501 | an exact integer when B is not a power of 2, since B**i has a prime factor
|
---|
1502 | other than 2 in that case, but (2**15)**j's only prime factor is 2).
|
---|
1503 |
|
---|
1504 | The computed result can be too small if the true value of N*log(B)/log(BASE)
|
---|
1505 | is a little bit larger than an exact integer, but due to roundoff errors (in
|
---|
1506 | computing log(B), log(BASE), their quotient, and/or multiplying that by N)
|
---|
1507 | yields a numeric result a little less than that integer. Unfortunately, "how
|
---|
1508 | close can a transcendental function get to an integer over some range?"
|
---|
1509 | questions are generally theoretically intractable. Computer analysis via
|
---|
1510 | continued fractions is practical: expand log(B)/log(BASE) via continued
|
---|
1511 | fractions, giving a sequence i/j of "the best" rational approximations. Then
|
---|
1512 | j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that
|
---|
1513 | we can get very close to being in trouble, but very rarely. For example,
|
---|
1514 | 76573 is a denominator in one of the continued-fraction approximations to
|
---|
1515 | log(10)/log(2**15), and indeed:
|
---|
1516 |
|
---|
1517 | >>> log(10)/log(2**15)*76573
|
---|
1518 | 16958.000000654003
|
---|
1519 |
|
---|
1520 | is very close to an integer. If we were working with IEEE single-precision,
|
---|
1521 | rounding errors could kill us. Finding worst cases in IEEE double-precision
|
---|
1522 | requires better-than-double-precision log() functions, and Tim didn't bother.
|
---|
1523 | Instead the code checks to see whether the allocated space is enough as each
|
---|
1524 | new Python digit is added, and copies the whole thing to a larger long if not.
|
---|
1525 | This should happen extremely rarely, and in fact I don't have a test case
|
---|
1526 | that triggers it(!). Instead the code was tested by artificially allocating
|
---|
1527 | just 1 digit at the start, so that the copying code was exercised for every
|
---|
1528 | digit beyond the first.
|
---|
1529 | ***/
|
---|
1530 | register twodigits c; /* current input character */
|
---|
1531 | Py_ssize_t size_z;
|
---|
1532 | int i;
|
---|
1533 | int convwidth;
|
---|
1534 | twodigits convmultmax, convmult;
|
---|
1535 | digit *pz, *pzstop;
|
---|
1536 | char* scan;
|
---|
1537 |
|
---|
1538 | static double log_base_BASE[37] = {0.0e0,};
|
---|
1539 | static int convwidth_base[37] = {0,};
|
---|
1540 | static twodigits convmultmax_base[37] = {0,};
|
---|
1541 |
|
---|
1542 | if (log_base_BASE[base] == 0.0) {
|
---|
1543 | twodigits convmax = base;
|
---|
1544 | int i = 1;
|
---|
1545 |
|
---|
1546 | log_base_BASE[base] = log((double)base) /
|
---|
1547 | log((double)BASE);
|
---|
1548 | for (;;) {
|
---|
1549 | twodigits next = convmax * base;
|
---|
1550 | if (next > BASE)
|
---|
1551 | break;
|
---|
1552 | convmax = next;
|
---|
1553 | ++i;
|
---|
1554 | }
|
---|
1555 | convmultmax_base[base] = convmax;
|
---|
1556 | assert(i > 0);
|
---|
1557 | convwidth_base[base] = i;
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | /* Find length of the string of numeric characters. */
|
---|
1561 | scan = str;
|
---|
1562 | while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
|
---|
1563 | ++scan;
|
---|
1564 |
|
---|
1565 | /* Create a long object that can contain the largest possible
|
---|
1566 | * integer with this base and length. Note that there's no
|
---|
1567 | * need to initialize z->ob_digit -- no slot is read up before
|
---|
1568 | * being stored into.
|
---|
1569 | */
|
---|
1570 | size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
|
---|
1571 | /* Uncomment next line to test exceedingly rare copy code */
|
---|
1572 | /* size_z = 1; */
|
---|
1573 | assert(size_z > 0);
|
---|
1574 | z = _PyLong_New(size_z);
|
---|
1575 | if (z == NULL)
|
---|
1576 | return NULL;
|
---|
1577 | z->ob_size = 0;
|
---|
1578 |
|
---|
1579 | /* `convwidth` consecutive input digits are treated as a single
|
---|
1580 | * digit in base `convmultmax`.
|
---|
1581 | */
|
---|
1582 | convwidth = convwidth_base[base];
|
---|
1583 | convmultmax = convmultmax_base[base];
|
---|
1584 |
|
---|
1585 | /* Work ;-) */
|
---|
1586 | while (str < scan) {
|
---|
1587 | /* grab up to convwidth digits from the input string */
|
---|
1588 | c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
|
---|
1589 | for (i = 1; i < convwidth && str != scan; ++i, ++str) {
|
---|
1590 | c = (twodigits)(c * base +
|
---|
1591 | _PyLong_DigitValue[Py_CHARMASK(*str)]);
|
---|
1592 | assert(c < BASE);
|
---|
1593 | }
|
---|
1594 |
|
---|
1595 | convmult = convmultmax;
|
---|
1596 | /* Calculate the shift only if we couldn't get
|
---|
1597 | * convwidth digits.
|
---|
1598 | */
|
---|
1599 | if (i != convwidth) {
|
---|
1600 | convmult = base;
|
---|
1601 | for ( ; i > 1; --i)
|
---|
1602 | convmult *= base;
|
---|
1603 | }
|
---|
1604 |
|
---|
1605 | /* Multiply z by convmult, and add c. */
|
---|
1606 | pz = z->ob_digit;
|
---|
1607 | pzstop = pz + z->ob_size;
|
---|
1608 | for (; pz < pzstop; ++pz) {
|
---|
1609 | c += (twodigits)*pz * convmult;
|
---|
1610 | *pz = (digit)(c & MASK);
|
---|
1611 | c >>= SHIFT;
|
---|
1612 | }
|
---|
1613 | /* carry off the current end? */
|
---|
1614 | if (c) {
|
---|
1615 | assert(c < BASE);
|
---|
1616 | if (z->ob_size < size_z) {
|
---|
1617 | *pz = (digit)c;
|
---|
1618 | ++z->ob_size;
|
---|
1619 | }
|
---|
1620 | else {
|
---|
1621 | PyLongObject *tmp;
|
---|
1622 | /* Extremely rare. Get more space. */
|
---|
1623 | assert(z->ob_size == size_z);
|
---|
1624 | tmp = _PyLong_New(size_z + 1);
|
---|
1625 | if (tmp == NULL) {
|
---|
1626 | Py_DECREF(z);
|
---|
1627 | return NULL;
|
---|
1628 | }
|
---|
1629 | memcpy(tmp->ob_digit,
|
---|
1630 | z->ob_digit,
|
---|
1631 | sizeof(digit) * size_z);
|
---|
1632 | Py_DECREF(z);
|
---|
1633 | z = tmp;
|
---|
1634 | z->ob_digit[size_z] = (digit)c;
|
---|
1635 | ++size_z;
|
---|
1636 | }
|
---|
1637 | }
|
---|
1638 | }
|
---|
1639 | }
|
---|
1640 | if (z == NULL)
|
---|
1641 | return NULL;
|
---|
1642 | if (str == start)
|
---|
1643 | goto onError;
|
---|
1644 | if (sign < 0)
|
---|
1645 | z->ob_size = -(z->ob_size);
|
---|
1646 | if (*str == 'L' || *str == 'l')
|
---|
1647 | str++;
|
---|
1648 | while (*str && isspace(Py_CHARMASK(*str)))
|
---|
1649 | str++;
|
---|
1650 | if (*str != '\0')
|
---|
1651 | goto onError;
|
---|
1652 | if (pend)
|
---|
1653 | *pend = str;
|
---|
1654 | return (PyObject *) z;
|
---|
1655 |
|
---|
1656 | onError:
|
---|
1657 | Py_XDECREF(z);
|
---|
1658 | slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
|
---|
1659 | strobj = PyString_FromStringAndSize(orig_str, slen);
|
---|
1660 | if (strobj == NULL)
|
---|
1661 | return NULL;
|
---|
1662 | strrepr = PyObject_Repr(strobj);
|
---|
1663 | Py_DECREF(strobj);
|
---|
1664 | if (strrepr == NULL)
|
---|
1665 | return NULL;
|
---|
1666 | PyErr_Format(PyExc_ValueError,
|
---|
1667 | "invalid literal for long() with base %d: %s",
|
---|
1668 | base, PyString_AS_STRING(strrepr));
|
---|
1669 | Py_DECREF(strrepr);
|
---|
1670 | return NULL;
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 | #ifdef Py_USING_UNICODE
|
---|
1674 | PyObject *
|
---|
1675 | PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
|
---|
1676 | {
|
---|
1677 | PyObject *result;
|
---|
1678 | char *buffer = (char *)PyMem_MALLOC(length+1);
|
---|
1679 |
|
---|
1680 | if (buffer == NULL)
|
---|
1681 | return NULL;
|
---|
1682 |
|
---|
1683 | if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
|
---|
1684 | PyMem_FREE(buffer);
|
---|
1685 | return NULL;
|
---|
1686 | }
|
---|
1687 | result = PyLong_FromString(buffer, NULL, base);
|
---|
1688 | PyMem_FREE(buffer);
|
---|
1689 | return result;
|
---|
1690 | }
|
---|
1691 | #endif
|
---|
1692 |
|
---|
1693 | /* forward */
|
---|
1694 | static PyLongObject *x_divrem
|
---|
1695 | (PyLongObject *, PyLongObject *, PyLongObject **);
|
---|
1696 | static PyObject *long_pos(PyLongObject *);
|
---|
1697 | static int long_divrem(PyLongObject *, PyLongObject *,
|
---|
1698 | PyLongObject **, PyLongObject **);
|
---|
1699 |
|
---|
1700 | /* Long division with remainder, top-level routine */
|
---|
1701 |
|
---|
1702 | static int
|
---|
1703 | long_divrem(PyLongObject *a, PyLongObject *b,
|
---|
1704 | PyLongObject **pdiv, PyLongObject **prem)
|
---|
1705 | {
|
---|
1706 | Py_ssize_t size_a = ABS(a->ob_size), size_b = ABS(b->ob_size);
|
---|
1707 | PyLongObject *z;
|
---|
1708 |
|
---|
1709 | if (size_b == 0) {
|
---|
1710 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
1711 | "long division or modulo by zero");
|
---|
1712 | return -1;
|
---|
1713 | }
|
---|
1714 | if (size_a < size_b ||
|
---|
1715 | (size_a == size_b &&
|
---|
1716 | a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
|
---|
1717 | /* |a| < |b|. */
|
---|
1718 | *pdiv = _PyLong_New(0);
|
---|
1719 | Py_INCREF(a);
|
---|
1720 | *prem = (PyLongObject *) a;
|
---|
1721 | return 0;
|
---|
1722 | }
|
---|
1723 | if (size_b == 1) {
|
---|
1724 | digit rem = 0;
|
---|
1725 | z = divrem1(a, b->ob_digit[0], &rem);
|
---|
1726 | if (z == NULL)
|
---|
1727 | return -1;
|
---|
1728 | *prem = (PyLongObject *) PyLong_FromLong((long)rem);
|
---|
1729 | }
|
---|
1730 | else {
|
---|
1731 | z = x_divrem(a, b, prem);
|
---|
1732 | if (z == NULL)
|
---|
1733 | return -1;
|
---|
1734 | }
|
---|
1735 | /* Set the signs.
