source: vendor/python/2.5/Include/object.h

Last change on this file was 3225, checked in by bird, 18 years ago

Python 2.5

File size: 31.5 KB
Line 
1#ifndef Py_OBJECT_H
2#define Py_OBJECT_H
3#ifdef __cplusplus
4extern "C" {
5#endif
6
7
8/* Object and type object interface */
9
10/*
11Objects are structures allocated on the heap. Special rules apply to
12the use of objects to ensure they are properly garbage-collected.
13Objects are never allocated statically or on the stack; they must be
14accessed through special macros and functions only. (Type objects are
15exceptions to the first rule; the standard types are represented by
16statically initialized type objects, although work on type/class unification
17for Python 2.2 made it possible to have heap-allocated type objects too).
18
19An object has a 'reference count' that is increased or decreased when a
20pointer to the object is copied or deleted; when the reference count
21reaches zero there are no references to the object left and it can be
22removed from the heap.
23
24An object has a 'type' that determines what it represents and what kind
25of data it contains. An object's type is fixed when it is created.
26Types themselves are represented as objects; an object contains a
27pointer to the corresponding type object. The type itself has a type
28pointer pointing to the object representing the type 'type', which
29contains a pointer to itself!).
30
31Objects do not float around in memory; once allocated an object keeps
32the same size and address. Objects that must hold variable-size data
33can contain pointers to variable-size parts of the object. Not all
34objects of the same type have the same size; but the size cannot change
35after allocation. (These restrictions are made so a reference to an
36object can be simply a pointer -- moving an object would require
37updating all the pointers, and changing an object's size would require
38moving it if there was another object right next to it.)
39
40Objects are always accessed through pointers of the type 'PyObject *'.
41The type 'PyObject' is a structure that only contains the reference count
42and the type pointer. The actual memory allocated for an object
43contains other data that can only be accessed after casting the pointer
44to a pointer to a longer structure type. This longer type must start
45with the reference count and type fields; the macro PyObject_HEAD should be
46used for this (to accommodate for future changes). The implementation
47of a particular object type can cast the object pointer to the proper
48type and back.
49
50A standard interface exists for objects that contain an array of items
51whose size is determined when the object is allocated.
52*/
53
54/* Py_DEBUG implies Py_TRACE_REFS. */
55#if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56#define Py_TRACE_REFS
57#endif
58
59/* Py_TRACE_REFS implies Py_REF_DEBUG. */
60#if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61#define Py_REF_DEBUG
62#endif
63
64#ifdef Py_TRACE_REFS
65/* Define pointers to support a doubly-linked list of all live heap objects. */
66#define _PyObject_HEAD_EXTRA \
67 struct _object *_ob_next; \
68 struct _object *_ob_prev;
69
70#define _PyObject_EXTRA_INIT 0, 0,
71
72#else
73#define _PyObject_HEAD_EXTRA
74#define _PyObject_EXTRA_INIT
75#endif
76
77/* PyObject_HEAD defines the initial segment of every PyObject. */
78#define PyObject_HEAD \
79 _PyObject_HEAD_EXTRA \
80 Py_ssize_t ob_refcnt; \
81 struct _typeobject *ob_type;
82
83#define PyObject_HEAD_INIT(type) \
84 _PyObject_EXTRA_INIT \
85 1, type,
86
87/* PyObject_VAR_HEAD defines the initial segment of all variable-size
88 * container objects. These end with a declaration of an array with 1
89 * element, but enough space is malloc'ed so that the array actually
90 * has room for ob_size elements. Note that ob_size is an element count,
91 * not necessarily a byte count.
92 */
93#define PyObject_VAR_HEAD \
94 PyObject_HEAD \
95 Py_ssize_t ob_size; /* Number of items in variable part */
96#define Py_INVALID_SIZE (Py_ssize_t)-1
97
98/* Nothing is actually declared to be a PyObject, but every pointer to
99 * a Python object can be cast to a PyObject*. This is inheritance built
100 * by hand. Similarly every pointer to a variable-size Python object can,
101 * in addition, be cast to PyVarObject*.
