source: vendor/python/2.5/Modules/gcmodule.c

Last change on this file was 3225, checked in by bird, 18 years ago

Python 2.5

File size: 40.0 KB
Line 
1/*
2
3 Reference Cycle Garbage Collection
4 ==================================
5
6 Neil Schemenauer <nas@arctrix.com>
7
8 Based on a post on the python-dev list. Ideas from Guido van Rossum,
9 Eric Tiedemann, and various others.
10
11 http://www.arctrix.com/nas/python/gc/
12 http://www.python.org/pipermail/python-dev/2000-March/003869.html
13 http://www.python.org/pipermail/python-dev/2000-March/004010.html
14 http://www.python.org/pipermail/python-dev/2000-March/004022.html
15
16 For a highlevel view of the collection process, read the collect
17 function.
18
19*/
20
21#include "Python.h"
22
23/* Get an object's GC head */
24#define AS_GC(o) ((PyGC_Head *)(o)-1)
25
26/* Get the object given the GC head */
27#define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))
28
29/*** Global GC state ***/
30
31struct gc_generation {
32 PyGC_Head head;
33 int threshold; /* collection threshold */
34 int count; /* count of allocations or collections of younger
35 generations */
36};
37
38#define NUM_GENERATIONS 3
39#define GEN_HEAD(n) (&generations[n].head)
40
41/* linked lists of container objects */
42static struct gc_generation generations[NUM_GENERATIONS] = {
43 /* PyGC_Head, threshold, count */
44 {{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0},
45 {{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0},
46 {{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0},
47};
48
49PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);
50
51static int enabled = 1; /* automatic collection enabled? */
52
53/* true if we are currently running the collector */
54static int collecting = 0;
55
56/* list of uncollectable objects */
57static PyObject *garbage = NULL;
58
59/* Python string to use if unhandled exception occurs */
60static PyObject *gc_str = NULL;
61
62/* Python string used to look for __del__ attribute. */
63static PyObject *delstr = NULL;
64
65/* set for debugging information */
66#define DEBUG_STATS (1<<0) /* print collection statistics */
67#define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */
68#define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */
69#define DEBUG_INSTANCES (1<<3) /* print instances */
70#define DEBUG_OBJECTS (1<<4) /* print other objects */
71#define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */
72#define DEBUG_LEAK DEBUG_COLLECTABLE | \
73 DEBUG_UNCOLLECTABLE | \
74 DEBUG_INSTANCES | \
75 DEBUG_OBJECTS | \
76 DEBUG_SAVEALL
77static int debug;
78static PyObject *tmod = NULL;
79
80/*--------------------------------------------------------------------------
81gc_refs values.
82
83Between collections, every gc'ed object has one of two gc_refs values:
84
85GC_UNTRACKED
86 The initial state; objects returned by PyObject_GC_Malloc are in this
87 state. The object doesn't live in any generation list, and its
88 tp_traverse slot must not be called.
89
90GC_REACHABLE
91 The object lives in some generation list, and its tp_traverse is safe to
92 call. An object transitions to GC_REACHABLE when PyObject_GC_Track
93 is called.
94
95During a collection, gc_refs can temporarily take on other states:
96
97>= 0
98 At the start of a collection, update_refs() copies the true refcount
99 to gc_refs, for each object in the generation being collected.
100 subtract_refs() then adjusts gc_refs so that it equals the number of
101 times an object is referenced directly from outside the generation
102 being collected.
103 gc_refs remains >= 0 throughout these steps.
104
105GC_TENTATIVELY_UNREACHABLE
106 move_unreachable() then moves objects not reachable (whether directly or
107 indirectly) from outside the generation into an "unreachable" set.
108 Objects that are found to be reachable have gc_refs set to GC_REACHABLE
109 again. Objects that are found to be unreachable have gc_refs set to
110 GC_TENTATIVELY_UNREACHABLE. It's "tentatively" because the pass doing
111 this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may
112 transition back to GC_REACHABLE.
113
114 Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates
115 for collection. If it's decided not to collect such an object (e.g.,
116 it has a __del__ method), its gc_refs is restored to GC_REACHABLE again.
117----------------------------------------------------------------------------
118*/
119#define GC_UNTRACKED _PyGC_REFS_UNTRACKED
120#define GC_REACHABLE _PyGC_REFS_REACHABLE
121#define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE
122
123#define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED)
124#define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE)
125#define IS_TENTATIVELY_UNREACHABLE(o) ( \
126 (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)
127
128/*** list functions ***/
129
130static void
131gc_list_init(PyGC_Head *list)
132{
133 list->gc.gc_prev = list;
134 list->gc.gc_next = list;
135}
136
137static int
138gc_list_is_empty(PyGC_Head *list)
139{
140 return (list->gc.gc_next == list);
141}
142
143#if 0
144/* This became unused after gc_list_move() was introduced. */
145/* Append `node` to `list`. */
146static void
147gc_list_append(PyGC_Head *node, PyGC_Head *list)
148{
149 node->gc.gc_next = list;
150 node->gc.gc_prev = list->gc.gc_prev;
151 node->gc.gc_prev->gc.gc_next = node;
152 list->gc.gc_prev = node;
153}
154#endif
155
156/* Remove `node` from the gc list it's currently in. */
157static void
158gc_list_remove(PyGC_Head *node)
159{
160 node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
161 node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
162 node->gc.gc_next = NULL; /* object is not currently tracked */
163}
164
165/* Move `node` from the gc list it's currently in (which is not explicitly
166 * named here) to the end of `list`. This is semantically the same as
167 * gc_list_remove(node) followed by gc_list_append(node, list).
