1 | /* Drop in replacement for heapq.py
|
---|
2 |
|
---|
3 | C implementation derived directly from heapq.py in Py2.3
|
---|
4 | which was written by Kevin O'Connor, augmented by Tim Peters,
|
---|
5 | annotated by François Pinard, and converted to C by Raymond Hettinger.
|
---|
6 |
|
---|
7 | */
|
---|
8 |
|
---|
9 | #include "Python.h"
|
---|
10 |
|
---|
11 | static int
|
---|
12 | _siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
|
---|
13 | {
|
---|
14 | PyObject *newitem, *parent;
|
---|
15 | int cmp;
|
---|
16 | Py_ssize_t parentpos;
|
---|
17 |
|
---|
18 | assert(PyList_Check(heap));
|
---|
19 | if (pos >= PyList_GET_SIZE(heap)) {
|
---|
20 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
---|
21 | return -1;
|
---|
22 | }
|
---|
23 |
|
---|
24 | newitem = PyList_GET_ITEM(heap, pos);
|
---|
25 | Py_INCREF(newitem);
|
---|
26 | /* Follow the path to the root, moving parents down until finding
|
---|
27 | a place newitem fits. */
|
---|
28 | while (pos > startpos){
|
---|
29 | parentpos = (pos - 1) >> 1;
|
---|
30 | parent = PyList_GET_ITEM(heap, parentpos);
|
---|
31 | cmp = PyObject_RichCompareBool(parent, newitem, Py_LE);
|
---|
32 | if (cmp == -1) {
|
---|
33 | Py_DECREF(newitem);
|
---|
34 | return -1;
|
---|
35 | }
|
---|
36 | if (cmp == 1)
|
---|
37 | break;
|
---|
38 | Py_INCREF(parent);
|
---|
39 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
40 | PyList_SET_ITEM(heap, pos, parent);
|
---|
41 | pos = parentpos;
|
---|
42 | }
|
---|
43 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
44 | PyList_SET_ITEM(heap, pos, newitem);
|
---|
45 | return 0;
|
---|
46 | }
|
---|
47 |
|
---|
48 | static int
|
---|
49 | _siftup(PyListObject *heap, Py_ssize_t pos)
|
---|
50 | {
|
---|
51 | Py_ssize_t startpos, endpos, childpos, rightpos;
|
---|
52 | int cmp;
|
---|
53 | PyObject *newitem, *tmp;
|
---|
54 |
|
---|
55 | assert(PyList_Check(heap));
|
---|
56 | endpos = PyList_GET_SIZE(heap);
|
---|
57 | startpos = pos;
|
---|
58 | if (pos >= endpos) {
|
---|
59 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
---|
60 | return -1;
|
---|
61 | }
|
---|
62 | newitem = PyList_GET_ITEM(heap, pos);
|
---|
63 | Py_INCREF(newitem);
|
---|
64 |
|
---|
65 | /* Bubble up the smaller child until hitting a leaf. */
|
---|
66 | childpos = 2*pos + 1; /* leftmost child position */
|
---|
67 | while (childpos < endpos) {
|
---|
68 | /* Set childpos to index of smaller child. */
|
---|
69 | rightpos = childpos + 1;
|
---|
70 | if (rightpos < endpos) {
|
---|
71 | cmp = PyObject_RichCompareBool(
|
---|
72 | PyList_GET_ITEM(heap, rightpos),
|
---|
73 | PyList_GET_ITEM(heap, childpos),
|
---|
74 | Py_LE);
|
---|
75 | if (cmp == -1) {
|
---|
76 | Py_DECREF(newitem);
|
---|
77 | return -1;
|
---|
78 | }
|
---|
79 | if (cmp == 1)
|
---|
80 | childpos = rightpos;
|
---|
81 | }
|
---|
82 | /* Move the smaller child up. */
|
---|
83 | tmp = PyList_GET_ITEM(heap, childpos);
|
---|
84 | Py_INCREF(tmp);
|
---|
85 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
86 | PyList_SET_ITEM(heap, pos, tmp);
|
---|
87 | pos = childpos;
|
---|
