1 | \documentclass{manual}
|
---|
2 | \usepackage[T1]{fontenc}
|
---|
3 | \usepackage{textcomp}
|
---|
4 |
|
---|
5 | % Things to do:
|
---|
6 | % Should really move the Python startup file info to an appendix
|
---|
7 |
|
---|
8 | \title{Python Tutorial}
|
---|
9 |
|
---|
10 | \input{boilerplate}
|
---|
11 |
|
---|
12 | \makeindex
|
---|
13 |
|
---|
14 | \begin{document}
|
---|
15 |
|
---|
16 | \maketitle
|
---|
17 |
|
---|
18 | \ifhtml
|
---|
19 | \chapter*{Front Matter\label{front}}
|
---|
20 | \fi
|
---|
21 |
|
---|
22 | \input{copyright}
|
---|
23 |
|
---|
24 | \begin{abstract}
|
---|
25 |
|
---|
26 | \noindent
|
---|
27 | Python is an easy to learn, powerful programming language. It has
|
---|
28 | efficient high-level data structures and a simple but effective
|
---|
29 | approach to object-oriented programming. Python's elegant syntax and
|
---|
30 | dynamic typing, together with its interpreted nature, make it an ideal
|
---|
31 | language for scripting and rapid application development in many areas
|
---|
32 | on most platforms.
|
---|
33 |
|
---|
34 | The Python interpreter and the extensive standard library are freely
|
---|
35 | available in source or binary form for all major platforms from the
|
---|
36 | Python Web site, \url{http://www.python.org/}, and may be freely
|
---|
37 | distributed. The same site also contains distributions of and
|
---|
38 | pointers to many free third party Python modules, programs and tools,
|
---|
39 | and additional documentation.
|
---|
40 |
|
---|
41 | The Python interpreter is easily extended with new functions and data
|
---|
42 | types implemented in C or \Cpp{} (or other languages callable from C).
|
---|
43 | Python is also suitable as an extension language for customizable
|
---|
44 | applications.
|
---|
45 |
|
---|
46 | This tutorial introduces the reader informally to the basic concepts
|
---|
47 | and features of the Python language and system. It helps to have a
|
---|
48 | Python interpreter handy for hands-on experience, but all examples are
|
---|
49 | self-contained, so the tutorial can be read off-line as well.
|
---|
50 |
|
---|
51 | For a description of standard objects and modules, see the
|
---|
52 | \citetitle[../lib/lib.html]{Python Library Reference} document. The
|
---|
53 | \citetitle[../ref/ref.html]{Python Reference Manual} gives a more
|
---|
54 | formal definition of the language. To write extensions in C or
|
---|
55 | \Cpp, read \citetitle[../ext/ext.html]{Extending and Embedding the
|
---|
56 | Python Interpreter} and \citetitle[../api/api.html]{Python/C API
|
---|
57 | Reference}. There are also several books covering Python in depth.
|
---|
58 |
|
---|
59 | This tutorial does not attempt to be comprehensive and cover every
|
---|
60 | single feature, or even every commonly used feature. Instead, it
|
---|
61 | introduces many of Python's most noteworthy features, and will give
|
---|
62 | you a good idea of the language's flavor and style. After reading it,
|
---|
63 | you will be able to read and write Python modules and programs, and
|
---|
64 | you will be ready to learn more about the various Python library
|
---|
65 | modules described in the \citetitle[../lib/lib.html]{Python Library
|
---|
66 | Reference}.
|
---|
67 |
|
---|
68 | \end{abstract}
|
---|
69 |
|
---|
70 | \tableofcontents
|
---|
71 |
|
---|
72 |
|
---|
73 | \chapter{Whetting Your Appetite \label{intro}}
|
---|
74 |
|
---|
75 | If you do much work on computers, eventually you find that there's
|
---|
76 | some task you'd like to automate. For example, you may wish to
|
---|
77 | perform a search-and-replace over a large number of text files, or
|
---|
78 | rename and rearrange a bunch of photo files in a complicated way.
|
---|
79 | Perhaps you'd like to write a small custom database, or a specialized
|
---|
80 | GUI application, or a simple game.
|
---|
81 |
|
---|
82 | If you're a professional software developer, you may have to work with
|
---|
83 | several C/\Cpp/Java libraries but find the usual
|
---|
84 | write/compile/test/re-compile cycle is too slow. Perhaps you're
|
---|
85 | writing a test suite for such a library and find writing the testing
|
---|
86 | code a tedious task. Or maybe you've written a program that could use
|
---|
87 | an extension language, and you don't want to design and implement a
|
---|
88 | whole new language for your application.
|
---|
89 |
|
---|
90 | Python is just the language for you.
|
---|
91 |
|
---|
92 | You could write a {\UNIX} shell script or Windows batch files for some
|
---|
93 | of these tasks, but shell scripts are best at moving around files and
|
---|
94 | changing text data, not well-suited for GUI applications or games.
|
---|
95 | You could write a C/{\Cpp}/Java program, but it can take a lot of
|
---|
96 | development time to get even a first-draft program. Python is simpler
|
---|
97 | to use, available on Windows, MacOS X, and {\UNIX} operating systems,
|
---|
98 | and will help you get the job done more quickly.
|
---|
99 |
|
---|
100 | Python is simple to use, but it is a real programming language,
|
---|
101 | offering much more structure and support for large programs than shell
|
---|
102 | scripts or batch files can offer. On the other hand, Python also
|
---|
103 | offers much more error checking than C, and, being a
|
---|
104 | \emph{very-high-level language}, it has high-level data types built
|
---|
105 | in, such as flexible arrays and dictionaries. Because of its more
|
---|
106 | general data types Python is applicable to a much larger problem
|
---|
107 | domain than Awk or even Perl, yet many things are at
|
---|
108 | least as easy in Python as in those languages.
|
---|
109 |
|
---|
110 | Python allows you to split your program into modules that can be
|
---|
111 | reused in other Python programs. It comes with a large collection of
|
---|
112 | standard modules that you can use as the basis of your programs --- or
|
---|
113 | as examples to start learning to program in Python. Some of these
|
---|
114 | modules provide things like file I/O, system calls,
|
---|
115 | sockets, and even interfaces to graphical user interface toolkits like Tk.
|
---|
116 |
|
---|
117 | Python is an interpreted language, which can save you considerable time
|
---|
118 | during program development because no compilation and linking is
|
---|
119 | necessary. The interpreter can be used interactively, which makes it
|
---|
120 | easy to experiment with features of the language, to write throw-away
|
---|
121 | programs, or to test functions during bottom-up program development.
|
---|
122 | It is also a handy desk calculator.
|
---|
123 |
|
---|
124 | Python enables programs to be written compactly and readably. Programs
|
---|
125 | written in Python are typically much shorter than equivalent C,
|
---|
126 | \Cpp{}, or Java programs, for several reasons:
|
---|
127 | \begin{itemize}
|
---|
128 | \item
|
---|
129 | the high-level data types allow you to express complex operations in a
|
---|
130 | single statement;
|
---|
131 | \item
|
---|
132 | statement grouping is done by indentation instead of beginning and ending
|
---|
133 | brackets;
|
---|
134 | \item
|
---|
135 | no variable or argument declarations are necessary.
|
---|
136 | \end{itemize}
|
---|
137 |
|
---|
138 | Python is \emph{extensible}: if you know how to program in C it is easy
|
---|
139 | to add a new built-in function or module to the interpreter, either to
|
---|
140 | perform critical operations at maximum speed, or to link Python
|
---|
141 | programs to libraries that may only be available in binary form (such
|
---|
142 | as a vendor-specific graphics library). Once you are really hooked,
|
---|
143 | you can link the Python interpreter into an application written in C
|
---|
144 | and use it as an extension or command language for that application.
|
---|
145 |
|
---|
146 | By the way, the language is named after the BBC show ``Monty Python's
|
---|
147 | Flying Circus'' and has nothing to do with nasty reptiles. Making
|
---|
148 | references to Monty Python skits in documentation is not only allowed,
|
---|
149 | it is encouraged!
|
---|
150 |
|
---|
151 | %\section{Where From Here \label{where}}
|
---|
152 |
|
---|
153 | Now that you are all excited about Python, you'll want to examine it
|
---|
154 | in some more detail. Since the best way to learn a language is
|
---|
155 | to use it, the tutorial invites you to play with the Python interpreter
|
---|
156 | as you read.
|
---|
157 |
|
---|
158 | In the next chapter, the mechanics of using the interpreter are
|
---|
159 | explained. This is rather mundane information, but essential for
|
---|
160 | trying out the examples shown later.
|
---|
161 |
|
---|
162 | The rest of the tutorial introduces various features of the Python
|
---|
163 | language and system through examples, beginning with simple
|
---|
164 | expressions, statements and data types, through functions and modules,
|
---|
165 | and finally touching upon advanced concepts like exceptions
|
---|
166 | and user-defined classes.
|
---|
167 |
|
---|
168 | \chapter{Using the Python Interpreter \label{using}}
|
---|
169 |
|
---|
170 | \section{Invoking the Interpreter \label{invoking}}
|
---|
171 |
|
---|
172 | The Python interpreter is usually installed as
|
---|
173 | \file{/usr/local/bin/python} on those machines where it is available;
|
---|
174 | putting \file{/usr/local/bin} in your \UNIX{} shell's search path
|
---|
175 | makes it possible to start it by typing the command
|
---|
176 |
|
---|
177 | \begin{verbatim}
|
---|
178 | python
|
---|
179 | \end{verbatim}
|
---|
180 |
|
---|
181 | to the shell. Since the choice of the directory where the interpreter
|
---|
182 | lives is an installation option, other places are possible; check with
|
---|
183 | your local Python guru or system administrator. (E.g.,
|
---|
184 | \file{/usr/local/python} is a popular alternative location.)
|
---|
185 |
|
---|
186 | On Windows machines, the Python installation is usually placed in
|
---|
187 | \file{C:\e Python24}, though you can change this when you're running
|
---|
188 | the installer. To add this directory to your path,
|
---|
189 | you can type the following command into the command prompt in a DOS box:
|
---|
190 |
|
---|
191 | \begin{verbatim}
|
---|
192 | set path=%path%;C:\python24
|
---|
193 | \end{verbatim}
|
---|
194 |
|
---|
195 |
|
---|
196 | Typing an end-of-file character (\kbd{Control-D} on \UNIX,
|
---|
197 | \kbd{Control-Z} on Windows) at the primary prompt causes the
|
---|
198 | interpreter to exit with a zero exit status. If that doesn't work,
|
---|
199 | you can exit the interpreter by typing the following commands:
|
---|
200 | \samp{import sys; sys.exit()}.
|
---|
201 |
|
---|
202 | The interpreter's line-editing features usually aren't very
|
---|
203 | sophisticated. On \UNIX, whoever installed the interpreter may have
|
---|
204 | enabled support for the GNU readline library, which adds more
|
---|
205 | elaborate interactive editing and history features. Perhaps the
|
---|
206 | quickest check to see whether command line editing is supported is
|
---|
207 | typing Control-P to the first Python prompt you get. If it beeps, you
|
---|
208 | have command line editing; see Appendix \ref{interacting} for an
|
---|
209 | introduction to the keys. If nothing appears to happen, or if
|
---|
210 | \code{\^P} is echoed, command line editing isn't available; you'll
|
---|
211 | only be able to use backspace to remove characters from the current
|
---|
212 | line.
|
---|
213 |
|
---|
214 | The interpreter operates somewhat like the \UNIX{} shell: when called
|
---|
215 | with standard input connected to a tty device, it reads and executes
|
---|
216 | commands interactively; when called with a file name argument or with
|
---|
217 | a file as standard input, it reads and executes a \emph{script} from
|
---|
218 | that file.
|
---|
219 |
|
---|
220 | A second way of starting the interpreter is
|
---|
221 | \samp{\program{python} \programopt{-c} \var{command} [arg] ...}, which
|
---|
222 | executes the statement(s) in \var{command}, analogous to the shell's
|
---|
223 | \programopt{-c} option. Since Python statements often contain spaces
|
---|
224 | or other characters that are special to the shell, it is best to quote
|
---|
225 | \var{command} in its entirety with double quotes.
|
---|
226 |
|
---|
227 | Some Python modules are also useful as scripts. These can be invoked using
|
---|
228 | \samp{\program{python} \programopt{-m} \var{module} [arg] ...}, which
|
---|
229 | executes the source file for \var{module} as if you had spelled out its
|
---|
230 | full name on the command line.
|
---|
231 |
|
---|
232 | Note that there is a difference between \samp{python file} and
|
---|
233 | \samp{python <file}. In the latter case, input requests from the
|
---|
234 | program, such as calls to \function{input()} and \function{raw_input()}, are
|
---|
235 | satisfied from \emph{file}. Since this file has already been read
|
---|
236 | until the end by the parser before the program starts executing, the
|
---|
237 | program will encounter end-of-file immediately. In the former case
|
---|
238 | (which is usually what you want) they are satisfied from whatever file
|
---|
239 | or device is connected to standard input of the Python interpreter.
|
---|
240 |
|
---|
241 | When a script file is used, it is sometimes useful to be able to run
|
---|
242 | the script and enter interactive mode afterwards. This can be done by
|
---|
243 | passing \programopt{-i} before the script. (This does not work if the
|
---|
244 | script is read from standard input, for the same reason as explained
|
---|
245 | in the previous paragraph.)
|
---|
246 |
|
---|
247 | \subsection{Argument Passing \label{argPassing}}
|
---|
248 |
|
---|
249 | When known to the interpreter, the script name and additional
|
---|
250 | arguments thereafter are passed to the script in the variable
|
---|
251 | \code{sys.argv}, which is a list of strings. Its length is at least
|
---|
252 | one; when no script and no arguments are given, \code{sys.argv[0]} is
|
---|
253 | an empty string. When the script name is given as \code{'-'} (meaning
|
---|
254 | standard input), \code{sys.argv[0]} is set to \code{'-'}. When
|
---|
255 | \programopt{-c} \var{command} is used, \code{sys.argv[0]} is set to
|
---|
256 | \code{'-c'}. When \programopt{-m} \var{module} is used, \code{sys.argv[0]}
|
---|
257 | is set to the full name of the located module. Options found after
|
---|
258 | \programopt{-c} \var{command} or \programopt{-m} \var{module} are not consumed
|
---|
259 | by the Python interpreter's option processing but left in \code{sys.argv} for
|
---|
260 | the command or module to handle.
|
---|
261 |
|
---|
262 | \subsection{Interactive Mode \label{interactive}}
|
---|
263 |
|
---|
264 | When commands are read from a tty, the interpreter is said to be in
|
---|
265 | \emph{interactive mode}. In this mode it prompts for the next command
|
---|
266 | with the \emph{primary prompt}, usually three greater-than signs
|
---|
267 | (\samp{>>>~}); for continuation lines it prompts with the
|
---|
268 | \emph{secondary prompt}, by default three dots (\samp{...~}).
|
---|
269 | The interpreter prints a welcome message stating its version number
|
---|
270 | and a copyright notice before printing the first prompt:
|
---|
271 |
|
---|
272 | \begin{verbatim}
|
---|
273 | python
|
---|
274 | Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
|
---|
275 | Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
|
---|
276 | >>>
|
---|
277 | \end{verbatim}
|
---|
278 |
|
---|
279 | Continuation lines are needed when entering a multi-line construct.
|
---|
280 | As an example, take a look at this \keyword{if} statement:
|
---|
281 |
|
---|
282 | \begin{verbatim}
|
---|
283 | >>> the_world_is_flat = 1
|
---|
284 | >>> if the_world_is_flat:
|
---|
285 | ... print "Be careful not to fall off!"
|
---|
286 | ...
|
---|
287 | Be careful not to fall off!
|
---|
288 | \end{verbatim}
|
---|
289 |
|
---|
290 |
|
---|
291 | \section{The Interpreter and Its Environment \label{interp}}
|
---|
292 |
|
---|
293 | \subsection{Error Handling \label{error}}
|
---|
294 |
|
---|
295 | When an error occurs, the interpreter prints an error
|
---|
296 | message and a stack trace. In interactive mode, it then returns to
|
---|
297 | the primary prompt; when input came from a file, it exits with a
|
---|
298 | nonzero exit status after printing
|
---|
299 | the stack trace. (Exceptions handled by an \keyword{except} clause in a
|
---|
300 | \keyword{try} statement are not errors in this context.) Some errors are
|
---|
301 | unconditionally fatal and cause an exit with a nonzero exit; this
|
---|
302 | applies to internal inconsistencies and some cases of running out of
|
---|
303 | memory. All error messages are written to the standard error stream;
|
---|
304 | normal output from executed commands is written to standard
|
---|
305 | output.
|
---|
306 |
|
---|
307 | Typing the interrupt character (usually Control-C or DEL) to the
|
---|
308 | primary or secondary prompt cancels the input and returns to the
|
---|
309 | primary prompt.\footnote{
|
---|
310 | A problem with the GNU Readline package may prevent this.
|
---|
311 | }
|
---|
312 | Typing an interrupt while a command is executing raises the
|
---|
313 | \exception{KeyboardInterrupt} exception, which may be handled by a
|
---|
314 | \keyword{try} statement.
|
---|
315 |
|
---|
316 | \subsection{Executable Python Scripts \label{scripts}}
|
---|
317 |
|
---|
318 | On BSD'ish \UNIX{} systems, Python scripts can be made directly
|
---|
319 | executable, like shell scripts, by putting the line
|
---|
320 |
|
---|
321 | \begin{verbatim}
|
---|
322 | #! /usr/bin/env python
|
---|
323 | \end{verbatim}
|
---|
324 |
|
---|
325 | (assuming that the interpreter is on the user's \envvar{PATH}) at the
|
---|
326 | beginning of the script and giving the file an executable mode. The
|
---|
327 | \samp{\#!} must be the first two characters of the file. On some
|
---|
328 | platforms, this first line must end with a \UNIX-style line ending
|
---|
329 | (\character{\e n}), not a Mac OS (\character{\e r}) or Windows
|
---|
330 | (\character{\e r\e n}) line ending. Note that
|
---|
331 | the hash, or pound, character, \character{\#}, is used to start a
|
---|
332 | comment in Python.
|
---|
333 |
|
---|
334 | The script can be given an executable mode, or permission, using the
|
---|
335 | \program{chmod} command:
|
---|
336 |
|
---|
337 | \begin{verbatim}
|
---|
338 | $ chmod +x myscript.py
|
---|
339 | \end{verbatim} % $ <-- bow to font-lock
|
---|
340 |
|
---|
341 |
|
---|
342 | \subsection{Source Code Encoding}
|
---|
343 |
|
---|
344 | It is possible to use encodings different than \ASCII{} in Python source
|
---|
345 | files. The best way to do it is to put one more special comment line
|
---|
346 | right after the \code{\#!} line to define the source file encoding:
|
---|
347 |
|
---|
348 | \begin{alltt}
|
---|
349 | # -*- coding: \var{encoding} -*-
|
---|
350 | \end{alltt}
|
---|
351 |
|
---|
352 | With that declaration, all characters in the source file will be treated as
|
---|
353 | having the encoding \var{encoding}, and it will be
|
---|
354 | possible to directly write Unicode string literals in the selected
|
---|
355 | encoding. The list of possible encodings can be found in the
|
---|
356 | \citetitle[../lib/lib.html]{Python Library Reference}, in the section
|
---|
357 | on \ulink{\module{codecs}}{../lib/module-codecs.html}.
|
---|
358 |
|
---|
359 | For example, to write Unicode literals including the Euro currency
|
---|
360 | symbol, the ISO-8859-15 encoding can be used, with the Euro symbol
|
---|
361 | having the ordinal value 164. This script will print the value 8364
|
---|
362 | (the Unicode codepoint corresponding to the Euro symbol) and then
|
---|
363 | exit:
|
---|
364 |
|
---|
365 | \begin{alltt}
|
---|
366 | # -*- coding: iso-8859-15 -*-
|
---|
367 |
|
---|
368 | currency = u"\texteuro"
|
---|
369 | print ord(currency)
|
---|
370 | \end{alltt}
|
---|
371 |
|
---|
372 | If your editor supports saving files as \code{UTF-8} with a UTF-8
|
---|
373 | \emph{byte order mark} (aka BOM), you can use that instead of an
|
---|
374 | encoding declaration. IDLE supports this capability if
|
---|
375 | \code{Options/General/Default Source Encoding/UTF-8} is set. Notice
|
---|
376 | that this signature is not understood in older Python releases (2.2
|
---|
377 | and earlier), and also not understood by the operating system for
|
---|
378 | script files with \code{\#!} lines (only used on \UNIX{} systems).
|
---|
379 |
|
---|
380 | By using UTF-8 (either through the signature or an encoding
|
---|
381 | declaration), characters of most languages in the world can be used
|
---|
382 | simultaneously in string literals and comments. Using non-\ASCII{}
|
---|
383 | characters in identifiers is not supported. To display all these
|
---|
384 | characters properly, your editor must recognize that the file is
|
---|
385 | UTF-8, and it must use a font that supports all the characters in the
|
---|
386 | file.
|
---|
387 |
|
---|
388 | \subsection{The Interactive Startup File \label{startup}}
|
---|
389 |
|
---|
390 | % XXX This should probably be dumped in an appendix, since most people
|
---|
391 | % don't use Python interactively in non-trivial ways.
|
---|
392 |
|
---|
393 | When you use Python interactively, it is frequently handy to have some
|
---|
394 | standard commands executed every time the interpreter is started. You
|
---|
395 | can do this by setting an environment variable named
|
---|
396 | \envvar{PYTHONSTARTUP} to the name of a file containing your start-up
|
---|
397 | commands. This is similar to the \file{.profile} feature of the
|
---|
398 | \UNIX{} shells.
|
---|
399 |
|
---|
400 | This file is only read in interactive sessions, not when Python reads
|
---|
401 | commands from a script, and not when \file{/dev/tty} is given as the
|
---|
402 | explicit source of commands (which otherwise behaves like an
|
---|
403 | interactive session). It is executed in the same namespace where
|
---|
404 | interactive commands are executed, so that objects that it defines or
|
---|
405 | imports can be used without qualification in the interactive session.
|
---|
406 | You can also change the prompts \code{sys.ps1} and \code{sys.ps2} in
|
---|
407 | this file.
|
---|
408 |
|
---|
409 | If you want to read an additional start-up file from the current
|
---|
410 | directory, you can program this in the global start-up file using code
|
---|
411 | like \samp{if os.path.isfile('.pythonrc.py'):
|
---|
412 | execfile('.pythonrc.py')}. If you want to use the startup file in a
|
---|
413 | script, you must do this explicitly in the script:
|
---|
414 |
|
---|
415 | \begin{verbatim}
|
---|
416 | import os
|
---|
417 | filename = os.environ.get('PYTHONSTARTUP')
|
---|
418 | if filename and os.path.isfile(filename):
|
---|
419 | execfile(filename)
|
---|
420 | \end{verbatim}
|
---|
421 |
|
---|
422 |
|
---|
423 | \chapter{An Informal Introduction to Python \label{informal}}
|
---|
424 |
|
---|
425 | In the following examples, input and output are distinguished by the
|
---|
426 | presence or absence of prompts (\samp{>>>~} and \samp{...~}): to repeat
|
---|
427 | the example, you must type everything after the prompt, when the
|
---|
428 | prompt appears; lines that do not begin with a prompt are output from
|
---|
429 | the interpreter. %
|
---|
430 | %\footnote{
|
---|
431 | % I'd prefer to use different fonts to distinguish input
|
---|
432 | % from output, but the amount of LaTeX hacking that would require
|
---|
433 | % is currently beyond my ability.
|
---|
434 | %}
|
---|
435 | Note that a secondary prompt on a line by itself in an example means
|
---|
436 | you must type a blank line; this is used to end a multi-line command.
|
---|
437 |
|
---|
438 | Many of the examples in this manual, even those entered at the
|
---|
439 | interactive prompt, include comments. Comments in Python start with
|
---|
440 | the hash character, \character{\#}, and extend to the end of the
|
---|
441 | physical line. A comment may appear at the start of a line or
|
---|
442 | following whitespace or code, but not within a string literal. A hash
|
---|
443 | character within a string literal is just a hash character.
|
---|
444 |
|
---|
445 | Some examples:
|
---|
446 |
|
---|
447 | \begin{verbatim}
|
---|
448 | # this is the first comment
|
---|
449 | SPAM = 1 # and this is the second comment
|
---|
450 | # ... and now a third!
|
---|
451 | STRING = "# This is not a comment."
|
---|
452 | \end{verbatim}
|
---|
453 |
|
---|
454 |
|
---|
455 | \section{Using Python as a Calculator \label{calculator}}
|
---|
456 |
|
---|
457 | Let's try some simple Python commands. Start the interpreter and wait
|
---|
458 | for the primary prompt, \samp{>>>~}. (It shouldn't take long.)
|
---|
459 |
|
---|
460 | \subsection{Numbers \label{numbers}}
|
---|
461 |
|
---|
462 | The interpreter acts as a simple calculator: you can type an
|
---|
463 | expression at it and it will write the value. Expression syntax is
|
---|
464 | straightforward: the operators \code{+}, \code{-}, \code{*} and
|
---|
465 | \code{/} work just like in most other languages (for example, Pascal
|
---|
466 | or C); parentheses can be used for grouping. For example:
|
---|
467 |
|
---|
468 | \begin{verbatim}
|
---|
469 | >>> 2+2
|
---|
470 | 4
|
---|
471 | >>> # This is a comment
|
---|
472 | ... 2+2
|
---|
473 | 4
|
---|
474 | >>> 2+2 # and a comment on the same line as code
|
---|
475 | 4
|
---|
476 | >>> (50-5*6)/4
|
---|
477 | 5
|
---|
478 | >>> # Integer division returns the floor:
|
---|
479 | ... 7/3
|
---|
480 | 2
|
---|
481 | >>> 7/-3
|
---|
482 | -3
|
---|
483 | \end{verbatim}
|
---|
484 |
|
---|
485 | The equal sign (\character{=}) is used to assign a value to a variable.
|
---|
486 | Afterwards, no result is displayed before the next interactive prompt:
|
---|
487 |
|
---|
488 | \begin{verbatim}
|
---|
489 | >>> width = 20
|
---|
490 | >>> height = 5*9
|
---|
491 | >>> width * height
|
---|
492 | 900
|
---|
493 | \end{verbatim}
|
---|
494 |
|
---|
495 | A value can be assigned to several variables simultaneously:
|
---|
496 |
|
---|
497 | \begin{verbatim}
|
---|
498 | >>> x = y = z = 0 # Zero x, y and z
|
---|
499 | >>> x
|
---|
500 | 0
|
---|
501 | >>> y
|
---|
502 | 0
|
---|
503 | >>> z
|
---|
504 | 0
|
---|
505 | \end{verbatim}
|
---|
506 |
|
---|
507 | There is full support for floating point; operators with mixed type
|
---|
508 | operands convert the integer operand to floating point:
|
---|
509 |
|
---|
510 | \begin{verbatim}
|
---|
511 | >>> 3 * 3.75 / 1.5
|
---|
512 | 7.5
|
---|
513 | >>> 7.0 / 2
|
---|
514 | 3.5
|
---|
515 | \end{verbatim}
|
---|
516 |
|
---|
517 | Complex numbers are also supported; imaginary numbers are written with
|
---|
518 | a suffix of \samp{j} or \samp{J}. Complex numbers with a nonzero
|
---|
519 | real component are written as \samp{(\var{real}+\var{imag}j)}, or can
|
---|
520 | be created with the \samp{complex(\var{real}, \var{imag})} function.
|
---|
521 |
|
---|
522 | \begin{verbatim}
|
---|
523 | >>> 1j * 1J
|
---|
524 | (-1+0j)
|
---|
525 | >>> 1j * complex(0,1)
|
---|
526 | (-1+0j)
|
---|
527 | >>> 3+1j*3
|
---|
528 | (3+3j)
|
---|
529 | >>> (3+1j)*3
|
---|
530 | (9+3j)
|
---|
531 | >>> (1+2j)/(1+1j)
|
---|
532 | (1.5+0.5j)
|
---|
533 | \end{verbatim}
|
---|
534 |
|
---|
535 | Complex numbers are always represented as two floating point numbers,
|
---|
536 | the real and imaginary part. To extract these parts from a complex
|
---|
537 | number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}.
|
---|
538 |
|
---|
539 | \begin{verbatim}
|
---|
540 | >>> a=1.5+0.5j
|
---|
541 | >>> a.real
|
---|
542 | 1.5
|
---|
543 | >>> a.imag
|
---|
544 | 0.5
|
---|
545 | \end{verbatim}
|
---|
546 |
|
---|
547 | The conversion functions to floating point and integer
|
---|
548 | (\function{float()}, \function{int()} and \function{long()}) don't
|
---|
549 | work for complex numbers --- there is no one correct way to convert a
|
---|
550 | complex number to a real number. Use \code{abs(\var{z})} to get its
|
---|
551 | magnitude (as a float) or \code{z.real} to get its real part.
|
---|
552 |
|
---|
553 | \begin{verbatim}
|
---|
554 | >>> a=3.0+4.0j
|
---|
555 | >>> float(a)
|
---|
556 | Traceback (most recent call last):
|
---|
557 | File "<stdin>", line 1, in ?
|
---|
558 | TypeError: can't convert complex to float; use abs(z)
|
---|
559 | >>> a.real
|
---|
560 | 3.0
|
---|
561 | >>> a.imag
|
---|
562 | 4.0
|
---|
563 | >>> abs(a) # sqrt(a.real**2 + a.imag**2)
|
---|
564 | 5.0
|
---|
565 | >>>
|
---|
566 | \end{verbatim}
|
---|
567 |
|
---|
568 | In interactive mode, the last printed expression is assigned to the
|
---|
569 | variable \code{_}. This means that when you are using Python as a
|
---|
570 | desk calculator, it is somewhat easier to continue calculations, for
|
---|
571 | example:
|
---|
572 |
|
---|
573 | \begin{verbatim}
|
---|
574 | >>> tax = 12.5 / 100
|
---|
575 | >>> price = 100.50
|
---|
576 | >>> price * tax
|
---|
577 | 12.5625
|
---|
578 | >>> price + _
|
---|
579 | 113.0625
|
---|
580 | >>> round(_, 2)
|
---|
581 | 113.06
|
---|
582 | >>>
|
---|
583 | \end{verbatim}
|
---|
584 |
|
---|
585 | This variable should be treated as read-only by the user. Don't
|
---|
586 | explicitly assign a value to it --- you would create an independent
|
---|
587 | local variable with the same name masking the built-in variable with
|
---|
588 | its magic behavior.
|
---|
589 |
|
---|
590 | \subsection{Strings \label{strings}}
|
---|
591 |
|
---|
592 | Besides numbers, Python can also manipulate strings, which can be
|
---|
593 | expressed in several ways. They can be enclosed in single quotes or
|
---|
594 | double quotes:
|
---|
595 |
|
---|
596 | \begin{verbatim}
|
---|
597 | >>> 'spam eggs'
|
---|
598 | 'spam eggs'
|
---|
599 | >>> 'doesn\'t'
|
---|
600 | "doesn't"
|
---|
601 | >>> "doesn't"
|
---|
602 | "doesn't"
|
---|
603 | >>> '"Yes," he said.'
|
---|
604 | '"Yes," he said.'
|
---|
605 | >>> "\"Yes,\" he said."
|
---|
606 | '"Yes," he said.'
|
---|
607 | >>> '"Isn\'t," she said.'
|
---|
608 | '"Isn\'t," she said.'
|
---|
609 | \end{verbatim}
|
---|
610 |
|
---|
611 | String literals can span multiple lines in several ways. Continuation
|
---|
612 | lines can be used, with a backslash as the last character on the line
|
---|
613 | indicating that the next line is a logical continuation of the line:
|
---|
614 |
|
---|
615 | \begin{verbatim}
|
---|
616 | hello = "This is a rather long string containing\n\
|
---|
617 | several lines of text just as you would do in C.\n\
|
---|
618 | Note that whitespace at the beginning of the line is\
|
---|
619 | significant."