|
---|
1736 | The quotient z has the sign of a*b;
|
---|
1737 | the remainder r has the sign of a,
|
---|
1738 | so a = b*z + r. */
|
---|
1739 | if ((a->ob_size < 0) != (b->ob_size < 0))
|
---|
1740 | z->ob_size = -(z->ob_size);
|
---|
1741 | if (a->ob_size < 0 && (*prem)->ob_size != 0)
|
---|
1742 | (*prem)->ob_size = -((*prem)->ob_size);
|
---|
1743 | *pdiv = z;
|
---|
1744 | return 0;
|
---|
1745 | }
|
---|
1746 |
|
---|
1747 | /* Unsigned long division with remainder -- the algorithm */
|
---|
1748 |
|
---|
1749 | static PyLongObject *
|
---|
1750 | x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
|
---|
1751 | {
|
---|
1752 | Py_ssize_t size_v = ABS(v1->ob_size), size_w = ABS(w1->ob_size);
|
---|
1753 | digit d = (digit) ((twodigits)BASE / (w1->ob_digit[size_w-1] + 1));
|
---|
1754 | PyLongObject *v = mul1(v1, d);
|
---|
1755 | PyLongObject *w = mul1(w1, d);
|
---|
1756 | PyLongObject *a;
|
---|
1757 | Py_ssize_t j, k;
|
---|
1758 |
|
---|
1759 | if (v == NULL || w == NULL) {
|
---|
1760 | Py_XDECREF(v);
|
---|
1761 | Py_XDECREF(w);
|
---|
1762 | return NULL;
|
---|
1763 | }
|
---|
1764 |
|
---|
1765 | assert(size_v >= size_w && size_w > 1); /* Assert checks by div() */
|
---|
1766 | assert(v->ob_refcnt == 1); /* Since v will be used as accumulator! */
|
---|
1767 | assert(size_w == ABS(w->ob_size)); /* That's how d was calculated */
|
---|
1768 |
|
---|
1769 | size_v = ABS(v->ob_size);
|
---|
1770 | k = size_v - size_w;
|
---|
1771 | a = _PyLong_New(k + 1);
|
---|
1772 |
|
---|
1773 | for (j = size_v; a != NULL && k >= 0; --j, --k) {
|
---|
1774 | digit vj = (j >= size_v) ? 0 : v->ob_digit[j];
|
---|
1775 | twodigits q;
|
---|
1776 | stwodigits carry = 0;
|
---|
1777 | int i;
|
---|
1778 |
|
---|
1779 | SIGCHECK({
|
---|
1780 | Py_DECREF(a);
|
---|
1781 | a = NULL;
|
---|
1782 | break;
|
---|
1783 | })
|
---|
1784 | if (vj == w->ob_digit[size_w-1])
|
---|
1785 | q = MASK;
|
---|
1786 | else
|
---|
1787 | q = (((twodigits)vj << SHIFT) + v->ob_digit[j-1]) /
|
---|
1788 | w->ob_digit[size_w-1];
|
---|
1789 |
|
---|
1790 | while (w->ob_digit[size_w-2]*q >
|
---|
1791 | ((
|
---|
1792 | ((twodigits)vj << SHIFT)
|
---|
1793 | + v->ob_digit[j-1]
|
---|
1794 | - q*w->ob_digit[size_w-1]
|
---|
1795 | ) << SHIFT)
|
---|
1796 | + v->ob_digit[j-2])
|
---|
1797 | --q;
|
---|
1798 |
|
---|
1799 | for (i = 0; i < size_w && i+k < size_v; ++i) {
|
---|
1800 | twodigits z = w->ob_digit[i] * q;
|
---|
1801 | digit zz = (digit) (z >> SHIFT);
|
---|
1802 | carry += v->ob_digit[i+k] - z
|
---|
1803 | + ((twodigits)zz << SHIFT);
|
---|
1804 | v->ob_digit[i+k] = (digit)(carry & MASK);
|
---|
1805 | carry = Py_ARITHMETIC_RIGHT_SHIFT(BASE_TWODIGITS_TYPE,
|
---|
1806 | carry, SHIFT);
|
---|
1807 | carry -= zz;
|
---|
1808 | }
|
---|
1809 |
|
---|
1810 | if (i+k < size_v) {
|
---|
1811 | carry += v->ob_digit[i+k];
|
---|
1812 | v->ob_digit[i+k] = 0;
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 | if (carry == 0)
|
---|
1816 | a->ob_digit[k] = (digit) q;
|
---|
1817 | else {
|
---|
1818 | assert(carry == -1);
|
---|
1819 | a->ob_digit[k] = (digit) q-1;
|
---|
1820 | carry = 0;
|
---|
1821 | for (i = 0; i < size_w && i+k < size_v; ++i) {
|
---|
1822 | carry += v->ob_digit[i+k] + w->ob_digit[i];
|
---|
1823 | v->ob_digit[i+k] = (digit)(carry & MASK);
|
---|
1824 | carry = Py_ARITHMETIC_RIGHT_SHIFT(
|
---|
1825 | BASE_TWODIGITS_TYPE,
|
---|
1826 | carry, SHIFT);
|
---|
1827 | }
|
---|
1828 | }
|
---|
1829 | } /* for j, k */
|
---|
1830 |
|
---|
1831 | if (a == NULL)
|
---|
1832 | *prem = NULL;
|
---|
1833 | else {
|
---|
1834 | a = long_normalize(a);
|
---|
1835 | *prem = divrem1(v, d, &d);
|
---|
1836 | /* d receives the (unused) remainder */
|
---|
1837 | if (*prem == NULL) {
|
---|
1838 | Py_DECREF(a);
|
---|
1839 | a = NULL;
|
---|
1840 | }
|
---|
1841 | }
|
---|
1842 | Py_DECREF(v);
|
---|
1843 | Py_DECREF(w);
|
---|
1844 | return a;
|
---|
1845 | }
|
---|
1846 |
|
---|
1847 | /* Methods */
|
---|
1848 |
|
---|
1849 | static void
|
---|
1850 | long_dealloc(PyObject *v)
|
---|
1851 | {
|
---|
1852 | v->ob_type->tp_free(v);
|
---|
1853 | }
|
---|
1854 |
|
---|
1855 | static PyObject *
|
---|
1856 | long_repr(PyObject *v)
|
---|
1857 | {
|
---|
1858 | return long_format(v, 10, 1);
|
---|
1859 | }
|
---|
1860 |
|
---|
1861 | static PyObject *
|
---|
1862 | long_str(PyObject *v)
|
---|
1863 | {
|
---|
1864 | return long_format(v, 10, 0);
|
---|
1865 | }
|
---|
1866 |
|
---|
1867 | static int
|
---|
1868 | long_compare(PyLongObject *a, PyLongObject *b)
|
---|
1869 | {
|
---|
1870 | Py_ssize_t sign;
|
---|
1871 |
|
---|
1872 | if (a->ob_size != b->ob_size) {
|
---|
1873 | if (ABS(a->ob_size) == 0 && ABS(b->ob_size) == 0)
|
---|
1874 | sign = 0;
|
---|
1875 | else
|
---|
1876 | sign = a->ob_size - b->ob_size;
|
---|
1877 | }
|
---|
1878 | else {
|
---|
1879 | Py_ssize_t i = ABS(a->ob_size);
|
---|
1880 | while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
|
---|
1881 | ;
|
---|
1882 | if (i < 0)
|
---|
1883 | sign = 0;
|
---|
1884 | else {
|
---|
1885 | sign = (int)a->ob_digit[i] - (int)b->ob_digit[i];
|
---|
1886 | if (a->ob_size < 0)
|
---|
1887 | sign = -sign;
|
---|
1888 | }
|
---|
1889 | }
|
---|
1890 | return sign < 0 ? -1 : sign > 0 ? 1 : 0;
|
---|
1891 | }
|
---|
1892 |
|
---|
1893 | static long
|
---|
1894 | long_hash(PyLongObject *v)
|
---|
1895 | {
|
---|
1896 | long x;
|
---|
1897 | Py_ssize_t i;
|
---|
1898 | int sign;
|
---|
1899 |
|
---|
1900 | /* This is designed so that Python ints and longs with the
|
---|
1901 | same value hash to the same value, otherwise comparisons
|
---|
1902 | of mapping keys will turn out weird */
|
---|
1903 | i = v->ob_size;
|
---|
1904 | sign = 1;
|
---|
1905 | x = 0;
|
---|
1906 | if (i < 0) {
|
---|
1907 | sign = -1;
|
---|
1908 | i = -(i);
|
---|
1909 | }
|
---|
1910 | #define LONG_BIT_SHIFT (8*sizeof(long) - SHIFT)
|
---|
1911 | while (--i >= 0) {
|
---|
1912 | /* Force a native long #-bits (32 or 64) circular shift */
|
---|
1913 | x = ((x << SHIFT) & ~MASK) | ((x >> LONG_BIT_SHIFT) & MASK);
|
---|
1914 | x += v->ob_digit[i];
|
---|
1915 | }
|
---|
1916 | #undef LONG_BIT_SHIFT
|
---|
1917 | x = x * sign;
|
---|
1918 | if (x == -1)
|
---|
1919 | x = -2;
|
---|
1920 | return x;
|
---|
1921 | }
|
---|
1922 |
|
---|
1923 |
|
---|
1924 | /* Add the absolute values of two long integers. */
|
---|
1925 |
|
---|
1926 | static PyLongObject *
|
---|
1927 | x_add(PyLongObject *a, PyLongObject *b)
|
---|
1928 | {
|
---|
1929 | Py_ssize_t size_a = ABS(a->ob_size), size_b = ABS(b->ob_size);
|
---|
1930 | PyLongObject *z;
|
---|
1931 | int i;
|
---|
1932 | digit carry = 0;
|
---|
1933 |
|
---|
1934 | /* Ensure a is the larger of the two: */
|
---|
1935 | if (size_a < size_b) {
|
---|
1936 | { PyLongObject *temp = a; a = b; b = temp; }
|
---|
1937 | { Py_ssize_t size_temp = size_a;
|
---|
1938 | size_a = size_b;
|
---|
1939 | size_b = size_temp; }
|
---|
1940 | }
|
---|
1941 | z = _PyLong_New(size_a+1);
|
---|
1942 | if (z == NULL)
|
---|
1943 | return NULL;
|
---|
1944 | for (i = 0; i < size_b; ++i) {
|
---|
1945 | carry += a->ob_digit[i] + b->ob_digit[i];
|
---|
1946 | z->ob_digit[i] = carry & MASK;
|
---|
1947 | carry >>= SHIFT;
|
---|
1948 | }
|
---|
1949 | for (; i < size_a; ++i) {
|
---|
1950 | carry += a->ob_digit[i];
|
---|
1951 | z->ob_digit[i] = carry & MASK;
|
---|
1952 | carry >>= SHIFT;
|
---|
1953 | }
|
---|
1954 | z->ob_digit[i] = carry;
|
---|
1955 | return long_normalize(z);
|
---|
1956 | }
|
---|
1957 |
|
---|
1958 | /* Subtract the absolute values of two integers. */
|
---|
1959 |
|
---|
1960 | static PyLongObject *
|
---|
1961 | x_sub(PyLongObject *a, PyLongObject *b)
|
---|
1962 | {
|
---|
1963 | Py_ssize_t size_a = ABS(a->ob_size), size_b = ABS(b->ob_size);
|
---|
1964 | PyLongObject *z;
|
---|
1965 | Py_ssize_t i;
|
---|
1966 | int sign = 1;
|
---|
1967 | digit borrow = 0;
|
---|
1968 |
|
---|
1969 | /* Ensure a is the larger of the two: */
|
---|
1970 | if (size_a < size_b) {
|
---|
1971 | sign = -1;
|
---|
1972 | { PyLongObject *temp = a; a = b; b = temp; }
|
---|
1973 | { Py_ssize_t size_temp = size_a;
|
---|
1974 | size_a = size_b;
|
---|
1975 | size_b = size_temp; }
|
---|
1976 | }
|
---|
1977 | else if (size_a == size_b) {
|
---|
1978 | /* Find highest digit where a and b differ: */
|
---|
1979 | i = size_a;
|
---|
1980 | while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
|
---|
1981 | ;
|
---|
1982 | if (i < 0)
|
---|
1983 | return _PyLong_New(0);
|
---|