88 | childpos = 2*pos + 1;
|
---|
89 | }
|
---|
90 |
|
---|
91 | /* The leaf at pos is empty now. Put newitem there, and and bubble
|
---|
92 | it up to its final resting place (by sifting its parents down). */
|
---|
93 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
94 | PyList_SET_ITEM(heap, pos, newitem);
|
---|
95 | return _siftdown(heap, startpos, pos);
|
---|
96 | }
|
---|
97 |
|
---|
98 | static PyObject *
|
---|
99 | heappush(PyObject *self, PyObject *args)
|
---|
100 | {
|
---|
101 | PyObject *heap, *item;
|
---|
102 |
|
---|
103 | if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item))
|
---|
104 | return NULL;
|
---|
105 |
|
---|
106 | if (!PyList_Check(heap)) {
|
---|
107 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
---|
108 | return NULL;
|
---|
109 | }
|
---|
110 |
|
---|
111 | if (PyList_Append(heap, item) == -1)
|
---|
112 | return NULL;
|
---|
113 |
|
---|
114 | if (_siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1) == -1)
|
---|
115 | return NULL;
|
---|
116 | Py_INCREF(Py_None);
|
---|
117 | return Py_None;
|
---|
118 | }
|
---|
119 |
|
---|
120 | PyDoc_STRVAR(heappush_doc,
|
---|
121 | "Push item onto heap, maintaining the heap invariant.");
|
---|
122 |
|
---|
123 | static PyObject *
|
---|
124 | heappop(PyObject *self, PyObject *heap)
|
---|
125 | {
|
---|
126 | PyObject *lastelt, *returnitem;
|
---|
127 | Py_ssize_t n;
|
---|
128 |
|
---|
129 | if (!PyList_Check(heap)) {
|
---|
130 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
---|
131 | return NULL;
|
---|
132 | }
|
---|
133 |
|
---|
134 | /* # raises appropriate IndexError if heap is empty */
|
---|
135 | n = PyList_GET_SIZE(heap);
|
---|
136 | if (n == 0) {
|
---|
137 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
---|
138 | return NULL;
|
---|
139 | }
|
---|
140 |
|
---|
141 | lastelt = PyList_GET_ITEM(heap, n-1) ;
|
---|
142 | Py_INCREF(lastelt);
|
---|
143 | PyList_SetSlice(heap, n-1, n, NULL);
|
---|
144 | n--;
|
---|
145 |
|
---|
146 | if (!n)
|
---|
147 | return lastelt;
|
---|
148 | returnitem = PyList_GET_ITEM(heap, 0);
|
---|
149 | PyList_SET_ITEM(heap, 0, lastelt);
|
---|
150 | if (_siftup((PyListObject *)heap, 0) == -1) {
|
---|
151 | Py_DECREF(returnitem);
|
---|
152 | return NULL;
|
---|
153 | }
|
---|
154 | return returnitem;
|
---|
155 | }
|
---|
156 |
|
---|
157 | PyDoc_STRVAR(heappop_doc,
|
---|
158 | "Pop the smallest item off the heap, maintaining the heap invariant.");
|
---|
159 |
|
---|
160 | static PyObject *
|
---|
161 | heapreplace(PyObject *self, PyObject *args)
|
---|
162 | {
|
---|
163 | PyObject *heap, *item, *returnitem;
|
---|
164 |
|
---|
165 | if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item))
|
---|
166 | return NULL;
|
---|
167 |
|
---|
168 | if (!PyList_Check(heap)) {
|
---|
169 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
---|
170 | return NULL;
|
---|
171 | }
|
---|
172 |
|
---|
173 | if (PyList_GET_SIZE(heap) < 1) {
|
---|
174 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
---|
175 | return NULL;
|
---|
176 | }
|
---|
177 |
|
---|
178 | returnitem = PyList_GET_ITEM(heap, 0);