168 */
169static void
170gc_list_move(PyGC_Head *node, PyGC_Head *list)
171{
172 PyGC_Head *new_prev;
173 PyGC_Head *current_prev = node->gc.gc_prev;
174 PyGC_Head *current_next = node->gc.gc_next;
175 /* Unlink from current list. */
176 current_prev->gc.gc_next = current_next;
177 current_next->gc.gc_prev = current_prev;
178 /* Relink at end of new list. */
179 new_prev = node->gc.gc_prev = list->gc.gc_prev;
180 new_prev->gc.gc_next = list->gc.gc_prev = node;
181 node->gc.gc_next = list;
182}
183
184/* append list `from` onto list `to`; `from` becomes an empty list */
185static void
186gc_list_merge(PyGC_Head *from, PyGC_Head *to)
187{
188 PyGC_Head *tail;
189 assert(from != to);
190 if (!gc_list_is_empty(from)) {
191 tail = to->gc.gc_prev;
192 tail->gc.gc_next = from->gc.gc_next;
193 tail->gc.gc_next->gc.gc_prev = tail;
194 to->gc.gc_prev = from->gc.gc_prev;
195 to->gc.gc_prev->gc.gc_next = to;
196 }
197 gc_list_init(from);
198}
199
200static Py_ssize_t
201gc_list_size(PyGC_Head *list)
202{
203 PyGC_Head *gc;
204 Py_ssize_t n = 0;
205 for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
206 n++;
207 }
208 return n;
209}
210
211/* Append objects in a GC list to a Python list.
212 * Return 0 if all OK, < 0 if error (out of memory for list).
213 */
214static int
215append_objects(PyObject *py_list, PyGC_Head *gc_list)
216{
217 PyGC_Head *gc;
218 for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
219 PyObject *op = FROM_GC(gc);
220 if (op != py_list) {
221 if (PyList_Append(py_list, op)) {
222 return -1; /* exception */
223 }
224 }
225 }
226 return 0;
227}
228
229/*** end of list stuff ***/
230
231
232/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 for all objects
233 * in containers, and is GC_REACHABLE for all tracked gc objects not in
234 * containers.
235 */
236static void
237update_refs(PyGC_Head *containers)
238{
239 PyGC_Head *gc = containers->gc.gc_next;
240 for (; gc != containers; gc = gc->gc.gc_next) {
241 assert(gc->gc.gc_refs == GC_REACHABLE);
242 gc->gc.gc_refs = FROM_GC(gc)->ob_refcnt;
243 /* Python's cyclic gc should never see an incoming refcount
244 * of 0: if something decref'ed to 0, it should have been
245 * deallocated immediately at that time.
246 * Possible cause (if the assert triggers): a tp_dealloc
247 * routine left a gc-aware object tracked during its teardown
248 * phase, and did something-- or allowed something to happen --
249 * that called back into Python. gc can trigger then, and may
250 * see the still-tracked dying object. Before this assert
251 * was added, such mistakes went on to allow gc to try to
252 * delete the object again. In a debug build, that caused
253 * a mysterious segfault, when _Py_ForgetReference tried
254 * to remove the object from the doubly-linked list of all
255 * objects a second time. In a release build, an actual
256 * double deallocation occurred, which leads to corruption
257 * of the allocator's internal bookkeeping pointers. That's
258 * so serious that maybe this should be a release-build
259 * check instead of an assert?
260 */
261 assert(gc->gc.gc_refs != 0);
262 }
263}
264
265/* A traversal callback for subtract_refs. */
266static int
267visit_decref(PyObject *op, void *data)
268{
269 assert(op != NULL);
270 if (PyObject_IS_GC(op)) {
271 PyGC_Head *gc = AS_GC(op);
272 /* We're only interested in gc_refs for objects in the
273 * generation being collected, which can be recognized
274 * because only they have positive gc_refs.
275 */
276 assert(gc->gc.gc_refs != 0); /* else refcount was too small */
277 if (gc->gc.gc_refs > 0)
278 gc->gc.gc_refs--;
279 }
280 return 0;
281}
282
283/* Subtract internal references from gc_refs. After this, gc_refs is >= 0
284 * for all objects in containers, and is GC_REACHABLE for all tracked gc
285 * objects not in containers. The ones with gc_refs > 0 are directly
286 * reachable from outside containers, and so can't be collected.
287 */
288static void
289subtract_refs(PyGC_Head *containers)
290{
291 traverseproc traverse;
292 PyGC_Head *gc = containers->gc.gc_next;
293 for (; gc != containers; gc=gc->gc.gc_next) {
294 traverse = FROM_GC(gc)->ob_type->tp_traverse;
295 (void) traverse(FROM_GC(gc),
296 (visitproc)visit_decref,
297 NULL);
298 }
299}
300
301/* A traversal callback for move_unreachable. */
302static int
303visit_reachable(PyObject *op, PyGC_Head *reachable)
304{
305 if (PyObject_IS_GC(op)) {
306 PyGC_Head *gc = AS_GC(op);
307 const Py_ssize_t gc_refs = gc->gc.gc_refs;
308
309 if (gc_refs == 0) {
310 /* This is in move_unreachable's 'young' list, but
311 * the traversal hasn't yet gotten to it. All
312 * we need to do is tell move_unreachable that it's
313 * reachable.
314 */
315 gc->gc.gc_refs = 1;
316 }
317 else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
318 /* This had gc_refs = 0 when move_unreachable got
319 * to it, but turns out it's reachable after all.
320 * Move it back to move_unreachable's 'young' list,
321 * and move_unreachable will eventually get to it
322 * again.
323 */
324 gc_list_move(gc, reachable);
325 gc->gc.gc_refs = 1;
326 }
327 /* Else there's nothing to do.
328 * If gc_refs > 0, it must be in move_unreachable's 'young'
329 * list, and move_unreachable will eventually get to it.
330 * If gc_refs == GC_REACHABLE, it's either in some other
331 * generation so we don't care about it, or move_unreachable
332 * already dealt with it.
333 * If gc_refs == GC_UNTRACKED, it must be ignored.