|
---|
620 |
|
---|
621 | print hello
|
---|
622 | \end{verbatim}
|
---|
623 |
|
---|
624 | Note that newlines still need to be embedded in the string using
|
---|
625 | \code{\e n}; the newline following the trailing backslash is
|
---|
626 | discarded. This example would print the following:
|
---|
627 |
|
---|
628 | \begin{verbatim}
|
---|
629 | This is a rather long string containing
|
---|
630 | several lines of text just as you would do in C.
|
---|
631 | Note that whitespace at the beginning of the line is significant.
|
---|
632 | \end{verbatim}
|
---|
633 |
|
---|
634 | If we make the string literal a ``raw'' string, however, the
|
---|
635 | \code{\e n} sequences are not converted to newlines, but the backslash
|
---|
636 | at the end of the line, and the newline character in the source, are
|
---|
637 | both included in the string as data. Thus, the example:
|
---|
638 |
|
---|
639 | \begin{verbatim}
|
---|
640 | hello = r"This is a rather long string containing\n\
|
---|
641 | several lines of text much as you would do in C."
|
---|
642 |
|
---|
643 | print hello
|
---|
644 | \end{verbatim}
|
---|
645 |
|
---|
646 | would print:
|
---|
647 |
|
---|
648 | \begin{verbatim}
|
---|
649 | This is a rather long string containing\n\
|
---|
650 | several lines of text much as you would do in C.
|
---|
651 | \end{verbatim}
|
---|
652 |
|
---|
653 | Or, strings can be surrounded in a pair of matching triple-quotes:
|
---|
654 | \code{"""} or \code{'\code{'}'}. End of lines do not need to be escaped
|
---|
655 | when using triple-quotes, but they will be included in the string.
|
---|
656 |
|
---|
657 | \begin{verbatim}
|
---|
658 | print """
|
---|
659 | Usage: thingy [OPTIONS]
|
---|
660 | -h Display this usage message
|
---|
661 | -H hostname Hostname to connect to
|
---|
662 | """
|
---|
663 | \end{verbatim}
|
---|
664 |
|
---|
665 | produces the following output:
|
---|
666 |
|
---|
667 | \begin{verbatim}
|
---|
668 | Usage: thingy [OPTIONS]
|
---|
669 | -h Display this usage message
|
---|
670 | -H hostname Hostname to connect to
|
---|
671 | \end{verbatim}
|
---|
672 |
|
---|
673 | The interpreter prints the result of string operations in the same way
|
---|
674 | as they are typed for input: inside quotes, and with quotes and other
|
---|
675 | funny characters escaped by backslashes, to show the precise
|
---|
676 | value. The string is enclosed in double quotes if the string contains
|
---|
677 | a single quote and no double quotes, else it's enclosed in single
|
---|
678 | quotes. (The \keyword{print} statement, described later, can be used
|
---|
679 | to write strings without quotes or escapes.)
|
---|
680 |
|
---|
681 | Strings can be concatenated (glued together) with the
|
---|
682 | \code{+} operator, and repeated with \code{*}:
|
---|
683 |
|
---|
684 | \begin{verbatim}
|
---|
685 | >>> word = 'Help' + 'A'
|
---|
686 | >>> word
|
---|
687 | 'HelpA'
|
---|
688 | >>> '<' + word*5 + '>'
|
---|
689 | '<HelpAHelpAHelpAHelpAHelpA>'
|
---|
690 | \end{verbatim}
|
---|
691 |
|
---|
692 | Two string literals next to each other are automatically concatenated;
|
---|
693 | the first line above could also have been written \samp{word = 'Help'
|
---|
694 | 'A'}; this only works with two literals, not with arbitrary string
|
---|
695 | expressions:
|
---|
696 |
|
---|
697 | \begin{verbatim}
|
---|
698 | >>> 'str' 'ing' # <- This is ok
|
---|
699 | 'string'
|
---|
700 | >>> 'str'.strip() + 'ing' # <- This is ok
|
---|
701 | 'string'
|
---|
702 | >>> 'str'.strip() 'ing' # <- This is invalid
|
---|
703 | File "<stdin>", line 1, in ?
|
---|
704 | 'str'.strip() 'ing'
|
---|
705 | ^
|
---|
706 | SyntaxError: invalid syntax
|
---|
707 | \end{verbatim}
|
---|
708 |
|
---|
709 | Strings can be subscripted (indexed); like in C, the first character
|
---|
710 | of a string has subscript (index) 0. There is no separate character
|
---|
711 | type; a character is simply a string of size one. Like in Icon,
|
---|
712 | substrings can be specified with the \emph{slice notation}: two indices
|
---|
713 | separated by a colon.
|
---|
714 |
|
---|
715 | \begin{verbatim}
|
---|
716 | >>> word[4]
|
---|
717 | 'A'
|
---|
718 | >>> word[0:2]
|
---|
719 | 'He'
|
---|
720 | >>> word[2:4]
|
---|
721 | 'lp'
|
---|
722 | \end{verbatim}
|
---|
723 |
|
---|
724 | Slice indices have useful defaults; an omitted first index defaults to
|
---|
725 | zero, an omitted second index defaults to the size of the string being
|
---|
726 | sliced.
|
---|
727 |
|
---|
728 | \begin{verbatim}
|
---|
729 | >>> word[:2] # The first two characters
|
---|
730 | 'He'
|
---|
731 | >>> word[2:] # Everything except the first two characters
|
---|
732 | 'lpA'
|
---|
733 | \end{verbatim}
|
---|
734 |
|
---|
735 | Unlike a C string, Python strings cannot be changed. Assigning to an
|
---|
736 | indexed position in the string results in an error:
|
---|
737 |
|
---|
738 | \begin{verbatim}
|
---|
739 | >>> word[0] = 'x'
|
---|
740 | Traceback (most recent call last):
|
---|
741 | File "<stdin>", line 1, in ?
|
---|
742 | TypeError: object doesn't support item assignment
|
---|
743 | >>> word[:1] = 'Splat'
|
---|
744 | Traceback (most recent call last):
|
---|
745 | File "<stdin>", line 1, in ?
|
---|
746 | TypeError: object doesn't support slice assignment
|
---|
747 | \end{verbatim}
|
---|
748 |
|
---|
749 | However, creating a new string with the combined content is easy and
|
---|
750 | efficient:
|
---|
751 |
|
---|
752 | \begin{verbatim}
|
---|
753 | >>> 'x' + word[1:]
|
---|
754 | 'xelpA'
|
---|
755 | >>> 'Splat' + word[4]
|
---|
756 | 'SplatA'
|
---|
757 | \end{verbatim}
|
---|
758 |
|
---|
759 | Here's a useful invariant of slice operations:
|
---|
760 | \code{s[:i] + s[i:]} equals \code{s}.
|
---|
761 |
|
---|
762 | \begin{verbatim}
|
---|
763 | >>> word[:2] + word[2:]
|
---|
764 | 'HelpA'
|
---|
765 | >>> word[:3] + word[3:]
|
---|
766 | 'HelpA'
|
---|
767 | \end{verbatim}
|
---|
768 |
|
---|
769 | Degenerate slice indices are handled gracefully: an index that is too
|
---|
770 | large is replaced by the string size, an upper bound smaller than the
|
---|
771 | lower bound returns an empty string.
|
---|
772 |
|
---|
773 | \begin{verbatim}
|
---|
774 | >>> word[1:100]
|
---|
775 | 'elpA'
|
---|
776 | >>> word[10:]
|
---|
777 | ''
|
---|
778 | >>> word[2:1]
|
---|
779 | ''
|
---|
780 | \end{verbatim}
|
---|
781 |
|
---|
782 | Indices may be negative numbers, to start counting from the right.
|
---|
783 | For example:
|
---|
784 |
|
---|
785 | \begin{verbatim}
|
---|
786 | >>> word[-1] # The last character
|
---|
787 | 'A'
|
---|
788 | >>> word[-2] # The last-but-one character
|
---|
789 | 'p'
|
---|
790 | >>> word[-2:] # The last two characters
|
---|
791 | 'pA'
|
---|
792 | >>> word[:-2] # Everything except the last two characters
|
---|
793 | 'Hel'
|
---|
794 | \end{verbatim}
|
---|
795 |
|
---|
796 | But note that -0 is really the same as 0, so it does not count from
|
---|
797 | the right!
|
---|
798 |
|
---|
799 | \begin{verbatim}
|
---|
800 | >>> word[-0] # (since -0 equals 0)
|
---|
801 | 'H'
|
---|
802 | \end{verbatim}
|
---|
803 |
|
---|
804 | Out-of-range negative slice indices are truncated, but don't try this
|
---|
805 | for single-element (non-slice) indices:
|
---|
806 |
|
---|
807 | \begin{verbatim}
|
---|
808 | >>> word[-100:]
|
---|
809 | 'HelpA'
|
---|
810 | >>> word[-10] # error
|
---|
811 | Traceback (most recent call last):
|
---|
812 | File "<stdin>", line 1, in ?
|
---|
813 | IndexError: string index out of range
|
---|
814 | \end{verbatim}
|
---|
815 |
|
---|
816 | The best way to remember how slices work is to think of the indices as
|
---|
817 | pointing \emph{between} characters, with the left edge of the first
|
---|
818 | character numbered 0. Then the right edge of the last character of a
|
---|
819 | string of \var{n} characters has index \var{n}, for example:
|
---|
820 |
|
---|
821 | \begin{verbatim}
|
---|
822 | +---+---+---+---+---+
|
---|
823 | | H | e | l | p | A |
|
---|
824 | +---+---+---+---+---+
|
---|
825 | 0 1 2 3 4 5
|
---|
826 | -5 -4 -3 -2 -1
|
---|
827 | \end{verbatim}
|
---|
828 |
|
---|
829 | The first row of numbers gives the position of the indices 0...5 in
|
---|
830 | the string; the second row gives the corresponding negative indices.
|
---|
831 | The slice from \var{i} to \var{j} consists of all characters between
|
---|
832 | the edges labeled \var{i} and \var{j}, respectively.
|
---|
833 |
|
---|
834 | For non-negative indices, the length of a slice is the difference of
|
---|
835 | the indices, if both are within bounds. For example, the length of
|
---|
836 | \code{word[1:3]} is 2.
|
---|
837 |
|
---|
838 | The built-in function \function{len()} returns the length of a string:
|
---|
839 |
|
---|
840 | \begin{verbatim}
|
---|
841 | >>> s = 'supercalifragilisticexpialidocious'
|
---|
842 | >>> len(s)
|
---|
843 | 34
|
---|
844 | \end{verbatim}
|
---|
845 |
|
---|
846 |
|
---|
847 | \begin{seealso}
|
---|
848 | \seetitle[../lib/typesseq.html]{Sequence Types}%
|
---|
849 | {Strings, and the Unicode strings described in the next
|
---|
850 | section, are examples of \emph{sequence types}, and
|
---|
851 | support the common operations supported by such types.}
|
---|
852 | \seetitle[../lib/string-methods.html]{String Methods}%
|
---|
853 | {Both strings and Unicode strings support a large number of
|
---|
854 | methods for basic transformations and searching.}
|
---|
855 | \seetitle[../lib/typesseq-strings.html]{String Formatting Operations}%
|
---|
856 | {The formatting operations invoked when strings and Unicode
|
---|
857 | strings are the left operand of the \code{\%} operator are
|
---|
858 | described in more detail here.}
|
---|
859 | \end{seealso}
|
---|
860 |
|
---|
861 |
|
---|
862 | \subsection{Unicode Strings \label{unicodeStrings}}
|
---|
863 | \sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
|
---|
864 |
|
---|
865 | Starting with Python 2.0 a new data type for storing text data is
|
---|
866 | available to the programmer: the Unicode object. It can be used to
|
---|
867 | store and manipulate Unicode data (see \url{http://www.unicode.org/})
|
---|
868 | and integrates well with the existing string objects, providing
|
---|
869 | auto-conversions where necessary.
|
---|
870 |
|
---|
871 | Unicode has the advantage of providing one ordinal for every character
|
---|
872 | in every script used in modern and ancient texts. Previously, there
|
---|
873 | were only 256 possible ordinals for script characters. Texts were
|
---|
874 | typically bound to a code page which mapped the ordinals to script
|
---|
875 | characters. This lead to very much confusion especially with respect
|
---|
876 | to internationalization (usually written as \samp{i18n} ---
|
---|
877 | \character{i} + 18 characters + \character{n}) of software. Unicode
|
---|
878 | solves these problems by defining one code page for all scripts.
|
---|
879 |
|
---|
880 | Creating Unicode strings in Python is just as simple as creating
|
---|
881 | normal strings:
|
---|
882 |
|
---|
883 | \begin{verbatim}
|
---|
884 | >>> u'Hello World !'
|
---|
885 | u'Hello World !'
|
---|
886 | \end{verbatim}
|
---|
887 |
|
---|
888 | The small \character{u} in front of the quote indicates that a
|
---|
889 | Unicode string is supposed to be created. If you want to include
|
---|
890 | special characters in the string, you can do so by using the Python
|
---|
891 | \emph{Unicode-Escape} encoding. The following example shows how:
|
---|
892 |
|
---|
893 | \begin{verbatim}
|
---|
894 | >>> u'Hello\u0020World !'
|
---|
895 | u'Hello World !'
|
---|
896 | \end{verbatim}
|
---|
897 |
|
---|
898 | The escape sequence \code{\e u0020} indicates to insert the Unicode
|
---|
899 | character with the ordinal value 0x0020 (the space character) at the
|
---|
900 | given position.
|
---|
901 |
|
---|
902 | Other characters are interpreted by using their respective ordinal
|
---|
903 | values directly as Unicode ordinals. If you have literal strings
|
---|
904 | in the standard Latin-1 encoding that is used in many Western countries,
|
---|
905 | you will find it convenient that the lower 256 characters
|
---|
906 | of Unicode are the same as the 256 characters of Latin-1.
|
---|
907 |
|
---|
908 | For experts, there is also a raw mode just like the one for normal
|
---|
909 | strings. You have to prefix the opening quote with 'ur' to have
|
---|
910 | Python use the \emph{Raw-Unicode-Escape} encoding. It will only apply
|
---|
911 | the above \code{\e uXXXX} conversion if there is an uneven number of
|
---|
912 | backslashes in front of the small 'u'.
|
---|
913 |
|
---|
914 | \begin{verbatim}
|
---|
915 | >>> ur'Hello\u0020World !'
|
---|
916 | u'Hello World !'
|
---|
917 | >>> ur'Hello\\u0020World !'
|
---|
918 | u'Hello\\\\u0020World !'
|
---|
919 | \end{verbatim}
|
---|
920 |
|
---|
921 | The raw mode is most useful when you have to enter lots of
|
---|
922 | backslashes, as can be necessary in regular expressions.
|
---|
923 |
|
---|
924 | Apart from these standard encodings, Python provides a whole set of
|
---|
925 | other ways of creating Unicode strings on the basis of a known
|
---|
926 | encoding.
|
---|
927 |
|
---|
928 | The built-in function \function{unicode()}\bifuncindex{unicode} provides
|
---|
929 | access to all registered Unicode codecs (COders and DECoders). Some of
|
---|
930 | the more well known encodings which these codecs can convert are
|
---|
931 | \emph{Latin-1}, \emph{ASCII}, \emph{UTF-8}, and \emph{UTF-16}.
|
---|
932 | The latter two are variable-length encodings that store each Unicode
|
---|
933 | character in one or more bytes. The default encoding is
|
---|
934 | normally set to \ASCII, which passes through characters in the range
|
---|
935 | 0 to 127 and rejects any other characters with an error.
|
---|
936 | When a Unicode string is printed, written to a file, or converted
|
---|
937 | with \function{str()}, conversion takes place using this default encoding.
|
---|
938 |
|
---|
939 | \begin{verbatim}
|
---|
940 | >>> u"abc"
|
---|
941 | u'abc'
|
---|
942 | >>> str(u"abc")
|
---|
943 | 'abc'
|
---|
944 | >>> u"äöü"
|
---|
945 | u'\xe4\xf6\xfc'
|
---|
946 | >>> str(u"äöü")
|
---|
947 | Traceback (most recent call last):
|
---|
948 | File "<stdin>", line 1, in ?
|
---|
949 | UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in range(128)
|
---|
950 | \end{verbatim}
|
---|
951 |
|
---|
952 | To convert a Unicode string into an 8-bit string using a specific
|
---|
953 | encoding, Unicode objects provide an \function{encode()} method
|
---|
954 | that takes one argument, the name of the encoding. Lowercase names
|
---|
955 | for encodings are preferred.
|
---|
956 |
|
---|
957 | \begin{verbatim}
|
---|
958 | >>> u"äöü".encode('utf-8')
|
---|
959 | '\xc3\xa4\xc3\xb6\xc3\xbc'
|
---|
960 | \end{verbatim}
|
---|
961 |
|
---|
962 | If you have data in a specific encoding and want to produce a
|
---|
963 | corresponding Unicode string from it, you can use the
|
---|
964 | \function{unicode()} function with the encoding name as the second
|
---|
965 | argument.
|
---|
966 |
|
---|
967 | \begin{verbatim}
|
---|
968 | >>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
|
---|
969 | u'\xe4\xf6\xfc'
|
---|
970 | \end{verbatim}
|
---|
971 |
|
---|
972 | \subsection{Lists \label{lists}}
|
---|
973 |
|
---|
974 | Python knows a number of \emph{compound} data types, used to group
|
---|
975 | together other values. The most versatile is the \emph{list}, which
|
---|
976 | can be written as a list of comma-separated values (items) between
|
---|
977 | square brackets. List items need not all have the same type.
|
---|
978 |
|
---|
979 | \begin{verbatim}
|
---|
980 | >>> a = ['spam', 'eggs', 100, 1234]
|
---|
981 | >>> a
|
---|
982 | ['spam', 'eggs', 100, 1234]
|
---|
983 | \end{verbatim}
|
---|
984 |
|
---|
985 | Like string indices, list indices start at 0, and lists can be sliced,
|
---|
986 | concatenated and so on:
|
---|
987 |
|
---|
988 | \begin{verbatim}
|
---|
989 | >>> a[0]
|
---|
990 | 'spam'
|
---|
991 | >>> a[3]
|
---|
992 | 1234
|
---|
993 | >>> a[-2]
|
---|
994 | 100
|
---|
995 | >>> a[1:-1]
|
---|
996 | ['eggs', 100]
|
---|
997 | >>> a[:2] + ['bacon', 2*2]
|
---|
998 | ['spam', 'eggs', 'bacon', 4]
|
---|
999 | >>> 3*a[:3] + ['Boo!']
|
---|
1000 | ['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boo!']
|
---|
1001 | \end{verbatim}
|
---|
1002 |
|
---|
1003 | Unlike strings, which are \emph{immutable}, it is possible to change
|
---|
1004 | individual elements of a list:
|
---|
1005 |
|
---|
1006 | \begin{verbatim}
|
---|
1007 | >>> a
|
---|
1008 | ['spam', 'eggs', 100, 1234]
|
---|
1009 | >>> a[2] = a[2] + 23
|
---|
1010 | >>> a
|
---|
1011 | ['spam', 'eggs', 123, 1234]
|
---|
1012 | \end{verbatim}
|
---|
1013 |
|
---|
1014 | Assignment to slices is also possible, and this can even change the size
|
---|
1015 | of the list or clear it entirely:
|
---|
1016 |
|
---|
1017 | \begin{verbatim}
|
---|
1018 | >>> # Replace some items:
|
---|
1019 | ... a[0:2] = [1, 12]
|
---|
1020 | >>> a
|
---|
1021 | [1, 12, 123, 1234]
|
---|
1022 | >>> # Remove some:
|
---|
1023 | ... a[0:2] = []
|
---|
1024 | >>> a
|
---|
1025 | [123, 1234]
|
---|
1026 | >>> # Insert some:
|
---|
1027 | ... a[1:1] = ['bletch', 'xyzzy']
|
---|
1028 | >>> a
|
---|
1029 | [123, 'bletch', 'xyzzy', 1234]
|
---|
1030 | >>> # Insert (a copy of) itself at the beginning
|
---|
1031 | >>> a[:0] = a
|
---|
1032 | >>> a
|
---|
1033 | [123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
|
---|
1034 | >>> # Clear the list: replace all items with an empty list
|
---|
1035 | >>> a[:] = []
|
---|
1036 | >>> a
|
---|
1037 | []
|
---|
1038 | \end{verbatim}
|
---|
1039 |
|
---|
1040 | The built-in function \function{len()} also applies to lists:
|
---|
1041 |
|
---|
1042 | \begin{verbatim}
|
---|
1043 | >>> len(a)
|
---|
1044 | 8
|
---|
1045 | \end{verbatim}
|
---|
1046 |
|
---|
1047 | It is possible to nest lists (create lists containing other lists),
|
---|
1048 | for example:
|
---|
1049 |
|
---|
1050 | \begin{verbatim}
|
---|
1051 | >>> q = [2, 3]
|
---|
1052 | >>> p = [1, q, 4]
|
---|
1053 | >>> len(p)
|
---|
1054 | 3
|
---|
1055 | >>> p[1]
|
---|
1056 | [2, 3]
|
---|
1057 | >>> p[1][0]
|
---|
1058 | 2
|
---|
1059 | >>> p[1].append('xtra') # See section 5.1
|
---|
1060 | >>> p
|
---|
1061 | [1, [2, 3, 'xtra'], 4]
|
---|
1062 | >>> q
|
---|
1063 | [2, 3, 'xtra']
|
---|
1064 | \end{verbatim}
|
---|
1065 |
|
---|
1066 | Note that in the last example, \code{p[1]} and \code{q} really refer to
|
---|
1067 | the same object! We'll come back to \emph{object semantics} later.
|
---|
1068 |
|
---|
1069 | \section{First Steps Towards Programming \label{firstSteps}}
|
---|
1070 |
|
---|
1071 | Of course, we can use Python for more complicated tasks than adding
|
---|
1072 | two and two together. For instance, we can write an initial
|
---|
1073 | sub-sequence of the \emph{Fibonacci} series as follows:
|
---|
1074 |
|
---|
1075 | \begin{verbatim}
|
---|
1076 | >>> # Fibonacci series:
|
---|
1077 | ... # the sum of two elements defines the next
|
---|
1078 | ... a, b = 0, 1
|
---|
1079 | >>> while b < 10:
|
---|
1080 | ... print b
|
---|
1081 | ... a, b = b, a+b
|
---|
1082 | ...
|
---|
1083 | 1
|
---|
1084 | 1
|
---|
1085 | 2
|
---|
1086 | 3
|
---|
1087 | 5
|
---|
1088 | 8
|
---|
1089 | \end{verbatim}
|
---|
1090 |
|
---|
1091 | This example introduces several new features.
|
---|
1092 |
|
---|
1093 | \begin{itemize}
|
---|
1094 |
|
---|
1095 | \item
|
---|
1096 | The first line contains a \emph{multiple assignment}: the variables
|
---|
1097 | \code{a} and \code{b} simultaneously get the new values 0 and 1. On the
|
---|
1098 | last line this is used again, demonstrating that the expressions on
|
---|
1099 | the right-hand side are all evaluated first before any of the
|
---|
1100 | assignments take place. The right-hand side expressions are evaluated
|
---|
1101 | from the left to the right.
|
---|
1102 |
|
---|
1103 | \item
|
---|
1104 | The \keyword{while} loop executes as long as the condition (here:
|
---|
1105 | \code{b < 10}) remains true. In Python, like in C, any non-zero
|
---|
1106 | integer value is true; zero is false. The condition may also be a
|
---|
1107 | string or list value, in fact any sequence; anything with a non-zero
|
---|
1108 | length is true, empty sequences are false. The test used in the
|
---|
1109 | example is a simple comparison. The standard comparison operators are
|
---|
1110 | written the same as in C: \code{<} (less than), \code{>} (greater than),
|
---|
1111 | \code{==} (equal to), \code{<=} (less than or equal to),
|
---|
1112 | \code{>=} (greater than or equal to) and \code{!=} (not equal to).
|
---|
1113 |
|
---|
1114 | \item
|
---|
1115 | The \emph{body} of the loop is \emph{indented}: indentation is Python's
|
---|
1116 | way of grouping statements. Python does not (yet!) provide an
|
---|
1117 | intelligent input line editing facility, so you have to type a tab or
|
---|
1118 | space(s) for each indented line. In practice you will prepare more
|
---|
1119 | complicated input for Python with a text editor; most text editors have
|
---|
1120 | an auto-indent facility. When a compound statement is entered
|
---|
1121 | interactively, it must be followed by a blank line to indicate
|
---|
1122 | completion (since the parser cannot guess when you have typed the last
|
---|
1123 | line). Note that each line within a basic block must be indented by
|
---|
1124 | the same amount.
|
---|
1125 |
|
---|
1126 | \item
|
---|
1127 | The \keyword{print} statement writes the value of the expression(s) it is
|
---|
1128 | given. It differs from just writing the expression you want to write
|
---|
1129 | (as we did earlier in the calculator examples) in the way it handles
|
---|
1130 | multiple expressions and strings. Strings are printed without quotes,
|
---|
1131 | and a space is inserted between items, so you can format things nicely,
|
---|
1132 | like this:
|
---|
1133 |
|
---|
1134 | \begin{verbatim}
|
---|
1135 | >>> i = 256*256
|
---|
1136 | >>> print 'The value of i is', i
|
---|
1137 | The value of i is 65536
|
---|
1138 | \end{verbatim}
|
---|
1139 |
|
---|
1140 | A trailing comma avoids the newline after the output:
|
---|
1141 |
|
---|
1142 | \begin{verbatim}
|
---|
1143 | >>> a, b = 0, 1
|
---|
1144 | >>> while b < 1000:
|
---|
1145 | ... print b,
|
---|
1146 | ... a, b = b, a+b
|
---|
1147 | ...
|
---|
1148 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
|
---|
1149 | \end{verbatim}
|
---|
1150 |
|
---|
1151 | Note that the interpreter inserts a newline before it prints the next
|
---|
1152 | prompt if the last line was not completed.
|
---|
1153 |
|
---|
1154 | \end{itemize}
|
---|
1155 |
|
---|
1156 |
|
---|
1157 | \chapter{More Control Flow Tools \label{moreControl}}
|
---|
1158 |
|
---|
1159 | Besides the \keyword{while} statement just introduced, Python knows
|
---|
1160 | the usual control flow statements known from other languages, with
|
---|
1161 | some twists.
|
---|
1162 |
|
---|
1163 | \section{\keyword{if} Statements \label{if}}
|
---|
1164 |
|
---|
1165 | Perhaps the most well-known statement type is the
|
---|
1166 | \keyword{if} statement. For example:
|
---|
1167 |
|
---|
1168 | \begin{verbatim}
|
---|
1169 | >>> x = int(raw_input("Please enter an integer: "))
|
---|
1170 | >>> if x < 0:
|
---|
1171 | ... x = 0
|
---|
1172 | ... print 'Negative changed to zero'
|
---|
1173 | ... elif x == 0:
|
---|
1174 | ... print 'Zero'
|
---|
1175 | ... elif x == 1:
|
---|
1176 | ... print 'Single'
|
---|
1177 | ... else:
|
---|
1178 | ... print 'More'
|
---|
1179 | ...
|
---|
1180 | \end{verbatim}
|
---|
1181 |
|
---|
1182 | There can be zero or more \keyword{elif} parts, and the
|
---|
1183 | \keyword{else} part is optional. The keyword `\keyword{elif}' is
|
---|
1184 | short for `else if', and is useful to avoid excessive indentation. An
|
---|
1185 | \keyword{if} \ldots\ \keyword{elif} \ldots\ \keyword{elif} \ldots\ sequence
|
---|
1186 | % Weird spacings happen here if the wrapping of the source text
|
---|
1187 | % gets changed in the wrong way.
|
---|
1188 | is a substitute for the \keyword{switch} or
|
---|
1189 | \keyword{case} statements found in other languages.
|
---|
1190 |
|
---|
1191 |
|
---|
1192 | \section{\keyword{for} Statements \label{for}}
|
---|
1193 |
|
---|
1194 | The \keyword{for}\stindex{for} statement in Python differs a bit from
|
---|
1195 | what you may be used to in C or Pascal. Rather than always
|
---|
1196 | iterating over an arithmetic progression of numbers (like in Pascal),
|
---|
1197 | or giving the user the ability to define both the iteration step and
|
---|
1198 | halting condition (as C), Python's
|
---|
1199 | \keyword{for}\stindex{for} statement iterates over the items of any
|
---|
1200 | sequence (a list or a string), in the order that they appear in
|
---|
1201 | the sequence. For example (no pun intended):
|
---|
1202 | % One suggestion was to give a real C example here, but that may only
|
---|
1203 | % serve to confuse non-C programmers.
|
---|
1204 |
|
---|
1205 | \begin{verbatim}
|
---|
1206 | >>> # Measure some strings:
|
---|
1207 | ... a = ['cat', 'window', 'defenestrate']
|
---|
1208 | >>> for x in a:
|
---|
1209 | ... print x, len(x)
|
---|
1210 | ...
|
---|
1211 | cat 3
|
---|
1212 | window 6
|
---|
1213 | defenestrate 12
|
---|
1214 | \end{verbatim}
|
---|
1215 |
|
---|
1216 | It is not safe to modify the sequence being iterated over in the loop
|
---|
1217 | (this can only happen for mutable sequence types, such as lists). If
|
---|
1218 | you need to modify the list you are iterating over (for example, to
|
---|
1219 | duplicate selected items) you must iterate over a copy. The slice
|
---|
1220 | notation makes this particularly convenient:
|
---|
1221 |
|
---|
1222 | \begin{verbatim}
|
---|
1223 | >>> for x in a[:]: # make a slice copy of the entire list
|
---|
1224 | ... if len(x) > 6: a.insert(0, x)
|
---|
1225 | ...
|
---|
1226 | >>> a
|
---|
1227 | ['defenestrate', 'cat', 'window', 'defenestrate']
|
---|
1228 | \end{verbatim}
|
---|
1229 |
|
---|
1230 |
|
---|
1231 | \section{The \function{range()} Function \label{range}}
|
---|
1232 |
|
---|
1233 | If you do need to iterate over a sequence of numbers, the built-in
|
---|
1234 | function \function{range()} comes in handy. It generates lists
|
---|
1235 | containing arithmetic progressions:
|
---|
1236 |
|
---|
1237 | \begin{verbatim}
|
---|
1238 | >>> range(10)
|
---|
1239 | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
---|
1240 | \end{verbatim}
|
---|
1241 |
|
---|
1242 | The given end point is never part of the generated list;
|
---|
1243 | \code{range(10)} generates a list of 10 values, the legal
|
---|
1244 | indices for items of a sequence of length 10. It is possible to let
|
---|
1245 | the range start at another number, or to specify a different increment
|
---|
1246 | (even negative; sometimes this is called the `step'):
|
---|
1247 |
|
---|
1248 | \begin{verbatim}
|
---|
1249 | >>> range(5, 10)
|
---|
1250 | [5, 6, 7, 8, 9]
|
---|
1251 | >>> range(0, 10, 3)
|
---|
1252 | [0, 3, 6, 9]
|
---|
1253 | >>> range(-10, -100, -30)
|
---|
1254 | [-10, -40, -70]
|
---|
1255 | \end{verbatim}
|
---|
1256 |
|
---|
1257 | To iterate over the indices of a sequence, combine
|
---|
1258 | \function{range()} and \function{len()} as follows:
|
---|
1259 |
|
---|
1260 | \begin{verbatim}
|
---|
1261 | >>> a = ['Mary', 'had', 'a', 'little', 'lamb']
|
---|
1262 | >>> for i in range(len(a)):
|
---|
1263 | ... print i, a[i]
|
---|
1264 | ...