102 */
103typedef struct _object {
104 PyObject_HEAD
105} PyObject;
106
107typedef struct {
108 PyObject_VAR_HEAD
109} PyVarObject;
110
111
112/*
113Type objects contain a string containing the type name (to help somewhat
114in debugging), the allocation parameters (see PyObject_New() and
115PyObject_NewVar()),
116and methods for accessing objects of the type. Methods are optional, a
117nil pointer meaning that particular kind of access is not available for
118this type. The Py_DECREF() macro uses the tp_dealloc method without
119checking for a nil pointer; it should always be implemented except if
120the implementation can guarantee that the reference count will never
121reach zero (e.g., for statically allocated type objects).
122
123NB: the methods for certain type groups are now contained in separate
124method blocks.
125*/
126
127typedef PyObject * (*unaryfunc)(PyObject *);
128typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
129typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
130typedef int (*inquiry)(PyObject *);
131typedef Py_ssize_t (*lenfunc)(PyObject *);
132typedef int (*coercion)(PyObject **, PyObject **);
133typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
134typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
135typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
136typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
137typedef int(*intobjargproc)(PyObject *, int, PyObject *);
138typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
139typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
140typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
141typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
142
143/* int-based buffer interface */
144typedef int (*getreadbufferproc)(PyObject *, int, void **);
145typedef int (*getwritebufferproc)(PyObject *, int, void **);
146typedef int (*getsegcountproc)(PyObject *, int *);
147typedef int (*getcharbufferproc)(PyObject *, int, char **);
148/* ssize_t-based buffer interface */
149typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
150typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
151typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
152typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
153
154typedef int (*objobjproc)(PyObject *, PyObject *);
155typedef int (*visitproc)(PyObject *, void *);
156typedef int (*traverseproc)(PyObject *, visitproc, void *);
157
158typedef struct {
159 /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
160 arguments are guaranteed to be of the object's type (modulo
161 coercion hacks -- i.e. if the type's coercion function
162 returns other types, then these are allowed as well). Numbers that
163 have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
164 arguments for proper type and implement the necessary conversions
165 in the slot functions themselves. */
166
167 binaryfunc nb_add;
168 binaryfunc nb_subtract;
169 binaryfunc nb_multiply;
170 binaryfunc nb_divide;
171 binaryfunc nb_remainder;
172 binaryfunc nb_divmod;
173 ternaryfunc nb_power;
174 unaryfunc nb_negative;
175 unaryfunc nb_positive;
176 unaryfunc nb_absolute;
177 inquiry nb_nonzero;
178 unaryfunc nb_invert;
179 binaryfunc nb_lshift;
180 binaryfunc nb_rshift;
181 binaryfunc nb_and;
182 binaryfunc nb_xor;
183 binaryfunc nb_or;
184 coercion nb_coerce;
185 unaryfunc nb_int;
186 unaryfunc nb_long;
187 unaryfunc nb_float;
188 unaryfunc nb_oct;
189 unaryfunc nb_hex;
190 /* Added in release 2.0 */
191 binaryfunc nb_inplace_add;
192 binaryfunc nb_inplace_subtract;
193 binaryfunc nb_inplace_multiply;
194 binaryfunc nb_inplace_divide;
195 binaryfunc nb_inplace_remainder;
196 ternaryfunc nb_inplace_power;
197 binaryfunc nb_inplace_lshift;
198 binaryfunc nb_inplace_rshift;
199 binaryfunc nb_inplace_and;
200 binaryfunc nb_inplace_xor;
201 binaryfunc nb_inplace_or;
202
203 /* Added in release 2.2 */
204 /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
205 binaryfunc nb_floor_divide;
206 binaryfunc nb_true_divide;
207 binaryfunc nb_inplace_floor_divide;
208 binaryfunc nb_inplace_true_divide;
209
210 /* Added in release 2.5 */
211 unaryfunc nb_index;
212} PyNumberMethods;
213
214typedef struct {
215 lenfunc sq_length;
216 binaryfunc sq_concat;
217 ssizeargfunc sq_repeat;
218 ssizeargfunc sq_item;
219 ssizessizeargfunc sq_slice;
220 ssizeobjargproc sq_ass_item;
221 ssizessizeobjargproc sq_ass_slice;