334 */
335 else {
336 assert(gc_refs > 0
337 || gc_refs == GC_REACHABLE
338 || gc_refs == GC_UNTRACKED);
339 }
340 }
341 return 0;
342}
343
344/* Move the unreachable objects from young to unreachable. After this,
345 * all objects in young have gc_refs = GC_REACHABLE, and all objects in
346 * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE. All tracked
347 * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE.
348 * All objects in young after this are directly or indirectly reachable
349 * from outside the original young; and all objects in unreachable are
350 * not.
351 */
352static void
353move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
354{
355 PyGC_Head *gc = young->gc.gc_next;
356
357 /* Invariants: all objects "to the left" of us in young have gc_refs
358 * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
359 * from outside the young list as it was at entry. All other objects
360 * from the original young "to the left" of us are in unreachable now,
361 * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the
362 * left of us in 'young' now have been scanned, and no objects here
363 * or to the right have been scanned yet.
364 */
365
366 while (gc != young) {
367 PyGC_Head *next;
368
369 if (gc->gc.gc_refs) {
370 /* gc is definitely reachable from outside the
371 * original 'young'. Mark it as such, and traverse
372 * its pointers to find any other objects that may
373 * be directly reachable from it. Note that the
374 * call to tp_traverse may append objects to young,
375 * so we have to wait until it returns to determine
376 * the next object to visit.
377 */
378 PyObject *op = FROM_GC(gc);
379 traverseproc traverse = op->ob_type->tp_traverse;
380 assert(gc->gc.gc_refs > 0);
381 gc->gc.gc_refs = GC_REACHABLE;
382 (void) traverse(op,
383 (visitproc)visit_reachable,
384 (void *)young);
385 next = gc->gc.gc_next;
386 }
387 else {
388 /* This *may* be unreachable. To make progress,
389 * assume it is. gc isn't directly reachable from
390 * any object we've already traversed, but may be
391 * reachable from an object we haven't gotten to yet.
392 * visit_reachable will eventually move gc back into
393 * young if that's so, and we'll see it again.
394 */
395 next = gc->gc.gc_next;
396 gc_list_move(gc, unreachable);
397 gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
398 }
399 gc = next;
400 }
401}
402
403/* Return true if object has a finalization method.
404 * CAUTION: An instance of an old-style class has to be checked for a
405 *__del__ method, and earlier versions of this used to call PyObject_HasAttr,
406 * which in turn could call the class's __getattr__ hook (if any). That
407 * could invoke arbitrary Python code, mutating the object graph in arbitrary
408 * ways, and that was the source of some excruciatingly subtle bugs.
409 */
410static int
411has_finalizer(PyObject *op)
412{
413 if (PyInstance_Check(op)) {
414 assert(delstr != NULL);
415 return _PyInstance_Lookup(op, delstr) != NULL;
416 }
417 else if (PyType_HasFeature(op->ob_type, Py_TPFLAGS_HEAPTYPE))
418 return op->ob_type->tp_del != NULL;
419 else if (PyGen_CheckExact(op))
420 return PyGen_NeedsFinalizing((PyGenObject *)op);
421 else
422 return 0;
423}
424
425/* Move the objects in unreachable with __del__ methods into `finalizers`.
426 * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the
427 * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE.
428 */
429static void
430move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
431{
432 PyGC_Head *gc;
433 PyGC_Head *next;
434
435 /* March over unreachable. Move objects with finalizers into
436 * `finalizers`.
437 */
438 for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
439 PyObject *op = FROM_GC(gc);
440
441 assert(IS_TENTATIVELY_UNREACHABLE(op));
442 next = gc->gc.gc_next;
443
444 if (has_finalizer(op)) {
445 gc_list_move(gc, finalizers);
446 gc->gc.gc_refs = GC_REACHABLE;
447 }
448 }
449}
450
451/* A traversal callback for move_finalizer_reachable. */
452static int
453visit_move(PyObject *op, PyGC_Head *tolist)
454{
455 if (PyObject_IS_GC(op)) {
456 if (IS_TENTATIVELY_UNREACHABLE(op)) {
457 PyGC_Head *gc = AS_GC(op);
458 gc_list_move(gc, tolist);
459 gc->gc.gc_refs = GC_REACHABLE;
460 }
461 }
462 return 0;
463}
464
465/* Move objects that are reachable from finalizers, from the unreachable set
466 * into finalizers set.
467 */
468static void
469move_finalizer_reachable(PyGC_Head *finalizers)
470{
471 traverseproc traverse;
472 PyGC_Head *gc = finalizers->gc.gc_next;
473 for (; gc != finalizers; gc = gc->gc.gc_next) {
474 /* Note that the finalizers list may grow during this. */
475 traverse = FROM_GC(gc)->ob_type->tp_traverse;
476 (void) traverse(FROM_GC(gc),
477 (visitproc)visit_move,
478 (void *)finalizers);
479 }
480}
481
482/* Clear all weakrefs to unreachable objects, and if such a weakref has a
483 * callback, invoke it if necessary. Note that it's possible for such
484 * weakrefs to be outside the unreachable set -- indeed, those are precisely
485 * the weakrefs whose callbacks must be invoked. See gc_weakref.txt for
486 * overview & some details. Some weakrefs with callbacks may be reclaimed
487 * directly by this routine; the number reclaimed is the return value. Other
488 * weakrefs with callbacks may be moved into the `old` generation. Objects
489 * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
490 * unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns,
491 * no object in `unreachable` is weakly referenced anymore.
492 */
493static int
494handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
495{
496 PyGC_Head *gc;
497 PyObject *op; /* generally FROM_GC(gc) */
498 PyWeakReference *wr; /* generally a cast of op */
499 PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
500 PyGC_Head *next;
501 int num_freed = 0;
502
503 gc_list_init(&wrcb_to_call);
504
505 /* Clear all weakrefs to the objects in unreachable. If such a weakref
506 * also has a callback, move it into `wrcb_to_call` if the callback
507 * needs to be invoked. Note that we cannot invoke any callbacks until
508 * all weakrefs to unreachable objects are cleared, lest the callback
509 * resurrect an unreachable object via a still-active weakref. We
510 * make another pass over wrcb_to_call, invoking callbacks, after this
511 * pass completes.