|
---|
1265 | 0 Mary
|
---|
1266 | 1 had
|
---|
1267 | 2 a
|
---|
1268 | 3 little
|
---|
1269 | 4 lamb
|
---|
1270 | \end{verbatim}
|
---|
1271 |
|
---|
1272 |
|
---|
1273 | \section{\keyword{break} and \keyword{continue} Statements, and
|
---|
1274 | \keyword{else} Clauses on Loops
|
---|
1275 | \label{break}}
|
---|
1276 |
|
---|
1277 | The \keyword{break} statement, like in C, breaks out of the smallest
|
---|
1278 | enclosing \keyword{for} or \keyword{while} loop.
|
---|
1279 |
|
---|
1280 | The \keyword{continue} statement, also borrowed from C, continues
|
---|
1281 | with the next iteration of the loop.
|
---|
1282 |
|
---|
1283 | Loop statements may have an \code{else} clause; it is executed when
|
---|
1284 | the loop terminates through exhaustion of the list (with
|
---|
1285 | \keyword{for}) or when the condition becomes false (with
|
---|
1286 | \keyword{while}), but not when the loop is terminated by a
|
---|
1287 | \keyword{break} statement. This is exemplified by the following loop,
|
---|
1288 | which searches for prime numbers:
|
---|
1289 |
|
---|
1290 | \begin{verbatim}
|
---|
1291 | >>> for n in range(2, 10):
|
---|
1292 | ... for x in range(2, n):
|
---|
1293 | ... if n % x == 0:
|
---|
1294 | ... print n, 'equals', x, '*', n/x
|
---|
1295 | ... break
|
---|
1296 | ... else:
|
---|
1297 | ... # loop fell through without finding a factor
|
---|
1298 | ... print n, 'is a prime number'
|
---|
1299 | ...
|
---|
1300 | 2 is a prime number
|
---|
1301 | 3 is a prime number
|
---|
1302 | 4 equals 2 * 2
|
---|
1303 | 5 is a prime number
|
---|
1304 | 6 equals 2 * 3
|
---|
1305 | 7 is a prime number
|
---|
1306 | 8 equals 2 * 4
|
---|
1307 | 9 equals 3 * 3
|
---|
1308 | \end{verbatim}
|
---|
1309 |
|
---|
1310 |
|
---|
1311 | \section{\keyword{pass} Statements \label{pass}}
|
---|
1312 |
|
---|
1313 | The \keyword{pass} statement does nothing.
|
---|
1314 | It can be used when a statement is required syntactically but the
|
---|
1315 | program requires no action.
|
---|
1316 | For example:
|
---|
1317 |
|
---|
1318 | \begin{verbatim}
|
---|
1319 | >>> while True:
|
---|
1320 | ... pass # Busy-wait for keyboard interrupt
|
---|
1321 | ...
|
---|
1322 | \end{verbatim}
|
---|
1323 |
|
---|
1324 |
|
---|
1325 | \section{Defining Functions \label{functions}}
|
---|
1326 |
|
---|
1327 | We can create a function that writes the Fibonacci series to an
|
---|
1328 | arbitrary boundary:
|
---|
1329 |
|
---|
1330 | \begin{verbatim}
|
---|
1331 | >>> def fib(n): # write Fibonacci series up to n
|
---|
1332 | ... """Print a Fibonacci series up to n."""
|
---|
1333 | ... a, b = 0, 1
|
---|
1334 | ... while b < n:
|
---|
1335 | ... print b,
|
---|
1336 | ... a, b = b, a+b
|
---|
1337 | ...
|
---|
1338 | >>> # Now call the function we just defined:
|
---|
1339 | ... fib(2000)
|
---|
1340 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
|
---|
1341 | \end{verbatim}
|
---|
1342 |
|
---|
1343 | The keyword \keyword{def} introduces a function \emph{definition}. It
|
---|
1344 | must be followed by the function name and the parenthesized list of
|
---|
1345 | formal parameters. The statements that form the body of the function
|
---|
1346 | start at the next line, and must be indented. The first statement of
|
---|
1347 | the function body can optionally be a string literal; this string
|
---|
1348 | literal is the function's \index{documentation strings}documentation
|
---|
1349 | string, or \dfn{docstring}.\index{docstrings}\index{strings, documentation}
|
---|
1350 |
|
---|
1351 | There are tools which use docstrings to automatically produce online
|
---|
1352 | or printed documentation, or to let the user interactively browse
|
---|
1353 | through code; it's good practice to include docstrings in code that
|
---|
1354 | you write, so try to make a habit of it.
|
---|
1355 |
|
---|
1356 | The \emph{execution} of a function introduces a new symbol table used
|
---|
1357 | for the local variables of the function. More precisely, all variable
|
---|
1358 | assignments in a function store the value in the local symbol table;
|
---|
1359 | whereas variable references first look in the local symbol table, then
|
---|
1360 | in the global symbol table, and then in the table of built-in names.
|
---|
1361 | Thus, global variables cannot be directly assigned a value within a
|
---|
1362 | function (unless named in a \keyword{global} statement), although
|
---|
1363 | they may be referenced.
|
---|
1364 |
|
---|
1365 | The actual parameters (arguments) to a function call are introduced in
|
---|
1366 | the local symbol table of the called function when it is called; thus,
|
---|
1367 | arguments are passed using \emph{call by value} (where the
|
---|
1368 | \emph{value} is always an object \emph{reference}, not the value of
|
---|
1369 | the object).\footnote{
|
---|
1370 | Actually, \emph{call by object reference} would be a better
|
---|
1371 | description, since if a mutable object is passed, the caller
|
---|
1372 | will see any changes the callee makes to it (items
|
---|
1373 | inserted into a list).
|
---|
1374 | } When a function calls another function, a new local symbol table is
|
---|
1375 | created for that call.
|
---|
1376 |
|
---|
1377 | A function definition introduces the function name in the current
|
---|
1378 | symbol table. The value of the function name
|
---|
1379 | has a type that is recognized by the interpreter as a user-defined
|
---|
1380 | function. This value can be assigned to another name which can then
|
---|
1381 | also be used as a function. This serves as a general renaming
|
---|
1382 | mechanism:
|
---|
1383 |
|
---|
1384 | \begin{verbatim}
|
---|
1385 | >>> fib
|
---|
1386 | <function fib at 10042ed0>
|
---|
1387 | >>> f = fib
|
---|
1388 | >>> f(100)
|
---|
1389 | 1 1 2 3 5 8 13 21 34 55 89
|
---|
1390 | \end{verbatim}
|
---|
1391 |
|
---|
1392 | You might object that \code{fib} is not a function but a procedure. In
|
---|
1393 | Python, like in C, procedures are just functions that don't return a
|
---|
1394 | value. In fact, technically speaking, procedures do return a value,
|
---|
1395 | albeit a rather boring one. This value is called \code{None} (it's a
|
---|
1396 | built-in name). Writing the value \code{None} is normally suppressed by
|
---|
1397 | the interpreter if it would be the only value written. You can see it
|
---|
1398 | if you really want to:
|
---|
1399 |
|
---|
1400 | \begin{verbatim}
|
---|
1401 | >>> print fib(0)
|
---|
1402 | None
|
---|
1403 | \end{verbatim}
|
---|
1404 |
|
---|
1405 | It is simple to write a function that returns a list of the numbers of
|
---|
1406 | the Fibonacci series, instead of printing it:
|
---|
1407 |
|
---|
1408 | \begin{verbatim}
|
---|
1409 | >>> def fib2(n): # return Fibonacci series up to n
|
---|
1410 | ... """Return a list containing the Fibonacci series up to n."""
|
---|
1411 | ... result = []
|
---|
1412 | ... a, b = 0, 1
|
---|
1413 | ... while b < n:
|
---|
1414 | ... result.append(b) # see below
|
---|
1415 | ... a, b = b, a+b
|
---|
1416 | ... return result
|
---|
1417 | ...
|
---|
1418 | >>> f100 = fib2(100) # call it
|
---|
1419 | >>> f100 # write the result
|
---|
1420 | [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
|
---|
1421 | \end{verbatim}
|
---|
1422 |
|
---|
1423 | This example, as usual, demonstrates some new Python features:
|
---|
1424 |
|
---|
1425 | \begin{itemize}
|
---|
1426 |
|
---|
1427 | \item
|
---|
1428 | The \keyword{return} statement returns with a value from a function.
|
---|
1429 | \keyword{return} without an expression argument returns \code{None}.
|
---|
1430 | Falling off the end of a procedure also returns \code{None}.
|
---|
1431 |
|
---|
1432 | \item
|
---|
1433 | The statement \code{result.append(b)} calls a \emph{method} of the list
|
---|
1434 | object \code{result}. A method is a function that `belongs' to an
|
---|
1435 | object and is named \code{obj.methodname}, where \code{obj} is some
|
---|
1436 | object (this may be an expression), and \code{methodname} is the name
|
---|
1437 | of a method that is defined by the object's type. Different types
|
---|
1438 | define different methods. Methods of different types may have the
|
---|
1439 | same name without causing ambiguity. (It is possible to define your
|
---|
1440 | own object types and methods, using \emph{classes}, as discussed later
|
---|
1441 | in this tutorial.)
|
---|
1442 | The method \method{append()} shown in the example is defined for
|
---|
1443 | list objects; it adds a new element at the end of the list. In this
|
---|
1444 | example it is equivalent to \samp{result = result + [b]}, but more
|
---|
1445 | efficient.
|
---|
1446 |
|
---|
1447 | \end{itemize}
|
---|
1448 |
|
---|
1449 | \section{More on Defining Functions \label{defining}}
|
---|
1450 |
|
---|
1451 | It is also possible to define functions with a variable number of
|
---|
1452 | arguments. There are three forms, which can be combined.
|
---|
1453 |
|
---|
1454 | \subsection{Default Argument Values \label{defaultArgs}}
|
---|
1455 |
|
---|
1456 | The most useful form is to specify a default value for one or more
|
---|
1457 | arguments. This creates a function that can be called with fewer
|
---|
1458 | arguments than it is defined to allow. For example:
|
---|
1459 |
|
---|
1460 | \begin{verbatim}
|
---|
1461 | def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
|
---|
1462 | while True:
|
---|
1463 | ok = raw_input(prompt)
|
---|
1464 | if ok in ('y', 'ye', 'yes'): return True
|
---|
1465 | if ok in ('n', 'no', 'nop', 'nope'): return False
|
---|
1466 | retries = retries - 1
|
---|
1467 | if retries < 0: raise IOError, 'refusenik user'
|
---|
1468 | print complaint
|
---|
1469 | \end{verbatim}
|
---|
1470 |
|
---|
1471 | This function can be called either like this:
|
---|
1472 | \code{ask_ok('Do you really want to quit?')} or like this:
|
---|
1473 | \code{ask_ok('OK to overwrite the file?', 2)}.
|
---|
1474 |
|
---|
1475 | This example also introduces the \keyword{in} keyword. This tests
|
---|
1476 | whether or not a sequence contains a certain value.
|
---|
1477 |
|
---|
1478 | The default values are evaluated at the point of function definition
|
---|
1479 | in the \emph{defining} scope, so that
|
---|
1480 |
|
---|
1481 | \begin{verbatim}
|
---|
1482 | i = 5
|
---|
1483 |
|
---|
1484 | def f(arg=i):
|
---|
1485 | print arg
|
---|
1486 |
|
---|
1487 | i = 6
|
---|
1488 | f()
|
---|
1489 | \end{verbatim}
|
---|
1490 |
|
---|
1491 | will print \code{5}.
|
---|
1492 |
|
---|
1493 | \strong{Important warning:} The default value is evaluated only once.
|
---|
1494 | This makes a difference when the default is a mutable object such as a
|
---|
1495 | list, dictionary, or instances of most classes. For example, the
|
---|
1496 | following function accumulates the arguments passed to it on
|
---|
1497 | subsequent calls:
|
---|
1498 |
|
---|
1499 | \begin{verbatim}
|
---|
1500 | def f(a, L=[]):
|
---|
1501 | L.append(a)
|
---|
1502 | return L
|
---|
1503 |
|
---|
1504 | print f(1)
|
---|
1505 | print f(2)
|
---|
1506 | print f(3)
|
---|
1507 | \end{verbatim}
|
---|
1508 |
|
---|
1509 | This will print
|
---|
1510 |
|
---|
1511 | \begin{verbatim}
|
---|
1512 | [1]
|
---|
1513 | [1, 2]
|
---|
1514 | [1, 2, 3]
|
---|
1515 | \end{verbatim}
|
---|
1516 |
|
---|
1517 | If you don't want the default to be shared between subsequent calls,
|
---|
1518 | you can write the function like this instead:
|
---|
1519 |
|
---|
1520 | \begin{verbatim}
|
---|
1521 | def f(a, L=None):
|
---|
1522 | if L is None:
|
---|
1523 | L = []
|
---|
1524 | L.append(a)
|
---|
1525 | return L
|
---|
1526 | \end{verbatim}
|
---|
1527 |
|
---|
1528 | \subsection{Keyword Arguments \label{keywordArgs}}
|
---|
1529 |
|
---|
1530 | Functions can also be called using
|
---|
1531 | keyword arguments of the form \samp{\var{keyword} = \var{value}}. For
|
---|
1532 | instance, the following function:
|
---|
1533 |
|
---|
1534 | \begin{verbatim}
|
---|
1535 | def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
|
---|
1536 | print "-- This parrot wouldn't", action,
|
---|
1537 | print "if you put", voltage, "volts through it."
|
---|
1538 | print "-- Lovely plumage, the", type
|
---|
1539 | print "-- It's", state, "!"
|
---|
1540 | \end{verbatim}
|
---|
1541 |
|
---|
1542 | could be called in any of the following ways:
|
---|
1543 |
|
---|
1544 | \begin{verbatim}
|
---|
1545 | parrot(1000)
|
---|
1546 | parrot(action = 'VOOOOOM', voltage = 1000000)
|
---|
1547 | parrot('a thousand', state = 'pushing up the daisies')
|
---|
1548 | parrot('a million', 'bereft of life', 'jump')
|
---|
1549 | \end{verbatim}
|
---|
1550 |
|
---|
1551 | but the following calls would all be invalid:
|
---|
1552 |
|
---|
1553 | \begin{verbatim}
|
---|
1554 | parrot() # required argument missing
|
---|
1555 | parrot(voltage=5.0, 'dead') # non-keyword argument following keyword
|
---|
1556 | parrot(110, voltage=220) # duplicate value for argument
|
---|
1557 | parrot(actor='John Cleese') # unknown keyword
|
---|
1558 | \end{verbatim}
|
---|
1559 |
|
---|
1560 | In general, an argument list must have any positional arguments
|
---|
1561 | followed by any keyword arguments, where the keywords must be chosen
|
---|
1562 | from the formal parameter names. It's not important whether a formal
|
---|
1563 | parameter has a default value or not. No argument may receive a
|
---|
1564 | value more than once --- formal parameter names corresponding to
|
---|
1565 | positional arguments cannot be used as keywords in the same calls.
|
---|
1566 | Here's an example that fails due to this restriction:
|
---|
1567 |
|
---|
1568 | \begin{verbatim}
|
---|
1569 | >>> def function(a):
|
---|
1570 | ... pass
|
---|
1571 | ...
|
---|
1572 | >>> function(0, a=0)
|
---|
1573 | Traceback (most recent call last):
|
---|
1574 | File "<stdin>", line 1, in ?
|
---|
1575 | TypeError: function() got multiple values for keyword argument 'a'
|
---|
1576 | \end{verbatim}
|
---|
1577 |
|
---|
1578 | When a final formal parameter of the form \code{**\var{name}} is
|
---|
1579 | present, it receives a \ulink{dictionary}{../lib/typesmapping.html}
|
---|
1580 | containing all keyword arguments except for those corresponding to
|
---|
1581 | a formal parameter. This may be
|
---|
1582 | combined with a formal parameter of the form
|
---|
1583 | \code{*\var{name}} (described in the next subsection) which receives a
|
---|
1584 | tuple containing the positional arguments beyond the formal parameter
|
---|
1585 | list. (\code{*\var{name}} must occur before \code{**\var{name}}.)
|
---|
1586 | For example, if we define a function like this:
|
---|
1587 |
|
---|
1588 | \begin{verbatim}
|
---|
1589 | def cheeseshop(kind, *arguments, **keywords):
|
---|
1590 | print "-- Do you have any", kind, '?'
|
---|
1591 | print "-- I'm sorry, we're all out of", kind
|
---|
1592 | for arg in arguments: print arg
|
---|
1593 | print '-'*40
|
---|
1594 | keys = keywords.keys()
|
---|
1595 | keys.sort()
|
---|
1596 | for kw in keys: print kw, ':', keywords[kw]
|
---|
1597 | \end{verbatim}
|
---|
1598 |
|
---|
1599 | It could be called like this:
|
---|
1600 |
|
---|
1601 | \begin{verbatim}
|
---|
1602 | cheeseshop('Limburger', "It's very runny, sir.",
|
---|
1603 | "It's really very, VERY runny, sir.",
|
---|
1604 | client='John Cleese',
|
---|
1605 | shopkeeper='Michael Palin',
|
---|
1606 | sketch='Cheese Shop Sketch')
|
---|
1607 | \end{verbatim}
|
---|
1608 |
|
---|
1609 | and of course it would print:
|
---|
1610 |
|
---|
1611 | \begin{verbatim}
|
---|
1612 | -- Do you have any Limburger ?
|
---|
1613 | -- I'm sorry, we're all out of Limburger
|
---|
1614 | It's very runny, sir.
|
---|
1615 | It's really very, VERY runny, sir.
|
---|
1616 | ----------------------------------------
|
---|
1617 | client : John Cleese
|
---|
1618 | shopkeeper : Michael Palin
|
---|
1619 | sketch : Cheese Shop Sketch
|
---|
1620 | \end{verbatim}
|
---|
1621 |
|
---|
1622 | Note that the \method{sort()} method of the list of keyword argument
|
---|
1623 | names is called before printing the contents of the \code{keywords}
|
---|
1624 | dictionary; if this is not done, the order in which the arguments are
|
---|
1625 | printed is undefined.
|
---|
1626 |
|
---|
1627 |
|
---|
1628 | \subsection{Arbitrary Argument Lists \label{arbitraryArgs}}
|
---|
1629 |
|
---|
1630 | Finally, the least frequently used option is to specify that a
|
---|
1631 | function can be called with an arbitrary number of arguments. These
|
---|
1632 | arguments will be wrapped up in a tuple. Before the variable number
|
---|
1633 | of arguments, zero or more normal arguments may occur.
|
---|
1634 |
|
---|
1635 | \begin{verbatim}
|
---|
1636 | def fprintf(file, format, *args):
|
---|
1637 | file.write(format % args)
|
---|
1638 | \end{verbatim}
|
---|
1639 |
|
---|
1640 |
|
---|
1641 | \subsection{Unpacking Argument Lists \label{unpacking-arguments}}
|
---|
1642 |
|
---|
1643 | The reverse situation occurs when the arguments are already in a list
|
---|
1644 | or tuple but need to be unpacked for a function call requiring separate
|
---|
1645 | positional arguments. For instance, the built-in \function{range()}
|
---|
1646 | function expects separate \var{start} and \var{stop} arguments. If they
|
---|
1647 | are not available separately, write the function call with the
|
---|
1648 | \code{*}-operator to unpack the arguments out of a list or tuple:
|
---|
1649 |
|
---|
1650 | \begin{verbatim}
|
---|
1651 | >>> range(3, 6) # normal call with separate arguments
|
---|
1652 | [3, 4, 5]
|
---|
1653 | >>> args = [3, 6]
|
---|
1654 | >>> range(*args) # call with arguments unpacked from a list
|
---|
1655 | [3, 4, 5]
|
---|
1656 | \end{verbatim}
|
---|
1657 |
|
---|
1658 | In the same fashion, dictionaries can deliver keyword arguments with the
|
---|
1659 | \code{**}-operator:
|
---|
1660 |
|
---|
1661 | \begin{verbatim}
|
---|
1662 | >>> def parrot(voltage, state='a stiff', action='voom'):
|
---|
1663 | ... print "-- This parrot wouldn't", action,
|
---|
1664 | ... print "if you put", voltage, "volts through it.",
|
---|
1665 | ... print "E's", state, "!"
|
---|
1666 | ...
|
---|
1667 | >>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
|
---|
1668 | >>> parrot(**d)
|
---|
1669 | -- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
|
---|
1670 | \end{verbatim}
|
---|
1671 |
|
---|
1672 |
|
---|
1673 | \subsection{Lambda Forms \label{lambda}}
|
---|
1674 |
|
---|
1675 | By popular demand, a few features commonly found in functional
|
---|
1676 | programming languages like Lisp have been added to Python. With the
|
---|
1677 | \keyword{lambda} keyword, small anonymous functions can be created.
|
---|
1678 | Here's a function that returns the sum of its two arguments:
|
---|
1679 | \samp{lambda a, b: a+b}. Lambda forms can be used wherever function
|
---|
1680 | objects are required. They are syntactically restricted to a single
|
---|
1681 | expression. Semantically, they are just syntactic sugar for a normal
|
---|
1682 | function definition. Like nested function definitions, lambda forms
|
---|
1683 | can reference variables from the containing scope:
|
---|
1684 |
|
---|
1685 | \begin{verbatim}
|
---|
1686 | >>> def make_incrementor(n):
|
---|
1687 | ... return lambda x: x + n
|
---|
1688 | ...
|
---|
1689 | >>> f = make_incrementor(42)
|
---|
1690 | >>> f(0)
|
---|
1691 | 42
|
---|
1692 | >>> f(1)
|
---|
1693 | 43
|
---|
1694 | \end{verbatim}
|
---|
1695 |
|
---|
1696 |
|
---|
1697 | \subsection{Documentation Strings \label{docstrings}}
|
---|
1698 |
|
---|
1699 | There are emerging conventions about the content and formatting of
|
---|
1700 | documentation strings.
|
---|
1701 | \index{docstrings}\index{documentation strings}
|
---|
1702 | \index{strings, documentation}
|
---|
1703 |
|
---|
1704 | The first line should always be a short, concise summary of the
|
---|
1705 | object's purpose. For brevity, it should not explicitly state the
|
---|
1706 | object's name or type, since these are available by other means
|
---|
1707 | (except if the name happens to be a verb describing a function's
|
---|
1708 | operation). This line should begin with a capital letter and end with
|
---|
1709 | a period.
|
---|
1710 |
|
---|
1711 | If there are more lines in the documentation string, the second line
|
---|
1712 | should be blank, visually separating the summary from the rest of the
|
---|
1713 | description. The following lines should be one or more paragraphs
|
---|
1714 | describing the object's calling conventions, its side effects, etc.
|
---|
1715 |
|
---|
1716 | The Python parser does not strip indentation from multi-line string
|
---|
1717 | literals in Python, so tools that process documentation have to strip
|
---|
1718 | indentation if desired. This is done using the following convention.
|
---|
1719 | The first non-blank line \emph{after} the first line of the string
|
---|
1720 | determines the amount of indentation for the entire documentation
|
---|
1721 | string. (We can't use the first line since it is generally adjacent
|
---|
1722 | to the string's opening quotes so its indentation is not apparent in
|
---|
1723 | the string literal.) Whitespace ``equivalent'' to this indentation is
|
---|
1724 | then stripped from the start of all lines of the string. Lines that
|
---|
1725 | are indented less should not occur, but if they occur all their
|
---|
1726 | leading whitespace should be stripped. Equivalence of whitespace
|
---|
1727 | should be tested after expansion of tabs (to 8 spaces, normally).
|
---|
1728 |
|
---|
1729 | Here is an example of a multi-line docstring:
|
---|
1730 |
|
---|
1731 | \begin{verbatim}
|
---|
1732 | >>> def my_function():
|
---|
1733 | ... """Do nothing, but document it.
|
---|
1734 | ...
|
---|
1735 | ... No, really, it doesn't do anything.
|
---|
1736 | ... """
|
---|
1737 | ... pass
|
---|
1738 | ...
|
---|
1739 | >>> print my_function.__doc__
|
---|
1740 | Do nothing, but document it.
|
---|
1741 |
|
---|
1742 | No, really, it doesn't do anything.
|
---|
1743 |
|
---|
1744 | \end{verbatim}
|
---|
1745 |
|
---|
1746 |
|
---|
1747 |
|
---|
1748 | \chapter{Data Structures \label{structures}}
|
---|
1749 |
|
---|
1750 | This chapter describes some things you've learned about already in
|
---|
1751 | more detail, and adds some new things as well.
|
---|
1752 |
|
---|
1753 |
|
---|
1754 | \section{More on Lists \label{moreLists}}
|
---|
1755 |
|
---|
1756 | The list data type has some more methods. Here are all of the methods
|
---|
1757 | of list objects:
|
---|
1758 |
|
---|
1759 | \begin{methoddesc}[list]{append}{x}
|
---|
1760 | Add an item to the end of the list;
|
---|
1761 | equivalent to \code{a[len(a):] = [\var{x}]}.
|
---|
1762 | \end{methoddesc}
|
---|
1763 |
|
---|
1764 | \begin{methoddesc}[list]{extend}{L}
|
---|
1765 | Extend the list by appending all the items in the given list;
|
---|
1766 | equivalent to \code{a[len(a):] = \var{L}}.
|
---|
1767 | \end{methoddesc}
|
---|
1768 |
|
---|
1769 | \begin{methoddesc}[list]{insert}{i, x}
|
---|
1770 | Insert an item at a given position. The first argument is the index
|
---|
1771 | of the element before which to insert, so \code{a.insert(0, \var{x})}
|
---|
1772 | inserts at the front of the list, and \code{a.insert(len(a), \var{x})}
|
---|
1773 | is equivalent to \code{a.append(\var{x})}.
|
---|
1774 | \end{methoddesc}
|
---|
1775 |
|
---|
1776 | \begin{methoddesc}[list]{remove}{x}
|
---|
1777 | Remove the first item from the list whose value is \var{x}.
|
---|
1778 | It is an error if there is no such item.
|
---|
1779 | \end{methoddesc}
|
---|
1780 |
|
---|
1781 | \begin{methoddesc}[list]{pop}{\optional{i}}
|
---|
1782 | Remove the item at the given position in the list, and return it. If
|
---|
1783 | no index is specified, \code{a.pop()} removes and returns the last item
|
---|
1784 | in the list. (The square brackets
|
---|
1785 | around the \var{i} in the method signature denote that the parameter
|
---|
1786 | is optional, not that you should type square brackets at that
|
---|
1787 | position. You will see this notation frequently in the
|
---|
1788 | \citetitle[../lib/lib.html]{Python Library Reference}.)
|
---|
1789 | \end{methoddesc}
|
---|
1790 |
|
---|
1791 | \begin{methoddesc}[list]{index}{x}
|
---|
1792 | Return the index in the list of the first item whose value is \var{x}.
|
---|
1793 | It is an error if there is no such item.
|
---|
1794 | \end{methoddesc}
|
---|
1795 |
|
---|
1796 | \begin{methoddesc}[list]{count}{x}
|
---|
1797 | Return the number of times \var{x} appears in the list.
|
---|
1798 | \end{methoddesc}
|
---|
1799 |
|
---|
1800 | \begin{methoddesc}[list]{sort}{}
|
---|
1801 | Sort the items of the list, in place.
|
---|
1802 | \end{methoddesc}
|
---|
1803 |
|
---|
1804 | \begin{methoddesc}[list]{reverse}{}
|
---|
1805 | Reverse the elements of the list, in place.
|
---|
1806 | \end{methoddesc}
|
---|
1807 |
|
---|
1808 | An example that uses most of the list methods:
|
---|
1809 |
|
---|
1810 | \begin{verbatim}
|
---|
1811 | >>> a = [66.25, 333, 333, 1, 1234.5]
|
---|
1812 | >>> print a.count(333), a.count(66.25), a.count('x')
|
---|
1813 | 2 1 0
|
---|
1814 | >>> a.insert(2, -1)
|
---|
1815 | >>> a.append(333)
|
---|
1816 | >>> a
|
---|
1817 | [66.25, 333, -1, 333, 1, 1234.5, 333]
|
---|
1818 | >>> a.index(333)
|
---|
1819 | 1
|
---|
1820 | >>> a.remove(333)
|
---|
1821 | >>> a
|
---|
1822 | [66.25, -1, 333, 1, 1234.5, 333]
|
---|
1823 | >>> a.reverse()
|
---|
1824 | >>> a
|
---|
1825 | [333, 1234.5, 1, 333, -1, 66.25]
|
---|
1826 | >>> a.sort()
|
---|
1827 | >>> a
|
---|
1828 | [-1, 1, 66.25, 333, 333, 1234.5]
|
---|
1829 | \end{verbatim}
|
---|
1830 |
|
---|
1831 |
|
---|
1832 | \subsection{Using Lists as Stacks \label{lists-as-stacks}}
|
---|
1833 | \sectionauthor{Ka-Ping Yee}{ping@lfw.org}
|
---|
1834 |
|
---|
1835 | The list methods make it very easy to use a list as a stack, where the
|
---|
1836 | last element added is the first element retrieved (``last-in,
|
---|
1837 | first-out''). To add an item to the top of the stack, use
|
---|
1838 | \method{append()}. To retrieve an item from the top of the stack, use
|
---|
1839 | \method{pop()} without an explicit index. For example:
|
---|
1840 |
|
---|
1841 | \begin{verbatim}
|
---|
1842 | >>> stack = [3, 4, 5]
|
---|
1843 | >>> stack.append(6)
|
---|
1844 | >>> stack.append(7)
|
---|
1845 | >>> stack
|
---|
1846 | [3, 4, 5, 6, 7]
|
---|
1847 | >>> stack.pop()
|
---|
1848 | 7
|
---|
1849 | >>> stack
|
---|
1850 | [3, 4, 5, 6]
|
---|
1851 | >>> stack.pop()
|
---|
1852 | 6
|
---|
1853 | >>> stack.pop()
|
---|
1854 | 5
|
---|
1855 | >>> stack
|
---|
1856 | [3, 4]
|
---|
1857 | \end{verbatim}
|
---|
1858 |
|
---|
1859 |
|
---|
1860 | \subsection{Using Lists as Queues \label{lists-as-queues}}
|
---|
1861 | \sectionauthor{Ka-Ping Yee}{ping@lfw.org}
|
---|
1862 |
|
---|
1863 | You can also use a list conveniently as a queue, where the first
|
---|
1864 | element added is the first element retrieved (``first-in,
|
---|
1865 | first-out''). To add an item to the back of the queue, use
|
---|
1866 | \method{append()}. To retrieve an item from the front of the queue,
|
---|
1867 | use \method{pop()} with \code{0} as the index. For example:
|
---|
1868 |
|
---|
1869 | \begin{verbatim}
|
---|
1870 | >>> queue = ["Eric", "John", "Michael"]
|
---|
1871 | >>> queue.append("Terry") # Terry arrives
|
---|
1872 | >>> queue.append("Graham") # Graham arrives
|
---|
1873 | >>> queue.pop(0)
|
---|
1874 | 'Eric'
|
---|
1875 | >>> queue.pop(0)
|
---|
1876 | 'John'
|
---|
1877 | >>> queue
|
---|
1878 | ['Michael', 'Terry', 'Graham']
|
---|
1879 | \end{verbatim}
|
---|
1880 |
|
---|
1881 |
|
---|
1882 | \subsection{Functional Programming Tools \label{functional}}
|
---|
1883 |
|
---|
1884 | There are three built-in functions that are very useful when used with
|
---|
1885 | lists: \function{filter()}, \function{map()}, and \function{reduce()}.
|
---|
1886 |
|
---|
1887 | \samp{filter(\var{function}, \var{sequence})} returns a sequence
|
---|
1888 | consisting of those items from the
|
---|
1889 | sequence for which \code{\var{function}(\var{item})} is true.
|
---|
1890 | If \var{sequence} is a \class{string} or \class{tuple}, the result will
|
---|
1891 | be of the same type; otherwise, it is always a \class{list}.