222 objobjproc sq_contains;
223 /* Added in release 2.0 */
224 binaryfunc sq_inplace_concat;
225 ssizeargfunc sq_inplace_repeat;
226} PySequenceMethods;
227
228typedef struct {
229 lenfunc mp_length;
230 binaryfunc mp_subscript;
231 objobjargproc mp_ass_subscript;
232} PyMappingMethods;
233
234typedef struct {
235 readbufferproc bf_getreadbuffer;
236 writebufferproc bf_getwritebuffer;
237 segcountproc bf_getsegcount;
238 charbufferproc bf_getcharbuffer;
239} PyBufferProcs;
240
241
242typedef void (*freefunc)(void *);
243typedef void (*destructor)(PyObject *);
244typedef int (*printfunc)(PyObject *, FILE *, int);
245typedef PyObject *(*getattrfunc)(PyObject *, char *);
246typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
247typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
248typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
249typedef int (*cmpfunc)(PyObject *, PyObject *);
250typedef PyObject *(*reprfunc)(PyObject *);
251typedef long (*hashfunc)(PyObject *);
252typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
253typedef PyObject *(*getiterfunc) (PyObject *);
254typedef PyObject *(*iternextfunc) (PyObject *);
255typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
256typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
257typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
258typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
259typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
260
261typedef struct _typeobject {
262 PyObject_VAR_HEAD
263 const char *tp_name; /* For printing, in format "<module>.<name>" */
264 Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
265
266 /* Methods to implement standard operations */
267
268 destructor tp_dealloc;
269 printfunc tp_print;
270 getattrfunc tp_getattr;
271 setattrfunc tp_setattr;
272 cmpfunc tp_compare;
273 reprfunc tp_repr;
274
275 /* Method suites for standard classes */
276
277 PyNumberMethods *tp_as_number;
278 PySequenceMethods *tp_as_sequence;
279 PyMappingMethods *tp_as_mapping;
280
281 /* More standard operations (here for binary compatibility) */
282
283 hashfunc tp_hash;
284 ternaryfunc tp_call;
285 reprfunc tp_str;
286 getattrofunc tp_getattro;
287 setattrofunc tp_setattro;
288
289 /* Functions to access object as input/output buffer */
290 PyBufferProcs *tp_as_buffer;
291
292 /* Flags to define presence of optional/expanded features */
293 long tp_flags;
294
295 const char *tp_doc; /* Documentation string */
296
297 /* Assigned meaning in release 2.0 */
298 /* call function for all accessible objects */
299 traverseproc tp_traverse;
300
301 /* delete references to contained objects */
302 inquiry tp_clear;
303
304 /* Assigned meaning in release 2.1 */
305 /* rich comparisons */
306 richcmpfunc tp_richcompare;
307
308 /* weak reference enabler */
309 Py_ssize_t tp_weaklistoffset;
310
311 /* Added in release 2.2 */
312 /* Iterators */
313 getiterfunc tp_iter;
314 iternextfunc tp_iternext;
315
316 /* Attribute descriptor and subclassing stuff */
317 struct PyMethodDef *tp_methods;
318 struct PyMemberDef *tp_members;
319 struct PyGetSetDef *tp_getset;
320 struct _typeobject *tp_base;
321 PyObject *tp_dict;
322 descrgetfunc tp_descr_get;
323 descrsetfunc tp_descr_set;
324 Py_ssize_t tp_dictoffset;
325 initproc tp_init;
326 allocfunc tp_alloc;
327 newfunc tp_new;
328 freefunc tp_free; /* Low-level free-memory routine */
329 inquiry tp_is_gc; /* For PyObject_IS_GC */
330 PyObject *tp_bases;
331 PyObject *tp_mro; /* method resolution order */
332 PyObject *tp_cache;
333 PyObject *tp_subclasses;
334 PyObject *tp_weaklist;
335 destructor tp_del;
336
337#ifdef COUNT_ALLOCS
338 /* these must be last and never explicitly initialized */
339 Py_ssize_t tp_allocs;
340 Py_ssize_t tp_frees;
341 Py_ssize_t tp_maxalloc;
342 struct _typeobject *tp_prev;
343 struct _typeobject *tp_next;
344#endif
345} PyTypeObject;
346
347
348/* The *real* layout of a type object when allocated on the heap */
349typedef struct _heaptypeobject {
350 /* Note: there's a dependency on the order of these members
351 in slotptr() in typeobject.c . */
352 PyTypeObject ht_type;
353 PyNumberMethods as_number;
354 PyMappingMethods as_mapping;
355 PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
356 so that the mapping wins when both
357 the mapping and the sequence define
358 a given operator (e.g. __getitem__).