|
---|
179 | Py_INCREF(item);
|
---|
180 | PyList_SET_ITEM(heap, 0, item);
|
---|
181 | if (_siftup((PyListObject *)heap, 0) == -1) {
|
---|
182 | Py_DECREF(returnitem);
|
---|
183 | return NULL;
|
---|
184 | }
|
---|
185 | return returnitem;
|
---|
186 | }
|
---|
187 |
|
---|
188 | PyDoc_STRVAR(heapreplace_doc,
|
---|
189 | "Pop and return the current smallest value, and add the new item.\n\
|
---|
190 | \n\
|
---|
191 | This is more efficient than heappop() followed by heappush(), and can be\n\
|
---|
192 | more appropriate when using a fixed-size heap. Note that the value\n\
|
---|
193 | returned may be larger than item! That constrains reasonable uses of\n\
|
---|
194 | this routine unless written as part of a conditional replacement:\n\n\
|
---|
195 | if item > heap[0]:\n\
|
---|
196 | item = heapreplace(heap, item)\n");
|
---|
197 |
|
---|
198 | static PyObject *
|
---|
199 | heapify(PyObject *self, PyObject *heap)
|
---|
200 | {
|
---|
201 | Py_ssize_t i, n;
|
---|
202 |
|
---|
203 | if (!PyList_Check(heap)) {
|
---|
204 | PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
|
---|
205 | return NULL;
|
---|
206 | }
|
---|
207 |
|
---|
208 | n = PyList_GET_SIZE(heap);
|
---|
209 | /* Transform bottom-up. The largest index there's any point to
|
---|
210 | looking at is the largest with a child index in-range, so must
|
---|
211 | have 2*i + 1 < n, or i < (n-1)/2. If n is even = 2*j, this is
|
---|
212 | (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1. If
|
---|
213 | n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
|
---|
214 | and that's again n//2-1.
|
---|
215 | */
|
---|
216 | for (i=n/2-1 ; i>=0 ; i--)
|
---|
217 | if(_siftup((PyListObject *)heap, i) == -1)
|
---|
218 | return NULL;
|
---|
219 | Py_INCREF(Py_None);
|
---|
220 | return Py_None;
|
---|
221 | }
|
---|
222 |
|
---|
223 | PyDoc_STRVAR(heapify_doc,
|
---|
224 | "Transform list into a heap, in-place, in O(len(heap)) time.");
|
---|
225 |
|
---|
226 | static PyObject *
|
---|
227 | nlargest(PyObject *self, PyObject *args)
|
---|
228 | {
|
---|
229 | PyObject *heap=NULL, *elem, *iterable, *sol, *it, *oldelem;
|
---|
230 | Py_ssize_t i, n;
|
---|
231 |
|
---|
232 | if (!PyArg_ParseTuple(args, "nO:nlargest", &n, &iterable))
|
---|
233 | return NULL;
|
---|
234 |
|
---|
235 | it = PyObject_GetIter(iterable);
|
---|
236 | if (it == NULL)
|
---|
237 | return NULL;
|
---|
238 |
|
---|
239 | heap = PyList_New(0);
|
---|
240 | if (heap == NULL)
|
---|
241 | goto fail;
|
---|
242 |
|
---|
243 | for (i=0 ; i<n ; i++ ){
|
---|
244 | elem = PyIter_Next(it);
|
---|
245 | if (elem == NULL) {
|
---|
246 | if (PyErr_Occurred())
|
---|
247 | goto fail;
|
---|
248 | else
|
---|
249 | goto sortit;
|
---|
250 | }
|
---|
251 | if (PyList_Append(heap, elem) == -1) {
|
---|
252 | Py_DECREF(elem);
|
---|
253 | goto fail;
|
---|
254 | }
|
---|
255 | Py_DECREF(elem);
|
---|
256 | }
|
---|
257 | if (PyList_GET_SIZE(heap) == 0)
|
---|
258 | goto sortit;
|
---|
259 |
|
---|
260 | for (i=n/2-1 ; i>=0 ; i--)
|
---|
261 | if(_siftup((PyListObject *)heap, i) == -1)
|
---|