1984 | if (a->ob_digit[i] < b->ob_digit[i]) {
|
---|
1985 | sign = -1;
|
---|
1986 | { PyLongObject *temp = a; a = b; b = temp; }
|
---|
1987 | }
|
---|
1988 | size_a = size_b = i+1;
|
---|
1989 | }
|
---|
1990 | z = _PyLong_New(size_a);
|
---|
1991 | if (z == NULL)
|
---|
1992 | return NULL;
|
---|
1993 | for (i = 0; i < size_b; ++i) {
|
---|
1994 | /* The following assumes unsigned arithmetic
|
---|
1995 | works module 2**N for some N>SHIFT. */
|
---|
1996 | borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
|
---|
1997 | z->ob_digit[i] = borrow & MASK;
|
---|
1998 | borrow >>= SHIFT;
|
---|
1999 | borrow &= 1; /* Keep only one sign bit */
|
---|
2000 | }
|
---|
2001 | for (; i < size_a; ++i) {
|
---|
2002 | borrow = a->ob_digit[i] - borrow;
|
---|
2003 | z->ob_digit[i] = borrow & MASK;
|
---|
2004 | borrow >>= SHIFT;
|
---|
2005 | borrow &= 1; /* Keep only one sign bit */
|
---|
2006 | }
|
---|
2007 | assert(borrow == 0);
|
---|
2008 | if (sign < 0)
|
---|
2009 | z->ob_size = -(z->ob_size);
|
---|
2010 | return long_normalize(z);
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 | static PyObject *
|
---|
2014 | long_add(PyLongObject *v, PyLongObject *w)
|
---|
2015 | {
|
---|
2016 | PyLongObject *a, *b, *z;
|
---|
2017 |
|
---|
2018 | CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
|
---|
2019 |
|
---|
2020 | if (a->ob_size < 0) {
|
---|
2021 | if (b->ob_size < 0) {
|
---|
2022 | z = x_add(a, b);
|
---|
2023 | if (z != NULL && z->ob_size != 0)
|
---|
2024 | z->ob_size = -(z->ob_size);
|
---|
2025 | }
|
---|
2026 | else
|
---|
2027 | z = x_sub(b, a);
|
---|
2028 | }
|
---|
2029 | else {
|
---|
2030 | if (b->ob_size < 0)
|
---|
2031 | z = x_sub(a, b);
|
---|
2032 | else
|
---|
2033 | z = x_add(a, b);
|
---|
2034 | }
|
---|
2035 | Py_DECREF(a);
|
---|
2036 | Py_DECREF(b);
|
---|
2037 | return (PyObject *)z;
|
---|
2038 | }
|
---|
2039 |
|
---|
2040 | static PyObject *
|
---|
2041 | long_sub(PyLongObject *v, PyLongObject *w)
|
---|
2042 | {
|
---|
2043 | PyLongObject *a, *b, *z;
|
---|
2044 |
|
---|
2045 | CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
|
---|
2046 |
|
---|
2047 | if (a->ob_size < 0) {
|
---|
2048 | if (b->ob_size < 0)
|
---|
2049 | z = x_sub(a, b);
|
---|
2050 | else
|
---|
2051 | z = x_add(a, b);
|
---|
2052 | if (z != NULL && z->ob_size != 0)
|
---|
2053 | z->ob_size = -(z->ob_size);
|
---|
2054 | }
|
---|
2055 | else {
|
---|
2056 | if (b->ob_size < 0)
|
---|
2057 | z = x_add(a, b);
|
---|
2058 | else
|
---|
2059 | z = x_sub(a, b);
|
---|
2060 | }
|
---|
2061 | Py_DECREF(a);
|
---|
2062 | Py_DECREF(b);
|
---|
2063 | return (PyObject *)z;
|
---|
2064 | }
|
---|
2065 |
|
---|
2066 | /* Grade school multiplication, ignoring the signs.
|
---|
2067 | * Returns the absolute value of the product, or NULL if error.
|
---|
2068 | */
|
---|
2069 | static PyLongObject *
|
---|
2070 | x_mul(PyLongObject *a, PyLongObject *b)
|
---|
2071 | {
|
---|
2072 | PyLongObject *z;
|
---|
2073 | Py_ssize_t size_a = ABS(a->ob_size);
|
---|
2074 | Py_ssize_t size_b = ABS(b->ob_size);
|
---|
2075 | Py_ssize_t i;
|
---|
2076 |
|
---|
2077 | z = _PyLong_New(size_a + size_b);
|
---|
2078 | if (z == NULL)
|
---|
2079 | return NULL;
|
---|
2080 |
|
---|
2081 | memset(z->ob_digit, 0, z->ob_size * sizeof(digit));
|
---|
2082 | if (a == b) {
|
---|
2083 | /* Efficient squaring per HAC, Algorithm 14.16:
|
---|
2084 | * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
|
---|
2085 | * Gives slightly less than a 2x speedup when a == b,
|
---|
2086 | * via exploiting that each entry in the multiplication
|
---|
2087 | * pyramid appears twice (except for the size_a squares).
|
---|
2088 | */
|
---|
2089 | for (i = 0; i < size_a; ++i) {
|
---|
2090 | twodigits carry;
|
---|
2091 | twodigits f = a->ob_digit[i];
|
---|
2092 | digit *pz = z->ob_digit + (i << 1);
|
---|
2093 | digit *pa = a->ob_digit + i + 1;
|
---|
2094 | digit *paend = a->ob_digit + size_a;
|
---|
2095 |
|
---|
2096 | SIGCHECK({
|
---|
2097 | Py_DECREF(z);
|
---|
2098 | return NULL;
|
---|
2099 | })
|
---|
2100 |
|
---|
2101 | carry = *pz + f * f;
|
---|
2102 | *pz++ = (digit)(carry & MASK);
|
---|
2103 | carry >>= SHIFT;
|
---|
2104 | assert(carry <= MASK);
|
---|
2105 |
|
---|
2106 | /* Now f is added in twice in each column of the
|
---|
2107 | * pyramid it appears. Same as adding f<<1 once.
|
---|
2108 | */
|
---|
2109 | f <<= 1;
|
---|
2110 | while (pa < paend) {
|
---|
2111 | carry += *pz + *pa++ * f;
|
---|
2112 | *pz++ = (digit)(carry & MASK);
|
---|
2113 | carry >>= SHIFT;
|
---|
2114 | assert(carry <= (MASK << 1));
|
---|
2115 | }
|
---|
2116 | if (carry) {
|
---|
2117 | carry += *pz;
|
---|
2118 | *pz++ = (digit)(carry & MASK);
|
---|
2119 | carry >>= SHIFT;
|
---|
2120 | }
|
---|
2121 | if (carry)
|
---|
2122 | *pz += (digit)(carry & MASK);
|
---|
2123 | assert((carry >> SHIFT) == 0);
|
---|
2124 | }
|
---|
2125 | }
|
---|
2126 | else { /* a is not the same as b -- gradeschool long mult */
|
---|
2127 | for (i = 0; i < size_a; ++i) {
|
---|
2128 | twodigits carry = 0;
|
---|
2129 | twodigits f = a->ob_digit[i];
|
---|
2130 | digit *pz = z->ob_digit + i;
|
---|
2131 | digit *pb = b->ob_digit;
|
---|
2132 | digit *pbend = b->ob_digit + size_b;
|
---|
2133 |
|
---|
2134 | SIGCHECK({
|
---|
2135 | Py_DECREF(z);
|
---|
2136 | return NULL;
|
---|
2137 | })
|
---|
2138 |
|
---|
2139 | while (pb < pbend) {
|
---|
2140 | carry += *pz + *pb++ * f;
|
---|
2141 | *pz++ = (digit)(carry & MASK);
|
---|
2142 | carry >>= SHIFT;
|
---|
2143 | assert(carry <= MASK);
|
---|
2144 | }
|
---|
2145 | if (carry)
|
---|
2146 | *pz += (digit)(carry & MASK);
|
---|
2147 | assert((carry >> SHIFT) == 0);
|
---|
2148 | }
|
---|
2149 | }
|
---|
2150 | return long_normalize(z);
|
---|
2151 | }
|
---|
2152 |
|
---|
2153 | /* A helper for Karatsuba multiplication (k_mul).
|
---|
2154 | Takes a long "n" and an integer "size" representing the place to
|
---|
2155 | split, and sets low and high such that abs(n) == (high << size) + low,
|
---|
2156 | viewing the shift as being by digits. The sign bit is ignored, and
|
---|
2157 | the return values are >= 0.
|
---|
2158 | Returns 0 on success, -1 on failure.
|
---|
2159 | */
|
---|
2160 | static int
|
---|
2161 | kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low)
|
---|
2162 | {
|
---|
2163 | PyLongObject *hi, *lo;
|
---|
2164 | Py_ssize_t size_lo, size_hi;
|
---|
2165 | const Py_ssize_t size_n = ABS(n->ob_size);
|
---|
2166 |
|
---|
2167 | size_lo = MIN(size_n, size);
|
---|
2168 | size_hi = size_n - size_lo;
|
---|
2169 |
|
---|
2170 | if ((hi = _PyLong_New(size_hi)) == NULL)
|
---|
2171 | return -1;
|
---|
2172 | if ((lo = _PyLong_New(size_lo)) == NULL) {
|
---|
2173 | Py_DECREF(hi);
|
---|
2174 | return -1;
|
---|
2175 | }
|
---|
2176 |
|
---|
2177 | memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
|
---|
2178 | memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
|
---|
2179 |
|
---|
2180 | *high = long_normalize(hi);
|
---|
2181 | *low = long_normalize(lo);
|
---|
2182 | return 0;
|
---|
2183 | }
|
---|
2184 |
|
---|
2185 | static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
|
---|
2186 |
|
---|
2187 | /* Karatsuba multiplication. Ignores the input signs, and returns the
|
---|
2188 | * absolute value of the product (or NULL if error).
|
---|
2189 | * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
|
---|
2190 | */
|
---|
2191 | static PyLongObject *
|
---|
2192 | k_mul(PyLongObject *a, PyLongObject *b)
|
---|
2193 | {
|
---|
2194 | Py_ssize_t asize = ABS(a->ob_size);
|
---|
2195 | Py_ssize_t bsize = ABS(b->ob_size);
|
---|
2196 | PyLongObject *ah = NULL;
|
---|
2197 | PyLongObject *al = NULL;
|
---|
2198 | PyLongObject *bh = NULL;
|
---|
2199 | PyLongObject *bl = NULL;
|
---|
2200 | PyLongObject *ret = NULL;
|
---|
2201 | PyLongObject *t1, *t2, *t3;
|
---|
2202 | Py_ssize_t shift; /* the number of digits we split off */
|
---|
2203 | Py_ssize_t i;
|
---|
2204 |
|
---|
2205 | /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
|
---|
2206 | * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
|
---|
2207 | * Then the original product is
|
---|
2208 | * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
|
---|
2209 | * By picking X to be a power of 2, "*X" is just shifting, and it's
|
---|
2210 | * been reduced to 3 multiplies on numbers half the size.
|
---|
2211 | */
|
---|
2212 |
|
---|
2213 | /* We want to split based on the larger number; fiddle so that b
|
---|
2214 | * is largest.