359 see add_operators() in typeobject.c . */
360 PyBufferProcs as_buffer;
361 PyObject *ht_name, *ht_slots;
362 /* here are optional user slots, followed by the members. */
363} PyHeapTypeObject;
364
365/* access macro to the members which are floating "behind" the object */
366#define PyHeapType_GET_MEMBERS(etype) \
367 ((PyMemberDef *)(((char *)etype) + (etype)->ht_type.ob_type->tp_basicsize))
368
369
370/* Generic type check */
371PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
372#define PyObject_TypeCheck(ob, tp) \
373 ((ob)->ob_type == (tp) || PyType_IsSubtype((ob)->ob_type, (tp)))
374
375PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
376PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
377PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
378
379#define PyType_Check(op) PyObject_TypeCheck(op, &PyType_Type)
380#define PyType_CheckExact(op) ((op)->ob_type == &PyType_Type)
381
382PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
383PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
384PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
385 PyObject *, PyObject *);
386PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
387
388/* Generic operations on objects */
389PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
390PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
391PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
392PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
393PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
394#ifdef Py_USING_UNICODE
395PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
396#endif
397PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
398PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
399PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
400PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
401PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
402PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
403PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
404PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
405PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
406PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
407PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
408PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
409PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
410 PyObject *, PyObject *);
411PyAPI_FUNC(long) PyObject_Hash(PyObject *);
412PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
413PyAPI_FUNC(int) PyObject_Not(PyObject *);
414PyAPI_FUNC(int) PyCallable_Check(PyObject *);
415PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
416PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
417
418PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
419
420/* A slot function whose address we need to compare */
421extern int _PyObject_SlotCompare(PyObject *, PyObject *);
422
423
424/* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
425 list of strings. PyObject_Dir(NULL) is like __builtin__.dir(),
426 returning the names of the current locals. In this case, if there are
427 no current locals, NULL is returned, and PyErr_Occurred() is false.
428*/
429PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
430
431
432/* Helpers for printing recursive container types */
433PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
434PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
435
436/* Helpers for hash functions */
437PyAPI_FUNC(long) _Py_HashDouble(double);
438PyAPI_FUNC(long) _Py_HashPointer(void*);
439
440/* Helper for passing objects to printf and the like */
441#define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
442
443/* Flag bits for printing: */
444#define Py_PRINT_RAW 1 /* No string quotes etc. */
445
446/*
447`Type flags (tp_flags)
448
449These flags are used to extend the type structure in a backwards-compatible
450fashion. Extensions can use the flags to indicate (and test) when a given
451type structure contains a new feature. The Python core will use these when
452introducing new functionality between major revisions (to avoid mid-version
453changes in the PYTHON_API_VERSION).
454
455Arbitration of the flag bit positions will need to be coordinated among
456all extension writers who publically release their extensions (this will
457be fewer than you might expect!)..
458
459Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
460
461Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
462
463Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
464given type object has a specified feature.
465*/
466
467/* PyBufferProcs contains bf_getcharbuffer */
468#define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
469
470/* PySequenceMethods contains sq_contains */
471#define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
472
473/* This is here for backwards compatibility. Extensions that use the old GC
474 * API will still compile but the objects will not be tracked by the GC. */
475#define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
476
477/* PySequenceMethods and PyNumberMethods contain in-place operators */
478#define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
479
480/* PyNumberMethods do their own coercion */
481#define Py_TPFLAGS_CHECKTYPES (1L<<4)
482
483/* tp_richcompare is defined */
484#define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
485
486/* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
487#define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
488
489/* tp_iter is defined */
490#define Py_TPFLAGS_HAVE_ITER (1L<<7)
491
492/* New members introduced by Python 2.2 exist */
493#define Py_TPFLAGS_HAVE_CLASS (1L<<8)
494
495/* Set if the type object is dynamically allocated */
496#define Py_TPFLAGS_HEAPTYPE (1L<<9)
497
498/* Set if the type allows subclassing */
499#define Py_TPFLAGS_BASETYPE (1L<<10)
500
501/* Set if the type is 'ready' -- fully initialized */
502#define Py_TPFLAGS_READY (1L<<12)
503
504/* Set while the type is being 'readied', to prevent recursive ready calls */
505#define Py_TPFLAGS_READYING (1L<<13)
506
507/* Objects support garbage collection (see objimp.h) */
508#define Py_TPFLAGS_HAVE_GC (1L<<14)
509
510/* These two bits are preserved for Stackless Python, next after this is 17 */
511#ifdef STACKLESS
512#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
513#else
514#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
515#endif
516
517/* Objects support nb_index in PyNumberMethods */
518#define Py_TPFLAGS_HAVE_INDEX (1L<<17)
519
520#define Py_TPFLAGS_DEFAULT ( \
521 Py_TPFLAGS_HAVE_GETCHARBUFFER | \
522 Py_TPFLAGS_HAVE_SEQUENCE_IN | \
523 Py_TPFLAGS_HAVE_INPLACEOPS | \
524 Py_TPFLAGS_HAVE_RICHCOMPARE | \
525 Py_TPFLAGS_HAVE_WEAKREFS | \
526 Py_TPFLAGS_HAVE_ITER | \
527 Py_TPFLAGS_HAVE_CLASS | \
528 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
529 Py_TPFLAGS_HAVE_INDEX | \
530 0)
531
532#define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
533
534
535/*
536The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
537reference counts. Py_DECREF calls the object's deallocator function when
538the refcount falls to 0; for
539objects that don't contain references to other objects or heap memory
540this can be the standard function free(). Both macros can be used
541wherever a void expression is allowed. The argument must not be a
542NIL pointer. If it may be NIL, use Py_XINCREF/Py_XDECREF instead.