|
---|
1892 | For example, to compute some primes:
|
---|
1893 |
|
---|
1894 | \begin{verbatim}
|
---|
1895 | >>> def f(x): return x % 2 != 0 and x % 3 != 0
|
---|
1896 | ...
|
---|
1897 | >>> filter(f, range(2, 25))
|
---|
1898 | [5, 7, 11, 13, 17, 19, 23]
|
---|
1899 | \end{verbatim}
|
---|
1900 |
|
---|
1901 | \samp{map(\var{function}, \var{sequence})} calls
|
---|
1902 | \code{\var{function}(\var{item})} for each of the sequence's items and
|
---|
1903 | returns a list of the return values. For example, to compute some
|
---|
1904 | cubes:
|
---|
1905 |
|
---|
1906 | \begin{verbatim}
|
---|
1907 | >>> def cube(x): return x*x*x
|
---|
1908 | ...
|
---|
1909 | >>> map(cube, range(1, 11))
|
---|
1910 | [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
|
---|
1911 | \end{verbatim}
|
---|
1912 |
|
---|
1913 | More than one sequence may be passed; the function must then have as
|
---|
1914 | many arguments as there are sequences and is called with the
|
---|
1915 | corresponding item from each sequence (or \code{None} if some sequence
|
---|
1916 | is shorter than another). For example:
|
---|
1917 |
|
---|
1918 | \begin{verbatim}
|
---|
1919 | >>> seq = range(8)
|
---|
1920 | >>> def add(x, y): return x+y
|
---|
1921 | ...
|
---|
1922 | >>> map(add, seq, seq)
|
---|
1923 | [0, 2, 4, 6, 8, 10, 12, 14]
|
---|
1924 | \end{verbatim}
|
---|
1925 |
|
---|
1926 | \samp{reduce(\var{function}, \var{sequence})} returns a single value
|
---|
1927 | constructed by calling the binary function \var{function} on the first two
|
---|
1928 | items of the sequence, then on the result and the next item, and so
|
---|
1929 | on. For example, to compute the sum of the numbers 1 through 10:
|
---|
1930 |
|
---|
1931 | \begin{verbatim}
|
---|
1932 | >>> def add(x,y): return x+y
|
---|
1933 | ...
|
---|
1934 | >>> reduce(add, range(1, 11))
|
---|
1935 | 55
|
---|
1936 | \end{verbatim}
|
---|
1937 |
|
---|
1938 | If there's only one item in the sequence, its value is returned; if
|
---|
1939 | the sequence is empty, an exception is raised.
|
---|
1940 |
|
---|
1941 | A third argument can be passed to indicate the starting value. In this
|
---|
1942 | case the starting value is returned for an empty sequence, and the
|
---|
1943 | function is first applied to the starting value and the first sequence
|
---|
1944 | item, then to the result and the next item, and so on. For example,
|
---|
1945 |
|
---|
1946 | \begin{verbatim}
|
---|
1947 | >>> def sum(seq):
|
---|
1948 | ... def add(x,y): return x+y
|
---|
1949 | ... return reduce(add, seq, 0)
|
---|
1950 | ...
|
---|
1951 | >>> sum(range(1, 11))
|
---|
1952 | 55
|
---|
1953 | >>> sum([])
|
---|
1954 | 0
|
---|
1955 | \end{verbatim}
|
---|
1956 |
|
---|
1957 | Don't use this example's definition of \function{sum()}: since summing
|
---|
1958 | numbers is such a common need, a built-in function
|
---|
1959 | \code{sum(\var{sequence})} is already provided, and works exactly like
|
---|
1960 | this.
|
---|
1961 | \versionadded{2.3}
|
---|
1962 |
|
---|
1963 | \subsection{List Comprehensions}
|
---|
1964 |
|
---|
1965 | List comprehensions provide a concise way to create lists without resorting
|
---|
1966 | to use of \function{map()}, \function{filter()} and/or \keyword{lambda}.
|
---|
1967 | The resulting list definition tends often to be clearer than lists built
|
---|
1968 | using those constructs. Each list comprehension consists of an expression
|
---|
1969 | followed by a \keyword{for} clause, then zero or more \keyword{for} or
|
---|
1970 | \keyword{if} clauses. The result will be a list resulting from evaluating
|
---|
1971 | the expression in the context of the \keyword{for} and \keyword{if} clauses
|
---|
1972 | which follow it. If the expression would evaluate to a tuple, it must be
|
---|
1973 | parenthesized.
|
---|
1974 |
|
---|
1975 | \begin{verbatim}
|
---|
1976 | >>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
|
---|
1977 | >>> [weapon.strip() for weapon in freshfruit]
|
---|
1978 | ['banana', 'loganberry', 'passion fruit']
|
---|
1979 | >>> vec = [2, 4, 6]
|
---|
1980 | >>> [3*x for x in vec]
|
---|
1981 | [6, 12, 18]
|
---|
1982 | >>> [3*x for x in vec if x > 3]
|
---|
1983 | [12, 18]
|
---|
1984 | >>> [3*x for x in vec if x < 2]
|
---|
1985 | []
|
---|
1986 | >>> [[x,x**2] for x in vec]
|
---|
1987 | [[2, 4], [4, 16], [6, 36]]
|
---|
1988 | >>> [x, x**2 for x in vec] # error - parens required for tuples
|
---|
1989 | File "<stdin>", line 1, in ?
|
---|
1990 | [x, x**2 for x in vec]
|
---|
1991 | ^
|
---|
1992 | SyntaxError: invalid syntax
|
---|
1993 | >>> [(x, x**2) for x in vec]
|
---|
1994 | [(2, 4), (4, 16), (6, 36)]
|
---|
1995 | >>> vec1 = [2, 4, 6]
|
---|
1996 | >>> vec2 = [4, 3, -9]
|
---|
1997 | >>> [x*y for x in vec1 for y in vec2]
|
---|
1998 | [8, 6, -18, 16, 12, -36, 24, 18, -54]
|
---|
1999 | >>> [x+y for x in vec1 for y in vec2]
|
---|
2000 | [6, 5, -7, 8, 7, -5, 10, 9, -3]
|
---|
2001 | >>> [vec1[i]*vec2[i] for i in range(len(vec1))]
|
---|
2002 | [8, 12, -54]
|
---|
2003 | \end{verbatim}
|
---|
2004 |
|
---|
2005 | List comprehensions are much more flexible than \function{map()} and can be
|
---|
2006 | applied to complex expressions and nested functions:
|
---|
2007 |
|
---|
2008 | \begin{verbatim}
|
---|
2009 | >>> [str(round(355/113.0, i)) for i in range(1,6)]
|
---|
2010 | ['3.1', '3.14', '3.142', '3.1416', '3.14159']
|
---|
2011 | \end{verbatim}
|
---|
2012 |
|
---|
2013 |
|
---|
2014 | \section{The \keyword{del} statement \label{del}}
|
---|
2015 |
|
---|
2016 | There is a way to remove an item from a list given its index instead
|
---|
2017 | of its value: the \keyword{del} statement. This differs from the
|
---|
2018 | \method{pop()}) method which returns a value. The \keyword{del}
|
---|
2019 | statement can also be used to remove slices from a list or clear the
|
---|
2020 | entire list (which we did earlier by assignment of an empty list to
|
---|
2021 | the slice). For example:
|
---|
2022 |
|
---|
2023 | \begin{verbatim}
|
---|
2024 | >>> a = [-1, 1, 66.25, 333, 333, 1234.5]
|
---|
2025 | >>> del a[0]
|
---|
2026 | >>> a
|
---|
2027 | [1, 66.25, 333, 333, 1234.5]
|
---|
2028 | >>> del a[2:4]
|
---|
2029 | >>> a
|
---|
2030 | [1, 66.25, 1234.5]
|
---|
2031 | >>> del a[:]
|
---|
2032 | >>> a
|
---|
2033 | []
|
---|
2034 | \end{verbatim}
|
---|
2035 |
|
---|
2036 | \keyword{del} can also be used to delete entire variables:
|
---|
2037 |
|
---|
2038 | \begin{verbatim}
|
---|
2039 | >>> del a
|
---|
2040 | \end{verbatim}
|
---|
2041 |
|
---|
2042 | Referencing the name \code{a} hereafter is an error (at least until
|
---|
2043 | another value is assigned to it). We'll find other uses for
|
---|
2044 | \keyword{del} later.
|
---|
2045 |
|
---|
2046 |
|
---|
2047 | \section{Tuples and Sequences \label{tuples}}
|
---|
2048 |
|
---|
2049 | We saw that lists and strings have many common properties, such as
|
---|
2050 | indexing and slicing operations. They are two examples of
|
---|
2051 | \ulink{\emph{sequence} data types}{../lib/typesseq.html}. Since
|
---|
2052 | Python is an evolving language, other sequence data types may be
|
---|
2053 | added. There is also another standard sequence data type: the
|
---|
2054 | \emph{tuple}.
|
---|
2055 |
|
---|
2056 | A tuple consists of a number of values separated by commas, for
|
---|
2057 | instance:
|
---|
2058 |
|
---|
2059 | \begin{verbatim}
|
---|
2060 | >>> t = 12345, 54321, 'hello!'
|
---|
2061 | >>> t[0]
|
---|
2062 | 12345
|
---|
2063 | >>> t
|
---|
2064 | (12345, 54321, 'hello!')
|
---|
2065 | >>> # Tuples may be nested:
|
---|
2066 | ... u = t, (1, 2, 3, 4, 5)
|
---|
2067 | >>> u
|
---|
2068 | ((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
|
---|
2069 | \end{verbatim}
|
---|
2070 |
|
---|
2071 | As you see, on output tuples are always enclosed in parentheses, so
|
---|
2072 | that nested tuples are interpreted correctly; they may be input with
|
---|
2073 | or without surrounding parentheses, although often parentheses are
|
---|
2074 | necessary anyway (if the tuple is part of a larger expression).
|
---|
2075 |
|
---|
2076 | Tuples have many uses. For example: (x, y) coordinate pairs, employee
|
---|
2077 | records from a database, etc. Tuples, like strings, are immutable: it
|
---|
2078 | is not possible to assign to the individual items of a tuple (you can
|
---|
2079 | simulate much of the same effect with slicing and concatenation,
|
---|
2080 | though). It is also possible to create tuples which contain mutable
|
---|
2081 | objects, such as lists.
|
---|
2082 |
|
---|
2083 | A special problem is the construction of tuples containing 0 or 1
|
---|
2084 | items: the syntax has some extra quirks to accommodate these. Empty
|
---|
2085 | tuples are constructed by an empty pair of parentheses; a tuple with
|
---|
2086 | one item is constructed by following a value with a comma
|
---|
2087 | (it is not sufficient to enclose a single value in parentheses).
|
---|
2088 | Ugly, but effective. For example:
|
---|
2089 |
|
---|
2090 | \begin{verbatim}
|
---|
2091 | >>> empty = ()
|
---|
2092 | >>> singleton = 'hello', # <-- note trailing comma
|
---|
2093 | >>> len(empty)
|
---|
2094 | 0
|
---|
2095 | >>> len(singleton)
|
---|
2096 | 1
|
---|
2097 | >>> singleton
|
---|
2098 | ('hello',)
|
---|
2099 | \end{verbatim}
|
---|
2100 |
|
---|
2101 | The statement \code{t = 12345, 54321, 'hello!'} is an example of
|
---|
2102 | \emph{tuple packing}: the values \code{12345}, \code{54321} and
|
---|
2103 | \code{'hello!'} are packed together in a tuple. The reverse operation
|
---|
2104 | is also possible:
|
---|
2105 |
|
---|
2106 | \begin{verbatim}
|
---|
2107 | >>> x, y, z = t
|
---|
2108 | \end{verbatim}
|
---|
2109 |
|
---|
2110 | This is called, appropriately enough, \emph{sequence unpacking}.
|
---|
2111 | Sequence unpacking requires the list of variables on the left to
|
---|
2112 | have the same number of elements as the length of the sequence. Note
|
---|
2113 | that multiple assignment is really just a combination of tuple packing
|
---|
2114 | and sequence unpacking!
|
---|
2115 |
|
---|
2116 | There is a small bit of asymmetry here: packing multiple values
|
---|
2117 | always creates a tuple, and unpacking works for any sequence.
|
---|
2118 |
|
---|
2119 | % XXX Add a bit on the difference between tuples and lists.
|
---|
2120 |
|
---|
2121 |
|
---|
2122 | \section{Sets \label{sets}}
|
---|
2123 |
|
---|
2124 | Python also includes a data type for \emph{sets}. A set is an unordered
|
---|
2125 | collection with no duplicate elements. Basic uses include membership
|
---|
2126 | testing and eliminating duplicate entries. Set objects also support
|
---|
2127 | mathematical operations like union, intersection, difference, and
|
---|
2128 | symmetric difference.
|
---|
2129 |
|
---|
2130 | Here is a brief demonstration:
|
---|
2131 |
|
---|
2132 | \begin{verbatim}
|
---|
2133 | >>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
|
---|
2134 | >>> fruit = set(basket) # create a set without duplicates
|
---|
2135 | >>> fruit
|
---|
2136 | set(['orange', 'pear', 'apple', 'banana'])
|
---|
2137 | >>> 'orange' in fruit # fast membership testing
|
---|
2138 | True
|
---|
2139 | >>> 'crabgrass' in fruit
|
---|
2140 | False
|
---|
2141 |
|
---|
2142 | >>> # Demonstrate set operations on unique letters from two words
|
---|
2143 | ...
|
---|
2144 | >>> a = set('abracadabra')
|
---|
2145 | >>> b = set('alacazam')
|
---|
2146 | >>> a # unique letters in a
|
---|
2147 | set(['a', 'r', 'b', 'c', 'd'])
|
---|
2148 | >>> a - b # letters in a but not in b
|
---|
2149 | set(['r', 'd', 'b'])
|
---|
2150 | >>> a | b # letters in either a or b
|
---|
2151 | set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
|
---|
2152 | >>> a & b # letters in both a and b
|
---|
2153 | set(['a', 'c'])
|
---|
2154 | >>> a ^ b # letters in a or b but not both
|
---|
2155 | set(['r', 'd', 'b', 'm', 'z', 'l'])
|
---|
2156 | \end{verbatim}
|
---|
2157 |
|
---|
2158 |
|
---|
2159 | \section{Dictionaries \label{dictionaries}}
|
---|
2160 |
|
---|
2161 | Another useful data type built into Python is the
|
---|
2162 | \ulink{\emph{dictionary}}{../lib/typesmapping.html}.
|
---|
2163 | Dictionaries are sometimes found in other languages as ``associative
|
---|
2164 | memories'' or ``associative arrays''. Unlike sequences, which are
|
---|
2165 | indexed by a range of numbers, dictionaries are indexed by \emph{keys},
|
---|
2166 | which can be any immutable type; strings and numbers can always be
|
---|
2167 | keys. Tuples can be used as keys if they contain only strings,
|
---|
2168 | numbers, or tuples; if a tuple contains any mutable object either
|
---|
2169 | directly or indirectly, it cannot be used as a key. You can't use
|
---|
2170 | lists as keys, since lists can be modified in place using
|
---|
2171 | index assignments, slice assignments, or methods like
|
---|
2172 | \method{append()} and \method{extend()}.
|
---|
2173 |
|
---|
2174 | It is best to think of a dictionary as an unordered set of
|
---|
2175 | \emph{key: value} pairs, with the requirement that the keys are unique
|
---|
2176 | (within one dictionary).
|
---|
2177 | A pair of braces creates an empty dictionary: \code{\{\}}.
|
---|
2178 | Placing a comma-separated list of key:value pairs within the
|
---|
2179 | braces adds initial key:value pairs to the dictionary; this is also the
|
---|
2180 | way dictionaries are written on output.
|
---|
2181 |
|
---|
2182 | The main operations on a dictionary are storing a value with some key
|
---|
2183 | and extracting the value given the key. It is also possible to delete
|
---|
2184 | a key:value pair
|
---|
2185 | with \code{del}.
|
---|
2186 | If you store using a key that is already in use, the old value
|
---|
2187 | associated with that key is forgotten. It is an error to extract a
|
---|
2188 | value using a non-existent key.
|
---|
2189 |
|
---|
2190 | The \method{keys()} method of a dictionary object returns a list of all
|
---|
2191 | the keys used in the dictionary, in arbitrary order (if you want it
|
---|
2192 | sorted, just apply the \method{sort()} method to the list of keys). To
|
---|
2193 | check whether a single key is in the dictionary, either use the dictionary's
|
---|
2194 | \method{has_key()} method or the \keyword{in} keyword.
|
---|
2195 |
|
---|
2196 | Here is a small example using a dictionary:
|
---|
2197 |
|
---|
2198 | \begin{verbatim}
|
---|
2199 | >>> tel = {'jack': 4098, 'sape': 4139}
|
---|
2200 | >>> tel['guido'] = 4127
|
---|
2201 | >>> tel
|
---|
2202 | {'sape': 4139, 'guido': 4127, 'jack': 4098}
|
---|
2203 | >>> tel['jack']
|
---|
2204 | 4098
|
---|
2205 | >>> del tel['sape']
|
---|
2206 | >>> tel['irv'] = 4127
|
---|
2207 | >>> tel
|
---|
2208 | {'guido': 4127, 'irv': 4127, 'jack': 4098}
|
---|
2209 | >>> tel.keys()
|
---|
2210 | ['guido', 'irv', 'jack']
|
---|
2211 | >>> tel.has_key('guido')
|
---|
2212 | True
|
---|
2213 | >>> 'guido' in tel
|
---|
2214 | True
|
---|
2215 | \end{verbatim}
|
---|
2216 |
|
---|
2217 | The \function{dict()} constructor builds dictionaries directly from
|
---|
2218 | lists of key-value pairs stored as tuples. When the pairs form a
|
---|
2219 | pattern, list comprehensions can compactly specify the key-value list.
|
---|
2220 |
|
---|
2221 | \begin{verbatim}
|
---|
2222 | >>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
|
---|
2223 | {'sape': 4139, 'jack': 4098, 'guido': 4127}
|
---|
2224 | >>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
|
---|
2225 | {2: 4, 4: 16, 6: 36}
|
---|
2226 | \end{verbatim}
|
---|
2227 |
|
---|
2228 | Later in the tutorial, we will learn about Generator Expressions
|
---|
2229 | which are even better suited for the task of supplying key-values pairs to
|
---|
2230 | the \function{dict()} constructor.
|
---|
2231 |
|
---|
2232 | When the keys are simple strings, it is sometimes easier to specify
|
---|
2233 | pairs using keyword arguments:
|
---|
2234 |
|
---|
2235 | \begin{verbatim}
|
---|
2236 | >>> dict(sape=4139, guido=4127, jack=4098)
|
---|
2237 | {'sape': 4139, 'jack': 4098, 'guido': 4127}
|
---|
2238 | \end{verbatim}
|
---|
2239 |
|
---|
2240 |
|
---|
2241 | \section{Looping Techniques \label{loopidioms}}
|
---|
2242 |
|
---|
2243 | When looping through dictionaries, the key and corresponding value can
|
---|
2244 | be retrieved at the same time using the \method{iteritems()} method.
|
---|
2245 |
|
---|
2246 | \begin{verbatim}
|
---|
2247 | >>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
|
---|
2248 | >>> for k, v in knights.iteritems():
|
---|
2249 | ... print k, v
|
---|
2250 | ...
|
---|
2251 | gallahad the pure
|
---|
2252 | robin the brave
|
---|
2253 | \end{verbatim}
|
---|
2254 |
|
---|
2255 | When looping through a sequence, the position index and corresponding
|
---|
2256 | value can be retrieved at the same time using the
|
---|
2257 | \function{enumerate()} function.
|
---|
2258 |
|
---|
2259 | \begin{verbatim}
|
---|
2260 | >>> for i, v in enumerate(['tic', 'tac', 'toe']):
|
---|
2261 | ... print i, v
|
---|
2262 | ...
|
---|
2263 | 0 tic
|
---|
2264 | 1 tac
|
---|
2265 | 2 toe
|
---|
2266 | \end{verbatim}
|
---|
2267 |
|
---|
2268 | To loop over two or more sequences at the same time, the entries
|
---|
2269 | can be paired with the \function{zip()} function.
|
---|
2270 |
|
---|
2271 | \begin{verbatim}
|
---|
2272 | >>> questions = ['name', 'quest', 'favorite color']
|
---|
2273 | >>> answers = ['lancelot', 'the holy grail', 'blue']
|
---|
2274 | >>> for q, a in zip(questions, answers):
|
---|
2275 | ... print 'What is your %s? It is %s.' % (q, a)
|
---|
2276 | ...
|
---|
2277 | What is your name? It is lancelot.
|
---|
2278 | What is your quest? It is the holy grail.
|
---|
2279 | What is your favorite color? It is blue.
|
---|
2280 | \end{verbatim}
|
---|
2281 |
|
---|
2282 | To loop over a sequence in reverse, first specify the sequence
|
---|
2283 | in a forward direction and then call the \function{reversed()}
|
---|
2284 | function.
|
---|
2285 |
|
---|
2286 | \begin{verbatim}
|
---|
2287 | >>> for i in reversed(xrange(1,10,2)):
|
---|
2288 | ... print i
|
---|
2289 | ...
|
---|
2290 | 9
|
---|
2291 | 7
|
---|
2292 | 5
|
---|
2293 | 3
|
---|
2294 | 1
|
---|
2295 | \end{verbatim}
|
---|
2296 |
|
---|
2297 | To loop over a sequence in sorted order, use the \function{sorted()}
|
---|
2298 | function which returns a new sorted list while leaving the source
|
---|
2299 | unaltered.
|
---|
2300 |
|
---|
2301 | \begin{verbatim}
|
---|
2302 | >>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
|
---|
2303 | >>> for f in sorted(set(basket)):
|
---|
2304 | ... print f
|
---|
2305 | ...
|
---|
2306 | apple
|
---|
2307 | banana
|
---|
2308 | orange
|
---|
2309 | pear
|
---|
2310 | \end{verbatim}
|
---|
2311 |
|
---|
2312 | \section{More on Conditions \label{conditions}}
|
---|
2313 |
|
---|
2314 | The conditions used in \code{while} and \code{if} statements can
|
---|
2315 | contain any operators, not just comparisons.
|
---|
2316 |
|
---|
2317 | The comparison operators \code{in} and \code{not in} check whether a value
|
---|
2318 | occurs (does not occur) in a sequence. The operators \code{is} and
|
---|
2319 | \code{is not} compare whether two objects are really the same object; this
|
---|
2320 | only matters for mutable objects like lists. All comparison operators
|
---|
2321 | have the same priority, which is lower than that of all numerical
|
---|
2322 | operators.
|
---|
2323 |
|
---|
2324 | Comparisons can be chained. For example, \code{a < b == c} tests
|
---|
2325 | whether \code{a} is less than \code{b} and moreover \code{b} equals
|
---|
2326 | \code{c}.
|
---|
2327 |
|
---|
2328 | Comparisons may be combined using the Boolean operators \code{and} and
|
---|
2329 | \code{or}, and the outcome of a comparison (or of any other Boolean
|
---|
2330 | expression) may be negated with \code{not}. These have lower
|
---|
2331 | priorities than comparison operators; between them, \code{not} has
|
---|
2332 | the highest priority and \code{or} the lowest, so that
|
---|
2333 | \code{A and not B or C} is equivalent to \code{(A and (not B)) or C}.
|
---|
2334 | As always, parentheses can be used to express the desired composition.
|
---|
2335 |
|
---|
2336 | The Boolean operators \code{and} and \code{or} are so-called
|
---|
2337 | \emph{short-circuit} operators: their arguments are evaluated from
|
---|
2338 | left to right, and evaluation stops as soon as the outcome is
|
---|
2339 | determined. For example, if \code{A} and \code{C} are true but
|
---|
2340 | \code{B} is false, \code{A and B and C} does not evaluate the
|
---|
2341 | expression \code{C}. When used as a general value and not as a
|
---|
2342 | Boolean, the return value of a short-circuit operator is the last
|
---|
2343 | evaluated argument.
|
---|
2344 |
|
---|
2345 | It is possible to assign the result of a comparison or other Boolean
|
---|
2346 | expression to a variable. For example,
|
---|
2347 |
|
---|
2348 | \begin{verbatim}
|
---|
2349 | >>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
|
---|
2350 | >>> non_null = string1 or string2 or string3
|
---|
2351 | >>> non_null
|
---|
2352 | 'Trondheim'
|
---|
2353 | \end{verbatim}
|
---|
2354 |
|
---|
2355 | Note that in Python, unlike C, assignment cannot occur inside expressions.
|
---|
2356 | C programmers may grumble about this, but it avoids a common class of
|
---|
2357 | problems encountered in C programs: typing \code{=} in an expression when
|
---|
2358 | \code{==} was intended.
|
---|
2359 |
|
---|
2360 |
|
---|
2361 | \section{Comparing Sequences and Other Types \label{comparing}}
|
---|
2362 |
|
---|
2363 | Sequence objects may be compared to other objects with the same
|
---|
2364 | sequence type. The comparison uses \emph{lexicographical} ordering:
|
---|
2365 | first the first two items are compared, and if they differ this
|
---|
2366 | determines the outcome of the comparison; if they are equal, the next
|
---|
2367 | two items are compared, and so on, until either sequence is exhausted.
|
---|
2368 | If two items to be compared are themselves sequences of the same type,
|
---|
2369 | the lexicographical comparison is carried out recursively. If all
|
---|
2370 | items of two sequences compare equal, the sequences are considered
|
---|
2371 | equal. If one sequence is an initial sub-sequence of the other, the
|
---|
2372 | shorter sequence is the smaller (lesser) one. Lexicographical
|
---|
2373 | ordering for strings uses the \ASCII{} ordering for individual
|
---|
2374 | characters. Some examples of comparisons between sequences of the
|
---|
2375 | same type:
|
---|
2376 |
|
---|
2377 | \begin{verbatim}
|
---|
2378 | (1, 2, 3) < (1, 2, 4)
|
---|
2379 | [1, 2, 3] < [1, 2, 4]
|
---|
2380 | 'ABC' < 'C' < 'Pascal' < 'Python'
|
---|
2381 | (1, 2, 3, 4) < (1, 2, 4)
|
---|
2382 | (1, 2) < (1, 2, -1)
|
---|
2383 | (1, 2, 3) == (1.0, 2.0, 3.0)
|
---|
2384 | (1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)
|
---|
2385 | \end{verbatim}
|
---|
2386 |
|
---|
2387 | Note that comparing objects of different types is legal. The outcome
|
---|
2388 | is deterministic but arbitrary: the types are ordered by their name.
|
---|
2389 | Thus, a list is always smaller than a string, a string is always
|
---|
2390 | smaller than a tuple, etc. \footnote{
|
---|
2391 | The rules for comparing objects of different types should
|
---|
2392 | not be relied upon; they may change in a future version of
|
---|
2393 | the language.
|
---|
2394 | } Mixed numeric types are compared according to their numeric value, so
|
---|
2395 | 0 equals 0.0, etc.
|
---|
2396 |
|
---|
2397 |
|
---|
2398 | \chapter{Modules \label{modules}}
|
---|
2399 |
|
---|
2400 | If you quit from the Python interpreter and enter it again, the
|
---|
2401 | definitions you have made (functions and variables) are lost.
|
---|
2402 | Therefore, if you want to write a somewhat longer program, you are
|
---|
2403 | better off using a text editor to prepare the input for the interpreter
|
---|
2404 | and running it with that file as input instead. This is known as creating a
|
---|
2405 | \emph{script}. As your program gets longer, you may want to split it
|
---|
2406 | into several files for easier maintenance. You may also want to use a
|
---|
2407 | handy function that you've written in several programs without copying
|
---|
2408 | its definition into each program.
|
---|
2409 |
|
---|
2410 | To support this, Python has a way to put definitions in a file and use
|
---|
2411 | them in a script or in an interactive instance of the interpreter.
|
---|
2412 | Such a file is called a \emph{module}; definitions from a module can be
|
---|
2413 | \emph{imported} into other modules or into the \emph{main} module (the
|
---|
2414 | collection of variables that you have access to in a script
|
---|
2415 | executed at the top level
|
---|
2416 | and in calculator mode).
|
---|
2417 |
|
---|
2418 | A module is a file containing Python definitions and statements. The
|
---|
2419 | file name is the module name with the suffix \file{.py} appended. Within
|
---|
2420 | a module, the module's name (as a string) is available as the value of
|
---|
2421 | the global variable \code{__name__}. For instance, use your favorite text
|
---|
2422 | editor to create a file called \file{fibo.py} in the current directory
|
---|
2423 | with the following contents:
|
---|
2424 |
|
---|
2425 | \begin{verbatim}
|
---|
2426 | # Fibonacci numbers module
|
---|
2427 |
|
---|
2428 | def fib(n): # write Fibonacci series up to n
|
---|
2429 | a, b = 0, 1
|
---|
2430 | while b < n:
|
---|
2431 | print b,
|
---|
2432 | a, b = b, a+b
|
---|
2433 |
|
---|
2434 | def fib2(n): # return Fibonacci series up to n
|
---|
2435 | result = []
|
---|
2436 | a, b = 0, 1
|
---|
2437 | while b < n:
|
---|
2438 | result.append(b)
|
---|
2439 | a, b = b, a+b
|
---|
2440 | return result
|
---|
2441 | \end{verbatim}
|
---|
2442 |
|
---|
2443 | Now enter the Python interpreter and import this module with the
|
---|
2444 | following command:
|
---|
2445 |
|
---|
2446 | \begin{verbatim}
|
---|
2447 | >>> import fibo
|
---|
2448 | \end{verbatim}
|
---|
2449 |
|
---|
2450 | This does not enter the names of the functions defined in \code{fibo}
|
---|
2451 | directly in the current symbol table; it only enters the module name
|
---|
2452 | \code{fibo} there.
|
---|
2453 | Using the module name you can access the functions:
|
---|
2454 |
|
---|
2455 | \begin{verbatim}
|
---|
2456 | >>> fibo.fib(1000)
|
---|
2457 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
|
---|
2458 | >>> fibo.fib2(100)
|
---|
2459 | [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
|
---|
2460 | >>> fibo.__name__
|
---|
2461 | 'fibo'
|
---|
2462 | \end{verbatim}
|
---|
2463 |
|
---|
2464 | If you intend to use a function often you can assign it to a local name:
|
---|
2465 |
|
---|
2466 | \begin{verbatim}
|
---|
2467 | >>> fib = fibo.fib
|
---|
2468 | >>> fib(500)
|
---|
2469 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377
|
---|
2470 | \end{verbatim}
|
---|
2471 |
|
---|
2472 |
|
---|
2473 | \section{More on Modules \label{moreModules}}
|
---|
2474 |
|
---|
2475 | A module can contain executable statements as well as function
|
---|
2476 | definitions.
|
---|
2477 | These statements are intended to initialize the module.
|
---|
2478 | They are executed only the
|
---|
2479 | \emph{first} time the module is imported somewhere.\footnote{
|
---|
2480 | In fact function definitions are also `statements' that are
|
---|
2481 | `executed'; the execution enters the function name in the
|
---|
2482 | module's global symbol table.
|
---|
2483 | }
|
---|
2484 |
|
---|
2485 | Each module has its own private symbol table, which is used as the
|
---|
2486 | global symbol table by all functions defined in the module.
|
---|
2487 | Thus, the author of a module can use global variables in the module
|
---|
2488 | without worrying about accidental clashes with a user's global
|
---|
2489 | variables.
|
---|
2490 | On the other hand, if you know what you are doing you can touch a
|
---|
2491 | module's global variables with the same notation used to refer to its
|
---|
2492 | functions,
|
---|
2493 | \code{modname.itemname}.
|
---|
2494 |
|
---|
2495 | Modules can import other modules. It is customary but not required to
|
---|
2496 | place all \keyword{import} statements at the beginning of a module (or
|
---|
2497 | script, for that matter). The imported module names are placed in the
|
---|
2498 | importing module's global symbol table.