262 | goto fail;
|
---|
263 |
|
---|
264 | sol = PyList_GET_ITEM(heap, 0);
|
---|
265 | while (1) {
|
---|
266 | elem = PyIter_Next(it);
|
---|
267 | if (elem == NULL) {
|
---|
268 | if (PyErr_Occurred())
|
---|
269 | goto fail;
|
---|
270 | else
|
---|
271 | goto sortit;
|
---|
272 | }
|
---|
273 | if (PyObject_RichCompareBool(elem, sol, Py_LE)) {
|
---|
274 | Py_DECREF(elem);
|
---|
275 | continue;
|
---|
276 | }
|
---|
277 | oldelem = PyList_GET_ITEM(heap, 0);
|
---|
278 | PyList_SET_ITEM(heap, 0, elem);
|
---|
279 | Py_DECREF(oldelem);
|
---|
280 | if (_siftup((PyListObject *)heap, 0) == -1)
|
---|
281 | goto fail;
|
---|
282 | sol = PyList_GET_ITEM(heap, 0);
|
---|
283 | }
|
---|
284 | sortit:
|
---|
285 | if (PyList_Sort(heap) == -1)
|
---|
286 | goto fail;
|
---|
287 | if (PyList_Reverse(heap) == -1)
|
---|
288 | goto fail;
|
---|
289 | Py_DECREF(it);
|
---|
290 | return heap;
|
---|
291 |
|
---|
292 | fail:
|
---|
293 | Py_DECREF(it);
|
---|
294 | Py_XDECREF(heap);
|
---|
295 | return NULL;
|
---|
296 | }
|
---|
297 |
|
---|
298 | PyDoc_STRVAR(nlargest_doc,
|
---|
299 | "Find the n largest elements in a dataset.\n\
|
---|
300 | \n\
|
---|
301 | Equivalent to: sorted(iterable, reverse=True)[:n]\n");
|
---|
302 |
|
---|
303 | static int
|
---|
304 | _siftdownmax(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
|
---|
305 | {
|
---|
306 | PyObject *newitem, *parent;
|
---|
307 | int cmp;
|
---|
308 | Py_ssize_t parentpos;
|
---|
309 |
|
---|
310 | assert(PyList_Check(heap));
|
---|
311 | if (pos >= PyList_GET_SIZE(heap)) {
|
---|
312 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
---|
313 | return -1;
|
---|
314 | }
|
---|
315 |
|
---|
316 | newitem = PyList_GET_ITEM(heap, pos);
|
---|
317 | Py_INCREF(newitem);
|
---|
318 | /* Follow the path to the root, moving parents down until finding
|
---|
319 | a place newitem fits. */
|
---|
320 | while (pos > startpos){
|
---|
321 | parentpos = (pos - 1) >> 1;
|
---|
322 | parent = PyList_GET_ITEM(heap, parentpos);
|
---|
323 | cmp = PyObject_RichCompareBool(newitem, parent, Py_LE);
|
---|
324 | if (cmp == -1) {
|
---|
325 | Py_DECREF(newitem);
|
---|
326 | return -1;
|
---|
327 | }
|
---|
328 | if (cmp == 1)
|
---|
329 | break;
|
---|
330 | Py_INCREF(parent);
|
---|
331 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
332 | PyList_SET_ITEM(heap, pos, parent);
|
---|
333 | pos = parentpos;
|
---|
334 | }
|
---|
335 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
336 | PyList_SET_ITEM(heap, pos, newitem);
|
---|
337 | return 0;
|
---|
338 | }
|
---|
339 |
|
---|
340 | static int
|
---|
341 | _siftupmax(PyListObject *heap, Py_ssize_t pos)
|
---|
342 | {
|
---|
343 | Py_ssize_t startpos, endpos, childpos, rightpos;
|
---|
344 | int cmp;
|
---|
345 | PyObject *newitem, *tmp;
|
---|
346 |
|
---|
347 | assert(PyList_Check(heap));
|
---|
348 | endpos = PyList_GET_SIZE(heap);
|
---|
349 | startpos = pos;
|
---|
350 | if (pos >= endpos) {
|
---|
351 | PyErr_SetString(PyExc_IndexError, "index out of range");
|
---|
352 | return -1;
|
---|
353 | }
|
---|
354 | newitem = PyList_GET_ITEM(heap, pos);