543The macro _Py_NewReference(op) initialize reference counts to 1, and
544in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
545bookkeeping appropriate to the special build.
546
547We assume that the reference count field can never overflow; this can
548be proven when the size of the field is the same as the pointer size, so
549we ignore the possibility. Provided a C int is at least 32 bits (which
550is implicitly assumed in many parts of this code), that's enough for
551about 2**31 references to an object.
552
553XXX The following became out of date in Python 2.2, but I'm not sure
554XXX what the full truth is now. Certainly, heap-allocated type objects
555XXX can and should be deallocated.
556Type objects should never be deallocated; the type pointer in an object
557is not considered to be a reference to the type object, to save
558complications in the deallocation function. (This is actually a
559decision that's up to the implementer of each new type so if you want,
560you can count such references to the type object.)
561
562*** WARNING*** The Py_DECREF macro must have a side-effect-free argument
563since it may evaluate its argument multiple times. (The alternative
564would be to mace it a proper function or assign it to a global temporary
565variable first, both of which are slower; and in a multi-threaded
566environment the global variable trick is not safe.)
567*/
568
569/* First define a pile of simple helper macros, one set per special
570 * build symbol. These either expand to the obvious things, or to
571 * nothing at all when the special mode isn't in effect. The main
572 * macros can later be defined just once then, yet expand to different
573 * things depending on which special build options are and aren't in effect.
574 * Trust me <wink>: while painful, this is 20x easier to understand than,
575 * e.g, defining _Py_NewReference five different times in a maze of nested
576 * #ifdefs (we used to do that -- it was impenetrable).
577 */
578#ifdef Py_REF_DEBUG
579PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
580PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
581 int lineno, PyObject *op);
582PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
583PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
584PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
585#define _Py_INC_REFTOTAL _Py_RefTotal++
586#define _Py_DEC_REFTOTAL _Py_RefTotal--
587#define _Py_REF_DEBUG_COMMA ,
588#define _Py_CHECK_REFCNT(OP) \
589{ if ((OP)->ob_refcnt < 0) \
590 _Py_NegativeRefcount(__FILE__, __LINE__, \
591 (PyObject *)(OP)); \
592}
593#else
594#define _Py_INC_REFTOTAL
595#define _Py_DEC_REFTOTAL
596#define _Py_REF_DEBUG_COMMA
597#define _Py_CHECK_REFCNT(OP) /* a semicolon */;
598#endif /* Py_REF_DEBUG */
599
600#ifdef COUNT_ALLOCS
601PyAPI_FUNC(void) inc_count(PyTypeObject *);
602PyAPI_FUNC(void) dec_count(PyTypeObject *);
603#define _Py_INC_TPALLOCS(OP) inc_count((OP)->ob_type)
604#define _Py_INC_TPFREES(OP) dec_count((OP)->ob_type)
605#define _Py_DEC_TPFREES(OP) (OP)->ob_type->tp_frees--
606#define _Py_COUNT_ALLOCS_COMMA ,
607#else
608#define _Py_INC_TPALLOCS(OP)
609#define _Py_INC_TPFREES(OP)
610#define _Py_DEC_TPFREES(OP)
611#define _Py_COUNT_ALLOCS_COMMA
612#endif /* COUNT_ALLOCS */
613
614#ifdef Py_TRACE_REFS
615/* Py_TRACE_REFS is such major surgery that we call external routines. */
616PyAPI_FUNC(void) _Py_NewReference(PyObject *);
617PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
618PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
619PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
620PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
621PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
622
623#else
624/* Without Py_TRACE_REFS, there's little enough to do that we expand code
625 * inline.