512 */
513 for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
514 PyWeakReference **wrlist;
515
516 op = FROM_GC(gc);
517 assert(IS_TENTATIVELY_UNREACHABLE(op));
518 next = gc->gc.gc_next;
519
520 if (! PyType_SUPPORTS_WEAKREFS(op->ob_type))
521 continue;
522
523 /* It supports weakrefs. Does it have any? */
524 wrlist = (PyWeakReference **)
525 PyObject_GET_WEAKREFS_LISTPTR(op);
526
527 /* `op` may have some weakrefs. March over the list, clear
528 * all the weakrefs, and move the weakrefs with callbacks
529 * that must be called into wrcb_to_call.
530 */
531 for (wr = *wrlist; wr != NULL; wr = *wrlist) {
532 PyGC_Head *wrasgc; /* AS_GC(wr) */
533
534 /* _PyWeakref_ClearRef clears the weakref but leaves
535 * the callback pointer intact. Obscure: it also
536 * changes *wrlist.
537 */
538 assert(wr->wr_object == op);
539 _PyWeakref_ClearRef(wr);
540 assert(wr->wr_object == Py_None);
541 if (wr->wr_callback == NULL)
542 continue; /* no callback */
543
544 /* Headache time. `op` is going away, and is weakly referenced by
545 * `wr`, which has a callback. Should the callback be invoked? If wr
546 * is also trash, no:
547 *
548 * 1. There's no need to call it. The object and the weakref are
549 * both going away, so it's legitimate to pretend the weakref is
550 * going away first. The user has to ensure a weakref outlives its
551 * referent if they want a guarantee that the wr callback will get
552 * invoked.
553 *
554 * 2. It may be catastrophic to call it. If the callback is also in
555 * cyclic trash (CT), then although the CT is unreachable from
556 * outside the current generation, CT may be reachable from the
557 * callback. Then the callback could resurrect insane objects.
558 *
559 * Since the callback is never needed and may be unsafe in this case,
560 * wr is simply left in the unreachable set. Note that because we
561 * already called _PyWeakref_ClearRef(wr), its callback will never
562 * trigger.
563 *
564 * OTOH, if wr isn't part of CT, we should invoke the callback: the
565 * weakref outlived the trash. Note that since wr isn't CT in this
566 * case, its callback can't be CT either -- wr acted as an external
567 * root to this generation, and therefore its callback did too. So
568 * nothing in CT is reachable from the callback either, so it's hard
569 * to imagine how calling it later could create a problem for us. wr
570 * is moved to wrcb_to_call in this case.
571 */
572 if (IS_TENTATIVELY_UNREACHABLE(wr))
573 continue;
574 assert(IS_REACHABLE(wr));
575
576 /* Create a new reference so that wr can't go away
577 * before we can process it again.
578 */
579 Py_INCREF(wr);
580
581 /* Move wr to wrcb_to_call, for the next pass. */
582 wrasgc = AS_GC(wr);
583 assert(wrasgc != next); /* wrasgc is reachable, but
584 next isn't, so they can't
585 be the same */
586 gc_list_move(wrasgc, &wrcb_to_call);
587 }
588 }
589
590 /* Invoke the callbacks we decided to honor. It's safe to invoke them
591 * because they can't reference unreachable objects.
592 */
593 while (! gc_list_is_empty(&wrcb_to_call)) {
594 PyObject *temp;
595 PyObject *callback;
596
597 gc = wrcb_to_call.gc.gc_next;
598 op = FROM_GC(gc);
599 assert(IS_REACHABLE(op));
600 assert(PyWeakref_Check(op));
601 wr = (PyWeakReference *)op;
602 callback = wr->wr_callback;
603 assert(callback != NULL);
604
605 /* copy-paste of weakrefobject.c's handle_callback() */
606 temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
607 if (temp == NULL)
608 PyErr_WriteUnraisable(callback);
609 else
610 Py_DECREF(temp);
611
612 /* Give up the reference we created in the first pass. When
613 * op's refcount hits 0 (which it may or may not do right now),
614 * op's tp_dealloc will decref op->wr_callback too. Note
615 * that the refcount probably will hit 0 now, and because this
616 * weakref was reachable to begin with, gc didn't already
617 * add it to its count of freed objects. Example: a reachable
618 * weak value dict maps some key to this reachable weakref.
619 * The callback removes this key->weakref mapping from the
620 * dict, leaving no other references to the weakref (excepting
621 * ours).
622 */
623 Py_DECREF(op);
624 if (wrcb_to_call.gc.gc_next == gc) {
625 /* object is still alive -- move it */
626 gc_list_move(gc, old);
627 }
628 else
629 ++num_freed;
630 }
631
632 return num_freed;
633}
634
635static void
636debug_instance(char *msg, PyInstanceObject *inst)
637{
638 char *cname;
639 /* simple version of instance_repr */
640 PyObject *classname = inst->in_class->cl_name;
641 if (classname != NULL && PyString_Check(classname))
642 cname = PyString_AsString(classname);
643 else
644 cname = "?";
645 PySys_WriteStderr("gc: %.100s <%.100s instance at %p>\n",
646 msg, cname, inst);
647}
648
649static void
650debug_cycle(char *msg, PyObject *op)
651{
652 if ((debug & DEBUG_INSTANCES) && PyInstance_Check(op)) {
653 debug_instance(msg, (PyInstanceObject *)op);
654 }
655 else if (debug & DEBUG_OBJECTS) {
656 PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
657 msg, op->ob_type->tp_name, op);
658 }
659}
660
661/* Handle uncollectable garbage (cycles with finalizers, and stuff reachable
662 * only from such cycles).