|
---|
2215 | */
|
---|
2216 | if (asize > bsize) {
|
---|
2217 | t1 = a;
|
---|
2218 | a = b;
|
---|
2219 | b = t1;
|
---|
2220 |
|
---|
2221 | i = asize;
|
---|
2222 | asize = bsize;
|
---|
2223 | bsize = i;
|
---|
2224 | }
|
---|
2225 |
|
---|
2226 | /* Use gradeschool math when either number is too small. */
|
---|
2227 | i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
|
---|
2228 | if (asize <= i) {
|
---|
2229 | if (asize == 0)
|
---|
2230 | return _PyLong_New(0);
|
---|
2231 | else
|
---|
2232 | return x_mul(a, b);
|
---|
2233 | }
|
---|
2234 |
|
---|
2235 | /* If a is small compared to b, splitting on b gives a degenerate
|
---|
2236 | * case with ah==0, and Karatsuba may be (even much) less efficient
|
---|
2237 | * than "grade school" then. However, we can still win, by viewing
|
---|
2238 | * b as a string of "big digits", each of width a->ob_size. That
|
---|
2239 | * leads to a sequence of balanced calls to k_mul.
|
---|
2240 | */
|
---|
2241 | if (2 * asize <= bsize)
|
---|
2242 | return k_lopsided_mul(a, b);
|
---|
2243 |
|
---|
2244 | /* Split a & b into hi & lo pieces. */
|
---|
2245 | shift = bsize >> 1;
|
---|
2246 | if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
|
---|
2247 | assert(ah->ob_size > 0); /* the split isn't degenerate */
|
---|
2248 |
|
---|
2249 | if (a == b) {
|
---|
2250 | bh = ah;
|
---|
2251 | bl = al;
|
---|
2252 | Py_INCREF(bh);
|
---|
2253 | Py_INCREF(bl);
|
---|
2254 | }
|
---|
2255 | else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
|
---|
2256 |
|
---|
2257 | /* The plan:
|
---|
2258 | * 1. Allocate result space (asize + bsize digits: that's always
|
---|
2259 | * enough).
|
---|
2260 | * 2. Compute ah*bh, and copy into result at 2*shift.
|
---|
2261 | * 3. Compute al*bl, and copy into result at 0. Note that this
|
---|
2262 | * can't overlap with #2.
|
---|
2263 | * 4. Subtract al*bl from the result, starting at shift. This may
|
---|
2264 | * underflow (borrow out of the high digit), but we don't care:
|
---|
2265 | * we're effectively doing unsigned arithmetic mod
|
---|
2266 | * BASE**(sizea + sizeb), and so long as the *final* result fits,
|
---|
2267 | * borrows and carries out of the high digit can be ignored.
|
---|
2268 | * 5. Subtract ah*bh from the result, starting at shift.
|
---|
2269 | * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
|
---|
2270 | * at shift.
|
---|
2271 | */
|
---|
2272 |
|
---|
2273 | /* 1. Allocate result space. */
|
---|
2274 | ret = _PyLong_New(asize + bsize);
|
---|
2275 | if (ret == NULL) goto fail;
|
---|
2276 | #ifdef Py_DEBUG
|
---|
2277 | /* Fill with trash, to catch reference to uninitialized digits. */
|
---|
2278 | memset(ret->ob_digit, 0xDF, ret->ob_size * sizeof(digit));
|
---|
2279 | #endif
|
---|
2280 |
|
---|
2281 | /* 2. t1 <- ah*bh, and copy into high digits of result. */
|
---|
2282 | if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
|
---|
2283 | assert(t1->ob_size >= 0);
|
---|
2284 | assert(2*shift + t1->ob_size <= ret->ob_size);
|
---|
2285 | memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
|
---|
2286 | t1->ob_size * sizeof(digit));
|
---|
2287 |
|
---|
2288 | /* Zero-out the digits higher than the ah*bh copy. */
|
---|
2289 | i = ret->ob_size - 2*shift - t1->ob_size;
|
---|
2290 | if (i)
|
---|
2291 | memset(ret->ob_digit + 2*shift + t1->ob_size, 0,
|
---|
2292 | i * sizeof(digit));
|
---|
2293 |
|
---|
2294 | /* 3. t2 <- al*bl, and copy into the low digits. */
|
---|
2295 | if ((t2 = k_mul(al, bl)) == NULL) {
|
---|
2296 | Py_DECREF(t1);
|
---|
2297 | goto fail;
|
---|
2298 | }
|
---|
2299 | assert(t2->ob_size >= 0);
|
---|
2300 | assert(t2->ob_size <= 2*shift); /* no overlap with high digits */
|
---|
2301 | memcpy(ret->ob_digit, t2->ob_digit, t2->ob_size * sizeof(digit));
|
---|
2302 |
|
---|
2303 | /* Zero out remaining digits. */
|
---|
2304 | i = 2*shift - t2->ob_size; /* number of uninitialized digits */
|
---|
2305 | if (i)
|
---|
2306 | memset(ret->ob_digit + t2->ob_size, 0, i * sizeof(digit));
|
---|
2307 |
|
---|
2308 | /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
|
---|
2309 | * because it's fresher in cache.
|
---|
2310 | */
|
---|
2311 | i = ret->ob_size - shift; /* # digits after shift */
|
---|
2312 | (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, t2->ob_size);
|
---|
2313 | Py_DECREF(t2);
|
---|
2314 |
|
---|
2315 | (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, t1->ob_size);
|
---|
2316 | Py_DECREF(t1);
|
---|
2317 |
|
---|
2318 | /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
|
---|
2319 | if ((t1 = x_add(ah, al)) == NULL) goto fail;
|
---|
2320 | Py_DECREF(ah);
|
---|
2321 | Py_DECREF(al);
|
---|
2322 | ah = al = NULL;
|
---|
2323 |
|
---|
2324 | if (a == b) {
|
---|
2325 | t2 = t1;
|
---|
2326 | Py_INCREF(t2);
|
---|
2327 | }
|
---|
2328 | else if ((t2 = x_add(bh, bl)) == NULL) {
|
---|
2329 | Py_DECREF(t1);
|
---|
2330 | goto fail;
|
---|
2331 | }
|
---|
2332 | Py_DECREF(bh);
|
---|
2333 | Py_DECREF(bl);
|
---|
2334 | bh = bl = NULL;
|
---|
2335 |
|
---|
2336 | t3 = k_mul(t1, t2);
|
---|
2337 | Py_DECREF(t1);
|
---|
2338 | Py_DECREF(t2);
|
---|
2339 | if (t3 == NULL) goto fail;
|
---|
2340 | assert(t3->ob_size >= 0);
|
---|
2341 |
|
---|
2342 | /* Add t3. It's not obvious why we can't run out of room here.
|
---|
2343 | * See the (*) comment after this function.
|
---|
2344 | */
|
---|
2345 | (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, t3->ob_size);
|
---|
2346 | Py_DECREF(t3);
|
---|
2347 |
|
---|
2348 | return long_normalize(ret);
|
---|
2349 |
|
---|
2350 | fail:
|
---|
2351 | Py_XDECREF(ret);
|
---|
2352 | Py_XDECREF(ah);
|
---|
2353 | Py_XDECREF(al);
|
---|
2354 | Py_XDECREF(bh);
|
---|
2355 | Py_XDECREF(bl);
|
---|
2356 | return NULL;
|
---|
2357 | }
|
---|
2358 |
|
---|
2359 | /* (*) Why adding t3 can't "run out of room" above.
|
---|
2360 |
|
---|
2361 | Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
|
---|
2362 | to start with:
|
---|
2363 |
|
---|
2364 | 1. For any integer i, i = c(i/2) + f(i/2). In particular,
|
---|
2365 | bsize = c(bsize/2) + f(bsize/2).
|
---|
2366 | 2. shift = f(bsize/2)
|
---|
2367 | 3. asize <= bsize
|
---|
2368 | 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
|
---|
2369 | routine, so asize > bsize/2 >= f(bsize/2) in this routine.
|
---|
2370 |
|
---|
2371 | We allocated asize + bsize result digits, and add t3 into them at an offset
|
---|
2372 | of shift. This leaves asize+bsize-shift allocated digit positions for t3
|
---|
2373 | to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
|
---|
2374 | asize + c(bsize/2) available digit positions.
|
---|
2375 |
|
---|
2376 | bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
|
---|
2377 | at most c(bsize/2) digits + 1 bit.
|
---|
2378 |
|
---|
2379 | If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
|
---|
2380 | digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
|
---|
2381 | most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
|
---|
2382 |
|
---|
2383 | The product (ah+al)*(bh+bl) therefore has at most
|
---|
2384 |
|
---|
2385 | c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
|
---|
2386 |
|
---|
2387 | and we have asize + c(bsize/2) available digit positions. We need to show
|
---|
2388 | this is always enough. An instance of c(bsize/2) cancels out in both, so
|
---|
2389 | the question reduces to whether asize digits is enough to hold
|
---|
2390 | (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
|
---|
2391 | then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
|
---|
2392 | asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
|
---|
2393 | digit is enough to hold 2 bits. This is so since SHIFT=15 >= 2. If
|
---|
2394 | asize == bsize, then we're asking whether bsize digits is enough to hold
|
---|
2395 | c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
|
---|
2396 | is enough to hold 2 bits. This is so if bsize >= 2, which holds because
|
---|
2397 | bsize >= KARATSUBA_CUTOFF >= 2.
|
---|
2398 |
|
---|
2399 | Note that since there's always enough room for (ah+al)*(bh+bl), and that's
|
---|
2400 | clearly >= each of ah*bh and al*bl, there's always enough room to subtract
|
---|
2401 | ah*bh and al*bl too.
|
---|
2402 | */
|
---|
2403 |
|
---|
2404 | /* b has at least twice the digits of a, and a is big enough that Karatsuba
|
---|
2405 | * would pay off *if* the inputs had balanced sizes. View b as a sequence
|
---|
2406 | * of slices, each with a->ob_size digits, and multiply the slices by a,
|
---|
2407 | * one at a time. This gives k_mul balanced inputs to work with, and is
|
---|
2408 | * also cache-friendly (we compute one double-width slice of the result
|
---|
2409 | * at a time, then move on, never bactracking except for the helpful
|
---|
2410 | * single-width slice overlap between successive partial sums).