626 */
627#define _Py_NewReference(op) ( \
628 _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \
629 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
630 (op)->ob_refcnt = 1)
631
632#define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
633
634#define _Py_Dealloc(op) ( \
635 _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \
636 (*(op)->ob_type->tp_dealloc)((PyObject *)(op)))
637#endif /* !Py_TRACE_REFS */
638
639#define Py_INCREF(op) ( \
640 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
641 (op)->ob_refcnt++)
642
643#define Py_DECREF(op) \
644 if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
645 --(op)->ob_refcnt != 0) \
646 _Py_CHECK_REFCNT(op) \
647 else \
648 _Py_Dealloc((PyObject *)(op))
649
650/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
651 * and tp_dealloc implementatons.
652 *
653 * Note that "the obvious" code can be deadly:
654 *
655 * Py_XDECREF(op);
656 * op = NULL;
657 *
658 * Typically, `op` is something like self->containee, and `self` is done
659 * using its `containee` member. In the code sequence above, suppose
660 * `containee` is non-NULL with a refcount of 1. Its refcount falls to
661 * 0 on the first line, which can trigger an arbitrary amount of code,
662 * possibly including finalizers (like __del__ methods or weakref callbacks)
663 * coded in Python, which in turn can release the GIL and allow other threads
664 * to run, etc. Such code may even invoke methods of `self` again, or cause
665 * cyclic gc to trigger, but-- oops! --self->containee still points to the
666 * object being torn down, and it may be in an insane state while being torn
667 * down. This has in fact been a rich historic source of miserable (rare &
668 * hard-to-diagnose) segfaulting (and other) bugs.
669 *
670 * The safe way is:
671 *
672 * Py_CLEAR(op);
673 *
674 * That arranges to set `op` to NULL _before_ decref'ing, so that any code
675 * triggered as a side-effect of `op` getting torn down no longer believes
676 * `op` points to a valid object.
677 *
678 * There are cases where it's safe to use the naive code, but they're brittle.
679 * For example, if `op` points to a Python integer, you know that destroying
680 * one of those can't cause problems -- but in part that relies on that
681 * Python integers aren't currently weakly referencable. Best practice is
682 * to use Py_CLEAR() even if you can't think of a reason for why you need to.
683 */
684#define Py_CLEAR(op) \
685 do { \
686 if (op) { \
687 PyObject *tmp = (PyObject *)(op); \
688 (op) = NULL; \
689 Py_DECREF(tmp); \
690 } \
691 } while (0)
692
693/* Macros to use in case the object pointer may be NULL: */
694#define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
695#define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
696
697/*
698These are provided as conveniences to Python runtime embedders, so that
699they can have object code that is not dependent on Python compilation flags.
700*/
701PyAPI_FUNC(void) Py_IncRef(PyObject *);
702PyAPI_FUNC(void) Py_DecRef(PyObject *);
703
704/*
705_Py_NoneStruct is an object of undefined type which can be used in contexts
706where NULL (nil) is not suitable (since NULL often means 'error').
707
708Don't forget to apply Py_INCREF() when returning this value!!!
709*/
710PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
711#define Py_None (&_Py_NoneStruct)
712
713/* Macro for returning Py_None from a function */
714#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
715
716/*
717Py_NotImplemented is a singleton used to signal that an operation is
718not implemented for a given type combination.
719*/
720PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
721#define Py_NotImplemented (&_Py_NotImplementedStruct)
722
723/* Rich comparison opcodes */
724#define Py_LT 0
725#define Py_LE 1
726#define Py_EQ 2
727#define Py_NE 3
728#define Py_GT 4
729#define Py_GE 5
730
731/* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
732 * Defined in object.c.
733 */
734PyAPI_DATA(int) _Py_SwappedOp[];
735
736/*
737Define staticforward and statichere for source compatibility with old
738C extensions.