663 * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
664 * garbage list (a Python list), else only the objects in finalizers with
665 * __del__ methods are appended to garbage. All objects in finalizers are
666 * merged into the old list regardless.
667 * Returns 0 if all OK, <0 on error (out of memory to grow the garbage list).
668 * The finalizers list is made empty on a successful return.
669 */
670static int
671handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old)
672{
673 PyGC_Head *gc = finalizers->gc.gc_next;
674
675 if (garbage == NULL) {
676 garbage = PyList_New(0);
677 if (garbage == NULL)
678 Py_FatalError("gc couldn't create gc.garbage list");
679 }
680 for (; gc != finalizers; gc = gc->gc.gc_next) {
681 PyObject *op = FROM_GC(gc);
682
683 if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
684 if (PyList_Append(garbage, op) < 0)
685 return -1;
686 }
687 }
688
689 gc_list_merge(finalizers, old);
690 return 0;
691}
692
693/* Break reference cycles by clearing the containers involved. This is
694 * tricky business as the lists can be changing and we don't know which
695 * objects may be freed. It is possible I screwed something up here.
696 */
697static void
698delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
699{
700 inquiry clear;
701
702 while (!gc_list_is_empty(collectable)) {
703 PyGC_Head *gc = collectable->gc.gc_next;
704 PyObject *op = FROM_GC(gc);
705
706 assert(IS_TENTATIVELY_UNREACHABLE(op));
707 if (debug & DEBUG_SAVEALL) {
708 PyList_Append(garbage, op);
709 }
710 else {
711 if ((clear = op->ob_type->tp_clear) != NULL) {
712 Py_INCREF(op);
713 clear(op);
714 Py_DECREF(op);
715 }
716 }
717 if (collectable->gc.gc_next == gc) {
718 /* object is still alive, move it, it may die later */
719 gc_list_move(gc, old);
720 gc->gc.gc_refs = GC_REACHABLE;
721 }
722 }
723}
724
725/* This is the main function. Read this to understand how the
726 * collection process works. */
727static Py_ssize_t
728collect(int generation)
729{
730 int i;
731 Py_ssize_t m = 0; /* # objects collected */
732 Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
733 PyGC_Head *young; /* the generation we are examining */
734 PyGC_Head *old; /* next older generation */
735 PyGC_Head unreachable; /* non-problematic unreachable trash */
736 PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
737 PyGC_Head *gc;
738 double t1 = 0.0;
739
740 if (delstr == NULL) {
741 delstr = PyString_InternFromString("__del__");
742 if (delstr == NULL)
743 Py_FatalError("gc couldn't allocate \"__del__\"");
744 }
745
746 if (debug & DEBUG_STATS) {
747 if (tmod != NULL) {
748 PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
749 if (f == NULL) {
750 PyErr_Clear();
751 }
752 else {
753 t1 = PyFloat_AsDouble(f);
754 Py_DECREF(f);
755 }
756 }
757 PySys_WriteStderr("gc: collecting generation %d...\n",
758 generation);
759 PySys_WriteStderr("gc: objects in each generation:");
760 for (i = 0; i < NUM_GENERATIONS; i++)
761 PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d",
762 gc_list_size(GEN_HEAD(i)));
763 PySys_WriteStderr("\n");
764 }
765
766 /* update collection and allocation counters */
767 if (generation+1 < NUM_GENERATIONS)
768 generations[generation+1].count += 1;
769 for (i = 0; i <= generation; i++)
770 generations[i].count = 0;
771
772 /* merge younger generations with one we are currently collecting */
773 for (i = 0; i < generation; i++) {
774 gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
775 }
776
777 /* handy references */
778 young = GEN_HEAD(generation);
779 if (generation < NUM_GENERATIONS-1)
780 old = GEN_HEAD(generation+1);
781 else
782 old = young;
783
784 /* Using ob_refcnt and gc_refs, calculate which objects in the
785 * container set are reachable from outside the set (i.e., have a
786 * refcount greater than 0 when all the references within the
787 * set are taken into account).
788 */
789 update_refs(young);
790 subtract_refs(young);
791
792 /* Leave everything reachable from outside young in young, and move
793 * everything else (in young) to unreachable.
794 * NOTE: This used to move the reachable objects into a reachable
795 * set instead. But most things usually turn out to be reachable,
796 * so it's more efficient to move the unreachable things.
797 */
798 gc_list_init(&unreachable);
799 move_unreachable(young, &unreachable);
800
801 /* Move reachable objects to next generation. */
802 if (young != old)
803 gc_list_merge(young, old);
804
805 /* All objects in unreachable are trash, but objects reachable from
806 * finalizers can't safely be deleted. Python programmers should take
807 * care not to create such things. For Python, finalizers means
808 * instance objects with __del__ methods. Weakrefs with callbacks
809 * can also call arbitrary Python code but they will be dealt with by
810 * handle_weakrefs().
811 */
812 gc_list_init(&finalizers);
813 move_finalizers(&unreachable, &finalizers);
814 /* finalizers contains the unreachable objects with a finalizer;
815 * unreachable objects reachable *from* those are also uncollectable,
816 * and we move those into the finalizers list too.
817 */
818 move_finalizer_reachable(&finalizers);
819
820 /* Collect statistics on collectable objects found and print
821 * debugging information.
822 */
823 for (gc = unreachable.gc.gc_next; gc != &unreachable;
824 gc = gc->gc.gc_next) {
825 m++;
826 if (debug & DEBUG_COLLECTABLE) {
827 debug_cycle("collectable", FROM_GC(gc));
828 }
829 if (tmod != NULL && (debug & DEBUG_STATS)) {
830 PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
831 if (f == NULL) {
832 PyErr_Clear();
833 }
834 else {
835 t1 = PyFloat_AsDouble(f)-t1;
836 Py_DECREF(f);
837 PySys_WriteStderr("gc: %.4fs elapsed.\n", t1);
838 }
839 }
840 }
841
842 /* Clear weakrefs and invoke callbacks as necessary. */
843 m += handle_weakrefs(&unreachable, old);
844
845 /* Call tp_clear on objects in the unreachable set. This will cause
846 * the reference cycles to be broken. It may also cause some objects
847 * in finalizers to be freed.