|
---|
2499 |
|
---|
2500 | There is a variant of the \keyword{import} statement that imports
|
---|
2501 | names from a module directly into the importing module's symbol
|
---|
2502 | table. For example:
|
---|
2503 |
|
---|
2504 | \begin{verbatim}
|
---|
2505 | >>> from fibo import fib, fib2
|
---|
2506 | >>> fib(500)
|
---|
2507 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377
|
---|
2508 | \end{verbatim}
|
---|
2509 |
|
---|
2510 | This does not introduce the module name from which the imports are taken
|
---|
2511 | in the local symbol table (so in the example, \code{fibo} is not
|
---|
2512 | defined).
|
---|
2513 |
|
---|
2514 | There is even a variant to import all names that a module defines:
|
---|
2515 |
|
---|
2516 | \begin{verbatim}
|
---|
2517 | >>> from fibo import *
|
---|
2518 | >>> fib(500)
|
---|
2519 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377
|
---|
2520 | \end{verbatim}
|
---|
2521 |
|
---|
2522 | This imports all names except those beginning with an underscore
|
---|
2523 | (\code{_}).
|
---|
2524 |
|
---|
2525 |
|
---|
2526 | \subsection{The Module Search Path \label{searchPath}}
|
---|
2527 |
|
---|
2528 | \indexiii{module}{search}{path}
|
---|
2529 | When a module named \module{spam} is imported, the interpreter searches
|
---|
2530 | for a file named \file{spam.py} in the current directory,
|
---|
2531 | and then in the list of directories specified by
|
---|
2532 | the environment variable \envvar{PYTHONPATH}. This has the same syntax as
|
---|
2533 | the shell variable \envvar{PATH}, that is, a list of
|
---|
2534 | directory names. When \envvar{PYTHONPATH} is not set, or when the file
|
---|
2535 | is not found there, the search continues in an installation-dependent
|
---|
2536 | default path; on \UNIX, this is usually \file{.:/usr/local/lib/python}.
|
---|
2537 |
|
---|
2538 | Actually, modules are searched in the list of directories given by the
|
---|
2539 | variable \code{sys.path} which is initialized from the directory
|
---|
2540 | containing the input script (or the current directory),
|
---|
2541 | \envvar{PYTHONPATH} and the installation-dependent default. This allows
|
---|
2542 | Python programs that know what they're doing to modify or replace the
|
---|
2543 | module search path. Note that because the directory containing the
|
---|
2544 | script being run is on the search path, it is important that the
|
---|
2545 | script not have the same name as a standard module, or Python will
|
---|
2546 | attempt to load the script as a module when that module is imported.
|
---|
2547 | This will generally be an error. See section~\ref{standardModules},
|
---|
2548 | ``Standard Modules,'' for more information.
|
---|
2549 |
|
---|
2550 |
|
---|
2551 | \subsection{``Compiled'' Python files}
|
---|
2552 |
|
---|
2553 | As an important speed-up of the start-up time for short programs that
|
---|
2554 | use a lot of standard modules, if a file called \file{spam.pyc} exists
|
---|
2555 | in the directory where \file{spam.py} is found, this is assumed to
|
---|
2556 | contain an already-``byte-compiled'' version of the module \module{spam}.
|
---|
2557 | The modification time of the version of \file{spam.py} used to create
|
---|
2558 | \file{spam.pyc} is recorded in \file{spam.pyc}, and the
|
---|
2559 | \file{.pyc} file is ignored if these don't match.
|
---|
2560 |
|
---|
2561 | Normally, you don't need to do anything to create the
|
---|
2562 | \file{spam.pyc} file. Whenever \file{spam.py} is successfully
|
---|
2563 | compiled, an attempt is made to write the compiled version to
|
---|
2564 | \file{spam.pyc}. It is not an error if this attempt fails; if for any
|
---|
2565 | reason the file is not written completely, the resulting
|
---|
2566 | \file{spam.pyc} file will be recognized as invalid and thus ignored
|
---|
2567 | later. The contents of the \file{spam.pyc} file are platform
|
---|
2568 | independent, so a Python module directory can be shared by machines of
|
---|
2569 | different architectures.
|
---|
2570 |
|
---|
2571 | Some tips for experts:
|
---|
2572 |
|
---|
2573 | \begin{itemize}
|
---|
2574 |
|
---|
2575 | \item
|
---|
2576 | When the Python interpreter is invoked with the \programopt{-O} flag,
|
---|
2577 | optimized code is generated and stored in \file{.pyo} files. The
|
---|
2578 | optimizer currently doesn't help much; it only removes
|
---|
2579 | \keyword{assert} statements. When \programopt{-O} is used, \emph{all}
|
---|
2580 | bytecode is optimized; \code{.pyc} files are ignored and \code{.py}
|
---|
2581 | files are compiled to optimized bytecode.
|
---|
2582 |
|
---|
2583 | \item
|
---|
2584 | Passing two \programopt{-O} flags to the Python interpreter
|
---|
2585 | (\programopt{-OO}) will cause the bytecode compiler to perform
|
---|
2586 | optimizations that could in some rare cases result in malfunctioning
|
---|
2587 | programs. Currently only \code{__doc__} strings are removed from the
|
---|
2588 | bytecode, resulting in more compact \file{.pyo} files. Since some
|
---|
2589 | programs may rely on having these available, you should only use this
|
---|
2590 | option if you know what you're doing.
|
---|
2591 |
|
---|
2592 | \item
|
---|
2593 | A program doesn't run any faster when it is read from a \file{.pyc} or
|
---|
2594 | \file{.pyo} file than when it is read from a \file{.py} file; the only
|
---|
2595 | thing that's faster about \file{.pyc} or \file{.pyo} files is the
|
---|
2596 | speed with which they are loaded.
|
---|
2597 |
|
---|
2598 | \item
|
---|
2599 | When a script is run by giving its name on the command line, the
|
---|
2600 | bytecode for the script is never written to a \file{.pyc} or
|
---|
2601 | \file{.pyo} file. Thus, the startup time of a script may be reduced
|
---|
2602 | by moving most of its code to a module and having a small bootstrap
|
---|
2603 | script that imports that module. It is also possible to name a
|
---|
2604 | \file{.pyc} or \file{.pyo} file directly on the command line.
|
---|
2605 |
|
---|
2606 | \item
|
---|
2607 | It is possible to have a file called \file{spam.pyc} (or
|
---|
2608 | \file{spam.pyo} when \programopt{-O} is used) without a file
|
---|
2609 | \file{spam.py} for the same module. This can be used to distribute a
|
---|
2610 | library of Python code in a form that is moderately hard to reverse
|
---|
2611 | engineer.
|
---|
2612 |
|
---|
2613 | \item
|
---|
2614 | The module \ulink{\module{compileall}}{../lib/module-compileall.html}%
|
---|
2615 | {} \refstmodindex{compileall} can create \file{.pyc} files (or
|
---|
2616 | \file{.pyo} files when \programopt{-O} is used) for all modules in a
|
---|
2617 | directory.
|
---|
2618 |
|
---|
2619 | \end{itemize}
|
---|
2620 |
|
---|
2621 |
|
---|
2622 | \section{Standard Modules \label{standardModules}}
|
---|
2623 |
|
---|
2624 | Python comes with a library of standard modules, described in a separate
|
---|
2625 | document, the \citetitle[../lib/lib.html]{Python Library Reference}
|
---|
2626 | (``Library Reference'' hereafter). Some modules are built into the
|
---|
2627 | interpreter; these provide access to operations that are not part of
|
---|
2628 | the core of the language but are nevertheless built in, either for
|
---|
2629 | efficiency or to provide access to operating system primitives such as
|
---|
2630 | system calls. The set of such modules is a configuration option which
|
---|
2631 | also depends on the underlying platform For example,
|
---|
2632 | the \module{amoeba} module is only provided on systems that somehow
|
---|
2633 | support Amoeba primitives. One particular module deserves some
|
---|
2634 | attention: \ulink{\module{sys}}{../lib/module-sys.html}%
|
---|
2635 | \refstmodindex{sys}, which is built into every
|
---|
2636 | Python interpreter. The variables \code{sys.ps1} and
|
---|
2637 | \code{sys.ps2} define the strings used as primary and secondary
|
---|
2638 | prompts:
|
---|
2639 |
|
---|
2640 | \begin{verbatim}
|
---|
2641 | >>> import sys
|
---|
2642 | >>> sys.ps1
|
---|
2643 | '>>> '
|
---|
2644 | >>> sys.ps2
|
---|
2645 | '... '
|
---|
2646 | >>> sys.ps1 = 'C> '
|
---|
2647 | C> print 'Yuck!'
|
---|
2648 | Yuck!
|
---|
2649 | C>
|
---|
2650 |
|
---|
2651 | \end{verbatim}
|
---|
2652 |
|
---|
2653 | These two variables are only defined if the interpreter is in
|
---|
2654 | interactive mode.
|
---|
2655 |
|
---|
2656 | The variable \code{sys.path} is a list of strings that determines the
|
---|
2657 | interpreter's search path for modules. It is initialized to a default
|
---|
2658 | path taken from the environment variable \envvar{PYTHONPATH}, or from
|
---|
2659 | a built-in default if \envvar{PYTHONPATH} is not set. You can modify
|
---|
2660 | it using standard list operations:
|
---|
2661 |
|
---|
2662 | \begin{verbatim}
|
---|
2663 | >>> import sys
|
---|
2664 | >>> sys.path.append('/ufs/guido/lib/python')
|
---|
2665 | \end{verbatim}
|
---|
2666 |
|
---|
2667 | \section{The \function{dir()} Function \label{dir}}
|
---|
2668 |
|
---|
2669 | The built-in function \function{dir()} is used to find out which names
|
---|
2670 | a module defines. It returns a sorted list of strings:
|
---|
2671 |
|
---|
2672 | \begin{verbatim}
|
---|
2673 | >>> import fibo, sys
|
---|
2674 | >>> dir(fibo)
|
---|
2675 | ['__name__', 'fib', 'fib2']
|
---|
2676 | >>> dir(sys)
|
---|
2677 | ['__displayhook__', '__doc__', '__excepthook__', '__name__', '__stderr__',
|
---|
2678 | '__stdin__', '__stdout__', '_getframe', 'api_version', 'argv',
|
---|
2679 | 'builtin_module_names', 'byteorder', 'callstats', 'copyright',
|
---|
2680 | 'displayhook', 'exc_clear', 'exc_info', 'exc_type', 'excepthook',
|
---|
2681 | 'exec_prefix', 'executable', 'exit', 'getdefaultencoding', 'getdlopenflags',
|
---|
2682 | 'getrecursionlimit', 'getrefcount', 'hexversion', 'maxint', 'maxunicode',
|
---|
2683 | 'meta_path', 'modules', 'path', 'path_hooks', 'path_importer_cache',
|
---|
2684 | 'platform', 'prefix', 'ps1', 'ps2', 'setcheckinterval', 'setdlopenflags',
|
---|
2685 | 'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout',
|
---|
2686 | 'version', 'version_info', 'warnoptions']
|
---|
2687 | \end{verbatim}
|
---|
2688 |
|
---|
2689 | Without arguments, \function{dir()} lists the names you have defined
|
---|
2690 | currently:
|
---|
2691 |
|
---|
2692 | \begin{verbatim}
|
---|
2693 | >>> a = [1, 2, 3, 4, 5]
|
---|
2694 | >>> import fibo
|
---|
2695 | >>> fib = fibo.fib
|
---|
2696 | >>> dir()
|
---|
2697 | ['__builtins__', '__doc__', '__file__', '__name__', 'a', 'fib', 'fibo', 'sys']
|
---|
2698 | \end{verbatim}
|
---|
2699 |
|
---|
2700 | Note that it lists all types of names: variables, modules, functions, etc.
|
---|
2701 |
|
---|
2702 | \function{dir()} does not list the names of built-in functions and
|
---|
2703 | variables. If you want a list of those, they are defined in the
|
---|
2704 | standard module \module{__builtin__}\refbimodindex{__builtin__}:
|
---|
2705 |
|
---|
2706 | \begin{verbatim}
|
---|
2707 | >>> import __builtin__
|
---|
2708 | >>> dir(__builtin__)
|
---|
2709 | ['ArithmeticError', 'AssertionError', 'AttributeError', 'DeprecationWarning',
|
---|
2710 | 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
|
---|
2711 | 'FloatingPointError', 'FutureWarning', 'IOError', 'ImportError',
|
---|
2712 | 'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
|
---|
2713 | 'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
|
---|
2714 | 'NotImplementedError', 'OSError', 'OverflowError',
|
---|
2715 | 'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',
|
---|
2716 | 'RuntimeWarning', 'StandardError', 'StopIteration', 'SyntaxError',
|
---|
2717 | 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
|
---|
2718 | 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
|
---|
2719 | 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
|
---|
2720 | 'UserWarning', 'ValueError', 'Warning', 'WindowsError',
|
---|
2721 | 'ZeroDivisionError', '_', '__debug__', '__doc__', '__import__',
|
---|
2722 | '__name__', 'abs', 'apply', 'basestring', 'bool', 'buffer',
|
---|
2723 | 'callable', 'chr', 'classmethod', 'cmp', 'coerce', 'compile',
|
---|
2724 | 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod',
|
---|
2725 | 'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter', 'float',
|
---|
2726 | 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex',
|
---|
2727 | 'id', 'input', 'int', 'intern', 'isinstance', 'issubclass', 'iter',
|
---|
2728 | 'len', 'license', 'list', 'locals', 'long', 'map', 'max', 'min',
|
---|
2729 | 'object', 'oct', 'open', 'ord', 'pow', 'property', 'quit', 'range',
|
---|
2730 | 'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round', 'set',
|
---|
2731 | 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super',
|
---|
2732 | 'tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']
|
---|
2733 | \end{verbatim}
|
---|
2734 |
|
---|
2735 |
|
---|
2736 | \section{Packages \label{packages}}
|
---|
2737 |
|
---|
2738 | Packages are a way of structuring Python's module namespace
|
---|
2739 | by using ``dotted module names''. For example, the module name
|
---|
2740 | \module{A.B} designates a submodule named \samp{B} in a package named
|
---|
2741 | \samp{A}. Just like the use of modules saves the authors of different
|
---|
2742 | modules from having to worry about each other's global variable names,
|
---|
2743 | the use of dotted module names saves the authors of multi-module
|
---|
2744 | packages like NumPy or the Python Imaging Library from having to worry
|
---|
2745 | about each other's module names.
|
---|
2746 |
|
---|
2747 | Suppose you want to design a collection of modules (a ``package'') for
|
---|
2748 | the uniform handling of sound files and sound data. There are many
|
---|
2749 | different sound file formats (usually recognized by their extension,
|
---|
2750 | for example: \file{.wav}, \file{.aiff}, \file{.au}), so you may need
|
---|
2751 | to create and maintain a growing collection of modules for the
|
---|
2752 | conversion between the various file formats. There are also many
|
---|
2753 | different operations you might want to perform on sound data (such as
|
---|
2754 | mixing, adding echo, applying an equalizer function, creating an
|
---|
2755 | artificial stereo effect), so in addition you will be writing a
|
---|
2756 | never-ending stream of modules to perform these operations. Here's a
|
---|
2757 | possible structure for your package (expressed in terms of a
|
---|
2758 | hierarchical filesystem):
|
---|
2759 |
|
---|
2760 | \begin{verbatim}
|
---|
2761 | Sound/ Top-level package
|
---|
2762 | __init__.py Initialize the sound package
|
---|
2763 | Formats/ Subpackage for file format conversions
|
---|
2764 | __init__.py
|
---|
2765 | wavread.py
|
---|
2766 | wavwrite.py
|
---|
2767 | aiffread.py
|
---|
2768 | aiffwrite.py
|
---|
2769 | auread.py
|
---|
2770 | auwrite.py
|
---|
2771 | ...
|
---|
2772 | Effects/ Subpackage for sound effects
|
---|
2773 | __init__.py
|
---|
2774 | echo.py
|
---|
2775 | surround.py
|
---|
2776 | reverse.py
|
---|
2777 | ...
|
---|
2778 | Filters/ Subpackage for filters
|
---|
2779 | __init__.py
|
---|
2780 | equalizer.py
|
---|
2781 | vocoder.py
|
---|
2782 | karaoke.py
|
---|
2783 | ...
|
---|
2784 | \end{verbatim}
|
---|
2785 |
|
---|
2786 | When importing the package, Python searches through the directories
|
---|
2787 | on \code{sys.path} looking for the package subdirectory.
|
---|
2788 |
|
---|
2789 | The \file{__init__.py} files are required to make Python treat the
|
---|
2790 | directories as containing packages; this is done to prevent
|
---|
2791 | directories with a common name, such as \samp{string}, from
|
---|
2792 | unintentionally hiding valid modules that occur later on the module
|
---|
2793 | search path. In the simplest case, \file{__init__.py} can just be an
|
---|
2794 | empty file, but it can also execute initialization code for the
|
---|
2795 | package or set the \code{__all__} variable, described later.
|
---|
2796 |
|
---|
2797 | Users of the package can import individual modules from the
|
---|
2798 | package, for example:
|
---|
2799 |
|
---|
2800 | \begin{verbatim}
|
---|
2801 | import Sound.Effects.echo
|
---|
2802 | \end{verbatim}
|
---|
2803 |
|
---|
2804 | This loads the submodule \module{Sound.Effects.echo}. It must be referenced
|
---|
2805 | with its full name.
|
---|
2806 |
|
---|
2807 | \begin{verbatim}
|
---|
2808 | Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)
|
---|
2809 | \end{verbatim}
|
---|
2810 |
|
---|
2811 | An alternative way of importing the submodule is:
|
---|
2812 |
|
---|
2813 | \begin{verbatim}
|
---|
2814 | from Sound.Effects import echo
|
---|
2815 | \end{verbatim}
|
---|
2816 |
|
---|
2817 | This also loads the submodule \module{echo}, and makes it available without
|
---|
2818 | its package prefix, so it can be used as follows:
|
---|
2819 |
|
---|
2820 | \begin{verbatim}
|
---|
2821 | echo.echofilter(input, output, delay=0.7, atten=4)
|
---|
2822 | \end{verbatim}
|
---|
2823 |
|
---|
2824 | Yet another variation is to import the desired function or variable directly:
|
---|
2825 |
|
---|
2826 | \begin{verbatim}
|
---|
2827 | from Sound.Effects.echo import echofilter
|
---|
2828 | \end{verbatim}
|
---|
2829 |
|
---|
2830 | Again, this loads the submodule \module{echo}, but this makes its function
|
---|
2831 | \function{echofilter()} directly available:
|
---|
2832 |
|
---|
2833 | \begin{verbatim}
|
---|
2834 | echofilter(input, output, delay=0.7, atten=4)
|
---|
2835 | \end{verbatim}
|
---|
2836 |
|
---|
2837 | Note that when using \code{from \var{package} import \var{item}}, the
|
---|
2838 | item can be either a submodule (or subpackage) of the package, or some
|
---|
2839 | other name defined in the package, like a function, class or
|
---|
2840 | variable. The \code{import} statement first tests whether the item is
|
---|
2841 | defined in the package; if not, it assumes it is a module and attempts
|
---|
2842 | to load it. If it fails to find it, an
|
---|
2843 | \exception{ImportError} exception is raised.
|
---|
2844 |
|
---|
2845 | Contrarily, when using syntax like \code{import
|
---|
2846 | \var{item.subitem.subsubitem}}, each item except for the last must be
|
---|
2847 | a package; the last item can be a module or a package but can't be a
|
---|
2848 | class or function or variable defined in the previous item.
|
---|
2849 |
|
---|
2850 | \subsection{Importing * From a Package \label{pkg-import-star}}
|
---|
2851 | %The \code{__all__} Attribute
|
---|
2852 |
|
---|
2853 | \ttindex{__all__}
|
---|
2854 | Now what happens when the user writes \code{from Sound.Effects import
|
---|
2855 | *}? Ideally, one would hope that this somehow goes out to the
|
---|
2856 | filesystem, finds which submodules are present in the package, and
|
---|
2857 | imports them all. Unfortunately, this operation does not work very
|
---|
2858 | well on Mac and Windows platforms, where the filesystem does not
|
---|
2859 | always have accurate information about the case of a filename! On
|
---|
2860 | these platforms, there is no guaranteed way to know whether a file
|
---|
2861 | \file{ECHO.PY} should be imported as a module \module{echo},
|
---|
2862 | \module{Echo} or \module{ECHO}. (For example, Windows 95 has the
|
---|
2863 | annoying practice of showing all file names with a capitalized first
|
---|
2864 | letter.) The DOS 8+3 filename restriction adds another interesting
|
---|
2865 | problem for long module names.
|
---|
2866 |
|
---|
2867 | The only solution is for the package author to provide an explicit
|
---|
2868 | index of the package. The import statement uses the following
|
---|
2869 | convention: if a package's \file{__init__.py} code defines a list
|
---|
2870 | named \code{__all__}, it is taken to be the list of module names that
|
---|
2871 | should be imported when \code{from \var{package} import *} is
|
---|
2872 | encountered. It is up to the package author to keep this list
|
---|
2873 | up-to-date when a new version of the package is released. Package
|
---|
2874 | authors may also decide not to support it, if they don't see a use for
|
---|
2875 | importing * from their package. For example, the file
|
---|
2876 | \file{Sounds/Effects/__init__.py} could contain the following code:
|
---|
2877 |
|
---|
2878 | \begin{verbatim}
|
---|
2879 | __all__ = ["echo", "surround", "reverse"]
|
---|
2880 | \end{verbatim}
|
---|
2881 |
|
---|
2882 | This would mean that \code{from Sound.Effects import *} would
|
---|
2883 | import the three named submodules of the \module{Sound} package.
|
---|
2884 |
|
---|
2885 | If \code{__all__} is not defined, the statement \code{from Sound.Effects
|
---|
2886 | import *} does \emph{not} import all submodules from the package
|
---|
2887 | \module{Sound.Effects} into the current namespace; it only ensures that the
|
---|
2888 | package \module{Sound.Effects} has been imported (possibly running any
|
---|
2889 | initialization code in \file{__init__.py}) and then imports whatever names are
|
---|
2890 | defined in the package. This includes any names defined (and
|
---|
2891 | submodules explicitly loaded) by \file{__init__.py}. It also includes any
|
---|
2892 | submodules of the package that were explicitly loaded by previous
|
---|
2893 | import statements. Consider this code:
|
---|
2894 |
|
---|
2895 | \begin{verbatim}
|
---|
2896 | import Sound.Effects.echo
|
---|
2897 | import Sound.Effects.surround
|
---|
2898 | from Sound.Effects import *
|
---|
2899 | \end{verbatim}
|
---|
2900 |
|
---|
2901 | In this example, the echo and surround modules are imported in the
|
---|
2902 | current namespace because they are defined in the
|
---|
2903 | \module{Sound.Effects} package when the \code{from...import} statement
|
---|
2904 | is executed. (This also works when \code{__all__} is defined.)
|
---|
2905 |
|
---|
2906 | Note that in general the practice of importing \code{*} from a module or
|
---|
2907 | package is frowned upon, since it often causes poorly readable code.
|
---|
2908 | However, it is okay to use it to save typing in interactive sessions,
|
---|
2909 | and certain modules are designed to export only names that follow
|
---|
2910 | certain patterns.
|
---|
2911 |
|
---|
2912 | Remember, there is nothing wrong with using \code{from Package
|
---|
2913 | import specific_submodule}! In fact, this is the
|
---|
2914 | recommended notation unless the importing module needs to use
|
---|
2915 | submodules with the same name from different packages.
|
---|
2916 |
|
---|
2917 |
|
---|
2918 | \subsection{Intra-package References}
|
---|
2919 |
|
---|
2920 | The submodules often need to refer to each other. For example, the
|
---|
2921 | \module{surround} module might use the \module{echo} module. In fact,
|
---|
2922 | such references are so common that the \keyword{import} statement
|
---|
2923 | first looks in the containing package before looking in the standard
|
---|
2924 | module search path. Thus, the \module{surround} module can simply use
|
---|
2925 | \code{import echo} or \code{from echo import echofilter}. If the
|
---|
2926 | imported module is not found in the current package (the package of
|
---|
2927 | which the current module is a submodule), the \keyword{import}
|
---|
2928 | statement looks for a top-level module with the given name.
|
---|
2929 |
|
---|
2930 | When packages are structured into subpackages (as with the
|
---|
2931 | \module{Sound} package in the example), there's no shortcut to refer
|
---|
2932 | to submodules of sibling packages - the full name of the subpackage
|
---|
2933 | must be used. For example, if the module
|
---|
2934 | \module{Sound.Filters.vocoder} needs to use the \module{echo} module
|
---|
2935 | in the \module{Sound.Effects} package, it can use \code{from
|
---|
2936 | Sound.Effects import echo}.
|
---|
2937 |
|
---|
2938 | Starting with Python 2.5, in addition to the implicit relative imports
|
---|
2939 | described above, you can write explicit relative imports with the
|
---|
2940 | \code{from module import name} form of import statement. These explicit
|
---|
2941 | relative imports use leading dots to indicate the current and parent
|
---|
2942 | packages involved in the relative import. From the \module{surround}
|
---|
2943 | module for example, you might use:
|
---|
2944 |
|
---|
2945 | \begin{verbatim}
|
---|
2946 | from . import echo
|
---|
2947 | from .. import Formats
|
---|
2948 | from ..Filters import equalizer
|
---|
2949 | \end{verbatim}
|
---|
2950 |
|
---|
2951 | Note that both explicit and implicit relative imports are based on the
|
---|
2952 | name of the current module. Since the name of the main module is always
|
---|
2953 | \code{"__main__"}, modules intended for use as the main module of a
|
---|
2954 | Python application should always use absolute imports.
|
---|
2955 |
|
---|
2956 | \subsection{Packages in Multiple Directories}
|
---|
2957 |
|
---|
2958 | Packages support one more special attribute, \member{__path__}. This
|
---|
2959 | is initialized to be a list containing the name of the directory
|
---|
2960 | holding the package's \file{__init__.py} before the code in that file
|
---|
2961 | is executed. This variable can be modified; doing so affects future
|
---|
2962 | searches for modules and subpackages contained in the package.
|
---|
2963 |
|
---|
2964 | While this feature is not often needed, it can be used to extend the
|
---|
2965 | set of modules found in a package.
|
---|
2966 |
|
---|
2967 |
|
---|
2968 |
|
---|
2969 | \chapter{Input and Output \label{io}}
|
---|
2970 |
|
---|
2971 | There are several ways to present the output of a program; data can be
|
---|
2972 | printed in a human-readable form, or written to a file for future use.
|
---|
2973 | This chapter will discuss some of the possibilities.
|
---|
2974 |
|
---|
2975 |
|
---|
2976 | \section{Fancier Output Formatting \label{formatting}}
|
---|
2977 |
|
---|
2978 | So far we've encountered two ways of writing values: \emph{expression
|
---|
2979 | statements} and the \keyword{print} statement. (A third way is using
|
---|
2980 | the \method{write()} method of file objects; the standard output file
|
---|
2981 | can be referenced as \code{sys.stdout}. See the Library Reference for
|
---|
2982 | more information on this.)
|
---|
2983 |
|
---|
2984 | Often you'll want more control over the formatting of your output than
|
---|
2985 | simply printing space-separated values. There are two ways to format
|
---|
2986 | your output; the first way is to do all the string handling yourself;
|
---|
2987 | using string slicing and concatenation operations you can create any
|
---|
2988 | layout you can imagine. The standard module
|
---|
2989 | \module{string}\refstmodindex{string} contains some useful operations
|
---|
2990 | for padding strings to a given column width; these will be discussed
|
---|
2991 | shortly. The second way is to use the \code{\%} operator with a
|
---|
2992 | string as the left argument. The \code{\%} operator interprets the
|
---|
2993 | left argument much like a \cfunction{sprintf()}-style format
|
---|
2994 | string to be applied to the right argument, and returns the string
|
---|
2995 | resulting from this formatting operation.
|
---|
2996 |
|
---|
2997 | One question remains, of course: how do you convert values to strings?
|
---|
2998 | Luckily, Python has ways to convert any value to a string: pass it to
|
---|
2999 | the \function{repr()} or \function{str()} functions. Reverse quotes
|
---|
3000 | (\code{``}) are equivalent to \function{repr()}, but they are no
|
---|
3001 | longer used in modern Python code and will likely not be in future
|
---|
3002 | versions of the language.
|
---|
3003 |
|
---|
3004 | The \function{str()} function is meant to return representations of
|
---|
3005 | values which are fairly human-readable, while \function{repr()} is
|
---|
3006 | meant to generate representations which can be read by the interpreter
|
---|
3007 | (or will force a \exception{SyntaxError} if there is not equivalent
|
---|
3008 | syntax). For objects which don't have a particular representation for
|
---|
3009 | human consumption, \function{str()} will return the same value as
|
---|
3010 | \function{repr()}. Many values, such as numbers or structures like
|
---|
3011 | lists and dictionaries, have the same representation using either
|
---|
3012 | function. Strings and floating point numbers, in particular, have two
|
---|
3013 | distinct representations.
|
---|
3014 |
|
---|
3015 | Some examples:
|
---|
3016 |
|
---|
3017 | \begin{verbatim}
|
---|
3018 | >>> s = 'Hello, world.'
|
---|
3019 | >>> str(s)
|
---|
3020 | 'Hello, world.'
|
---|
3021 | >>> repr(s)
|
---|
3022 | "'Hello, world.'"
|
---|
3023 | >>> str(0.1)
|
---|
3024 | '0.1'
|
---|
3025 | >>> repr(0.1)
|
---|
3026 | '0.10000000000000001'
|
---|
3027 | >>> x = 10 * 3.25
|
---|
3028 | >>> y = 200 * 200
|
---|
3029 | >>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
|
---|
3030 | >>> print s
|
---|
3031 | The value of x is 32.5, and y is 40000...
|
---|
3032 | >>> # The repr() of a string adds string quotes and backslashes:
|
---|
3033 | ... hello = 'hello, world\n'
|
---|
3034 | >>> hellos = repr(hello)
|
---|
3035 | >>> print hellos
|
---|
3036 | 'hello, world\n'
|
---|
3037 | >>> # The argument to repr() may be any Python object:
|
---|
3038 | ... repr((x, y, ('spam', 'eggs')))
|
---|
3039 | "(32.5, 40000, ('spam', 'eggs'))"
|
---|
3040 | >>> # reverse quotes are convenient in interactive sessions:
|
---|
3041 | ... `x, y, ('spam', 'eggs')`
|
---|
3042 | "(32.5, 40000, ('spam', 'eggs'))"
|
---|
3043 | \end{verbatim}
|
---|
3044 |
|
---|
3045 | Here are two ways to write a table of squares and cubes:
|
---|
3046 |
|
---|
3047 | \begin{verbatim}
|
---|
3048 | >>> for x in range(1, 11):
|
---|
3049 | ... print repr(x).rjust(2), repr(x*x).rjust(3),
|
---|
3050 | ... # Note trailing comma on previous line
|
---|
3051 | ... print repr(x*x*x).rjust(4)
|
---|
3052 | ...
|
---|
3053 | 1 1 1
|
---|
3054 | 2 4 8
|
---|
3055 | 3 9 27
|
---|
3056 | 4 16 64
|
---|
3057 | 5 25 125
|
---|
3058 | 6 36 216
|
---|
3059 | 7 49 343
|
---|
3060 | 8 64 512
|
---|
3061 | 9 81 729
|
---|
3062 | 10 100 1000
|
---|
3063 | >>> for x in range(1,11):
|
---|
3064 | ... print '%2d %3d %4d' % (x, x*x, x*x*x)
|
---|
3065 | ...