|
---|
355 | Py_INCREF(newitem);
|
---|
356 |
|
---|
357 | /* Bubble up the smaller child until hitting a leaf. */
|
---|
358 | childpos = 2*pos + 1; /* leftmost child position */
|
---|
359 | while (childpos < endpos) {
|
---|
360 | /* Set childpos to index of smaller child. */
|
---|
361 | rightpos = childpos + 1;
|
---|
362 | if (rightpos < endpos) {
|
---|
363 | cmp = PyObject_RichCompareBool(
|
---|
364 | PyList_GET_ITEM(heap, childpos),
|
---|
365 | PyList_GET_ITEM(heap, rightpos),
|
---|
366 | Py_LE);
|
---|
367 | if (cmp == -1) {
|
---|
368 | Py_DECREF(newitem);
|
---|
369 | return -1;
|
---|
370 | }
|
---|
371 | if (cmp == 1)
|
---|
372 | childpos = rightpos;
|
---|
373 | }
|
---|
374 | /* Move the smaller child up. */
|
---|
375 | tmp = PyList_GET_ITEM(heap, childpos);
|
---|
376 | Py_INCREF(tmp);
|
---|
377 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
378 | PyList_SET_ITEM(heap, pos, tmp);
|
---|
379 | pos = childpos;
|
---|
380 | childpos = 2*pos + 1;
|
---|
381 | }
|
---|
382 |
|
---|
383 | /* The leaf at pos is empty now. Put newitem there, and and bubble
|
---|
384 | it up to its final resting place (by sifting its parents down). */
|
---|
385 | Py_DECREF(PyList_GET_ITEM(heap, pos));
|
---|
386 | PyList_SET_ITEM(heap, pos, newitem);
|
---|
387 | return _siftdownmax(heap, startpos, pos);
|
---|
388 | }
|
---|
389 |
|
---|
390 | static PyObject *
|
---|
391 | nsmallest(PyObject *self, PyObject *args)
|
---|
392 | {
|
---|
393 | PyObject *heap=NULL, *elem, *iterable, *los, *it, *oldelem;
|
---|
394 | Py_ssize_t i, n;
|
---|
395 |
|
---|
396 | if (!PyArg_ParseTuple(args, "nO:nsmallest", &n, &iterable))
|
---|
397 | return NULL;
|
---|
398 |
|
---|
399 | it = PyObject_GetIter(iterable);
|
---|
400 | if (it == NULL)
|
---|
401 | return NULL;
|
---|
402 |
|
---|
403 | heap = PyList_New(0);
|
---|
404 | if (heap == NULL)
|
---|
405 | goto fail;
|
---|
406 |
|
---|
407 | for (i=0 ; i<n ; i++ ){
|
---|
408 | elem = PyIter_Next(it);
|
---|
409 | if (elem == NULL) {
|
---|
410 | if (PyErr_Occurred())
|
---|
411 | goto fail;
|
---|
412 | else
|
---|
413 | goto sortit;
|
---|
414 | }
|
---|
415 | if (PyList_Append(heap, elem) == -1) {
|
---|
416 | Py_DECREF(elem);
|
---|
417 | goto fail;
|
---|
418 | }
|
---|
419 | Py_DECREF(elem);
|
---|
420 | }
|
---|
421 | n = PyList_GET_SIZE(heap);
|
---|
422 | if (n == 0)
|
---|
423 | goto sortit;
|
---|
424 |
|
---|
425 | for (i=n/2-1 ; i>=0 ; i--)
|
---|
426 | if(_siftupmax((PyListObject *)heap, i) == -1)
|
---|
427 | goto fail;
|
---|
428 |
|
---|
429 | los = PyList_GET_ITEM(heap, 0);
|
---|
430 | while (1) {
|
---|
431 | elem = PyIter_Next(it);
|
---|
432 | if (elem == NULL) {
|
---|
433 | if (PyErr_Occurred())
|
---|
434 | goto fail;
|
---|
435 | else
|
---|
436 | goto sortit;
|
---|
437 | }
|
---|
438 | if (PyObject_RichCompareBool(los, elem, Py_LE)) {
|
---|
439 | Py_DECREF(elem);
|
---|
440 | continue;
|
---|
441 | }
|
---|
442 |
|
---|
443 | oldelem = PyList_GET_ITEM(heap, 0);
|
---|
444 | PyList_SET_ITEM(heap, 0, elem);
|
---|
445 | Py_DECREF(oldelem);
|
---|