848 */
849 delete_garbage(&unreachable, old);
850
851 /* Collect statistics on uncollectable objects found and print
852 * debugging information. */
853 for (gc = finalizers.gc.gc_next;
854 gc != &finalizers;
855 gc = gc->gc.gc_next) {
856 n++;
857 if (debug & DEBUG_UNCOLLECTABLE)
858 debug_cycle("uncollectable", FROM_GC(gc));
859 }
860 if (debug & DEBUG_STATS) {
861 if (m == 0 && n == 0)
862 PySys_WriteStderr("gc: done.\n");
863 else
864 PySys_WriteStderr(
865 "gc: done, "
866 "%" PY_FORMAT_SIZE_T "d unreachable, "
867 "%" PY_FORMAT_SIZE_T "d uncollectable.\n",
868 n+m, n);
869 }
870
871 /* Append instances in the uncollectable set to a Python
872 * reachable list of garbage. The programmer has to deal with
873 * this if they insist on creating this type of structure.
874 */
875 (void)handle_finalizers(&finalizers, old);
876
877 if (PyErr_Occurred()) {
878 if (gc_str == NULL)
879 gc_str = PyString_FromString("garbage collection");
880 PyErr_WriteUnraisable(gc_str);
881 Py_FatalError("unexpected exception during garbage collection");
882 }
883 return n+m;
884}
885
886static Py_ssize_t
887collect_generations(void)
888{
889 int i;
890 Py_ssize_t n = 0;
891
892 /* Find the oldest generation (higest numbered) where the count
893 * exceeds the threshold. Objects in the that generation and
894 * generations younger than it will be collected. */
895 for (i = NUM_GENERATIONS-1; i >= 0; i--) {
896 if (generations[i].count > generations[i].threshold) {
897 n = collect(i);
898 break;
899 }
900 }
901 return n;
902}
903
904PyDoc_STRVAR(gc_enable__doc__,
905"enable() -> None\n"
906"\n"
907"Enable automatic garbage collection.\n");
908
909static PyObject *
910gc_enable(PyObject *self, PyObject *noargs)
911{
912 enabled = 1;
913 Py_INCREF(Py_None);
914 return Py_None;
915}
916
917PyDoc_STRVAR(gc_disable__doc__,
918"disable() -> None\n"
919"\n"
920"Disable automatic garbage collection.\n");
921
922static PyObject *
923gc_disable(PyObject *self, PyObject *noargs)
924{
925 enabled = 0;
926 Py_INCREF(Py_None);
927 return Py_None;
928}
929
930PyDoc_STRVAR(gc_isenabled__doc__,
931"isenabled() -> status\n"
932"\n"
933"Returns true if automatic garbage collection is enabled.\n");
934
935static PyObject *
936gc_isenabled(PyObject *self, PyObject *noargs)
937{
938 return PyBool_FromLong((long)enabled);
939}
940
941PyDoc_STRVAR(gc_collect__doc__,
942"collect([generation]) -> n\n"
943"\n"
944"With no arguments, run a full collection. The optional argument\n"
945"may be an integer specifying which generation to collect. A ValueError\n"
946"is raised if the generation number is invalid.\n\n"
947"The number of unreachable objects is returned.\n");
948
949static PyObject *
950gc_collect(PyObject *self, PyObject *args, PyObject *kws)
951{
952 static char *keywords[] = {"generation", NULL};
953 int genarg = NUM_GENERATIONS - 1;
954 Py_ssize_t n;
955
956 if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg))
957 return NULL;
958
959 else if (genarg < 0 || genarg >= NUM_GENERATIONS) {
960 PyErr_SetString(PyExc_ValueError, "invalid generation");
961 return NULL;
962 }
963
964 if (collecting)
965 n = 0; /* already collecting, don't do anything */
966 else {
967 collecting = 1;
968 n = collect(genarg);
969 collecting = 0;
970 }
971
972 return PyInt_FromSsize_t(n);
973}
974
975PyDoc_STRVAR(gc_set_debug__doc__,
976"set_debug(flags) -> None\n"
977"\n"
978"Set the garbage collection debugging flags. Debugging information is\n"
979"written to sys.stderr.\n"
980"\n"
981"flags is an integer and can have the following bits turned on:\n"
982"\n"
983" DEBUG_STATS - Print statistics during collection.\n"
984" DEBUG_COLLECTABLE - Print collectable objects found.\n"
985" DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects found.\n"
986" DEBUG_INSTANCES - Print instance objects.\n"
987" DEBUG_OBJECTS - Print objects other than instances.\n"
988" DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.\n"
989" DEBUG_LEAK - Debug leaking programs (everything but STATS).\n");
990
991static PyObject *
992gc_set_debug(PyObject *self, PyObject *args)
993{
994 if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
995 return NULL;
996
997 Py_INCREF(Py_None);
998 return Py_None;
999}
1000
1001PyDoc_STRVAR(gc_get_debug__doc__,
1002"get_debug() -> flags\n"
1003"\n"
1004"Get the garbage collection debugging flags.\n");
1005
1006static PyObject *
1007gc_get_debug(PyObject *self, PyObject *noargs)
1008{
1009 return Py_BuildValue("i", debug);
1010}
1011
1012PyDoc_STRVAR(gc_set_thresh__doc__,
1013"set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
1014"\n"
1015"Sets the collection thresholds. Setting threshold0 to zero disables\n"
1016"collection.\n");
1017
1018static PyObject *
1019gc_set_thresh(PyObject *self, PyObject *args)
1020{
1021 int i;
1022 if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
1023 &generations[0].threshold,
1024 &generations[1].threshold,
1025 &generations[2].threshold))
1026 return NULL;
1027 for (i = 2; i < NUM_GENERATIONS; i++) {
1028 /* generations higher than 2 get the same threshold */
1029 generations[i].threshold = generations[2].threshold;
1030 }
1031
1032 Py_INCREF(Py_None);
1033 return Py_None;
1034}
1035
1036PyDoc_STRVAR(gc_get_thresh__doc__,
1037"get_threshold() -> (threshold0, threshold1, threshold2)\n"
1038"\n"
1039"Return the current collection thresholds\n");
1040
1041static PyObject *
1042gc_get_thresh(PyObject *self, PyObject *noargs)
1043{
1044 return Py_BuildValue("(iii)",
1045 generations[0].threshold,