|
---|
3066 | 1 1 1
|
---|
3067 | 2 4 8
|
---|
3068 | 3 9 27
|
---|
3069 | 4 16 64
|
---|
3070 | 5 25 125
|
---|
3071 | 6 36 216
|
---|
3072 | 7 49 343
|
---|
3073 | 8 64 512
|
---|
3074 | 9 81 729
|
---|
3075 | 10 100 1000
|
---|
3076 | \end{verbatim}
|
---|
3077 |
|
---|
3078 | (Note that one space between each column was added by the way
|
---|
3079 | \keyword{print} works: it always adds spaces between its arguments.)
|
---|
3080 |
|
---|
3081 | This example demonstrates the \method{rjust()} method of string objects,
|
---|
3082 | which right-justifies a string in a field of a given width by padding
|
---|
3083 | it with spaces on the left. There are similar methods
|
---|
3084 | \method{ljust()} and \method{center()}. These
|
---|
3085 | methods do not write anything, they just return a new string. If
|
---|
3086 | the input string is too long, they don't truncate it, but return it
|
---|
3087 | unchanged; this will mess up your column lay-out but that's usually
|
---|
3088 | better than the alternative, which would be lying about a value. (If
|
---|
3089 | you really want truncation you can always add a slice operation, as in
|
---|
3090 | \samp{x.ljust(n)[:n]}.)
|
---|
3091 |
|
---|
3092 | There is another method, \method{zfill()}, which pads a
|
---|
3093 | numeric string on the left with zeros. It understands about plus and
|
---|
3094 | minus signs:
|
---|
3095 |
|
---|
3096 | \begin{verbatim}
|
---|
3097 | >>> '12'.zfill(5)
|
---|
3098 | '00012'
|
---|
3099 | >>> '-3.14'.zfill(7)
|
---|
3100 | '-003.14'
|
---|
3101 | >>> '3.14159265359'.zfill(5)
|
---|
3102 | '3.14159265359'
|
---|
3103 | \end{verbatim}
|
---|
3104 |
|
---|
3105 | Using the \code{\%} operator looks like this:
|
---|
3106 |
|
---|
3107 | \begin{verbatim}
|
---|
3108 | >>> import math
|
---|
3109 | >>> print 'The value of PI is approximately %5.3f.' % math.pi
|
---|
3110 | The value of PI is approximately 3.142.
|
---|
3111 | \end{verbatim}
|
---|
3112 |
|
---|
3113 | If there is more than one format in the string, you need to pass a
|
---|
3114 | tuple as right operand, as in this example:
|
---|
3115 |
|
---|
3116 | \begin{verbatim}
|
---|
3117 | >>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
|
---|
3118 | >>> for name, phone in table.items():
|
---|
3119 | ... print '%-10s ==> %10d' % (name, phone)
|
---|
3120 | ...
|
---|
3121 | Jack ==> 4098
|
---|
3122 | Dcab ==> 7678
|
---|
3123 | Sjoerd ==> 4127
|
---|
3124 | \end{verbatim}
|
---|
3125 |
|
---|
3126 | Most formats work exactly as in C and require that you pass the proper
|
---|
3127 | type; however, if you don't you get an exception, not a core dump.
|
---|
3128 | The \code{\%s} format is more relaxed: if the corresponding argument is
|
---|
3129 | not a string object, it is converted to string using the
|
---|
3130 | \function{str()} built-in function. Using \code{*} to pass the width
|
---|
3131 | or precision in as a separate (integer) argument is supported. The
|
---|
3132 | C formats \code{\%n} and \code{\%p} are not supported.
|
---|
3133 |
|
---|
3134 | If you have a really long format string that you don't want to split
|
---|
3135 | up, it would be nice if you could reference the variables to be
|
---|
3136 | formatted by name instead of by position. This can be done by using
|
---|
3137 | form \code{\%(name)format}, as shown here:
|
---|
3138 |
|
---|
3139 | \begin{verbatim}
|
---|
3140 | >>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
|
---|
3141 | >>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % table
|
---|
3142 | Jack: 4098; Sjoerd: 4127; Dcab: 8637678
|
---|
3143 | \end{verbatim}
|
---|
3144 |
|
---|
3145 | This is particularly useful in combination with the new built-in
|
---|
3146 | \function{vars()} function, which returns a dictionary containing all
|
---|
3147 | local variables.
|
---|
3148 |
|
---|
3149 | \section{Reading and Writing Files \label{files}}
|
---|
3150 |
|
---|
3151 | % Opening files
|
---|
3152 | \function{open()}\bifuncindex{open} returns a file
|
---|
3153 | object\obindex{file}, and is most commonly used with two arguments:
|
---|
3154 | \samp{open(\var{filename}, \var{mode})}.
|
---|
3155 |
|
---|
3156 | \begin{verbatim}
|
---|
3157 | >>> f=open('/tmp/workfile', 'w')
|
---|
3158 | >>> print f
|
---|
3159 | <open file '/tmp/workfile', mode 'w' at 80a0960>
|
---|
3160 | \end{verbatim}
|
---|
3161 |
|
---|
3162 | The first argument is a string containing the filename. The second
|
---|
3163 | argument is another string containing a few characters describing the
|
---|
3164 | way in which the file will be used. \var{mode} can be \code{'r'} when
|
---|
3165 | the file will only be read, \code{'w'} for only writing (an existing
|
---|
3166 | file with the same name will be erased), and \code{'a'} opens the file
|
---|
3167 | for appending; any data written to the file is automatically added to
|
---|
3168 | the end. \code{'r+'} opens the file for both reading and writing.
|
---|
3169 | The \var{mode} argument is optional; \code{'r'} will be assumed if
|
---|
3170 | it's omitted.
|
---|
3171 |
|
---|
3172 | On Windows and the Macintosh, \code{'b'} appended to the
|
---|
3173 | mode opens the file in binary mode, so there are also modes like
|
---|
3174 | \code{'rb'}, \code{'wb'}, and \code{'r+b'}. Windows makes a
|
---|
3175 | distinction between text and binary files; the end-of-line characters
|
---|
3176 | in text files are automatically altered slightly when data is read or
|
---|
3177 | written. This behind-the-scenes modification to file data is fine for
|
---|
3178 | \ASCII{} text files, but it'll corrupt binary data like that in \file{JPEG} or
|
---|
3179 | \file{EXE} files. Be very careful to use binary mode when reading and
|
---|
3180 | writing such files.
|
---|
3181 |
|
---|
3182 | \subsection{Methods of File Objects \label{fileMethods}}
|
---|
3183 |
|
---|
3184 | The rest of the examples in this section will assume that a file
|
---|
3185 | object called \code{f} has already been created.
|
---|
3186 |
|
---|
3187 | To read a file's contents, call \code{f.read(\var{size})}, which reads
|
---|
3188 | some quantity of data and returns it as a string. \var{size} is an
|
---|
3189 | optional numeric argument. When \var{size} is omitted or negative,
|
---|
3190 | the entire contents of the file will be read and returned; it's your
|
---|
3191 | problem if the file is twice as large as your machine's memory.
|
---|
3192 | Otherwise, at most \var{size} bytes are read and returned. If the end
|
---|
3193 | of the file has been reached, \code{f.read()} will return an empty
|
---|
3194 | string (\code {""}).
|
---|
3195 | \begin{verbatim}
|
---|
3196 | >>> f.read()
|
---|
3197 | 'This is the entire file.\n'
|
---|
3198 | >>> f.read()
|
---|
3199 | ''
|
---|
3200 | \end{verbatim}
|
---|
3201 |
|
---|
3202 | \code{f.readline()} reads a single line from the file; a newline
|
---|
3203 | character (\code{\e n}) is left at the end of the string, and is only
|
---|
3204 | omitted on the last line of the file if the file doesn't end in a
|
---|
3205 | newline. This makes the return value unambiguous; if
|
---|
3206 | \code{f.readline()} returns an empty string, the end of the file has
|
---|
3207 | been reached, while a blank line is represented by \code{'\e n'}, a
|
---|
3208 | string containing only a single newline.
|
---|
3209 |
|
---|
3210 | \begin{verbatim}
|
---|
3211 | >>> f.readline()
|
---|
3212 | 'This is the first line of the file.\n'
|
---|
3213 | >>> f.readline()
|
---|
3214 | 'Second line of the file\n'
|
---|
3215 | >>> f.readline()
|
---|
3216 | ''
|
---|
3217 | \end{verbatim}
|
---|
3218 |
|
---|
3219 | \code{f.readlines()} returns a list containing all the lines of data
|
---|
3220 | in the file. If given an optional parameter \var{sizehint}, it reads
|
---|
3221 | that many bytes from the file and enough more to complete a line, and
|
---|
3222 | returns the lines from that. This is often used to allow efficient
|
---|
3223 | reading of a large file by lines, but without having to load the
|
---|
3224 | entire file in memory. Only complete lines will be returned.
|
---|
3225 |
|
---|
3226 | \begin{verbatim}
|
---|
3227 | >>> f.readlines()
|
---|
3228 | ['This is the first line of the file.\n', 'Second line of the file\n']
|
---|
3229 | \end{verbatim}
|
---|
3230 |
|
---|
3231 | An alternate approach to reading lines is to loop over the file object.
|
---|
3232 | This is memory efficient, fast, and leads to simpler code:
|
---|
3233 |
|
---|
3234 | \begin{verbatim}
|
---|
3235 | >>> for line in f:
|
---|
3236 | print line,
|
---|
3237 |
|
---|
3238 | This is the first line of the file.
|
---|
3239 | Second line of the file
|
---|
3240 | \end{verbatim}
|
---|
3241 |
|
---|
3242 | The alternative approach is simpler but does not provide as fine-grained
|
---|
3243 | control. Since the two approaches manage line buffering differently,
|
---|
3244 | they should not be mixed.
|
---|
3245 |
|
---|
3246 | \code{f.write(\var{string})} writes the contents of \var{string} to
|
---|
3247 | the file, returning \code{None}.
|
---|
3248 |
|
---|
3249 | \begin{verbatim}
|
---|
3250 | >>> f.write('This is a test\n')
|
---|
3251 | \end{verbatim}
|
---|
3252 |
|
---|
3253 | To write something other than a string, it needs to be converted to a
|
---|
3254 | string first:
|
---|
3255 |
|
---|
3256 | \begin{verbatim}
|
---|
3257 | >>> value = ('the answer', 42)
|
---|
3258 | >>> s = str(value)
|
---|
3259 | >>> f.write(s)
|
---|
3260 | \end{verbatim}
|
---|
3261 |
|
---|
3262 | \code{f.tell()} returns an integer giving the file object's current
|
---|
3263 | position in the file, measured in bytes from the beginning of the
|
---|
3264 | file. To change the file object's position, use
|
---|
3265 | \samp{f.seek(\var{offset}, \var{from_what})}. The position is
|
---|
3266 | computed from adding \var{offset} to a reference point; the reference
|
---|
3267 | point is selected by the \var{from_what} argument. A
|
---|
3268 | \var{from_what} value of 0 measures from the beginning of the file, 1
|
---|
3269 | uses the current file position, and 2 uses the end of the file as the
|
---|
3270 | reference point. \var{from_what} can be omitted and defaults to 0,
|
---|
3271 | using the beginning of the file as the reference point.
|
---|
3272 |
|
---|
3273 | \begin{verbatim}
|
---|
3274 | >>> f = open('/tmp/workfile', 'r+')
|
---|
3275 | >>> f.write('0123456789abcdef')
|
---|
3276 | >>> f.seek(5) # Go to the 6th byte in the file
|
---|
3277 | >>> f.read(1)
|
---|
3278 | '5'
|
---|
3279 | >>> f.seek(-3, 2) # Go to the 3rd byte before the end
|
---|
3280 | >>> f.read(1)
|
---|
3281 | 'd'
|
---|
3282 | \end{verbatim}
|
---|
3283 |
|
---|
3284 | When you're done with a file, call \code{f.close()} to close it and
|
---|
3285 | free up any system resources taken up by the open file. After calling
|
---|
3286 | \code{f.close()}, attempts to use the file object will automatically fail.
|
---|
3287 |
|
---|
3288 | \begin{verbatim}
|
---|
3289 | >>> f.close()
|
---|
3290 | >>> f.read()
|
---|
3291 | Traceback (most recent call last):
|
---|
3292 | File "<stdin>", line 1, in ?
|
---|
3293 | ValueError: I/O operation on closed file
|
---|
3294 | \end{verbatim}
|
---|
3295 |
|
---|
3296 | File objects have some additional methods, such as
|
---|
3297 | \method{isatty()} and \method{truncate()} which are less frequently
|
---|
3298 | used; consult the Library Reference for a complete guide to file
|
---|
3299 | objects.
|
---|
3300 |
|
---|
3301 | \subsection{The \module{pickle} Module \label{pickle}}
|
---|
3302 | \refstmodindex{pickle}
|
---|
3303 |
|
---|
3304 | Strings can easily be written to and read from a file. Numbers take a
|
---|
3305 | bit more effort, since the \method{read()} method only returns
|
---|
3306 | strings, which will have to be passed to a function like
|
---|
3307 | \function{int()}, which takes a string like \code{'123'} and
|
---|
3308 | returns its numeric value 123. However, when you want to save more
|
---|
3309 | complex data types like lists, dictionaries, or class instances,
|
---|
3310 | things get a lot more complicated.
|
---|
3311 |
|
---|
3312 | Rather than have users be constantly writing and debugging code to
|
---|
3313 | save complicated data types, Python provides a standard module called
|
---|
3314 | \ulink{\module{pickle}}{../lib/module-pickle.html}. This is an
|
---|
3315 | amazing module that can take almost
|
---|
3316 | any Python object (even some forms of Python code!), and convert it to
|
---|
3317 | a string representation; this process is called \dfn{pickling}.
|
---|
3318 | Reconstructing the object from the string representation is called
|
---|
3319 | \dfn{unpickling}. Between pickling and unpickling, the string
|
---|
3320 | representing the object may have been stored in a file or data, or
|
---|
3321 | sent over a network connection to some distant machine.
|
---|
3322 |
|
---|
3323 | If you have an object \code{x}, and a file object \code{f} that's been
|
---|
3324 | opened for writing, the simplest way to pickle the object takes only
|
---|
3325 | one line of code:
|
---|
3326 |
|
---|
3327 | \begin{verbatim}
|
---|
3328 | pickle.dump(x, f)
|
---|
3329 | \end{verbatim}
|
---|
3330 |
|
---|
3331 | To unpickle the object again, if \code{f} is a file object which has
|
---|
3332 | been opened for reading:
|
---|
3333 |
|
---|
3334 | \begin{verbatim}
|
---|
3335 | x = pickle.load(f)
|
---|
3336 | \end{verbatim}
|
---|
3337 |
|
---|
3338 | (There are other variants of this, used when pickling many objects or
|
---|
3339 | when you don't want to write the pickled data to a file; consult the
|
---|
3340 | complete documentation for
|
---|
3341 | \ulink{\module{pickle}}{../lib/module-pickle.html} in the
|
---|
3342 | \citetitle[../lib/]{Python Library Reference}.)
|
---|
3343 |
|
---|
3344 | \ulink{\module{pickle}}{../lib/module-pickle.html} is the standard way
|
---|
3345 | to make Python objects which can be stored and reused by other
|
---|
3346 | programs or by a future invocation of the same program; the technical
|
---|
3347 | term for this is a \dfn{persistent} object. Because
|
---|
3348 | \ulink{\module{pickle}}{../lib/module-pickle.html} is so widely used,
|
---|
3349 | many authors who write Python extensions take care to ensure that new
|
---|
3350 | data types such as matrices can be properly pickled and unpickled.
|
---|
3351 |
|
---|
3352 |
|
---|
3353 |
|
---|
3354 | \chapter{Errors and Exceptions \label{errors}}
|
---|
3355 |
|
---|
3356 | Until now error messages haven't been more than mentioned, but if you
|
---|
3357 | have tried out the examples you have probably seen some. There are
|
---|
3358 | (at least) two distinguishable kinds of errors:
|
---|
3359 | \emph{syntax errors} and \emph{exceptions}.
|
---|
3360 |
|
---|
3361 | \section{Syntax Errors \label{syntaxErrors}}
|
---|
3362 |
|
---|
3363 | Syntax errors, also known as parsing errors, are perhaps the most common
|
---|
3364 | kind of complaint you get while you are still learning Python:
|
---|
3365 |
|
---|
3366 | \begin{verbatim}
|
---|
3367 | >>> while True print 'Hello world'
|
---|
3368 | File "<stdin>", line 1, in ?
|
---|
3369 | while True print 'Hello world'
|
---|
3370 | ^
|
---|
3371 | SyntaxError: invalid syntax
|
---|
3372 | \end{verbatim}
|
---|
3373 |
|
---|
3374 | The parser repeats the offending line and displays a little `arrow'
|
---|
3375 | pointing at the earliest point in the line where the error was
|
---|
3376 | detected. The error is caused by (or at least detected at) the token
|
---|
3377 | \emph{preceding} the arrow: in the example, the error is detected at
|
---|
3378 | the keyword \keyword{print}, since a colon (\character{:}) is missing
|
---|
3379 | before it. File name and line number are printed so you know where to
|
---|
3380 | look in case the input came from a script.
|
---|
3381 |
|
---|
3382 | \section{Exceptions \label{exceptions}}
|
---|
3383 |
|
---|
3384 | Even if a statement or expression is syntactically correct, it may
|
---|
3385 | cause an error when an attempt is made to execute it.
|
---|
3386 | Errors detected during execution are called \emph{exceptions} and are
|
---|
3387 | not unconditionally fatal: you will soon learn how to handle them in
|
---|
3388 | Python programs. Most exceptions are not handled by programs,
|
---|
3389 | however, and result in error messages as shown here:
|
---|
3390 |
|
---|
3391 | \begin{verbatim}
|
---|
3392 | >>> 10 * (1/0)
|
---|
3393 | Traceback (most recent call last):
|
---|
3394 | File "<stdin>", line 1, in ?
|
---|
3395 | ZeroDivisionError: integer division or modulo by zero
|
---|
3396 | >>> 4 + spam*3
|
---|
3397 | Traceback (most recent call last):
|
---|
3398 | File "<stdin>", line 1, in ?
|
---|
3399 | NameError: name 'spam' is not defined
|
---|
3400 | >>> '2' + 2
|
---|
3401 | Traceback (most recent call last):
|
---|
3402 | File "<stdin>", line 1, in ?
|
---|
3403 | TypeError: cannot concatenate 'str' and 'int' objects
|
---|
3404 | \end{verbatim}
|
---|
3405 |
|
---|
3406 | The last line of the error message indicates what happened.
|
---|
3407 | Exceptions come in different types, and the type is printed as part of
|
---|
3408 | the message: the types in the example are
|
---|
3409 | \exception{ZeroDivisionError}, \exception{NameError} and
|
---|
3410 | \exception{TypeError}.
|
---|
3411 | The string printed as the exception type is the name of the built-in
|
---|
3412 | exception that occurred. This is true for all built-in
|
---|
3413 | exceptions, but need not be true for user-defined exceptions (although
|
---|
3414 | it is a useful convention).
|
---|
3415 | Standard exception names are built-in identifiers (not reserved
|
---|
3416 | keywords).
|
---|
3417 |
|
---|
3418 | The rest of the line provides detail based on the type of exception
|
---|
3419 | and what caused it.
|
---|
3420 |
|
---|
3421 | The preceding part of the error message shows the context where the
|
---|
3422 | exception happened, in the form of a stack traceback.
|
---|
3423 | In general it contains a stack traceback listing source lines; however,
|
---|
3424 | it will not display lines read from standard input.
|
---|
3425 |
|
---|
3426 | The \citetitle[../lib/module-exceptions.html]{Python Library
|
---|
3427 | Reference} lists the built-in exceptions and their meanings.
|
---|
3428 |
|
---|
3429 |
|
---|
3430 | \section{Handling Exceptions \label{handling}}
|
---|
3431 |
|
---|
3432 | It is possible to write programs that handle selected exceptions.
|
---|
3433 | Look at the following example, which asks the user for input until a
|
---|
3434 | valid integer has been entered, but allows the user to interrupt the
|
---|
3435 | program (using \kbd{Control-C} or whatever the operating system
|
---|
3436 | supports); note that a user-generated interruption is signalled by
|
---|
3437 | raising the \exception{KeyboardInterrupt} exception.
|
---|
3438 |
|
---|
3439 | \begin{verbatim}
|
---|
3440 | >>> while True:
|
---|
3441 | ... try:
|
---|
3442 | ... x = int(raw_input("Please enter a number: "))
|
---|
3443 | ... break
|
---|
3444 | ... except ValueError:
|
---|
3445 | ... print "Oops! That was no valid number. Try again..."
|
---|
3446 | ...
|
---|
3447 | \end{verbatim}
|
---|
3448 |
|
---|
3449 | The \keyword{try} statement works as follows.
|
---|
3450 |
|
---|
3451 | \begin{itemize}
|
---|
3452 | \item
|
---|
3453 | First, the \emph{try clause} (the statement(s) between the
|
---|
3454 | \keyword{try} and \keyword{except} keywords) is executed.
|
---|
3455 |
|
---|
3456 | \item
|
---|
3457 | If no exception occurs, the \emph{except\ clause} is skipped and
|
---|
3458 | execution of the \keyword{try} statement is finished.
|
---|
3459 |
|
---|
3460 | \item
|
---|
3461 | If an exception occurs during execution of the try clause, the rest of
|
---|
3462 | the clause is skipped. Then if its type matches the exception named
|
---|
3463 | after the \keyword{except} keyword, the except clause is executed, and
|
---|
3464 | then execution continues after the \keyword{try} statement.
|
---|
3465 |
|
---|
3466 | \item
|
---|
3467 | If an exception occurs which does not match the exception named in the
|
---|
3468 | except clause, it is passed on to outer \keyword{try} statements; if
|
---|
3469 | no handler is found, it is an \emph{unhandled exception} and execution
|
---|
3470 | stops with a message as shown above.
|
---|
3471 |
|
---|
3472 | \end{itemize}
|
---|
3473 |
|
---|
3474 | A \keyword{try} statement may have more than one except clause, to
|
---|
3475 | specify handlers for different exceptions. At most one handler will
|
---|
3476 | be executed. Handlers only handle exceptions that occur in the
|
---|
3477 | corresponding try clause, not in other handlers of the same
|
---|
3478 | \keyword{try} statement. An except clause may name multiple exceptions
|
---|
3479 | as a parenthesized tuple, for example:
|
---|
3480 |
|
---|
3481 | \begin{verbatim}
|
---|
3482 | ... except (RuntimeError, TypeError, NameError):
|
---|
3483 | ... pass
|
---|
3484 | \end{verbatim}
|
---|
3485 |
|
---|
3486 | The last except clause may omit the exception name(s), to serve as a
|
---|
3487 | wildcard. Use this with extreme caution, since it is easy to mask a
|
---|
3488 | real programming error in this way! It can also be used to print an
|
---|
3489 | error message and then re-raise the exception (allowing a caller to
|
---|
3490 | handle the exception as well):
|
---|
3491 |
|
---|
3492 | \begin{verbatim}
|
---|
3493 | import sys
|
---|
3494 |
|
---|
3495 | try:
|
---|
3496 | f = open('myfile.txt')
|
---|
3497 | s = f.readline()
|
---|
3498 | i = int(s.strip())
|
---|
3499 | except IOError, (errno, strerror):
|
---|
3500 | print "I/O error(%s): %s" % (errno, strerror)
|
---|
3501 | except ValueError:
|
---|
3502 | print "Could not convert data to an integer."
|
---|
3503 | except:
|
---|
3504 | print "Unexpected error:", sys.exc_info()[0]
|
---|
3505 | raise
|
---|
3506 | \end{verbatim}
|
---|
3507 |
|
---|
3508 | The \keyword{try} \ldots\ \keyword{except} statement has an optional
|
---|
3509 | \emph{else clause}, which, when present, must follow all except
|
---|
3510 | clauses. It is useful for code that must be executed if the try
|
---|
3511 | clause does not raise an exception. For example:
|
---|
3512 |
|
---|
3513 | \begin{verbatim}
|
---|
3514 | for arg in sys.argv[1:]:
|
---|
3515 | try:
|
---|
3516 | f = open(arg, 'r')
|
---|
3517 | except IOError:
|
---|
3518 | print 'cannot open', arg
|
---|
3519 | else:
|
---|
3520 | print arg, 'has', len(f.readlines()), 'lines'
|
---|
3521 | f.close()
|
---|
3522 | \end{verbatim}
|
---|
3523 |
|
---|
3524 | The use of the \keyword{else} clause is better than adding additional
|
---|
3525 | code to the \keyword{try} clause because it avoids accidentally
|
---|
3526 | catching an exception that wasn't raised by the code being protected
|
---|
3527 | by the \keyword{try} \ldots\ \keyword{except} statement.
|
---|
3528 |
|
---|
3529 |
|
---|
3530 | When an exception occurs, it may have an associated value, also known as
|
---|
3531 | the exception's \emph{argument}.
|
---|
3532 | The presence and type of the argument depend on the exception type.
|
---|
3533 |
|
---|
3534 | The except clause may specify a variable after the exception name (or tuple).
|
---|
3535 | The variable is bound to an exception instance with the arguments stored
|
---|
3536 | in \code{instance.args}. For convenience, the exception instance
|
---|
3537 | defines \method{__getitem__} and \method{__str__} so the arguments can
|
---|
3538 | be accessed or printed directly without having to reference \code{.args}.
|
---|
3539 |
|
---|
3540 | But use of \code{.args} is discouraged. Instead, the preferred use is to pass
|
---|
3541 | a single argument to an exception (which can be a tuple if multiple arguments
|
---|
3542 | are needed) and have it bound to the \code{message} attribute. One my also
|
---|
3543 | instantiate an exception first before raising it and add any attributes to it
|
---|
3544 | as desired.
|
---|
3545 |
|
---|
3546 | \begin{verbatim}
|
---|
3547 | >>> try:
|
---|
3548 | ... raise Exception('spam', 'eggs')
|
---|
3549 | ... except Exception, inst:
|
---|
3550 | ... print type(inst) # the exception instance
|
---|
3551 | ... print inst.args # arguments stored in .args
|
---|
3552 | ... print inst # __str__ allows args to printed directly
|
---|
3553 | ... x, y = inst # __getitem__ allows args to be unpacked directly
|
---|
3554 | ... print 'x =', x
|
---|
3555 | ... print 'y =', y
|
---|
3556 | ...
|
---|
3557 | <type 'instance'>
|
---|
3558 | ('spam', 'eggs')
|
---|
3559 | ('spam', 'eggs')
|
---|
3560 | x = spam
|
---|
3561 | y = eggs
|
---|
3562 | \end{verbatim}
|
---|
3563 |
|
---|
3564 | If an exception has an argument, it is printed as the last part
|
---|
3565 | (`detail') of the message for unhandled exceptions.
|
---|
3566 |
|
---|
3567 | Exception handlers don't just handle exceptions if they occur
|
---|
3568 | immediately in the try clause, but also if they occur inside functions
|
---|
3569 | that are called (even indirectly) in the try clause.
|
---|
3570 | For example:
|
---|
3571 |
|
---|
3572 | \begin{verbatim}
|
---|
3573 | >>> def this_fails():
|
---|
3574 | ... x = 1/0
|
---|
3575 | ...
|
---|
3576 | >>> try:
|
---|
3577 | ... this_fails()
|
---|
3578 | ... except ZeroDivisionError, detail:
|
---|
3579 | ... print 'Handling run-time error:', detail
|
---|
3580 | ...
|
---|
3581 | Handling run-time error: integer division or modulo by zero
|
---|
3582 | \end{verbatim}
|
---|
3583 |
|
---|
3584 |
|
---|
3585 | \section{Raising Exceptions \label{raising}}
|
---|
3586 |
|
---|
3587 | The \keyword{raise} statement allows the programmer to force a
|
---|
3588 | specified exception to occur.
|
---|
3589 | For example:
|
---|
3590 |
|
---|
3591 | \begin{verbatim}
|
---|
3592 | >>> raise NameError, 'HiThere'
|
---|
3593 | Traceback (most recent call last):
|
---|
3594 | File "<stdin>", line 1, in ?
|
---|
3595 | NameError: HiThere
|
---|
3596 | \end{verbatim}
|
---|
3597 |
|
---|
3598 | The first argument to \keyword{raise} names the exception to be
|
---|
3599 | raised. The optional second argument specifies the exception's
|
---|
3600 | argument. Alternatively, the above could be written as
|
---|
3601 | \code{raise NameError('HiThere')}. Either form works fine, but there
|
---|
3602 | seems to be a growing stylistic preference for the latter.
|
---|
3603 |
|
---|
3604 | If you need to determine whether an exception was raised but don't
|
---|
3605 | intend to handle it, a simpler form of the \keyword{raise} statement
|
---|
3606 | allows you to re-raise the exception:
|
---|
3607 |
|
---|
3608 | \begin{verbatim}
|
---|
3609 | >>> try:
|
---|
3610 | ... raise NameError, 'HiThere'
|
---|
3611 | ... except NameError:
|
---|
3612 | ... print 'An exception flew by!'
|
---|
3613 | ... raise
|
---|
3614 | ...
|
---|
3615 | An exception flew by!
|
---|
3616 | Traceback (most recent call last):
|
---|
3617 | File "<stdin>", line 2, in ?
|
---|
3618 | NameError: HiThere
|
---|
3619 | \end{verbatim}
|
---|
3620 |
|
---|
3621 |
|
---|
3622 | \section{User-defined Exceptions \label{userExceptions}}
|
---|
3623 |
|
---|
3624 | Programs may name their own exceptions by creating a new exception
|
---|
3625 | class. Exceptions should typically be derived from the
|
---|
3626 | \exception{Exception} class, either directly or indirectly. For
|
---|
3627 | example:
|
---|
3628 |
|
---|
3629 | \begin{verbatim}
|
---|
3630 | >>> class MyError(Exception):
|
---|
3631 | ... def __init__(self, value):
|
---|
3632 | ... self.value = value
|
---|
3633 | ... def __str__(self):
|
---|
3634 | ... return repr(self.value)
|
---|
3635 | ...
|
---|
3636 | >>> try:
|
---|
3637 | ... raise MyError(2*2)
|
---|
3638 | ... except MyError, e:
|
---|
3639 | ... print 'My exception occurred, value:', e.value
|
---|
3640 | ...
|
---|
3641 | My exception occurred, value: 4
|
---|
3642 | >>> raise MyError, 'oops!'
|
---|
3643 | Traceback (most recent call last):
|
---|
3644 | File "<stdin>", line 1, in ?
|
---|
3645 | __main__.MyError: 'oops!'
|
---|
3646 | \end{verbatim}
|
---|
3647 |
|
---|
3648 | In this example, the default \method{__init__} of \class{Exception}
|
---|
3649 | has been overridden. The new behavior simply creates the \var{value}
|
---|
3650 | attribute. This replaces the default behavior of creating the
|
---|
3651 | \var{args} attribute.
|
---|
3652 |
|
---|
3653 | Exception classes can be defined which do anything any other class can
|
---|
3654 | do, but are usually kept simple, often only offering a number of
|
---|
3655 | attributes that allow information about the error to be extracted by
|
---|
3656 | handlers for the exception. When creating a module that can raise
|
---|
3657 | several distinct errors, a common practice is to create a base class
|
---|
3658 | for exceptions defined by that module, and subclass that to create
|
---|
3659 | specific exception classes for different error conditions:
|
---|
3660 |
|
---|
3661 | \begin{verbatim}
|
---|
3662 | class Error(Exception):
|
---|
3663 | """Base class for exceptions in this module."""
|
---|
3664 | pass
|
---|
3665 |
|
---|
3666 | class InputError(Error):
|
---|
3667 | """Exception raised for errors in the input.
|
---|
3668 |
|
---|
3669 | Attributes:
|
---|
3670 | expression -- input expression in which the error occurred
|
---|
3671 | message -- explanation of the error
|
---|
3672 | """
|
---|
3673 |
|
---|
3674 | def __init__(self, expression, message):
|
---|
3675 | self.expression = expression
|
---|
3676 | self.message = message
|
---|
3677 |
|
---|
3678 | class TransitionError(Error):
|
---|
3679 | """Raised when an operation attempts a state transition that's not
|
---|
3680 | allowed.