|
---|
2411 | */
|
---|
2412 | static PyLongObject *
|
---|
2413 | k_lopsided_mul(PyLongObject *a, PyLongObject *b)
|
---|
2414 | {
|
---|
2415 | const Py_ssize_t asize = ABS(a->ob_size);
|
---|
2416 | Py_ssize_t bsize = ABS(b->ob_size);
|
---|
2417 | Py_ssize_t nbdone; /* # of b digits already multiplied */
|
---|
2418 | PyLongObject *ret;
|
---|
2419 | PyLongObject *bslice = NULL;
|
---|
2420 |
|
---|
2421 | assert(asize > KARATSUBA_CUTOFF);
|
---|
2422 | assert(2 * asize <= bsize);
|
---|
2423 |
|
---|
2424 | /* Allocate result space, and zero it out. */
|
---|
2425 | ret = _PyLong_New(asize + bsize);
|
---|
2426 | if (ret == NULL)
|
---|
2427 | return NULL;
|
---|
2428 | memset(ret->ob_digit, 0, ret->ob_size * sizeof(digit));
|
---|
2429 |
|
---|
2430 | /* Successive slices of b are copied into bslice. */
|
---|
2431 | bslice = _PyLong_New(asize);
|
---|
2432 | if (bslice == NULL)
|
---|
2433 | goto fail;
|
---|
2434 |
|
---|
2435 | nbdone = 0;
|
---|
2436 | while (bsize > 0) {
|
---|
2437 | PyLongObject *product;
|
---|
2438 | const Py_ssize_t nbtouse = MIN(bsize, asize);
|
---|
2439 |
|
---|
2440 | /* Multiply the next slice of b by a. */
|
---|
2441 | memcpy(bslice->ob_digit, b->ob_digit + nbdone,
|
---|
2442 | nbtouse * sizeof(digit));
|
---|
2443 | bslice->ob_size = nbtouse;
|
---|
2444 | product = k_mul(a, bslice);
|
---|
2445 | if (product == NULL)
|
---|
2446 | goto fail;
|
---|
2447 |
|
---|
2448 | /* Add into result. */
|
---|
2449 | (void)v_iadd(ret->ob_digit + nbdone, ret->ob_size - nbdone,
|
---|
2450 | product->ob_digit, product->ob_size);
|
---|
2451 | Py_DECREF(product);
|
---|
2452 |
|
---|
2453 | bsize -= nbtouse;
|
---|
2454 | nbdone += nbtouse;
|
---|
2455 | }
|
---|
2456 |
|
---|
2457 | Py_DECREF(bslice);
|
---|
2458 | return long_normalize(ret);
|
---|
2459 |
|
---|
2460 | fail:
|
---|
2461 | Py_DECREF(ret);
|
---|
2462 | Py_XDECREF(bslice);
|
---|
2463 | return NULL;
|
---|
2464 | }
|
---|
2465 |
|
---|
2466 | static PyObject *
|
---|
2467 | long_mul(PyLongObject *v, PyLongObject *w)
|
---|
2468 | {
|
---|
2469 | PyLongObject *a, *b, *z;
|
---|
2470 |
|
---|
2471 | if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) {
|
---|
2472 | Py_INCREF(Py_NotImplemented);
|
---|
2473 | return Py_NotImplemented;
|
---|
2474 | }
|
---|
2475 |
|
---|
2476 | z = k_mul(a, b);
|
---|
2477 | /* Negate if exactly one of the inputs is negative. */
|
---|
2478 | if (((a->ob_size ^ b->ob_size) < 0) && z)
|
---|
2479 | z->ob_size = -(z->ob_size);
|
---|
2480 | Py_DECREF(a);
|
---|
2481 | Py_DECREF(b);
|
---|
2482 | return (PyObject *)z;
|
---|
2483 | }
|
---|
2484 |
|
---|
2485 | /* The / and % operators are now defined in terms of divmod().
|
---|
2486 | The expression a mod b has the value a - b*floor(a/b).
|
---|
2487 | The long_divrem function gives the remainder after division of
|
---|
2488 | |a| by |b|, with the sign of a. This is also expressed
|
---|
2489 | as a - b*trunc(a/b), if trunc truncates towards zero.
|
---|
2490 | Some examples:
|
---|
2491 | a b a rem b a mod b
|
---|
2492 | 13 10 3 3
|
---|
2493 | -13 10 -3 7
|
---|
2494 | 13 -10 3 -7
|
---|
2495 | -13 -10 -3 -3
|
---|
2496 | So, to get from rem to mod, we have to add b if a and b
|
---|
2497 | have different signs. We then subtract one from the 'div'
|
---|
2498 | part of the outcome to keep the invariant intact. */
|
---|
2499 |
|
---|
2500 | /* Compute
|
---|
2501 | * *pdiv, *pmod = divmod(v, w)
|
---|
2502 | * NULL can be passed for pdiv or pmod, in which case that part of
|
---|
2503 | * the result is simply thrown away. The caller owns a reference to
|
---|
2504 | * each of these it requests (does not pass NULL for).
|
---|
2505 | */
|
---|
2506 | static int
|
---|
2507 | l_divmod(PyLongObject *v, PyLongObject *w,
|
---|
2508 | PyLongObject **pdiv, PyLongObject **pmod)
|
---|
2509 | {
|
---|
2510 | PyLongObject *div, *mod;
|
---|
2511 |
|
---|
2512 | if (long_divrem(v, w, &div, &mod) < 0)
|
---|
2513 | return -1;
|
---|
2514 | if ((mod->ob_size < 0 && w->ob_size > 0) ||
|
---|
2515 | (mod->ob_size > 0 && w->ob_size < 0)) {
|
---|
2516 | PyLongObject *temp;
|
---|
2517 | PyLongObject *one;
|
---|
2518 | temp = (PyLongObject *) long_add(mod, w);
|
---|
2519 | Py_DECREF(mod);
|
---|
2520 | mod = temp;
|
---|
2521 | if (mod == NULL) {
|
---|
2522 | Py_DECREF(div);
|
---|
2523 | return -1;
|
---|
2524 | }
|
---|
2525 | one = (PyLongObject *) PyLong_FromLong(1L);
|
---|
2526 | if (one == NULL ||
|
---|
2527 | (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
|
---|
2528 | Py_DECREF(mod);
|
---|
2529 | Py_DECREF(div);
|
---|
2530 | Py_XDECREF(one);
|
---|
2531 | return -1;
|
---|
2532 | }
|
---|
2533 | Py_DECREF(one);
|
---|
2534 | Py_DECREF(div);
|
---|
2535 | div = temp;
|
---|
2536 | }
|
---|
2537 | if (pdiv != NULL)
|
---|
2538 | *pdiv = div;
|
---|
2539 | else
|
---|
2540 | Py_DECREF(div);
|
---|
2541 |
|
---|
2542 | if (pmod != NULL)
|
---|
2543 | *pmod = mod;
|
---|
2544 | else
|
---|
2545 | Py_DECREF(mod);
|
---|
2546 |
|
---|
2547 | return 0;
|
---|
2548 | }
|
---|
2549 |
|
---|
2550 | static PyObject *
|
---|
2551 | long_div(PyObject *v, PyObject *w)
|
---|
2552 | {
|
---|
2553 | PyLongObject *a, *b, *div;
|
---|
2554 |
|
---|
2555 | CONVERT_BINOP(v, w, &a, &b);
|
---|
2556 | if (l_divmod(a, b, &div, NULL) < 0)
|
---|
2557 | div = NULL;
|
---|
2558 | Py_DECREF(a);
|
---|
2559 | Py_DECREF(b);
|
---|
2560 | return (PyObject *)div;
|
---|
2561 | }
|
---|
2562 |
|
---|
2563 | static PyObject *
|
---|
2564 | long_classic_div(PyObject *v, PyObject *w)
|
---|
2565 | {
|
---|
2566 | PyLongObject *a, *b, *div;
|
---|
2567 |
|
---|
2568 | CONVERT_BINOP(v, w, &a, &b);
|
---|
2569 | if (Py_DivisionWarningFlag &&
|
---|
2570 | PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0)
|
---|
2571 | div = NULL;
|
---|
2572 | else if (l_divmod(a, b, &div, NULL) < 0)
|
---|
2573 | div = NULL;
|
---|
2574 | Py_DECREF(a);
|
---|
2575 | Py_DECREF(b);
|
---|
2576 | return (PyObject *)div;
|
---|
2577 | }
|
---|
2578 |
|
---|
2579 | static PyObject *
|
---|
2580 | long_true_divide(PyObject *v, PyObject *w)
|
---|
2581 | {
|
---|
2582 | PyLongObject *a, *b;
|
---|
2583 | double ad, bd;
|
---|
2584 | int failed, aexp = -1, bexp = -1;
|
---|
2585 |
|
---|
2586 | CONVERT_BINOP(v, w, &a, &b);
|
---|
2587 | ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp);
|
---|
2588 | bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp);
|
---|
2589 | failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred();
|
---|
2590 | Py_DECREF(a);
|
---|
2591 | Py_DECREF(b);
|
---|
2592 | if (failed)
|
---|
2593 | return NULL;
|
---|
2594 | /* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
|
---|
2595 | but should really be set correctly after sucessful calls to
|
---|
2596 | _PyLong_AsScaledDouble() */
|
---|
2597 | assert(aexp >= 0 && bexp >= 0);
|
---|
2598 |
|
---|
2599 | if (bd == 0.0) {
|
---|
2600 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
2601 | "long division or modulo by zero");
|
---|
2602 | return NULL;
|
---|
2603 | }
|
---|
2604 |
|
---|
2605 | /* True value is very close to ad/bd * 2**(SHIFT*(aexp-bexp)) */
|
---|
2606 | ad /= bd; /* overflow/underflow impossible here */
|
---|
2607 | aexp -= bexp;
|
---|
2608 | if (aexp > INT_MAX / SHIFT)
|
---|
2609 | goto overflow;
|
---|
2610 | else if (aexp < -(INT_MAX / SHIFT))
|
---|
2611 | return PyFloat_FromDouble(0.0); /* underflow to 0 */
|
---|
2612 | errno = 0;
|
---|
2613 | ad = ldexp(ad, aexp * SHIFT);
|
---|
2614 | if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */
|
---|
2615 | goto overflow;
|
---|
2616 | return PyFloat_FromDouble(ad);
|
---|
2617 |
|
---|
2618 | overflow:
|
---|
2619 | PyErr_SetString(PyExc_OverflowError,
|
---|
2620 | "long/long too large for a float");
|
---|
2621 | return NULL;
|
---|
2622 |
|
---|
2623 | }
|
---|
2624 |
|
---|
2625 | static PyObject *
|
---|
2626 | long_mod(PyObject *v, PyObject *w)
|
---|
2627 | {
|
---|
2628 | PyLongObject *a, *b, *mod;
|
---|
2629 |
|
---|
2630 | CONVERT_BINOP(v, w, &a, &b);
|
---|
2631 |
|
---|
2632 | if (l_divmod(a, b, NULL, &mod) < 0)
|
---|
2633 | mod = NULL;
|
---|
2634 | Py_DECREF(a);
|
---|
2635 | Py_DECREF(b);
|
---|
2636 | return (PyObject *)mod;
|
---|
2637 | }
|
---|
2638 |
|
---|
2639 | static PyObject *
|
---|
2640 | long_divmod(PyObject *v, PyObject *w)
|
---|
2641 | {
|
---|
2642 | PyLongObject *a, *b, *div, *mod;
|
---|
2643 | PyObject *z;
|
---|
2644 |
|
---|
2645 | CONVERT_BINOP(v, w, &a, &b);
|
---|
2646 |
|
---|
2647 | if (l_divmod(a, b, &div, &mod) < 0) {
|
---|
2648 | Py_DECREF(a);
|
---|
2649 | Py_DECREF(b);
|
---|
2650 | return NULL;
|
---|
2651 | }
|
---|
2652 | z = PyTuple_New(2);
|
---|
2653 | if (z != NULL) {
|
---|
2654 | PyTuple_SetItem(z, 0, (PyObject *) div);
|
---|
2655 | PyTuple_SetItem(z, 1, (PyObject *) mod);
|
---|
2656 | }
|
---|
2657 | else {
|
---|
2658 | Py_DECREF(div);
|
---|
2659 | Py_DECREF(mod);
|
---|
2660 | }
|
---|
2661 | Py_DECREF(a);
|
---|
2662 | Py_DECREF(b);
|
---|
2663 | return z;
|
---|
2664 | }
|
---|
2665 |
|
---|
2666 | /* pow(v, w, x) */
|
---|
2667 | static PyObject *
|
---|
2668 | long_pow(PyObject *v, PyObject *w, PyObject *x)
|
---|
2669 | {
|
---|
2670 | PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
|
---|
2671 | int negativeOutput = 0; /* if x<0 return negative output */
|
---|
2672 |
|
---|
2673 | PyLongObject *z = NULL; /* accumulated result */
|
---|
2674 | Py_ssize_t i, j, k; /* counters */
|
---|
2675 | PyLongObject *temp = NULL;
|
---|
2676 |
|
---|
2677 | /* 5-ary values. If the exponent is large enough, table is
|
---|
2678 | * precomputed so that table[i] == a**i % c for i in range(32).