446 | if (_siftupmax((PyListObject *)heap, 0) == -1)
|
---|
447 | goto fail;
|
---|
448 | los = PyList_GET_ITEM(heap, 0);
|
---|
449 | }
|
---|
450 |
|
---|
451 | sortit:
|
---|
452 | if (PyList_Sort(heap) == -1)
|
---|
453 | goto fail;
|
---|
454 | Py_DECREF(it);
|
---|
455 | return heap;
|
---|
456 |
|
---|
457 | fail:
|
---|
458 | Py_DECREF(it);
|
---|
459 | Py_XDECREF(heap);
|
---|
460 | return NULL;
|
---|
461 | }
|
---|
462 |
|
---|
463 | PyDoc_STRVAR(nsmallest_doc,
|
---|
464 | "Find the n smallest elements in a dataset.\n\
|
---|
465 | \n\
|
---|
466 | Equivalent to: sorted(iterable)[:n]\n");
|
---|
467 |
|
---|
468 | static PyMethodDef heapq_methods[] = {
|
---|
469 | {"heappush", (PyCFunction)heappush,
|
---|
470 | METH_VARARGS, heappush_doc},
|
---|
471 | {"heappop", (PyCFunction)heappop,
|
---|
472 | METH_O, heappop_doc},
|
---|
473 | {"heapreplace", (PyCFunction)heapreplace,
|
---|
474 | METH_VARARGS, heapreplace_doc},
|
---|
475 | {"heapify", (PyCFunction)heapify,
|
---|
476 | METH_O, heapify_doc},
|
---|
477 | {"nlargest", (PyCFunction)nlargest,
|
---|
478 | METH_VARARGS, nlargest_doc},
|
---|
479 | {"nsmallest", (PyCFunction)nsmallest,
|
---|
480 | METH_VARARGS, nsmallest_doc},
|
---|
481 | {NULL, NULL} /* sentinel */
|
---|
482 | };
|
---|
483 |
|
---|
484 | PyDoc_STRVAR(module_doc,
|
---|
485 | "Heap queue algorithm (a.k.a. priority queue).\n\
|
---|
486 | \n\
|
---|
487 | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
|
---|
488 | all k, counting elements from 0. For the sake of comparison,\n\
|
---|
489 | non-existing elements are considered to be infinite. The interesting\n\
|
---|
490 | property of a heap is that a[0] is always its smallest element.\n\
|
---|
491 | \n\
|
---|
492 | Usage:\n\
|
---|
493 | \n\
|
---|
494 | heap = [] # creates an empty heap\n\
|
---|
495 | heappush(heap, item) # pushes a new item on the heap\n\
|
---|
496 | item = heappop(heap) # pops the smallest item from the heap\n\
|
---|
497 | item = heap[0] # smallest item on the heap without popping it\n\
|
---|
498 | heapify(x) # transforms list into a heap, in-place, in linear time\n\
|
---|
499 | item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
|
---|
500 | # new item; the heap size is unchanged\n\
|
---|
501 | \n\
|
---|
502 | Our API differs from textbook heap algorithms as follows:\n\
|
---|
503 | \n\
|
---|
504 | - We use 0-based indexing. This makes the relationship between the\n\
|
---|
505 | index for a node and the indexes for its children slightly less\n\
|
---|
506 | obvious, but is more suitable since Python uses 0-based indexing.\n\
|
---|
507 | \n\
|
---|
508 | - Our heappop() method returns the smallest item, not the largest.\n\
|
---|
509 | \n\
|
---|
510 | These two make it possible to view the heap as a regular Python list\n\
|
---|
511 | without surprises: heap[0] is the smallest item, and heap.sort()\n\
|
---|
512 | maintains the heap invariant!\n");
|
---|
513 |
|
---|
514 |
|
---|
515 | PyDoc_STRVAR(__about__,
|
---|
516 | "Heap queues\n\
|
---|
517 | \n\
|
---|
518 | [explanation by François Pinard]\n\
|
---|
519 | \n\
|
---|