|
---|
3681 |
|
---|
3682 | Attributes:
|
---|
3683 | previous -- state at beginning of transition
|
---|
3684 | next -- attempted new state
|
---|
3685 | message -- explanation of why the specific transition is not allowed
|
---|
3686 | """
|
---|
3687 |
|
---|
3688 | def __init__(self, previous, next, message):
|
---|
3689 | self.previous = previous
|
---|
3690 | self.next = next
|
---|
3691 | self.message = message
|
---|
3692 | \end{verbatim}
|
---|
3693 |
|
---|
3694 | Most exceptions are defined with names that end in ``Error,'' similar
|
---|
3695 | to the naming of the standard exceptions.
|
---|
3696 |
|
---|
3697 | Many standard modules define their own exceptions to report errors
|
---|
3698 | that may occur in functions they define. More information on classes
|
---|
3699 | is presented in chapter \ref{classes}, ``Classes.''
|
---|
3700 |
|
---|
3701 |
|
---|
3702 | \section{Defining Clean-up Actions \label{cleanup}}
|
---|
3703 |
|
---|
3704 | The \keyword{try} statement has another optional clause which is
|
---|
3705 | intended to define clean-up actions that must be executed under all
|
---|
3706 | circumstances. For example:
|
---|
3707 |
|
---|
3708 | \begin{verbatim}
|
---|
3709 | >>> try:
|
---|
3710 | ... raise KeyboardInterrupt
|
---|
3711 | ... finally:
|
---|
3712 | ... print 'Goodbye, world!'
|
---|
3713 | ...
|
---|
3714 | Goodbye, world!
|
---|
3715 | Traceback (most recent call last):
|
---|
3716 | File "<stdin>", line 2, in ?
|
---|
3717 | KeyboardInterrupt
|
---|
3718 | \end{verbatim}
|
---|
3719 |
|
---|
3720 | A \emph{finally clause} is always executed before leaving the
|
---|
3721 | \keyword{try} statement, whether an exception has occurred or not.
|
---|
3722 | When an exception has occurred in the \keyword{try} clause and has not
|
---|
3723 | been handled by an \keyword{except} clause (or it has occurred in a
|
---|
3724 | \keyword{except} or \keyword{else} clause), it is re-raised after the
|
---|
3725 | \keyword{finally} clause has been executed. The \keyword{finally} clause
|
---|
3726 | is also executed ``on the way out'' when any other clause of the
|
---|
3727 | \keyword{try} statement is left via a \keyword{break}, \keyword{continue}
|
---|
3728 | or \keyword{return} statement. A more complicated example:
|
---|
3729 |
|
---|
3730 | \begin{verbatim}
|
---|
3731 | >>> def divide(x, y):
|
---|
3732 | ... try:
|
---|
3733 | ... result = x / y
|
---|
3734 | ... except ZeroDivisionError:
|
---|
3735 | ... print "division by zero!"
|
---|
3736 | ... else:
|
---|
3737 | ... print "result is", result
|
---|
3738 | ... finally:
|
---|
3739 | ... print "executing finally clause"
|
---|
3740 | ...
|
---|
3741 | >>> divide(2, 1)
|
---|
3742 | result is 2
|
---|
3743 | executing finally clause
|
---|
3744 | >>> divide(2, 0)
|
---|
3745 | division by zero!
|
---|
3746 | executing finally clause
|
---|
3747 | >>> divide("2", "1")
|
---|
3748 | executing finally clause
|
---|
3749 | Traceback (most recent call last):
|
---|
3750 | File "<stdin>", line 1, in ?
|
---|
3751 | File "<stdin>", line 3, in divide
|
---|
3752 | TypeError: unsupported operand type(s) for /: 'str' and 'str'
|
---|
3753 | \end{verbatim}
|
---|
3754 |
|
---|
3755 | As you can see, the \keyword{finally} clause is executed in any
|
---|
3756 | event. The \exception{TypeError} raised by dividing two strings
|
---|
3757 | is not handled by the \keyword{except} clause and therefore
|
---|
3758 | re-raised after the \keyword{finally} clauses has been executed.
|
---|
3759 |
|
---|
3760 | In real world applications, the \keyword{finally} clause is useful
|
---|
3761 | for releasing external resources (such as files or network connections),
|
---|
3762 | regardless of whether the use of the resource was successful.
|
---|
3763 |
|
---|
3764 |
|
---|
3765 | \section{Predefined Clean-up Actions \label{cleanup-with}}
|
---|
3766 |
|
---|
3767 | Some objects define standard clean-up actions to be undertaken when
|
---|
3768 | the object is no longer needed, regardless of whether or not the
|
---|
3769 | operation using the object succeeded or failed.
|
---|
3770 | Look at the following example, which tries to open a file and print
|
---|
3771 | its contents to the screen.
|
---|
3772 |
|
---|
3773 | \begin{verbatim}
|
---|
3774 | for line in open("myfile.txt"):
|
---|
3775 | print line
|
---|
3776 | \end{verbatim}
|
---|
3777 |
|
---|
3778 | The problem with this code is that it leaves the file open for an
|
---|
3779 | indeterminate amount of time after the code has finished executing.
|
---|
3780 | This is not an issue in simple scripts, but can be a problem for
|
---|
3781 | larger applications. The \keyword{with} statement allows
|
---|
3782 | objects like files to be used in a way that ensures they are
|
---|
3783 | always cleaned up promptly and correctly.
|
---|
3784 |
|
---|
3785 | \begin{verbatim}
|
---|
3786 | with open("myfile.txt") as f:
|
---|
3787 | for line in f:
|
---|
3788 | print line
|
---|
3789 | \end{verbatim}
|
---|
3790 |
|
---|
3791 | After the statement is executed, the file \var{f} is always closed,
|
---|
3792 | even if a problem was encountered while processing the lines. Other
|
---|
3793 | objects which provide predefined clean-up actions will indicate
|
---|
3794 | this in their documentation.
|
---|
3795 |
|
---|
3796 |
|
---|
3797 | \chapter{Classes \label{classes}}
|
---|
3798 |
|
---|
3799 | Python's class mechanism adds classes to the language with a minimum
|
---|
3800 | of new syntax and semantics. It is a mixture of the class mechanisms
|
---|
3801 | found in \Cpp{} and Modula-3. As is true for modules, classes in Python
|
---|
3802 | do not put an absolute barrier between definition and user, but rather
|
---|
3803 | rely on the politeness of the user not to ``break into the
|
---|
3804 | definition.'' The most important features of classes are retained
|
---|
3805 | with full power, however: the class inheritance mechanism allows
|
---|
3806 | multiple base classes, a derived class can override any methods of its
|
---|
3807 | base class or classes, and a method can call the method of a base class with the
|
---|
3808 | same name. Objects can contain an arbitrary amount of private data.
|
---|
3809 |
|
---|
3810 | In \Cpp{} terminology, all class members (including the data members) are
|
---|
3811 | \emph{public}, and all member functions are \emph{virtual}. There are
|
---|
3812 | no special constructors or destructors. As in Modula-3, there are no
|
---|
3813 | shorthands for referencing the object's members from its methods: the
|
---|
3814 | method function is declared with an explicit first argument
|
---|
3815 | representing the object, which is provided implicitly by the call. As
|
---|
3816 | in Smalltalk, classes themselves are objects, albeit in the wider
|
---|
3817 | sense of the word: in Python, all data types are objects. This
|
---|
3818 | provides semantics for importing and renaming. Unlike
|
---|
3819 | \Cpp{} and Modula-3, built-in types can be used as base classes for
|
---|
3820 | extension by the user. Also, like in \Cpp{} but unlike in Modula-3, most
|
---|
3821 | built-in operators with special syntax (arithmetic operators,
|
---|
3822 | subscripting etc.) can be redefined for class instances.
|
---|
3823 |
|
---|
3824 | \section{A Word About Terminology \label{terminology}}
|
---|
3825 |
|
---|
3826 | Lacking universally accepted terminology to talk about classes, I will
|
---|
3827 | make occasional use of Smalltalk and \Cpp{} terms. (I would use Modula-3
|
---|
3828 | terms, since its object-oriented semantics are closer to those of
|
---|
3829 | Python than \Cpp, but I expect that few readers have heard of it.)
|
---|
3830 |
|
---|
3831 | Objects have individuality, and multiple names (in multiple scopes)
|
---|
3832 | can be bound to the same object. This is known as aliasing in other
|
---|
3833 | languages. This is usually not appreciated on a first glance at
|
---|
3834 | Python, and can be safely ignored when dealing with immutable basic
|
---|
3835 | types (numbers, strings, tuples). However, aliasing has an
|
---|
3836 | (intended!) effect on the semantics of Python code involving mutable
|
---|
3837 | objects such as lists, dictionaries, and most types representing
|
---|
3838 | entities outside the program (files, windows, etc.). This is usually
|
---|
3839 | used to the benefit of the program, since aliases behave like pointers
|
---|
3840 | in some respects. For example, passing an object is cheap since only
|
---|
3841 | a pointer is passed by the implementation; and if a function modifies
|
---|
3842 | an object passed as an argument, the caller will see the change --- this
|
---|
3843 | eliminates the need for two different argument passing mechanisms as in
|
---|
3844 | Pascal.
|
---|
3845 |
|
---|
3846 |
|
---|
3847 | \section{Python Scopes and Name Spaces \label{scopes}}
|
---|
3848 |
|
---|
3849 | Before introducing classes, I first have to tell you something about
|
---|
3850 | Python's scope rules. Class definitions play some neat tricks with
|
---|
3851 | namespaces, and you need to know how scopes and namespaces work to
|
---|
3852 | fully understand what's going on. Incidentally, knowledge about this
|
---|
3853 | subject is useful for any advanced Python programmer.
|
---|
3854 |
|
---|
3855 | Let's begin with some definitions.
|
---|
3856 |
|
---|
3857 | A \emph{namespace} is a mapping from names to objects. Most
|
---|
3858 | namespaces are currently implemented as Python dictionaries, but
|
---|
3859 | that's normally not noticeable in any way (except for performance),
|
---|
3860 | and it may change in the future. Examples of namespaces are: the set
|
---|
3861 | of built-in names (functions such as \function{abs()}, and built-in
|
---|
3862 | exception names); the global names in a module; and the local names in
|
---|
3863 | a function invocation. In a sense the set of attributes of an object
|
---|
3864 | also form a namespace. The important thing to know about namespaces
|
---|
3865 | is that there is absolutely no relation between names in different
|
---|
3866 | namespaces; for instance, two different modules may both define a
|
---|
3867 | function ``maximize'' without confusion --- users of the modules must
|
---|
3868 | prefix it with the module name.
|
---|
3869 |
|
---|
3870 | By the way, I use the word \emph{attribute} for any name following a
|
---|
3871 | dot --- for example, in the expression \code{z.real}, \code{real} is
|
---|
3872 | an attribute of the object \code{z}. Strictly speaking, references to
|
---|
3873 | names in modules are attribute references: in the expression
|
---|
3874 | \code{modname.funcname}, \code{modname} is a module object and
|
---|
3875 | \code{funcname} is an attribute of it. In this case there happens to
|
---|
3876 | be a straightforward mapping between the module's attributes and the
|
---|
3877 | global names defined in the module: they share the same namespace!
|
---|
3878 | \footnote{
|
---|
3879 | Except for one thing. Module objects have a secret read-only
|
---|
3880 | attribute called \member{__dict__} which returns the dictionary
|
---|
3881 | used to implement the module's namespace; the name
|
---|
3882 | \member{__dict__} is an attribute but not a global name.
|
---|
3883 | Obviously, using this violates the abstraction of namespace
|
---|
3884 | implementation, and should be restricted to things like
|
---|
3885 | post-mortem debuggers.
|
---|
3886 | }
|
---|
3887 |
|
---|
3888 | Attributes may be read-only or writable. In the latter case,
|
---|
3889 | assignment to attributes is possible. Module attributes are writable:
|
---|
3890 | you can write \samp{modname.the_answer = 42}. Writable attributes may
|
---|
3891 | also be deleted with the \keyword{del} statement. For example,
|
---|
3892 | \samp{del modname.the_answer} will remove the attribute
|
---|
3893 | \member{the_answer} from the object named by \code{modname}.
|
---|
3894 |
|
---|
3895 | Name spaces are created at different moments and have different
|
---|
3896 | lifetimes. The namespace containing the built-in names is created
|
---|
3897 | when the Python interpreter starts up, and is never deleted. The
|
---|
3898 | global namespace for a module is created when the module definition
|
---|
3899 | is read in; normally, module namespaces also last until the
|
---|
3900 | interpreter quits. The statements executed by the top-level
|
---|
3901 | invocation of the interpreter, either read from a script file or
|
---|
3902 | interactively, are considered part of a module called
|
---|
3903 | \module{__main__}, so they have their own global namespace. (The
|
---|
3904 | built-in names actually also live in a module; this is called
|
---|
3905 | \module{__builtin__}.)
|
---|
3906 |
|
---|
3907 | The local namespace for a function is created when the function is
|
---|
3908 | called, and deleted when the function returns or raises an exception
|
---|
3909 | that is not handled within the function. (Actually, forgetting would
|
---|
3910 | be a better way to describe what actually happens.) Of course,
|
---|
3911 | recursive invocations each have their own local namespace.
|
---|
3912 |
|
---|
3913 | A \emph{scope} is a textual region of a Python program where a
|
---|
3914 | namespace is directly accessible. ``Directly accessible'' here means
|
---|
3915 | that an unqualified reference to a name attempts to find the name in
|
---|
3916 | the namespace.
|
---|
3917 |
|
---|
3918 | Although scopes are determined statically, they are used dynamically.
|
---|
3919 | At any time during execution, there are at least three nested scopes whose
|
---|
3920 | namespaces are directly accessible: the innermost scope, which is searched
|
---|
3921 | first, contains the local names; the namespaces of any enclosing
|
---|
3922 | functions, which are searched starting with the nearest enclosing scope;
|
---|
3923 | the middle scope, searched next, contains the current module's global names;
|
---|
3924 | and the outermost scope (searched last) is the namespace containing built-in
|
---|
3925 | names.
|
---|
3926 |
|
---|
3927 | If a name is declared global, then all references and assignments go
|
---|
3928 | directly to the middle scope containing the module's global names.
|
---|
3929 | Otherwise, all variables found outside of the innermost scope are read-only
|
---|
3930 | (an attempt to write to such a variable will simply create a \emph{new}
|
---|
3931 | local variable in the innermost scope, leaving the identically named
|
---|
3932 | outer variable unchanged).
|
---|
3933 |
|
---|
3934 | Usually, the local scope references the local names of the (textually)
|
---|
3935 | current function. Outside functions, the local scope references
|
---|
3936 | the same namespace as the global scope: the module's namespace.
|
---|
3937 | Class definitions place yet another namespace in the local scope.
|
---|
3938 |
|
---|
3939 | It is important to realize that scopes are determined textually: the
|
---|
3940 | global scope of a function defined in a module is that module's
|
---|
3941 | namespace, no matter from where or by what alias the function is
|
---|
3942 | called. On the other hand, the actual search for names is done
|
---|
3943 | dynamically, at run time --- however, the language definition is
|
---|
3944 | evolving towards static name resolution, at ``compile'' time, so don't
|
---|
3945 | rely on dynamic name resolution! (In fact, local variables are
|
---|
3946 | already determined statically.)
|
---|
3947 |
|
---|
3948 | A special quirk of Python is that assignments always go into the
|
---|
3949 | innermost scope. Assignments do not copy data --- they just
|
---|
3950 | bind names to objects. The same is true for deletions: the statement
|
---|
3951 | \samp{del x} removes the binding of \code{x} from the namespace
|
---|
3952 | referenced by the local scope. In fact, all operations that introduce
|
---|
3953 | new names use the local scope: in particular, import statements and
|
---|
3954 | function definitions bind the module or function name in the local
|
---|
3955 | scope. (The \keyword{global} statement can be used to indicate that
|
---|
3956 | particular variables live in the global scope.)
|
---|
3957 |
|
---|
3958 |
|
---|
3959 | \section{A First Look at Classes \label{firstClasses}}
|
---|
3960 |
|
---|
3961 | Classes introduce a little bit of new syntax, three new object types,
|
---|
3962 | and some new semantics.
|
---|
3963 |
|
---|
3964 |
|
---|
3965 | \subsection{Class Definition Syntax \label{classDefinition}}
|
---|
3966 |
|
---|
3967 | The simplest form of class definition looks like this:
|
---|
3968 |
|
---|
3969 | \begin{verbatim}
|
---|
3970 | class ClassName:
|
---|
3971 | <statement-1>
|
---|
3972 | .
|
---|
3973 | .
|
---|
3974 | .
|
---|
3975 | <statement-N>
|
---|
3976 | \end{verbatim}
|
---|
3977 |
|
---|
3978 | Class definitions, like function definitions
|
---|
3979 | (\keyword{def} statements) must be executed before they have any
|
---|
3980 | effect. (You could conceivably place a class definition in a branch
|
---|
3981 | of an \keyword{if} statement, or inside a function.)
|
---|
3982 |
|
---|
3983 | In practice, the statements inside a class definition will usually be
|
---|
3984 | function definitions, but other statements are allowed, and sometimes
|
---|
3985 | useful --- we'll come back to this later. The function definitions
|
---|
3986 | inside a class normally have a peculiar form of argument list,
|
---|
3987 | dictated by the calling conventions for methods --- again, this is
|
---|
3988 | explained later.
|
---|
3989 |
|
---|
3990 | When a class definition is entered, a new namespace is created, and
|
---|
3991 | used as the local scope --- thus, all assignments to local variables
|
---|
3992 | go into this new namespace. In particular, function definitions bind
|
---|
3993 | the name of the new function here.
|
---|
3994 |
|
---|
3995 | When a class definition is left normally (via the end), a \emph{class
|
---|
3996 | object} is created. This is basically a wrapper around the contents
|
---|
3997 | of the namespace created by the class definition; we'll learn more
|
---|
3998 | about class objects in the next section. The original local scope
|
---|
3999 | (the one in effect just before the class definition was entered) is
|
---|
4000 | reinstated, and the class object is bound here to the class name given
|
---|
4001 | in the class definition header (\class{ClassName} in the example).
|
---|
4002 |
|
---|
4003 |
|
---|
4004 | \subsection{Class Objects \label{classObjects}}
|
---|
4005 |
|
---|
4006 | Class objects support two kinds of operations: attribute references
|
---|
4007 | and instantiation.
|
---|
4008 |
|
---|
4009 | \emph{Attribute references} use the standard syntax used for all
|
---|
4010 | attribute references in Python: \code{obj.name}. Valid attribute
|
---|
4011 | names are all the names that were in the class's namespace when the
|
---|
4012 | class object was created. So, if the class definition looked like
|
---|
4013 | this:
|
---|
4014 |
|
---|
4015 | \begin{verbatim}
|
---|
4016 | class MyClass:
|
---|
4017 | "A simple example class"
|
---|
4018 | i = 12345
|
---|
4019 | def f(self):
|
---|
4020 | return 'hello world'
|
---|
4021 | \end{verbatim}
|
---|
4022 |
|
---|
4023 | then \code{MyClass.i} and \code{MyClass.f} are valid attribute
|
---|
4024 | references, returning an integer and a function object, respectively.
|
---|
4025 | Class attributes can also be assigned to, so you can change the value
|
---|
4026 | of \code{MyClass.i} by assignment. \member{__doc__} is also a valid
|
---|
4027 | attribute, returning the docstring belonging to the class: \code{"A
|
---|
4028 | simple example class"}.
|
---|
4029 |
|
---|
4030 | Class \emph{instantiation} uses function notation. Just pretend that
|
---|
4031 | the class object is a parameterless function that returns a new
|
---|
4032 | instance of the class. For example (assuming the above class):
|
---|
4033 |
|
---|
4034 | \begin{verbatim}
|
---|
4035 | x = MyClass()
|
---|
4036 | \end{verbatim}
|
---|
4037 |
|
---|
4038 | creates a new \emph{instance} of the class and assigns this object to
|
---|
4039 | the local variable \code{x}.
|
---|
4040 |
|
---|
4041 | The instantiation operation (``calling'' a class object) creates an
|
---|
4042 | empty object. Many classes like to create objects with instances
|
---|
4043 | customized to a specific initial state.
|
---|
4044 | Therefore a class may define a special method named
|
---|
4045 | \method{__init__()}, like this:
|
---|
4046 |
|
---|
4047 | \begin{verbatim}
|
---|
4048 | def __init__(self):
|
---|
4049 | self.data = []
|
---|
4050 | \end{verbatim}
|
---|
4051 |
|
---|
4052 | When a class defines an \method{__init__()} method, class
|
---|
4053 | instantiation automatically invokes \method{__init__()} for the
|
---|
4054 | newly-created class instance. So in this example, a new, initialized
|
---|
4055 | instance can be obtained by:
|
---|
4056 |
|
---|
4057 | \begin{verbatim}
|
---|
4058 | x = MyClass()
|
---|
4059 | \end{verbatim}
|
---|
4060 |
|
---|
4061 | Of course, the \method{__init__()} method may have arguments for
|
---|
4062 | greater flexibility. In that case, arguments given to the class
|
---|
4063 | instantiation operator are passed on to \method{__init__()}. For
|
---|
4064 | example,
|
---|
4065 |
|
---|
4066 | \begin{verbatim}
|
---|
4067 | >>> class Complex:
|
---|
4068 | ... def __init__(self, realpart, imagpart):
|
---|
4069 | ... self.r = realpart
|
---|
4070 | ... self.i = imagpart
|
---|
4071 | ...
|
---|
4072 | >>> x = Complex(3.0, -4.5)
|
---|
4073 | >>> x.r, x.i
|
---|
4074 | (3.0, -4.5)
|
---|
4075 | \end{verbatim}
|
---|
4076 |
|
---|
4077 |
|
---|
4078 | \subsection{Instance Objects \label{instanceObjects}}
|
---|
4079 |
|
---|
4080 | Now what can we do with instance objects? The only operations
|
---|
4081 | understood by instance objects are attribute references. There are
|
---|
4082 | two kinds of valid attribute names, data attributes and methods.
|
---|
4083 |
|
---|
4084 | \emph{data attributes} correspond to
|
---|
4085 | ``instance variables'' in Smalltalk, and to ``data members'' in
|
---|
4086 | \Cpp. Data attributes need not be declared; like local variables,
|
---|
4087 | they spring into existence when they are first assigned to. For
|
---|
4088 | example, if \code{x} is the instance of \class{MyClass} created above,
|
---|
4089 | the following piece of code will print the value \code{16}, without
|
---|
4090 | leaving a trace:
|
---|
4091 |
|
---|
4092 | \begin{verbatim}
|
---|
4093 | x.counter = 1
|
---|
4094 | while x.counter < 10:
|
---|
4095 | x.counter = x.counter * 2
|
---|
4096 | print x.counter
|
---|
4097 | del x.counter
|
---|
4098 | \end{verbatim}
|
---|
4099 |
|
---|
4100 | The other kind of instance attribute reference is a \emph{method}.
|
---|
4101 | A method is a function that ``belongs to'' an
|
---|
4102 | object. (In Python, the term method is not unique to class instances:
|
---|
4103 | other object types can have methods as well. For example, list objects have
|
---|
4104 | methods called append, insert, remove, sort, and so on. However,
|
---|
4105 | in the following discussion, we'll use the term method exclusively to mean
|
---|
4106 | methods of class instance objects, unless explicitly stated otherwise.)
|
---|
4107 |
|
---|
4108 | Valid method names of an instance object depend on its class. By
|
---|
4109 | definition, all attributes of a class that are function
|
---|
4110 | objects define corresponding methods of its instances. So in our
|
---|
4111 | example, \code{x.f} is a valid method reference, since
|
---|
4112 | \code{MyClass.f} is a function, but \code{x.i} is not, since
|
---|
4113 | \code{MyClass.i} is not. But \code{x.f} is not the same thing as
|
---|
4114 | \code{MyClass.f} --- it is a \obindex{method}\emph{method object}, not
|
---|
4115 | a function object.
|
---|
4116 |
|
---|
4117 |
|
---|
4118 | \subsection{Method Objects \label{methodObjects}}
|
---|
4119 |
|
---|
4120 | Usually, a method is called right after it is bound:
|
---|
4121 |
|
---|
4122 | \begin{verbatim}
|
---|
4123 | x.f()
|
---|
4124 | \end{verbatim}
|
---|
4125 |
|
---|
4126 | In the \class{MyClass} example, this will return the string \code{'hello world'}.
|
---|
4127 | However, it is not necessary to call a method right away:
|
---|
4128 | \code{x.f} is a method object, and can be stored away and called at a
|
---|
4129 | later time. For example:
|
---|
4130 |
|
---|
4131 | \begin{verbatim}
|
---|
4132 | xf = x.f
|
---|
4133 | while True:
|
---|
4134 | print xf()
|
---|
4135 | \end{verbatim}
|
---|
4136 |
|
---|
4137 | will continue to print \samp{hello world} until the end of time.
|
---|
4138 |
|
---|
4139 | What exactly happens when a method is called? You may have noticed
|
---|
4140 | that \code{x.f()} was called without an argument above, even though
|
---|
4141 | the function definition for \method{f} specified an argument. What
|
---|
4142 | happened to the argument? Surely Python raises an exception when a
|
---|
4143 | function that requires an argument is called without any --- even if
|
---|
4144 | the argument isn't actually used...
|
---|
4145 |
|
---|
4146 | Actually, you may have guessed the answer: the special thing about
|
---|
4147 | methods is that the object is passed as the first argument of the
|
---|
4148 | function. In our example, the call \code{x.f()} is exactly equivalent
|
---|
4149 | to \code{MyClass.f(x)}. In general, calling a method with a list of
|
---|
4150 | \var{n} arguments is equivalent to calling the corresponding function
|
---|
4151 | with an argument list that is created by inserting the method's object
|
---|
4152 | before the first argument.
|
---|
4153 |
|
---|
4154 | If you still don't understand how methods work, a look at the
|
---|
4155 | implementation can perhaps clarify matters. When an instance
|
---|
4156 | attribute is referenced that isn't a data attribute, its class is
|
---|
4157 | searched. If the name denotes a valid class attribute that is a
|
---|
4158 | function object, a method object is created by packing (pointers to)
|
---|
4159 | the instance object and the function object just found together in an
|
---|
4160 | abstract object: this is the method object. When the method object is
|
---|
4161 | called with an argument list, it is unpacked again, a new argument
|
---|
4162 | list is constructed from the instance object and the original argument
|
---|
4163 | list, and the function object is called with this new argument list.
|
---|
4164 |
|
---|
4165 |
|
---|
4166 | \section{Random Remarks \label{remarks}}
|
---|
4167 |
|
---|
4168 | % [These should perhaps be placed more carefully...]
|
---|
4169 |
|
---|
4170 |
|
---|
4171 | Data attributes override method attributes with the same name; to
|
---|
4172 | avoid accidental name conflicts, which may cause hard-to-find bugs in
|
---|
4173 | large programs, it is wise to use some kind of convention that
|
---|
4174 | minimizes the chance of conflicts. Possible conventions include
|
---|
4175 | capitalizing method names, prefixing data attribute names with a small
|
---|
4176 | unique string (perhaps just an underscore), or using verbs for methods
|
---|
4177 | and nouns for data attributes.
|
---|
4178 |
|
---|
4179 |
|
---|
4180 | Data attributes may be referenced by methods as well as by ordinary
|
---|
4181 | users (``clients'') of an object. In other words, classes are not
|
---|
4182 | usable to implement pure abstract data types. In fact, nothing in
|
---|
4183 | Python makes it possible to enforce data hiding --- it is all based
|
---|
4184 | upon convention. (On the other hand, the Python implementation,
|
---|
4185 | written in C, can completely hide implementation details and control
|
---|
4186 | access to an object if necessary; this can be used by extensions to
|
---|
4187 | Python written in C.)
|
---|
4188 |
|
---|
4189 |
|
---|
4190 | Clients should use data attributes with care --- clients may mess up
|
---|
4191 | invariants maintained by the methods by stamping on their data
|
---|
4192 | attributes. Note that clients may add data attributes of their own to
|
---|
4193 | an instance object without affecting the validity of the methods, as
|
---|
4194 | long as name conflicts are avoided --- again, a naming convention can
|
---|
4195 | save a lot of headaches here.
|
---|
4196 |
|
---|
4197 |
|
---|
4198 | There is no shorthand for referencing data attributes (or other
|
---|
4199 | methods!) from within methods. I find that this actually increases
|
---|
4200 | the readability of methods: there is no chance of confusing local
|
---|
4201 | variables and instance variables when glancing through a method.
|
---|
4202 |
|
---|
4203 |
|
---|
4204 | Often, the first argument of a method is called
|
---|
4205 | \code{self}. This is nothing more than a convention: the name
|
---|
4206 | \code{self} has absolutely no special meaning to Python. (Note,
|
---|
4207 | however, that by not following the convention your code may be less
|
---|
4208 | readable to other Python programmers, and it is also conceivable that
|
---|
4209 | a \emph{class browser} program might be written that relies upon such a
|
---|
4210 | convention.)
|
---|
4211 |
|
---|
4212 |
|
---|
4213 | Any function object that is a class attribute defines a method for
|
---|
4214 | instances of that class. It is not necessary that the function
|
---|
4215 | definition is textually enclosed in the class definition: assigning a
|
---|
4216 | function object to a local variable in the class is also ok. For
|
---|
4217 | example:
|
---|
4218 |
|
---|
4219 | \begin{verbatim}
|
---|
4220 | # Function defined outside the class
|
---|
4221 | def f1(self, x, y):
|
---|
4222 | return min(x, x+y)
|
---|
4223 |
|
---|
4224 | class C:
|
---|
4225 | f = f1
|
---|
4226 | def g(self):
|
---|
4227 | return 'hello world'
|
---|
4228 | h = g
|
---|
4229 | \end{verbatim}
|
---|
4230 |
|
---|
4231 | Now \code{f}, \code{g} and \code{h} are all attributes of class
|
---|
4232 | \class{C} that refer to function objects, and consequently they are all
|
---|
4233 | methods of instances of \class{C} --- \code{h} being exactly equivalent
|
---|
4234 | to \code{g}. Note that this practice usually only serves to confuse
|
---|
4235 | the reader of a program.
|
---|
4236 |
|
---|
4237 |
|
---|
4238 | Methods may call other methods by using method attributes of the
|
---|
4239 | \code{self} argument:
|
---|
4240 |
|
---|
4241 | \begin{verbatim}
|
---|
4242 | class Bag:
|
---|
4243 | def __init__(self):
|
---|
4244 | self.data = []
|
---|
4245 | def add(self, x):
|
---|
4246 | self.data.append(x)
|
---|
4247 | def addtwice(self, x):
|
---|
4248 | self.add(x)
|
---|
4249 | self.add(x)
|
---|
4250 | \end{verbatim}
|
---|
4251 |
|
---|
4252 | Methods may reference global names in the same way as ordinary
|
---|
4253 | functions. The global scope associated with a method is the module
|
---|
4254 | containing the class definition. (The class itself is never used as a
|
---|
4255 | global scope!) While one rarely encounters a good reason for using
|
---|
4256 | global data in a method, there are many legitimate uses of the global
|
---|
4257 | scope: for one thing, functions and modules imported into the global
|
---|
4258 | scope can be used by methods, as well as functions and classes defined
|
---|
4259 | in it. Usually, the class containing the method is itself defined in
|
---|
4260 | this global scope, and in the next section we'll find some good
|
---|
4261 | reasons why a method would want to reference its own class!