|
---|
2679 | */
|
---|
2680 | PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
---|
2681 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
---|
2682 |
|
---|
2683 | /* a, b, c = v, w, x */
|
---|
2684 | CONVERT_BINOP(v, w, &a, &b);
|
---|
2685 | if (PyLong_Check(x)) {
|
---|
2686 | c = (PyLongObject *)x;
|
---|
2687 | Py_INCREF(x);
|
---|
2688 | }
|
---|
2689 | else if (PyInt_Check(x)) {
|
---|
2690 | c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x));
|
---|
2691 | if (c == NULL)
|
---|
2692 | goto Error;
|
---|
2693 | }
|
---|
2694 | else if (x == Py_None)
|
---|
2695 | c = NULL;
|
---|
2696 | else {
|
---|
2697 | Py_DECREF(a);
|
---|
2698 | Py_DECREF(b);
|
---|
2699 | Py_INCREF(Py_NotImplemented);
|
---|
2700 | return Py_NotImplemented;
|
---|
2701 | }
|
---|
2702 |
|
---|
2703 | if (b->ob_size < 0) { /* if exponent is negative */
|
---|
2704 | if (c) {
|
---|
2705 | PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
|
---|
2706 | "cannot be negative when 3rd argument specified");
|
---|
2707 | goto Error;
|
---|
2708 | }
|
---|
2709 | else {
|
---|
2710 | /* else return a float. This works because we know
|
---|
2711 | that this calls float_pow() which converts its
|
---|
2712 | arguments to double. */
|
---|
2713 | Py_DECREF(a);
|
---|
2714 | Py_DECREF(b);
|
---|
2715 | return PyFloat_Type.tp_as_number->nb_power(v, w, x);
|
---|
2716 | }
|
---|
2717 | }
|
---|
2718 |
|
---|
2719 | if (c) {
|
---|
2720 | /* if modulus == 0:
|
---|
2721 | raise ValueError() */
|
---|
2722 | if (c->ob_size == 0) {
|
---|
2723 | PyErr_SetString(PyExc_ValueError,
|
---|
2724 | "pow() 3rd argument cannot be 0");
|
---|
2725 | goto Error;
|
---|
2726 | }
|
---|
2727 |
|
---|
2728 | /* if modulus < 0:
|
---|
2729 | negativeOutput = True
|
---|
2730 | modulus = -modulus */
|
---|
2731 | if (c->ob_size < 0) {
|
---|
2732 | negativeOutput = 1;
|
---|
2733 | temp = (PyLongObject *)_PyLong_Copy(c);
|
---|
2734 | if (temp == NULL)
|
---|
2735 | goto Error;
|
---|
2736 | Py_DECREF(c);
|
---|
2737 | c = temp;
|
---|
2738 | temp = NULL;
|
---|
2739 | c->ob_size = - c->ob_size;
|
---|
2740 | }
|
---|
2741 |
|
---|
2742 | /* if modulus == 1:
|
---|
2743 | return 0 */
|
---|
2744 | if ((c->ob_size == 1) && (c->ob_digit[0] == 1)) {
|
---|
2745 | z = (PyLongObject *)PyLong_FromLong(0L);
|
---|
2746 | goto Done;
|
---|
2747 | }
|
---|
2748 |
|
---|
2749 | /* if base < 0:
|
---|
2750 | base = base % modulus
|
---|
2751 | Having the base positive just makes things easier. */
|
---|
2752 | if (a->ob_size < 0) {
|
---|
2753 | if (l_divmod(a, c, NULL, &temp) < 0)
|
---|
2754 | goto Error;
|
---|
2755 | Py_DECREF(a);
|
---|
2756 | a = temp;
|
---|
2757 | temp = NULL;
|
---|
2758 | }
|
---|
2759 | }
|
---|
2760 |
|
---|
2761 | /* At this point a, b, and c are guaranteed non-negative UNLESS
|
---|
2762 | c is NULL, in which case a may be negative. */
|
---|
2763 |
|
---|
2764 | z = (PyLongObject *)PyLong_FromLong(1L);
|
---|
2765 | if (z == NULL)
|
---|
2766 | goto Error;
|
---|
2767 |
|
---|
2768 | /* Perform a modular reduction, X = X % c, but leave X alone if c
|
---|
2769 | * is NULL.
|
---|
2770 | */
|
---|
2771 | #define REDUCE(X) \
|
---|
2772 | if (c != NULL) { \
|
---|
2773 | if (l_divmod(X, c, NULL, &temp) < 0) \
|
---|
2774 | goto Error; \
|
---|
2775 | Py_XDECREF(X); \
|
---|
2776 | X = temp; \
|
---|
2777 | temp = NULL; \
|
---|
2778 | }
|
---|
2779 |
|
---|
2780 | /* Multiply two values, then reduce the result:
|
---|
2781 | result = X*Y % c. If c is NULL, skip the mod. */
|
---|
2782 | #define MULT(X, Y, result) \
|
---|
2783 | { \
|
---|
2784 | temp = (PyLongObject *)long_mul(X, Y); \
|
---|
2785 | if (temp == NULL) \
|
---|
2786 | goto Error; \
|
---|
2787 | Py_XDECREF(result); \
|
---|
2788 | result = temp; \
|
---|
2789 | temp = NULL; \
|
---|
2790 | REDUCE(result) \
|
---|
2791 | }
|
---|
2792 |
|
---|
2793 | if (b->ob_size <= FIVEARY_CUTOFF) {
|
---|
2794 | /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
|
---|
2795 | /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
|
---|
2796 | for (i = b->ob_size - 1; i >= 0; --i) {
|
---|
2797 | digit bi = b->ob_digit[i];
|
---|
2798 |
|
---|
2799 | for (j = 1 << (SHIFT-1); j != 0; j >>= 1) {
|
---|
2800 | MULT(z, z, z)
|
---|
2801 | if (bi & j)
|
---|
2802 | MULT(z, a, z)
|
---|
2803 | }
|
---|
2804 | }
|
---|
2805 | }
|
---|
2806 | else {
|
---|
2807 | /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
|
---|
2808 | Py_INCREF(z); /* still holds 1L */
|
---|
2809 | table[0] = z;
|
---|
2810 | for (i = 1; i < 32; ++i)
|
---|
2811 | MULT(table[i-1], a, table[i])
|
---|
2812 |
|
---|
2813 | for (i = b->ob_size - 1; i >= 0; --i) {
|
---|
2814 | const digit bi = b->ob_digit[i];
|
---|
2815 |
|
---|
2816 | for (j = SHIFT - 5; j >= 0; j -= 5) {
|
---|
2817 | const int index = (bi >> j) & 0x1f;
|
---|
2818 | for (k = 0; k < 5; ++k)
|
---|
2819 | MULT(z, z, z)
|
---|
2820 | if (index)
|
---|
2821 | MULT(z, table[index], z)
|
---|
2822 | }
|
---|
2823 | }
|
---|
2824 | }
|
---|
2825 |
|
---|
2826 | if (negativeOutput && (z->ob_size != 0)) {
|
---|
2827 | temp = (PyLongObject *)long_sub(z, c);
|
---|
2828 | if (temp == NULL)
|
---|
2829 | goto Error;
|
---|
2830 | Py_DECREF(z);
|
---|
2831 | z = temp;
|
---|
2832 | temp = NULL;
|
---|
2833 | }
|
---|
2834 | goto Done;
|
---|
2835 |
|
---|
2836 | Error:
|
---|
2837 | if (z != NULL) {
|
---|
2838 | Py_DECREF(z);
|
---|
2839 | z = NULL;
|
---|
2840 | }
|
---|
2841 | /* fall through */
|
---|
2842 | Done:
|
---|
2843 | if (b->ob_size > FIVEARY_CUTOFF) {
|
---|
2844 | for (i = 0; i < 32; ++i)
|
---|
2845 | Py_XDECREF(table[i]);
|
---|
2846 | }
|
---|
2847 | Py_DECREF(a);
|
---|
2848 | Py_DECREF(b);
|
---|
2849 | Py_XDECREF(c);
|
---|
2850 | Py_XDECREF(temp);
|
---|
2851 | return (PyObject *)z;
|
---|
2852 | }
|
---|
2853 |
|
---|
2854 | static PyObject *
|
---|
2855 | long_invert(PyLongObject *v)
|
---|
2856 | {
|
---|
2857 | /* Implement ~x as -(x+1) */
|
---|
2858 | PyLongObject *x;
|
---|
2859 | PyLongObject *w;
|
---|
2860 | w = (PyLongObject *)PyLong_FromLong(1L);
|
---|
2861 | if (w == NULL)
|
---|
2862 | return NULL;
|
---|
2863 | x = (PyLongObject *) long_add(v, w);
|
---|
2864 | Py_DECREF(w);
|
---|
2865 | if (x == NULL)
|
---|
2866 | return NULL;
|
---|
2867 | x->ob_size = -(x->ob_size);
|
---|
2868 | return (PyObject *)x;
|
---|
2869 | }
|
---|
2870 |
|
---|
2871 | static PyObject *
|
---|
2872 | long_pos(PyLongObject *v)
|
---|
2873 | {
|
---|
2874 | if (PyLong_CheckExact(v)) {
|
---|
2875 | Py_INCREF(v);
|
---|
2876 | return (PyObject *)v;
|
---|
2877 | }
|
---|
2878 | else
|
---|
2879 | return _PyLong_Copy(v);
|
---|
2880 | }
|
---|
2881 |
|
---|
2882 | static PyObject *
|
---|
2883 | long_neg(PyLongObject *v)
|
---|
2884 | {
|
---|
2885 | PyLongObject *z;
|
---|
2886 | if (v->ob_size == 0 && PyLong_CheckExact(v)) {
|
---|
2887 | /* -0 == 0 */
|
---|
2888 | Py_INCREF(v);
|
---|
2889 | return (PyObject *) v;
|
---|
2890 | }
|
---|
2891 | z = (PyLongObject *)_PyLong_Copy(v);
|
---|
2892 | if (z != NULL)
|
---|
2893 | z->ob_size = -(v->ob_size);
|
---|
2894 | return (PyObject *)z;
|
---|
2895 | }
|
---|
2896 |
|
---|
2897 | static PyObject *
|
---|
2898 | long_abs(PyLongObject *v)
|
---|
2899 | {
|
---|
2900 | if (v->ob_size < 0)
|
---|
2901 | return long_neg(v);
|
---|
2902 | else
|
---|
2903 | return long_pos(v);
|
---|
2904 | }
|
---|
2905 |
|
---|
2906 | static int
|
---|
2907 | long_nonzero(PyLongObject *v)
|
---|
2908 | {
|
---|
2909 | return ABS(v->ob_size) != 0;
|
---|
2910 | }
|
---|
2911 |
|
---|
2912 | static PyObject *
|
---|
2913 | long_rshift(PyLongObject *v, PyLongObject *w)
|
---|
2914 | {
|
---|
2915 | PyLongObject *a, *b;
|
---|
2916 | PyLongObject *z = NULL;
|
---|
2917 | long shiftby;
|
---|
2918 | Py_ssize_t newsize, wordshift, loshift, hishift, i, j;
|
---|
2919 | digit lomask, himask;
|
---|
2920 |
|
---|
2921 | CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
|
---|
2922 |
|
---|
2923 | if (a->ob_size < 0) {
|
---|
2924 | /* Right shifting negative numbers is harder */
|
---|
2925 | PyLongObject *a1, *a2;
|
---|
2926 | a1 = (PyLongObject *) long_invert(a);
|
---|
2927 | if (a1 == NULL)
|
---|
2928 | goto rshift_error;
|
---|
2929 | a2 = (PyLongObject *) long_rshift(a1, b);
|
---|
2930 | Py_DECREF(a1);
|
---|
2931 | if (a2 == NULL)
|
---|
2932 | goto rshift_error;
|
---|
2933 | z = (PyLongObject *) long_invert(a2);
|
---|
2934 | Py_DECREF(a2);
|
---|
2935 | }
|
---|
2936 | else {
|
---|
2937 |
|
---|
2938 | shiftby = PyLong_AsLong((PyObject *)b);