520 | Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
|
---|
521 | all k, counting elements from 0. For the sake of comparison,\n\
|
---|
522 | non-existing elements are considered to be infinite. The interesting\n\
|
---|
523 | property of a heap is that a[0] is always its smallest element.\n"
|
---|
524 | "\n\
|
---|
525 | The strange invariant above is meant to be an efficient memory\n\
|
---|
526 | representation for a tournament. The numbers below are `k', not a[k]:\n\
|
---|
527 | \n\
|
---|
528 | 0\n\
|
---|
529 | \n\
|
---|
530 | 1 2\n\
|
---|
531 | \n\
|
---|
532 | 3 4 5 6\n\
|
---|
533 | \n\
|
---|
534 | 7 8 9 10 11 12 13 14\n\
|
---|
535 | \n\
|
---|
536 | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30\n\
|
---|
537 | \n\
|
---|
538 | \n\
|
---|
539 | In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In\n\
|
---|
540 | an usual binary tournament we see in sports, each cell is the winner\n\
|
---|
541 | over the two cells it tops, and we can trace the winner down the tree\n\
|
---|
542 | to see all opponents s/he had. However, in many computer applications\n\
|
---|
543 | of such tournaments, we do not need to trace the history of a winner.\n\
|
---|
544 | To be more memory efficient, when a winner is promoted, we try to\n\
|
---|
545 | replace it by something else at a lower level, and the rule becomes\n\
|
---|
546 | that a cell and the two cells it tops contain three different items,\n\
|
---|
547 | but the top cell \"wins\" over the two topped cells.\n"
|
---|
548 | "\n\
|
---|
549 | If this heap invariant is protected at all time, index 0 is clearly\n\
|
---|
550 | the overall winner. The simplest algorithmic way to remove it and\n\
|
---|
551 | find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
|
---|
552 | diagram above) into the 0 position, and then percolate this new 0 down\n\
|
---|
553 | the tree, exchanging values, until the invariant is re-established.\n\
|
---|
554 | This is clearly logarithmic on the total number of items in the tree.\n\
|
---|
555 | By iterating over all items, you get an O(n ln n) sort.\n"
|
---|
556 | "\n\
|
---|
557 | A nice feature of this sort is that you can efficiently insert new\n\
|
---|
558 | items while the sort is going on, provided that the inserted items are\n\
|
---|
559 | not \"better\" than the last 0'th element you extracted. This is\n\
|
---|
560 | especially useful in simulation contexts, where the tree holds all\n\
|
---|
561 | incoming events, and the \"win\" condition means the smallest scheduled\n\
|
---|
562 | time. When an event schedule other events for execution, they are\n\
|
---|
563 | scheduled into the future, so they can easily go into the heap. So, a\n\
|
---|
564 | heap is a good structure for implementing schedulers (this is what I\n\
|
---|
565 | used for my MIDI sequencer :-).\n"
|
---|
566 | "\n\
|
---|
567 | Various structures for implementing schedulers have been extensively\n\
|
---|
568 | studied, and heaps are good for this, as they are reasonably speedy,\n\
|
---|
569 | the speed is almost constant, and the worst case is not much different\n\