739
740The staticforward define was needed to support certain broken C
741compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
742static keyword when it was used with a forward declaration of a static
743initialized structure. Standard C allows the forward declaration with
744static, and we've decided to stop catering to broken C compilers.
745(In fact, we expect that the compilers are all fixed eight years later.)
746*/
747
748#define staticforward static
749#define statichere static
750
751
752/*
753More conventions
754================
755
756Argument Checking
757-----------------
758
759Functions that take objects as arguments normally don't check for nil
760arguments, but they do check the type of the argument, and return an
761error if the function doesn't apply to the type.
762
763Failure Modes
764-------------
765
766Functions may fail for a variety of reasons, including running out of
767memory. This is communicated to the caller in two ways: an error string
768is set (see errors.h), and the function result differs: functions that
769normally return a pointer return NULL for failure, functions returning
770an integer return -1 (which could be a legal return value too!), and
771other functions return 0 for success and -1 for failure.
772Callers should always check for errors before using the result. If
773an error was set, the caller must either explicitly clear it, or pass
774the error on to its caller.
775
776Reference Counts
777----------------
778
779It takes a while to get used to the proper usage of reference counts.
780
781Functions that create an object set the reference count to 1; such new
782objects must be stored somewhere or destroyed again with Py_DECREF().
783Some functions that 'store' objects, such as PyTuple_SetItem() and
784PyList_SetItem(),
785don't increment the reference count of the object, since the most
786frequent use is to store a fresh object. Functions that 'retrieve'
787objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
788don't increment
789the reference count, since most frequently the object is only looked at
790quickly. Thus, to retrieve an object and store it again, the caller
791must call Py_INCREF() explicitly.
792
793NOTE: functions that 'consume' a reference count, like
794PyList_SetItem(), consume the reference even if the object wasn't
795successfully stored, to simplify error handling.
796
797It seems attractive to make other functions that take an object as
798argument consume a reference count; however, this may quickly get
799confusing (even the current practice is already confusing). Consider
800it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
801times.
802*/
803
804
805/* Trashcan mechanism, thanks to Christian Tismer.
806
807When deallocating a container object, it's possible to trigger an unbounded
808chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
809next" object in the chain to 0. This can easily lead to stack faults, and
810especially in threads (which typically have less stack space to work with).
811
812A container object that participates in cyclic gc can avoid this by
813bracketing the body of its tp_dealloc function with a pair of macros:
814
815static void
816mytype_dealloc(mytype *p)
817{
818 ... declarations go here ...
819
820 PyObject_GC_UnTrack(p); // must untrack first
821 Py_TRASHCAN_SAFE_BEGIN(p)
822 ... The body of the deallocator goes here, including all calls ...
823 ... to Py_DECREF on contained objects. ...
824 Py_TRASHCAN_SAFE_END(p)
825}
826
827CAUTION: Never return from the middle of the body! If the body needs to
828"get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
829call, and goto it. Else the call-depth counter (see below) will stay
830above 0 forever, and the trashcan will never get emptied.
831
832How it works: The BEGIN macro increments a call-depth counter. So long
833as this counter is small, the body of the deallocator is run directly without
834further ado. But if the counter gets large, it instead adds p to a list of
835objects to be deallocated later, skips the body of the deallocator, and
836resumes execution after the END macro. The tp_dealloc routine then returns
837without deallocating anything (and so unbounded call-stack depth is avoided).
838
839When the call stack finishes unwinding again, code generated by the END macro
840notices this, and calls another routine to deallocate all the objects that
841may have been added to the list of deferred deallocations. In effect, a
842chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
843with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
844*/
845
846PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
847PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
848PyAPI_DATA(int) _PyTrash_delete_nesting;
849PyAPI_DATA(PyObject *) _PyTrash_delete_later;
850
851#define PyTrash_UNWIND_LEVEL 50
852
853#define Py_TRASHCAN_SAFE_BEGIN(op) \
854 if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
855 ++_PyTrash_delete_nesting;
856 /* The body of the deallocator is here. */
857#define Py_TRASHCAN_SAFE_END(op) \
858 --_PyTrash_delete_nesting; \
859 if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
860 _PyTrash_destroy_chain(); \
861 } \
862 else \
863 _PyTrash_deposit_object((PyObject*)op);
864
865#ifdef __cplusplus
866}
867#endif
868#endif /* !Py_OBJECT_H */
Note: See TracBrowser for help on using the repository browser.