|
---|
2939 | if (shiftby == -1L && PyErr_Occurred())
|
---|
2940 | goto rshift_error;
|
---|
2941 | if (shiftby < 0) {
|
---|
2942 | PyErr_SetString(PyExc_ValueError,
|
---|
2943 | "negative shift count");
|
---|
2944 | goto rshift_error;
|
---|
2945 | }
|
---|
2946 | wordshift = shiftby / SHIFT;
|
---|
2947 | newsize = ABS(a->ob_size) - wordshift;
|
---|
2948 | if (newsize <= 0) {
|
---|
2949 | z = _PyLong_New(0);
|
---|
2950 | Py_DECREF(a);
|
---|
2951 | Py_DECREF(b);
|
---|
2952 | return (PyObject *)z;
|
---|
2953 | }
|
---|
2954 | loshift = shiftby % SHIFT;
|
---|
2955 | hishift = SHIFT - loshift;
|
---|
2956 | lomask = ((digit)1 << hishift) - 1;
|
---|
2957 | himask = MASK ^ lomask;
|
---|
2958 | z = _PyLong_New(newsize);
|
---|
2959 | if (z == NULL)
|
---|
2960 | goto rshift_error;
|
---|
2961 | if (a->ob_size < 0)
|
---|
2962 | z->ob_size = -(z->ob_size);
|
---|
2963 | for (i = 0, j = wordshift; i < newsize; i++, j++) {
|
---|
2964 | z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
|
---|
2965 | if (i+1 < newsize)
|
---|
2966 | z->ob_digit[i] |=
|
---|
2967 | (a->ob_digit[j+1] << hishift) & himask;
|
---|
2968 | }
|
---|
2969 | z = long_normalize(z);
|
---|
2970 | }
|
---|
2971 | rshift_error:
|
---|
2972 | Py_DECREF(a);
|
---|
2973 | Py_DECREF(b);
|
---|
2974 | return (PyObject *) z;
|
---|
2975 |
|
---|
2976 | }
|
---|
2977 |
|
---|
2978 | static PyObject *
|
---|
2979 | long_lshift(PyObject *v, PyObject *w)
|
---|
2980 | {
|
---|
2981 | /* This version due to Tim Peters */
|
---|
2982 | PyLongObject *a, *b;
|
---|
2983 | PyLongObject *z = NULL;
|
---|
2984 | long shiftby;
|
---|
2985 | Py_ssize_t oldsize, newsize, wordshift, remshift, i, j;
|
---|
2986 | twodigits accum;
|
---|
2987 |
|
---|
2988 | CONVERT_BINOP(v, w, &a, &b);
|
---|
2989 |
|
---|
2990 | shiftby = PyLong_AsLong((PyObject *)b);
|
---|
2991 | if (shiftby == -1L && PyErr_Occurred())
|
---|
2992 | goto lshift_error;
|
---|
2993 | if (shiftby < 0) {
|
---|
2994 | PyErr_SetString(PyExc_ValueError, "negative shift count");
|
---|
2995 | goto lshift_error;
|
---|
2996 | }
|
---|
2997 | if ((long)(int)shiftby != shiftby) {
|
---|
2998 | PyErr_SetString(PyExc_ValueError,
|
---|
2999 | "outrageous left shift count");
|
---|
3000 | goto lshift_error;
|
---|
3001 | }
|
---|
3002 | /* wordshift, remshift = divmod(shiftby, SHIFT) */
|
---|
3003 | wordshift = (int)shiftby / SHIFT;
|
---|
3004 | remshift = (int)shiftby - wordshift * SHIFT;
|
---|
3005 |
|
---|
3006 | oldsize = ABS(a->ob_size);
|
---|
3007 | newsize = oldsize + wordshift;
|
---|
3008 | if (remshift)
|
---|
3009 | ++newsize;
|
---|
3010 | z = _PyLong_New(newsize);
|
---|
3011 | if (z == NULL)
|
---|
3012 | goto lshift_error;
|
---|
3013 | if (a->ob_size < 0)
|
---|
3014 | z->ob_size = -(z->ob_size);
|
---|
3015 | for (i = 0; i < wordshift; i++)
|
---|
3016 | z->ob_digit[i] = 0;
|
---|
3017 | accum = 0;
|
---|
3018 | for (i = wordshift, j = 0; j < oldsize; i++, j++) {
|
---|
3019 | accum |= (twodigits)a->ob_digit[j] << remshift;
|
---|
3020 | z->ob_digit[i] = (digit)(accum & MASK);
|
---|
3021 | accum >>= SHIFT;
|
---|
3022 | }
|
---|
3023 | if (remshift)
|
---|
3024 | z->ob_digit[newsize-1] = (digit)accum;
|
---|
3025 | else
|
---|
3026 | assert(!accum);
|
---|
3027 | z = long_normalize(z);
|
---|
3028 | lshift_error:
|
---|
3029 | Py_DECREF(a);
|
---|
3030 | Py_DECREF(b);
|
---|
3031 | return (PyObject *) z;
|
---|
3032 | }
|
---|
3033 |
|
---|
3034 |
|
---|
3035 | /* Bitwise and/xor/or operations */
|
---|
3036 |
|
---|
3037 | static PyObject *
|
---|
3038 | long_bitwise(PyLongObject *a,
|
---|
3039 | int op, /* '&', '|', '^' */
|
---|
3040 | PyLongObject *b)
|
---|
3041 | {
|
---|
3042 | digit maska, maskb; /* 0 or MASK */
|
---|
3043 | int negz;
|
---|
3044 | Py_ssize_t size_a, size_b, size_z;
|
---|
3045 | PyLongObject *z;
|
---|
3046 | int i;
|
---|
3047 | digit diga, digb;
|
---|
3048 | PyObject *v;
|
---|
3049 |
|
---|
3050 | if (a->ob_size < 0) {
|
---|
3051 | a = (PyLongObject *) long_invert(a);
|
---|
3052 | if (a == NULL)
|
---|
3053 | return NULL;
|
---|
3054 | maska = MASK;
|
---|
3055 | }
|
---|
3056 | else {
|
---|
3057 | Py_INCREF(a);
|
---|
3058 | maska = 0;
|
---|
3059 | }
|
---|
3060 | if (b->ob_size < 0) {
|
---|
3061 | b = (PyLongObject *) long_invert(b);
|
---|
3062 | if (b == NULL) {
|
---|
3063 | Py_DECREF(a);
|
---|
3064 | return NULL;
|
---|
3065 | }
|
---|
3066 | maskb = MASK;
|
---|
3067 | }
|
---|
3068 | else {
|
---|
3069 | Py_INCREF(b);
|
---|
3070 | maskb = 0;
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 | negz = 0;
|
---|
3074 | switch (op) {
|
---|
3075 | case '^':
|
---|
3076 | if (maska != maskb) {
|
---|
3077 | maska ^= MASK;
|
---|
3078 | negz = -1;
|
---|
3079 | }
|
---|
3080 | break;
|
---|
3081 | case '&':
|
---|
3082 | if (maska && maskb) {
|
---|
3083 | op = '|';
|
---|
3084 | maska ^= MASK;
|
---|
3085 | maskb ^= MASK;
|
---|
3086 | negz = -1;
|
---|
3087 | }
|
---|
3088 | break;
|
---|
3089 | case '|':
|
---|
3090 | if (maska || maskb) {
|
---|
3091 | op = '&';
|
---|
3092 | maska ^= MASK;
|
---|
3093 | maskb ^= MASK;
|
---|
3094 | negz = -1;
|
---|
3095 | }
|
---|
3096 | break;
|
---|
3097 | }
|
---|
3098 |
|
---|
3099 | /* JRH: The original logic here was to allocate the result value (z)
|
---|
3100 | as the longer of the two operands. However, there are some cases
|
---|
3101 | where the result is guaranteed to be shorter than that: AND of two
|
---|
3102 | positives, OR of two negatives: use the shorter number. AND with
|
---|
3103 | mixed signs: use the positive number. OR with mixed signs: use the
|
---|
3104 | negative number. After the transformations above, op will be '&'
|
---|
3105 | iff one of these cases applies, and mask will be non-0 for operands
|
---|
3106 | whose length should be ignored.
|
---|
3107 | */
|
---|
3108 |
|
---|
3109 | size_a = a->ob_size;
|
---|
3110 | size_b = b->ob_size;
|
---|
3111 | size_z = op == '&'
|
---|
3112 | ? (maska
|
---|
3113 | ? size_b
|
---|
3114 | : (maskb ? size_a : MIN(size_a, size_b)))
|
---|
3115 | : MAX(size_a, size_b);
|
---|
3116 | z = _PyLong_New(size_z);
|
---|
3117 | if (z == NULL) {
|
---|
3118 | Py_DECREF(a);
|
---|
3119 | Py_DECREF(b);
|
---|
3120 | return NULL;
|
---|
3121 | }
|
---|
3122 |
|
---|
3123 | for (i = 0; i < size_z; ++i) {
|
---|
3124 | diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska;
|
---|
3125 | digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb;
|
---|
3126 | switch (op) {
|
---|
3127 | case '&': z->ob_digit[i] = diga & digb; break;
|
---|
3128 | case '|': z->ob_digit[i] = diga | digb; break;
|
---|
3129 | case '^': z->ob_digit[i] = diga ^ digb; break;
|
---|
3130 | }
|
---|
3131 | }
|
---|
3132 |
|
---|
3133 | Py_DECREF(a);
|
---|
3134 | Py_DECREF(b);
|
---|
3135 | z = long_normalize(z);
|
---|
3136 | if (negz == 0)
|
---|
3137 | return (PyObject *) z;
|
---|
3138 | v = long_invert(z);
|
---|
3139 | Py_DECREF(z);
|
---|
3140 | return v;
|
---|
3141 | }
|
---|
3142 |
|
---|
3143 | static PyObject *
|
---|
3144 | long_and(PyObject *v, PyObject *w)
|
---|
3145 | {
|
---|
3146 | PyLongObject *a, *b;
|
---|
3147 | PyObject *c;
|
---|
3148 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3149 | c = long_bitwise(a, '&', b);
|
---|
3150 | Py_DECREF(a);
|
---|
3151 | Py_DECREF(b);
|
---|
3152 | return c;
|
---|
3153 | }
|
---|
3154 |
|
---|
3155 | static PyObject *
|
---|
3156 | long_xor(PyObject *v, PyObject *w)
|
---|
3157 | {
|
---|
3158 | PyLongObject *a, *b;
|
---|
3159 | PyObject *c;
|
---|
3160 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3161 | c = long_bitwise(a, '^', b);
|
---|
3162 | Py_DECREF(a);
|
---|
3163 | Py_DECREF(b);
|
---|
3164 | return c;
|
---|
3165 | }
|
---|
3166 |
|
---|
3167 | static PyObject *
|
---|
3168 | long_or(PyObject *v, PyObject *w)
|
---|
3169 | {
|
---|
3170 | PyLongObject *a, *b;
|
---|
3171 | PyObject *c;
|
---|
3172 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3173 | c = long_bitwise(a, '|', b);
|
---|
3174 | Py_DECREF(a);
|
---|
3175 | Py_DECREF(b);
|
---|
3176 | return c;
|
---|
3177 | }
|
---|
3178 |
|
---|
3179 | static int
|
---|
3180 | long_coerce(PyObject **pv, PyObject **pw)
|
---|
3181 | {
|
---|
3182 | if (PyInt_Check(*pw)) {
|
---|
3183 | *pw = PyLong_FromLong(PyInt_AS_LONG(*pw));
|
---|
3184 | Py_INCREF(*pv);
|
---|
3185 | return 0;
|
---|
3186 | }
|
---|
3187 | else if (PyLong_Check(*pw)) {
|
---|
3188 | Py_INCREF(*pv);
|
---|
3189 | Py_INCREF(*pw);
|
---|
3190 | return 0;
|
---|
3191 | }
|
---|