|
---|
570 | than the average case. However, there are other representations which\n\
|
---|
571 | are more efficient overall, yet the worst cases might be terrible.\n"
|
---|
572 | "\n\
|
---|
573 | Heaps are also very useful in big disk sorts. You most probably all\n\
|
---|
574 | know that a big sort implies producing \"runs\" (which are pre-sorted\n\
|
---|
575 | sequences, which size is usually related to the amount of CPU memory),\n\
|
---|
576 | followed by a merging passes for these runs, which merging is often\n\
|
---|
577 | very cleverly organised[1]. It is very important that the initial\n\
|
---|
578 | sort produces the longest runs possible. Tournaments are a good way\n\
|
---|
579 | to that. If, using all the memory available to hold a tournament, you\n\
|
---|
580 | replace and percolate items that happen to fit the current run, you'll\n\
|
---|
581 | produce runs which are twice the size of the memory for random input,\n\
|
---|
582 | and much better for input fuzzily ordered.\n"
|
---|
583 | "\n\
|
---|
584 | Moreover, if you output the 0'th item on disk and get an input which\n\
|
---|
585 | may not fit in the current tournament (because the value \"wins\" over\n\
|
---|
586 | the last output value), it cannot fit in the heap, so the size of the\n\
|
---|
587 | heap decreases. The freed memory could be cleverly reused immediately\n\
|
---|
588 | for progressively building a second heap, which grows at exactly the\n\
|
---|
589 | same rate the first heap is melting. When the first heap completely\n\
|
---|
590 | vanishes, you switch heaps and start a new run. Clever and quite\n\
|
---|
591 | effective!\n\
|
---|
592 | \n\
|
---|
593 | In a word, heaps are useful memory structures to know. I use them in\n\
|
---|
594 | a few applications, and I think it is good to keep a `heap' module\n\
|
---|
595 | around. :-)\n"
|
---|
596 | "\n\
|
---|
597 | --------------------\n\
|
---|
598 | [1] The disk balancing algorithms which are current, nowadays, are\n\
|
---|
599 | more annoying than clever, and this is a consequence of the seeking\n\
|
---|
600 | capabilities of the disks. On devices which cannot seek, like big\n\
|
---|
601 | tape drives, the story was quite different, and one had to be very\n\
|
---|
602 | clever to ensure (far in advance) that each tape movement will be the\n\
|
---|
603 | most effective possible (that is, will best participate at\n\
|
---|
604 | \"progressing\" the merge). Some tapes were even able to read\n\
|
---|
605 | backwards, and this was also used to avoid the rewinding time.\n\
|
---|
606 | Believe me, real good tape sorts were quite spectacular to watch!\n\
|
---|
607 | From all times, sorting has always been a Great Art! :-)\n");
|
---|
608 |
|
---|
609 | PyMODINIT_FUNC
|
---|
610 | init_heapq(void)
|
---|
611 | {
|
---|
612 | PyObject *m;
|
---|
613 |
|
---|
614 | m = Py_InitModule3("_heapq", heapq_methods, module_doc);
|
---|
615 | if (m == NULL)
|
---|
616 | return;
|
---|
617 | PyModule_AddObject(m, "__about__", PyString_FromString(__about__));
|
---|
618 | }
|
---|
619 |
|
---|