1046 generations[1].threshold,
1047 generations[2].threshold);
1048}
1049
1050PyDoc_STRVAR(gc_get_count__doc__,
1051"get_count() -> (count0, count1, count2)\n"
1052"\n"
1053"Return the current collection counts\n");
1054
1055static PyObject *
1056gc_get_count(PyObject *self, PyObject *noargs)
1057{
1058 return Py_BuildValue("(iii)",
1059 generations[0].count,
1060 generations[1].count,
1061 generations[2].count);
1062}
1063
1064static int
1065referrersvisit(PyObject* obj, PyObject *objs)
1066{
1067 Py_ssize_t i;
1068 for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
1069 if (PyTuple_GET_ITEM(objs, i) == obj)
1070 return 1;
1071 return 0;
1072}
1073
1074static int
1075gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
1076{
1077 PyGC_Head *gc;
1078 PyObject *obj;
1079 traverseproc traverse;
1080 for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
1081 obj = FROM_GC(gc);
1082 traverse = obj->ob_type->tp_traverse;
1083 if (obj == objs || obj == resultlist)
1084 continue;
1085 if (traverse(obj, (visitproc)referrersvisit, objs)) {
1086 if (PyList_Append(resultlist, obj) < 0)
1087 return 0; /* error */
1088 }
1089 }
1090 return 1; /* no error */
1091}
1092
1093PyDoc_STRVAR(gc_get_referrers__doc__,
1094"get_referrers(*objs) -> list\n\
1095Return the list of objects that directly refer to any of objs.");
1096
1097static PyObject *
1098gc_get_referrers(PyObject *self, PyObject *args)
1099{
1100 int i;
1101 PyObject *result = PyList_New(0);
1102 if (!result) return NULL;
1103
1104 for (i = 0; i < NUM_GENERATIONS; i++) {
1105 if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
1106 Py_DECREF(result);
1107 return NULL;
1108 }
1109 }
1110 return result;
1111}
1112
1113/* Append obj to list; return true if error (out of memory), false if OK. */
1114static int
1115referentsvisit(PyObject *obj, PyObject *list)
1116{
1117 return PyList_Append(list, obj) < 0;
1118}
1119
1120PyDoc_STRVAR(gc_get_referents__doc__,
1121"get_referents(*objs) -> list\n\
1122Return the list of objects that are directly referred to by objs.");
1123
1124static PyObject *
1125gc_get_referents(PyObject *self, PyObject *args)
1126{
1127 Py_ssize_t i;
1128 PyObject *result = PyList_New(0);
1129
1130 if (result == NULL)
1131 return NULL;
1132
1133 for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
1134 traverseproc traverse;
1135 PyObject *obj = PyTuple_GET_ITEM(args, i);
1136
1137 if (! PyObject_IS_GC(obj))
1138 continue;
1139 traverse = obj->ob_type->tp_traverse;
1140 if (! traverse)
1141 continue;
1142 if (traverse(obj, (visitproc)referentsvisit, result)) {
1143 Py_DECREF(result);
1144 return NULL;
1145 }
1146 }
1147 return result;
1148}
1149
1150PyDoc_STRVAR(gc_get_objects__doc__,
1151"get_objects() -> [...]\n"
1152"\n"
1153"Return a list of objects tracked by the collector (excluding the list\n"
1154"returned).\n");
1155
1156static PyObject *
1157gc_get_objects(PyObject *self, PyObject *noargs)
1158{
1159 int i;
1160 PyObject* result;
1161
1162 result = PyList_New(0);
1163 if (result == NULL)
1164 return NULL;
1165 for (i = 0; i < NUM_GENERATIONS; i++) {
1166 if (append_objects(result, GEN_HEAD(i))) {
1167 Py_DECREF(result);
1168 return NULL;
1169 }
1170 }
1171 return result;
1172}
1173
1174
1175PyDoc_STRVAR(gc__doc__,
1176"This module provides access to the garbage collector for reference cycles.\n"
1177"\n"
1178"enable() -- Enable automatic garbage collection.\n"
1179"disable() -- Disable automatic garbage collection.\n"
1180"isenabled() -- Returns true if automatic collection is enabled.\n"
1181"collect() -- Do a full collection right now.\n"
1182"set_debug() -- Set debugging flags.\n"
1183"get_debug() -- Get debugging flags.\n"
1184"set_threshold() -- Set the collection thresholds.\n"
1185"get_threshold() -- Return the current the collection thresholds.\n"
1186"get_objects() -- Return a list of all objects tracked by the collector.\n"
1187"get_referrers() -- Return the list of objects that refer to an object.\n"
1188"get_referents() -- Return the list of objects that an object refers to.\n");
1189
1190static PyMethodDef GcMethods[] = {
1191 {"enable", gc_enable, METH_NOARGS, gc_enable__doc__},
1192 {"disable", gc_disable, METH_NOARGS, gc_disable__doc__},
1193 {"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__},
1194 {"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__},
1195 {"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__},
1196 {"get_count", gc_get_count, METH_NOARGS, gc_get_count__doc__},
1197 {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
1198 {"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__},
1199 {"collect", (PyCFunction)gc_collect,
1200 METH_VARARGS | METH_KEYWORDS, gc_collect__doc__},
1201 {"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__},
1202 {"get_referrers", gc_get_referrers, METH_VARARGS,
1203 gc_get_referrers__doc__},
1204 {"get_referents", gc_get_referents, METH_VARARGS,
1205 gc_get_referents__doc__},
1206 {NULL, NULL} /* Sentinel */
1207};
1208
1209PyMODINIT_FUNC
1210initgc(void)
1211{
1212 PyObject *m;
1213
1214 m = Py_InitModule4("gc",
1215 GcMethods,
1216 gc__doc__,
1217 NULL,
1218 PYTHON_API_VERSION);
1219 if (m == NULL)
1220 return;
1221
1222 if (garbage == NULL) {
1223 garbage = PyList_New(0);
1224 if (garbage == NULL)
1225 return;
1226 }
1227 Py_INCREF(garbage);
1228 if (PyModule_AddObject(m, "garbage", garbage) < 0)
1229 return;
1230
1231 /* Importing can't be done in collect() because collect()
1232 * can be called via PyGC_Collect() in Py_Finalize().