3192 | return 1; /* Can't do it */
|
---|
3193 | }
|
---|
3194 |
|
---|
3195 | static PyObject *
|
---|
3196 | long_long(PyObject *v)
|
---|
3197 | {
|
---|
3198 | if (PyLong_CheckExact(v))
|
---|
3199 | Py_INCREF(v);
|
---|
3200 | else
|
---|
3201 | v = _PyLong_Copy((PyLongObject *)v);
|
---|
3202 | return v;
|
---|
3203 | }
|
---|
3204 |
|
---|
3205 | static PyObject *
|
---|
3206 | long_int(PyObject *v)
|
---|
3207 | {
|
---|
3208 | long x;
|
---|
3209 | x = PyLong_AsLong(v);
|
---|
3210 | if (PyErr_Occurred()) {
|
---|
3211 | if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
|
---|
3212 | PyErr_Clear();
|
---|
3213 | if (PyLong_CheckExact(v)) {
|
---|
3214 | Py_INCREF(v);
|
---|
3215 | return v;
|
---|
3216 | }
|
---|
3217 | else
|
---|
3218 | return _PyLong_Copy((PyLongObject *)v);
|
---|
3219 | }
|
---|
3220 | else
|
---|
3221 | return NULL;
|
---|
3222 | }
|
---|
3223 | return PyInt_FromLong(x);
|
---|
3224 | }
|
---|
3225 |
|
---|
3226 | static PyObject *
|
---|
3227 | long_float(PyObject *v)
|
---|
3228 | {
|
---|
3229 | double result;
|
---|
3230 | result = PyLong_AsDouble(v);
|
---|
3231 | if (result == -1.0 && PyErr_Occurred())
|
---|
3232 | return NULL;
|
---|
3233 | return PyFloat_FromDouble(result);
|
---|
3234 | }
|
---|
3235 |
|
---|
3236 | static PyObject *
|
---|
3237 | long_oct(PyObject *v)
|
---|
3238 | {
|
---|
3239 | return long_format(v, 8, 1);
|
---|
3240 | }
|
---|
3241 |
|
---|
3242 | static PyObject *
|
---|
3243 | long_hex(PyObject *v)
|
---|
3244 | {
|
---|
3245 | return long_format(v, 16, 1);
|
---|
3246 | }
|
---|
3247 |
|
---|
3248 | static PyObject *
|
---|
3249 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
|
---|
3250 |
|
---|
3251 | static PyObject *
|
---|
3252 | long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
3253 | {
|
---|
3254 | PyObject *x = NULL;
|
---|
3255 | int base = -909; /* unlikely! */
|
---|
3256 | static char *kwlist[] = {"x", "base", 0};
|
---|
3257 |
|
---|
3258 | if (type != &PyLong_Type)
|
---|
3259 | return long_subtype_new(type, args, kwds); /* Wimp out */
|
---|
3260 | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist,
|
---|
3261 | &x, &base))
|
---|
3262 | return NULL;
|
---|
3263 | if (x == NULL)
|
---|
3264 | return PyLong_FromLong(0L);
|
---|
3265 | if (base == -909)
|
---|
3266 | return PyNumber_Long(x);
|
---|
3267 | else if (PyString_Check(x))
|
---|
3268 | return PyLong_FromString(PyString_AS_STRING(x), NULL, base);
|
---|
3269 | #ifdef Py_USING_UNICODE
|
---|
3270 | else if (PyUnicode_Check(x))
|
---|
3271 | return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
|
---|
3272 | PyUnicode_GET_SIZE(x),
|
---|
3273 | base);
|
---|
3274 | #endif
|
---|
3275 | else {
|
---|
3276 | PyErr_SetString(PyExc_TypeError,
|
---|
3277 | "long() can't convert non-string with explicit base");
|
---|
3278 | return NULL;
|
---|
3279 | }
|
---|
3280 | }
|
---|
3281 |
|
---|
3282 | /* Wimpy, slow approach to tp_new calls for subtypes of long:
|
---|
3283 | first create a regular long from whatever arguments we got,
|
---|
3284 | then allocate a subtype instance and initialize it from
|
---|
3285 | the regular long. The regular long is then thrown away.
|
---|
3286 | */
|
---|
3287 | static PyObject *
|
---|
3288 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
3289 | {
|
---|
3290 | PyLongObject *tmp, *newobj;
|
---|
3291 | Py_ssize_t i, n;
|
---|
3292 |
|
---|
3293 | assert(PyType_IsSubtype(type, &PyLong_Type));
|
---|
3294 | tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
|
---|
3295 | if (tmp == NULL)
|
---|
3296 | return NULL;
|
---|
3297 | assert(PyLong_CheckExact(tmp));
|
---|
3298 | n = tmp->ob_size;
|
---|
3299 | if (n < 0)
|
---|
3300 | n = -n;
|
---|
3301 | newobj = (PyLongObject *)type->tp_alloc(type, n);
|
---|
3302 | if (newobj == NULL) {
|
---|
3303 | Py_DECREF(tmp);
|
---|
3304 | return NULL;
|
---|
3305 | }
|
---|
3306 | assert(PyLong_Check(newobj));
|
---|
3307 | newobj->ob_size = tmp->ob_size;
|
---|
3308 | for (i = 0; i < n; i++)
|
---|
3309 | newobj->ob_digit[i] = tmp->ob_digit[i];
|
---|
3310 | Py_DECREF(tmp);
|
---|
3311 | return (PyObject *)newobj;
|
---|
3312 | }
|
---|
3313 |
|
---|
3314 | static PyObject *
|
---|
3315 | long_getnewargs(PyLongObject *v)
|
---|
3316 | {
|
---|
3317 | return Py_BuildValue("(N)", _PyLong_Copy(v));
|
---|
3318 | }
|
---|
3319 |
|
---|
3320 | static PyMethodDef long_methods[] = {
|
---|
3321 | {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS},
|
---|
3322 | {NULL, NULL} /* sentinel */
|
---|
3323 | };
|
---|
3324 |
|
---|
3325 | PyDoc_STRVAR(long_doc,
|
---|
3326 | "long(x[, base]) -> integer\n\
|
---|
3327 | \n\
|
---|
3328 | Convert a string or number to a long integer, if possible. A floating\n\
|
---|
3329 | point argument will be truncated towards zero (this does not include a\n\
|
---|
3330 | string representation of a floating point number!) When converting a\n\
|
---|
3331 | string, use the optional base. It is an error to supply a base when\n\
|
---|
3332 | converting a non-string.");
|
---|
3333 |
|
---|
3334 | static PyNumberMethods long_as_number = {
|
---|
3335 | (binaryfunc) long_add, /*nb_add*/
|
---|
3336 | (binaryfunc) long_sub, /*nb_subtract*/
|
---|
3337 | (binaryfunc) long_mul, /*nb_multiply*/
|
---|
3338 | long_classic_div, /*nb_divide*/
|
---|
3339 | long_mod, /*nb_remainder*/
|
---|
3340 | long_divmod, /*nb_divmod*/
|
---|
3341 | long_pow, /*nb_power*/
|
---|
3342 | (unaryfunc) long_neg, /*nb_negative*/
|
---|
3343 | (unaryfunc) long_pos, /*tp_positive*/
|
---|
3344 | (unaryfunc) long_abs, /*tp_absolute*/
|
---|
3345 | (inquiry) long_nonzero, /*tp_nonzero*/
|
---|
3346 | (unaryfunc) long_invert, /*nb_invert*/
|
---|
3347 | long_lshift, /*nb_lshift*/
|
---|
3348 | (binaryfunc) long_rshift, /*nb_rshift*/
|
---|
3349 | long_and, /*nb_and*/
|
---|
3350 | long_xor, /*nb_xor*/
|
---|
3351 | long_or, /*nb_or*/
|
---|
3352 | long_coerce, /*nb_coerce*/
|
---|
3353 | long_int, /*nb_int*/
|
---|
3354 | long_long, /*nb_long*/
|
---|
3355 | long_float, /*nb_float*/
|
---|
3356 | long_oct, /*nb_oct*/
|
---|
3357 | long_hex, /*nb_hex*/
|
---|
3358 | 0, /* nb_inplace_add */
|
---|
3359 | 0, /* nb_inplace_subtract */
|
---|
3360 | 0, /* nb_inplace_multiply */
|
---|
3361 | 0, /* nb_inplace_divide */
|
---|
3362 | 0, /* nb_inplace_remainder */
|
---|
3363 | 0, /* nb_inplace_power */
|
---|
3364 | 0, /* nb_inplace_lshift */
|
---|
3365 | 0, /* nb_inplace_rshift */
|
---|
3366 | 0, /* nb_inplace_and */
|
---|
3367 | 0, /* nb_inplace_xor */
|
---|
3368 | 0, /* nb_inplace_or */
|
---|
3369 | long_div, /* nb_floor_divide */
|
---|
3370 | long_true_divide, /* nb_true_divide */
|
---|
3371 | 0, /* nb_inplace_floor_divide */
|
---|
3372 | 0, /* nb_inplace_true_divide */
|
---|
3373 | long_long, /* nb_index */
|
---|
3374 | };
|
---|
3375 |
|
---|
3376 | PyTypeObject PyLong_Type = {
|
---|
3377 | PyObject_HEAD_INIT(&PyType_Type)
|
---|
3378 | 0, /* ob_size */
|
---|
3379 | "long", /* tp_name */
|
---|
3380 | sizeof(PyLongObject) - sizeof(digit), /* tp_basicsize */
|
---|
3381 | sizeof(digit), /* tp_itemsize */
|
---|
3382 | long_dealloc, /* tp_dealloc */
|
---|
3383 | 0, /* tp_print */
|
---|
3384 | 0, /* tp_getattr */
|
---|
3385 | 0, /* tp_setattr */
|
---|
3386 | (cmpfunc)long_compare, /* tp_compare */
|
---|
3387 | long_repr, /* tp_repr */
|
---|
3388 | &long_as_number, /* tp_as_number */
|
---|
3389 | 0, /* tp_as_sequence */
|
---|
3390 | 0, /* tp_as_mapping */
|
---|
3391 | (hashfunc)long_hash, /* tp_hash */
|
---|
3392 | 0, /* tp_call */
|
---|
3393 | long_str, /* tp_str */
|
---|
3394 | PyObject_GenericGetAttr, /* tp_getattro */
|
---|
3395 | 0, /* tp_setattro */
|
---|
3396 | 0, /* tp_as_buffer */
|
---|
3397 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
|
---|
3398 | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
---|
3399 | long_doc, /* tp_doc */
|
---|
3400 | 0, /* tp_traverse */
|
---|
3401 | 0, /* tp_clear */
|
---|
3402 | 0, /* tp_richcompare */
|
---|
3403 | 0, /* tp_weaklistoffset */
|
---|
3404 | 0, /* tp_iter */
|
---|
3405 | 0, /* tp_iternext */
|
---|
3406 | long_methods, /* tp_methods */
|
---|
3407 | 0, /* tp_members */
|
---|
3408 | 0, /* tp_getset */
|
---|
3409 | 0, /* tp_base */
|
---|
3410 | 0, /* tp_dict */
|
---|
3411 | 0, /* tp_descr_get */
|
---|
3412 | 0, /* tp_descr_set */
|
---|
3413 | 0, /* tp_dictoffset */
|
---|
3414 | 0, /* tp_init */
|
---|
3415 | 0, /* tp_alloc */
|
---|
3416 | long_new, /* tp_new */
|
---|
3417 | PyObject_Del, /* tp_free */
|
---|
3418 | };
|
---|