1233 * This wouldn't be a problem, except that <initialized> is
1234 * reset to 0 before calling collect which trips up
1235 * the import and triggers an assertion.
1236 */
1237 if (tmod == NULL) {
1238 tmod = PyImport_ImportModule("time");
1239 if (tmod == NULL)
1240 PyErr_Clear();
1241 }
1242
1243#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return
1244 ADD_INT(DEBUG_STATS);
1245 ADD_INT(DEBUG_COLLECTABLE);
1246 ADD_INT(DEBUG_UNCOLLECTABLE);
1247 ADD_INT(DEBUG_INSTANCES);
1248 ADD_INT(DEBUG_OBJECTS);
1249 ADD_INT(DEBUG_SAVEALL);
1250 ADD_INT(DEBUG_LEAK);
1251#undef ADD_INT
1252}
1253
1254/* API to invoke gc.collect() from C */
1255Py_ssize_t
1256PyGC_Collect(void)
1257{
1258 Py_ssize_t n;
1259
1260 if (collecting)
1261 n = 0; /* already collecting, don't do anything */
1262 else {
1263 collecting = 1;
1264 n = collect(NUM_GENERATIONS - 1);
1265 collecting = 0;
1266 }
1267
1268 return n;
1269}
1270
1271/* for debugging */
1272void
1273_PyGC_Dump(PyGC_Head *g)
1274{
1275 _PyObject_Dump(FROM_GC(g));
1276}
1277
1278/* extension modules might be compiled with GC support so these
1279 functions must always be available */
1280
1281#undef PyObject_GC_Track
1282#undef PyObject_GC_UnTrack
1283#undef PyObject_GC_Del
1284#undef _PyObject_GC_Malloc
1285
1286void
1287PyObject_GC_Track(void *op)
1288{
1289 _PyObject_GC_TRACK(op);
1290}
1291
1292/* for binary compatibility with 2.2 */
1293void
1294_PyObject_GC_Track(PyObject *op)
1295{
1296 PyObject_GC_Track(op);
1297}
1298
1299void
1300PyObject_GC_UnTrack(void *op)
1301{
1302 /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
1303 * call PyObject_GC_UnTrack twice on an object.
1304 */
1305 if (IS_TRACKED(op))
1306 _PyObject_GC_UNTRACK(op);
1307}
1308
1309/* for binary compatibility with 2.2 */
1310void
1311_PyObject_GC_UnTrack(PyObject *op)
1312{
1313 PyObject_GC_UnTrack(op);
1314}
1315
1316PyObject *
1317_PyObject_GC_Malloc(size_t basicsize)
1318{
1319 PyObject *op;
1320 PyGC_Head *g = (PyGC_Head *)PyObject_MALLOC(
1321 sizeof(PyGC_Head) + basicsize);
1322 if (g == NULL)
1323 return PyErr_NoMemory();
1324 g->gc.gc_refs = GC_UNTRACKED;
1325 generations[0].count++; /* number of allocated GC objects */
1326 if (generations[0].count > generations[0].threshold &&
1327 enabled &&
1328 generations[0].threshold &&
1329 !collecting &&
1330 !PyErr_Occurred()) {
1331 collecting = 1;
1332 collect_generations();
1333 collecting = 0;
1334 }
1335 op = FROM_GC(g);
1336 return op;
1337}
1338
1339PyObject *
1340_PyObject_GC_New(PyTypeObject *tp)
1341{
1342 PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
1343 if (op != NULL)
1344 op = PyObject_INIT(op, tp);
1345 return op;
1346}
1347
1348PyVarObject *
1349_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
1350{
1351 const size_t size = _PyObject_VAR_SIZE(tp, nitems);
1352 PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
1353 if (op != NULL)
1354 op = PyObject_INIT_VAR(op, tp, nitems);
1355 return op;
1356}
1357
1358PyVarObject *
1359_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
1360{
1361 const size_t basicsize = _PyObject_VAR_SIZE(op->ob_type, nitems);
1362 PyGC_Head *g = AS_GC(op);
1363 g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize);
1364 if (g == NULL)
1365 return (PyVarObject *)PyErr_NoMemory();
1366 op = (PyVarObject *) FROM_GC(g);
1367 op->ob_size = nitems;
1368 return op;
1369}
1370
1371void
1372PyObject_GC_Del(void *op)
1373{
1374 PyGC_Head *g = AS_GC(op);
1375 if (IS_TRACKED(op))
1376 gc_list_remove(g);
1377 if (generations[0].count > 0) {
1378 generations[0].count--;
1379 }
1380 PyObject_FREE(g);
1381}
1382
1383/* for binary compatibility with 2.2 */
1384#undef _PyObject_GC_Del
1385void
1386_PyObject_GC_Del(PyObject *op)
1387{
1388 PyObject_GC_Del(op);
1389}
Note: See TracBrowser for help on using the repository browser.