|
---|
4262 |
|
---|
4263 |
|
---|
4264 | \section{Inheritance \label{inheritance}}
|
---|
4265 |
|
---|
4266 | Of course, a language feature would not be worthy of the name ``class''
|
---|
4267 | without supporting inheritance. The syntax for a derived class
|
---|
4268 | definition looks like this:
|
---|
4269 |
|
---|
4270 | \begin{verbatim}
|
---|
4271 | class DerivedClassName(BaseClassName):
|
---|
4272 | <statement-1>
|
---|
4273 | .
|
---|
4274 | .
|
---|
4275 | .
|
---|
4276 | <statement-N>
|
---|
4277 | \end{verbatim}
|
---|
4278 |
|
---|
4279 | The name \class{BaseClassName} must be defined in a scope containing
|
---|
4280 | the derived class definition. In place of a base class name, other
|
---|
4281 | arbitrary expressions are also allowed. This can be useful, for
|
---|
4282 | example, when the base class is defined in another module:
|
---|
4283 |
|
---|
4284 | \begin{verbatim}
|
---|
4285 | class DerivedClassName(modname.BaseClassName):
|
---|
4286 | \end{verbatim}
|
---|
4287 |
|
---|
4288 | Execution of a derived class definition proceeds the same as for a
|
---|
4289 | base class. When the class object is constructed, the base class is
|
---|
4290 | remembered. This is used for resolving attribute references: if a
|
---|
4291 | requested attribute is not found in the class, the search proceeds to look in the
|
---|
4292 | base class. This rule is applied recursively if the base class itself
|
---|
4293 | is derived from some other class.
|
---|
4294 |
|
---|
4295 | There's nothing special about instantiation of derived classes:
|
---|
4296 | \code{DerivedClassName()} creates a new instance of the class. Method
|
---|
4297 | references are resolved as follows: the corresponding class attribute
|
---|
4298 | is searched, descending down the chain of base classes if necessary,
|
---|
4299 | and the method reference is valid if this yields a function object.
|
---|
4300 |
|
---|
4301 | Derived classes may override methods of their base classes. Because
|
---|
4302 | methods have no special privileges when calling other methods of the
|
---|
4303 | same object, a method of a base class that calls another method
|
---|
4304 | defined in the same base class may end up calling a method of
|
---|
4305 | a derived class that overrides it. (For \Cpp{} programmers: all methods
|
---|
4306 | in Python are effectively \keyword{virtual}.)
|
---|
4307 |
|
---|
4308 | An overriding method in a derived class may in fact want to extend
|
---|
4309 | rather than simply replace the base class method of the same name.
|
---|
4310 | There is a simple way to call the base class method directly: just
|
---|
4311 | call \samp{BaseClassName.methodname(self, arguments)}. This is
|
---|
4312 | occasionally useful to clients as well. (Note that this only works if
|
---|
4313 | the base class is defined or imported directly in the global scope.)
|
---|
4314 |
|
---|
4315 |
|
---|
4316 | \subsection{Multiple Inheritance \label{multiple}}
|
---|
4317 |
|
---|
4318 | Python supports a limited form of multiple inheritance as well. A
|
---|
4319 | class definition with multiple base classes looks like this:
|
---|
4320 |
|
---|
4321 | \begin{verbatim}
|
---|
4322 | class DerivedClassName(Base1, Base2, Base3):
|
---|
4323 | <statement-1>
|
---|
4324 | .
|
---|
4325 | .
|
---|
4326 | .
|
---|
4327 | <statement-N>
|
---|
4328 | \end{verbatim}
|
---|
4329 |
|
---|
4330 | The only rule necessary to explain the semantics is the resolution
|
---|
4331 | rule used for class attribute references. This is depth-first,
|
---|
4332 | left-to-right. Thus, if an attribute is not found in
|
---|
4333 | \class{DerivedClassName}, it is searched in \class{Base1}, then
|
---|
4334 | (recursively) in the base classes of \class{Base1}, and only if it is
|
---|
4335 | not found there, it is searched in \class{Base2}, and so on.
|
---|
4336 |
|
---|
4337 | (To some people breadth first --- searching \class{Base2} and
|
---|
4338 | \class{Base3} before the base classes of \class{Base1} --- looks more
|
---|
4339 | natural. However, this would require you to know whether a particular
|
---|
4340 | attribute of \class{Base1} is actually defined in \class{Base1} or in
|
---|
4341 | one of its base classes before you can figure out the consequences of
|
---|
4342 | a name conflict with an attribute of \class{Base2}. The depth-first
|
---|
4343 | rule makes no differences between direct and inherited attributes of
|
---|
4344 | \class{Base1}.)
|
---|
4345 |
|
---|
4346 | It is clear that indiscriminate use of multiple inheritance is a
|
---|
4347 | maintenance nightmare, given the reliance in Python on conventions to
|
---|
4348 | avoid accidental name conflicts. A well-known problem with multiple
|
---|
4349 | inheritance is a class derived from two classes that happen to have a
|
---|
4350 | common base class. While it is easy enough to figure out what happens
|
---|
4351 | in this case (the instance will have a single copy of ``instance
|
---|
4352 | variables'' or data attributes used by the common base class), it is
|
---|
4353 | not clear that these semantics are in any way useful.
|
---|
4354 |
|
---|
4355 | %% XXX Add rules for new-style MRO?
|
---|
4356 |
|
---|
4357 | \section{Private Variables \label{private}}
|
---|
4358 |
|
---|
4359 | There is limited support for class-private
|
---|
4360 | identifiers. Any identifier of the form \code{__spam} (at least two
|
---|
4361 | leading underscores, at most one trailing underscore) is textually
|
---|
4362 | replaced with \code{_classname__spam}, where \code{classname} is the
|
---|
4363 | current class name with leading underscore(s) stripped. This mangling
|
---|
4364 | is done without regard to the syntactic position of the identifier, so
|
---|
4365 | it can be used to define class-private instance and class variables,
|
---|
4366 | methods, variables stored in globals, and even variables stored in instances.
|
---|
4367 | private to this class on instances of \emph{other} classes. Truncation
|
---|
4368 | may occur when the mangled name would be longer than 255 characters.
|
---|
4369 | Outside classes, or when the class name consists of only underscores,
|
---|
4370 | no mangling occurs.
|
---|
4371 |
|
---|
4372 | Name mangling is intended to give classes an easy way to define
|
---|
4373 | ``private'' instance variables and methods, without having to worry
|
---|
4374 | about instance variables defined by derived classes, or mucking with
|
---|
4375 | instance variables by code outside the class. Note that the mangling
|
---|
4376 | rules are designed mostly to avoid accidents; it still is possible for
|
---|
4377 | a determined soul to access or modify a variable that is considered
|
---|
4378 | private. This can even be useful in special circumstances, such as in
|
---|
4379 | the debugger, and that's one reason why this loophole is not closed.
|
---|
4380 | (Buglet: derivation of a class with the same name as the base class
|
---|
4381 | makes use of private variables of the base class possible.)
|
---|
4382 |
|
---|
4383 | Notice that code passed to \code{exec}, \code{eval()} or
|
---|
4384 | \code{execfile()} does not consider the classname of the invoking
|
---|
4385 | class to be the current class; this is similar to the effect of the
|
---|
4386 | \code{global} statement, the effect of which is likewise restricted to
|
---|
4387 | code that is byte-compiled together. The same restriction applies to
|
---|
4388 | \code{getattr()}, \code{setattr()} and \code{delattr()}, as well as
|
---|
4389 | when referencing \code{__dict__} directly.
|
---|
4390 |
|
---|
4391 |
|
---|
4392 | \section{Odds and Ends \label{odds}}
|
---|
4393 |
|
---|
4394 | Sometimes it is useful to have a data type similar to the Pascal
|
---|
4395 | ``record'' or C ``struct'', bundling together a few named data
|
---|
4396 | items. An empty class definition will do nicely:
|
---|
4397 |
|
---|
4398 | \begin{verbatim}
|
---|
4399 | class Employee:
|
---|
4400 | pass
|
---|
4401 |
|
---|
4402 | john = Employee() # Create an empty employee record
|
---|
4403 |
|
---|
4404 | # Fill the fields of the record
|
---|
4405 | john.name = 'John Doe'
|
---|
4406 | john.dept = 'computer lab'
|
---|
4407 | john.salary = 1000
|
---|
4408 | \end{verbatim}
|
---|
4409 |
|
---|
4410 | A piece of Python code that expects a particular abstract data type
|
---|
4411 | can often be passed a class that emulates the methods of that data
|
---|
4412 | type instead. For instance, if you have a function that formats some
|
---|
4413 | data from a file object, you can define a class with methods
|
---|
4414 | \method{read()} and \method{readline()} that get the data from a string
|
---|
4415 | buffer instead, and pass it as an argument.% (Unfortunately, this
|
---|
4416 | %technique has its limitations: a class can't define operations that
|
---|
4417 | %are accessed by special syntax such as sequence subscripting or
|
---|
4418 | %arithmetic operators, and assigning such a ``pseudo-file'' to
|
---|
4419 | %\code{sys.stdin} will not cause the interpreter to read further input
|
---|
4420 | %from it.)
|
---|
4421 |
|
---|
4422 |
|
---|
4423 | Instance method objects have attributes, too: \code{m.im_self} is the
|
---|
4424 | instance object with the method \method{m}, and \code{m.im_func} is the
|
---|
4425 | function object corresponding to the method.
|
---|
4426 |
|
---|
4427 |
|
---|
4428 | \section{Exceptions Are Classes Too\label{exceptionClasses}}
|
---|
4429 |
|
---|
4430 | User-defined exceptions are identified by classes as well. Using this
|
---|
4431 | mechanism it is possible to create extensible hierarchies of exceptions.
|
---|
4432 |
|
---|
4433 | There are two new valid (semantic) forms for the raise statement:
|
---|
4434 |
|
---|
4435 | \begin{verbatim}
|
---|
4436 | raise Class, instance
|
---|
4437 |
|
---|
4438 | raise instance
|
---|
4439 | \end{verbatim}
|
---|
4440 |
|
---|
4441 | In the first form, \code{instance} must be an instance of
|
---|
4442 | \class{Class} or of a class derived from it. The second form is a
|
---|
4443 | shorthand for:
|
---|
4444 |
|
---|
4445 | \begin{verbatim}
|
---|
4446 | raise instance.__class__, instance
|
---|
4447 | \end{verbatim}
|
---|
4448 |
|
---|
4449 | A class in an except clause is compatible with an exception if it is the same
|
---|
4450 | class or a base class thereof (but not the other way around --- an
|
---|
4451 | except clause listing a derived class is not compatible with a base
|
---|
4452 | class). For example, the following code will print B, C, D in that
|
---|
4453 | order:
|
---|
4454 |
|
---|
4455 | \begin{verbatim}
|
---|
4456 | class B:
|
---|
4457 | pass
|
---|
4458 | class C(B):
|
---|
4459 | pass
|
---|
4460 | class D(C):
|
---|
4461 | pass
|
---|
4462 |
|
---|
4463 | for c in [B, C, D]:
|
---|
4464 | try:
|
---|
4465 | raise c()
|
---|
4466 | except D:
|
---|
4467 | print "D"
|
---|
4468 | except C:
|
---|
4469 | print "C"
|
---|
4470 | except B:
|
---|
4471 | print "B"
|
---|
4472 | \end{verbatim}
|
---|
4473 |
|
---|
4474 | Note that if the except clauses were reversed (with
|
---|
4475 | \samp{except B} first), it would have printed B, B, B --- the first
|
---|
4476 | matching except clause is triggered.
|
---|
4477 |
|
---|
4478 | When an error message is printed for an unhandled exception, the
|
---|
4479 | exception's class name is printed, then a colon and a space, and
|
---|
4480 | finally the instance converted to a string using the built-in function
|
---|
4481 | \function{str()}.
|
---|
4482 |
|
---|
4483 |
|
---|
4484 | \section{Iterators\label{iterators}}
|
---|
4485 |
|
---|
4486 | By now you have probably noticed that most container objects can be looped
|
---|
4487 | over using a \keyword{for} statement:
|
---|
4488 |
|
---|
4489 | \begin{verbatim}
|
---|
4490 | for element in [1, 2, 3]:
|
---|
4491 | print element
|
---|
4492 | for element in (1, 2, 3):
|
---|
4493 | print element
|
---|
4494 | for key in {'one':1, 'two':2}:
|
---|
4495 | print key
|
---|
4496 | for char in "123":
|
---|
4497 | print char
|
---|
4498 | for line in open("myfile.txt"):
|
---|
4499 | print line
|
---|
4500 | \end{verbatim}
|
---|
4501 |
|
---|
4502 | This style of access is clear, concise, and convenient. The use of iterators
|
---|
4503 | pervades and unifies Python. Behind the scenes, the \keyword{for}
|
---|
4504 | statement calls \function{iter()} on the container object. The
|
---|
4505 | function returns an iterator object that defines the method
|
---|
4506 | \method{next()} which accesses elements in the container one at a
|
---|
4507 | time. When there are no more elements, \method{next()} raises a
|
---|
4508 | \exception{StopIteration} exception which tells the \keyword{for} loop
|
---|
4509 | to terminate. This example shows how it all works:
|
---|
4510 |
|
---|
4511 | \begin{verbatim}
|
---|
4512 | >>> s = 'abc'
|
---|
4513 | >>> it = iter(s)
|
---|
4514 | >>> it
|
---|
4515 | <iterator object at 0x00A1DB50>
|
---|
4516 | >>> it.next()
|
---|
4517 | 'a'
|
---|
4518 | >>> it.next()
|
---|
4519 | 'b'
|
---|
4520 | >>> it.next()
|
---|
4521 | 'c'
|
---|
4522 | >>> it.next()
|
---|
4523 |
|
---|
4524 | Traceback (most recent call last):
|
---|
4525 | File "<stdin>", line 1, in ?
|
---|
4526 | it.next()
|
---|
4527 | StopIteration
|
---|
4528 | \end{verbatim}
|
---|
4529 |
|
---|
4530 | Having seen the mechanics behind the iterator protocol, it is easy to add
|
---|
4531 | iterator behavior to your classes. Define a \method{__iter__()} method
|
---|
4532 | which returns an object with a \method{next()} method. If the class defines
|
---|
4533 | \method{next()}, then \method{__iter__()} can just return \code{self}:
|
---|
4534 |
|
---|
4535 | \begin{verbatim}
|
---|
4536 | class Reverse:
|
---|
4537 | "Iterator for looping over a sequence backwards"
|
---|
4538 | def __init__(self, data):
|
---|
4539 | self.data = data
|
---|
4540 | self.index = len(data)
|
---|
4541 | def __iter__(self):
|
---|
4542 | return self
|
---|
4543 | def next(self):
|
---|
4544 | if self.index == 0:
|
---|
4545 | raise StopIteration
|
---|
4546 | self.index = self.index - 1
|
---|
4547 | return self.data[self.index]
|
---|
4548 |
|
---|
4549 | >>> for char in Reverse('spam'):
|
---|
4550 | ... print char
|
---|
4551 | ...
|
---|
4552 | m
|
---|
4553 | a
|
---|
4554 | p
|
---|
4555 | s
|
---|
4556 | \end{verbatim}
|
---|
4557 |
|
---|
4558 |
|
---|
4559 | \section{Generators\label{generators}}
|
---|
4560 |
|
---|
4561 | Generators are a simple and powerful tool for creating iterators. They are
|
---|
4562 | written like regular functions but use the \keyword{yield} statement whenever
|
---|
4563 | they want to return data. Each time \method{next()} is called, the
|
---|
4564 | generator resumes where it left-off (it remembers all the data values and
|
---|
4565 | which statement was last executed). An example shows that generators can
|
---|
4566 | be trivially easy to create:
|
---|
4567 |
|
---|
4568 | \begin{verbatim}
|
---|
4569 | def reverse(data):
|
---|
4570 | for index in range(len(data)-1, -1, -1):
|
---|
4571 | yield data[index]
|
---|
4572 |
|
---|
4573 | >>> for char in reverse('golf'):
|
---|
4574 | ... print char
|
---|
4575 | ...
|
---|
4576 | f
|
---|
4577 | l
|
---|
4578 | o
|
---|
4579 | g
|
---|
4580 | \end{verbatim}
|
---|
4581 |
|
---|
4582 | Anything that can be done with generators can also be done with class based
|
---|
4583 | iterators as described in the previous section. What makes generators so
|
---|
4584 | compact is that the \method{__iter__()} and \method{next()} methods are
|
---|
4585 | created automatically.
|
---|
4586 |
|
---|
4587 | Another key feature is that the local variables and execution state
|
---|
4588 | are automatically saved between calls. This made the function easier to write
|
---|
4589 | and much more clear than an approach using instance variables like
|
---|
4590 | \code{self.index} and \code{self.data}.
|
---|
4591 |
|
---|
4592 | In addition to automatic method creation and saving program state, when
|
---|
4593 | generators terminate, they automatically raise \exception{StopIteration}.
|
---|
4594 | In combination, these features make it easy to create iterators with no
|
---|
4595 | more effort than writing a regular function.
|
---|
4596 |
|
---|
4597 | \section{Generator Expressions\label{genexps}}
|
---|
4598 |
|
---|
4599 | Some simple generators can be coded succinctly as expressions using a syntax
|
---|
4600 | similar to list comprehensions but with parentheses instead of brackets. These
|
---|
4601 | expressions are designed for situations where the generator is used right
|
---|
4602 | away by an enclosing function. Generator expressions are more compact but
|
---|
4603 | less versatile than full generator definitions and tend to be more memory
|
---|
4604 | friendly than equivalent list comprehensions.
|
---|
4605 |
|
---|
4606 | Examples:
|
---|
4607 |
|
---|
4608 | \begin{verbatim}
|
---|
4609 | >>> sum(i*i for i in range(10)) # sum of squares
|
---|
4610 | 285
|
---|
4611 |
|
---|
4612 | >>> xvec = [10, 20, 30]
|
---|
4613 | >>> yvec = [7, 5, 3]
|
---|
4614 | >>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
|
---|
4615 | 260
|
---|
4616 |
|
---|
4617 | >>> from math import pi, sin
|
---|
4618 | >>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))
|
---|
4619 |
|
---|
4620 | >>> unique_words = set(word for line in page for word in line.split())
|
---|
4621 |
|
---|
4622 | >>> valedictorian = max((student.gpa, student.name) for student in graduates)
|
---|
4623 |
|
---|
4624 | >>> data = 'golf'
|
---|
4625 | >>> list(data[i] for i in range(len(data)-1,-1,-1))
|
---|
4626 | ['f', 'l', 'o', 'g']
|
---|
4627 |
|
---|
4628 | \end{verbatim}
|
---|
4629 |
|
---|
4630 |
|
---|
4631 |
|
---|
4632 | \chapter{Brief Tour of the Standard Library \label{briefTour}}
|
---|
4633 |
|
---|
4634 |
|
---|
4635 | \section{Operating System Interface\label{os-interface}}
|
---|
4636 |
|
---|
4637 | The \ulink{\module{os}}{../lib/module-os.html}
|
---|
4638 | module provides dozens of functions for interacting with the
|
---|
4639 | operating system:
|
---|
4640 |
|
---|
4641 | \begin{verbatim}
|
---|
4642 | >>> import os
|
---|
4643 | >>> os.system('time 0:02')
|
---|
4644 | 0
|
---|
4645 | >>> os.getcwd() # Return the current working directory
|
---|
4646 | 'C:\\Python24'
|
---|
4647 | >>> os.chdir('/server/accesslogs')
|
---|
4648 | \end{verbatim}
|
---|
4649 |
|
---|
4650 | Be sure to use the \samp{import os} style instead of
|
---|
4651 | \samp{from os import *}. This will keep \function{os.open()} from
|
---|
4652 | shadowing the builtin \function{open()} function which operates much
|
---|
4653 | differently.
|
---|
4654 |
|
---|
4655 | \bifuncindex{help}
|
---|
4656 | The builtin \function{dir()} and \function{help()} functions are useful
|
---|
4657 | as interactive aids for working with large modules like \module{os}:
|
---|
4658 |
|
---|
4659 | \begin{verbatim}
|
---|
4660 | >>> import os
|
---|
4661 | >>> dir(os)
|
---|
4662 | <returns a list of all module functions>
|
---|
4663 | >>> help(os)
|
---|
4664 | <returns an extensive manual page created from the module's docstrings>
|
---|
4665 | \end{verbatim}
|
---|
4666 |
|
---|
4667 | For daily file and directory management tasks, the
|
---|
4668 | \ulink{\module{shutil}}{../lib/module-shutil.html}
|
---|
4669 | module provides a higher level interface that is easier to use:
|
---|
4670 |
|
---|
4671 | \begin{verbatim}
|
---|
4672 | >>> import shutil
|
---|
4673 | >>> shutil.copyfile('data.db', 'archive.db')
|
---|
4674 | >>> shutil.move('/build/executables', 'installdir')
|
---|
4675 | \end{verbatim}
|
---|
4676 |
|
---|
4677 |
|
---|
4678 | \section{File Wildcards\label{file-wildcards}}
|
---|
4679 |
|
---|
4680 | The \ulink{\module{glob}}{../lib/module-glob.html}
|
---|
4681 | module provides a function for making file lists from directory
|
---|
4682 | wildcard searches:
|
---|
4683 |
|
---|
4684 | \begin{verbatim}
|
---|
4685 | >>> import glob
|
---|
4686 | >>> glob.glob('*.py')
|
---|
4687 | ['primes.py', 'random.py', 'quote.py']
|
---|
4688 | \end{verbatim}
|
---|
4689 |
|
---|
4690 |
|
---|
4691 | \section{Command Line Arguments\label{command-line-arguments}}
|
---|
4692 |
|
---|
4693 | Common utility scripts often need to process command line arguments.
|
---|
4694 | These arguments are stored in the
|
---|
4695 | \ulink{\module{sys}}{../lib/module-sys.html}\ module's \var{argv}
|
---|
4696 | attribute as a list. For instance the following output results from
|
---|
4697 | running \samp{python demo.py one two three} at the command line:
|
---|
4698 |
|
---|
4699 | \begin{verbatim}
|
---|
4700 | >>> import sys
|
---|
4701 | >>> print sys.argv
|
---|
4702 | ['demo.py', 'one', 'two', 'three']
|
---|
4703 | \end{verbatim}
|
---|
4704 |
|
---|
4705 | The \ulink{\module{getopt}}{../lib/module-getopt.html}
|
---|
4706 | module processes \var{sys.argv} using the conventions of the \UNIX{}
|
---|
4707 | \function{getopt()} function. More powerful and flexible command line
|
---|
4708 | processing is provided by the
|
---|
4709 | \ulink{\module{optparse}}{../lib/module-optparse.html} module.
|
---|
4710 |
|
---|
4711 |
|
---|
4712 | \section{Error Output Redirection and Program Termination\label{stderr}}
|
---|
4713 |
|
---|
4714 | The \ulink{\module{sys}}{../lib/module-sys.html}
|
---|
4715 | module also has attributes for \var{stdin}, \var{stdout}, and
|
---|
4716 | \var{stderr}. The latter is useful for emitting warnings and error
|
---|
4717 | messages to make them visible even when \var{stdout} has been redirected:
|
---|
4718 |
|
---|
4719 | \begin{verbatim}
|
---|
4720 | >>> sys.stderr.write('Warning, log file not found starting a new one\n')
|
---|
4721 | Warning, log file not found starting a new one
|
---|
4722 | \end{verbatim}
|
---|
4723 |
|
---|
4724 | The most direct way to terminate a script is to use \samp{sys.exit()}.
|
---|
4725 |
|
---|
4726 |
|
---|
4727 | \section{String Pattern Matching\label{string-pattern-matching}}
|
---|
4728 |
|
---|
4729 | The \ulink{\module{re}}{../lib/module-re.html}
|
---|
4730 | module provides regular expression tools for advanced string processing.
|
---|
4731 | For complex matching and manipulation, regular expressions offer succinct,
|
---|
4732 | optimized solutions:
|
---|
4733 |
|
---|
4734 | \begin{verbatim}
|
---|
4735 | >>> import re
|
---|
4736 | >>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
|
---|
4737 | ['foot', 'fell', 'fastest']
|
---|
4738 | >>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
|
---|
4739 | 'cat in the hat'
|
---|
4740 | \end{verbatim}
|
---|
4741 |
|
---|
4742 | When only simple capabilities are needed, string methods are preferred
|
---|
4743 | because they are easier to read and debug:
|
---|
4744 |
|
---|
4745 | \begin{verbatim}
|
---|
4746 | >>> 'tea for too'.replace('too', 'two')
|
---|
4747 | 'tea for two'
|
---|
4748 | \end{verbatim}
|
---|
4749 |
|
---|
4750 | \section{Mathematics\label{mathematics}}
|
---|
4751 |
|
---|
4752 | The \ulink{\module{math}}{../lib/module-math.html} module gives
|
---|
4753 | access to the underlying C library functions for floating point math:
|
---|
4754 |
|
---|
4755 | \begin{verbatim}
|
---|
4756 | >>> import math
|
---|
4757 | >>> math.cos(math.pi / 4.0)
|
---|
4758 | 0.70710678118654757
|
---|
4759 | >>> math.log(1024, 2)
|
---|
4760 | 10.0
|
---|
4761 | \end{verbatim}
|
---|
4762 |
|
---|
4763 | The \ulink{\module{random}}{../lib/module-random.html}
|
---|
4764 | module provides tools for making random selections:
|
---|
4765 |
|
---|
4766 | \begin{verbatim}
|
---|
4767 | >>> import random
|
---|
4768 | >>> random.choice(['apple', 'pear', 'banana'])
|
---|
4769 | 'apple'
|
---|
4770 | >>> random.sample(xrange(100), 10) # sampling without replacement
|
---|
4771 | [30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
|
---|
4772 | >>> random.random() # random float
|
---|
4773 | 0.17970987693706186
|
---|
4774 | >>> random.randrange(6) # random integer chosen from range(6)
|
---|
4775 | 4
|
---|
4776 | \end{verbatim}
|
---|
4777 |
|
---|
4778 |
|
---|
4779 | \section{Internet Access\label{internet-access}}
|
---|
4780 |
|
---|
4781 | There are a number of modules for accessing the internet and processing
|
---|
4782 | internet protocols. Two of the simplest are
|
---|
4783 | \ulink{\module{urllib2}}{../lib/module-urllib2.html}
|
---|
4784 | for retrieving data from urls and
|
---|
4785 | \ulink{\module{smtplib}}{../lib/module-smtplib.html}
|
---|
4786 | for sending mail:
|
---|
4787 |
|
---|
4788 | \begin{verbatim}
|
---|
4789 | >>> import urllib2
|
---|
4790 | >>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'):
|
---|
4791 | ... if 'EST' in line or 'EDT' in line: # look for Eastern Time
|
---|
4792 | ... print line
|
---|
4793 |
|
---|
4794 | <BR>Nov. 25, 09:43:32 PM EST
|
---|
4795 |
|
---|
4796 | >>> import smtplib
|
---|
4797 | >>> server = smtplib.SMTP('localhost')
|
---|
4798 | >>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
|
---|
4799 | """To: jcaesar@example.org
|
---|
4800 | From: soothsayer@example.org
|
---|
4801 |
|
---|
4802 | Beware the Ides of March.
|
---|
4803 | """)
|
---|
4804 | >>> server.quit()
|
---|
4805 | \end{verbatim}
|
---|
4806 |
|
---|
4807 |
|
---|
4808 | \section{Dates and Times\label{dates-and-times}}
|
---|
4809 |
|
---|
4810 | The \ulink{\module{datetime}}{../lib/module-datetime.html} module
|
---|
4811 | supplies classes for manipulating dates and times in both simple
|
---|
4812 | and complex ways. While date and time arithmetic is supported, the
|
---|
4813 | focus of the implementation is on efficient member extraction for
|
---|
4814 | output formatting and manipulation. The module also supports objects
|
---|
4815 | that are timezone aware.
|
---|
4816 |
|
---|
4817 | \begin{verbatim}
|
---|
4818 | # dates are easily constructed and formatted
|
---|
4819 | >>> from datetime import date
|
---|
4820 | >>> now = date.today()
|
---|
4821 | >>> now
|
---|
4822 | datetime.date(2003, 12, 2)
|
---|
4823 | >>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
|
---|
4824 | '12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'
|
---|
4825 |
|
---|
4826 | # dates support calendar arithmetic
|
---|
4827 | >>> birthday = date(1964, 7, 31)
|
---|
4828 | >>> age = now - birthday
|
---|
4829 | >>> age.days
|
---|
4830 | 14368
|
---|
4831 | \end{verbatim}
|
---|
4832 |
|
---|
4833 |
|
---|
4834 | \section{Data Compression\label{data-compression}}
|
---|
4835 |
|
---|
4836 | Common data archiving and compression formats are directly supported
|
---|
4837 | by modules including:
|
---|
4838 | \ulink{\module{zlib}}{../lib/module-zlib.html},
|
---|
4839 | \ulink{\module{gzip}}{../lib/module-gzip.html},
|
---|
4840 | \ulink{\module{bz2}}{../lib/module-bz2.html},
|
---|
4841 | \ulink{\module{zipfile}}{../lib/module-zipfile.html}, and
|
---|
4842 | \ulink{\module{tarfile}}{../lib/module-tarfile.html}.
|
---|
4843 |
|
---|
4844 | \begin{verbatim}
|
---|
4845 | >>> import zlib
|
---|
4846 | >>> s = 'witch which has which witches wrist watch'
|
---|
4847 | >>> len(s)
|
---|
4848 | 41
|
---|
4849 | >>> t = zlib.compress(s)
|
---|
4850 | >>> len(t)
|
---|
4851 | 37
|
---|
4852 | >>> zlib.decompress(t)
|
---|
4853 | 'witch which has which witches wrist watch'
|
---|
4854 | >>> zlib.crc32(s)
|
---|
4855 | 226805979
|
---|
4856 | \end{verbatim}
|
---|
4857 |
|
---|
4858 |
|
---|
4859 | \section{Performance Measurement\label{performance-measurement}}
|
---|
4860 |
|
---|
4861 | Some Python users develop a deep interest in knowing the relative
|
---|
4862 | performance of different approaches to the same problem.
|
---|
4863 | Python provides a measurement tool that answers those questions
|
---|
4864 | immediately.
|
---|
4865 |
|
---|
4866 | For example, it may be tempting to use the tuple packing and unpacking
|
---|
4867 | feature instead of the traditional approach to swapping arguments.
|
---|
4868 | The \ulink{\module{timeit}}{../lib/module-timeit.html} module
|
---|
4869 | quickly demonstrates a modest performance advantage:
|
---|
4870 |
|
---|
4871 | \begin{verbatim}
|
---|
4872 | >>> from timeit import Timer
|
---|
4873 | >>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
|
---|
4874 | 0.57535828626024577
|
---|
4875 | >>> Timer('a,b = b,a', 'a=1; b=2').timeit()
|
---|
4876 | 0.54962537085770791
|
---|
4877 | \end{verbatim}
|
---|
4878 |
|
---|
4879 | In contrast to \module{timeit}'s fine level of granularity, the
|
---|
4880 | \ulink{\module{profile}}{../lib/module-profile.html} and \module{pstats}
|
---|
4881 | modules provide tools for identifying time critical sections in larger blocks
|
---|
4882 | of code.
|
---|
4883 |
|
---|
4884 |
|
---|
4885 | \section{Quality Control\label{quality-control}}
|
---|
4886 |
|
---|
4887 | One approach for developing high quality software is to write tests for
|
---|
4888 | each function as it is developed and to run those tests frequently during
|
---|
4889 | the development process.
|
---|
4890 |
|
---|
4891 | The \ulink{\module{doctest}}{../lib/module-doctest.html} module provides
|
---|
4892 | a tool for scanning a module and validating tests embedded in a program's
|
---|
4893 | docstrings. Test construction is as simple as cutting-and-pasting a
|
---|
4894 | typical call along with its results into the docstring. This improves
|
---|
4895 | the documentation by providing the user with an example and it allows the
|
---|
4896 | doctest module to make sure the code remains true to the documentation:
|
---|
4897 |
|
---|
4898 | \begin{verbatim}
|
---|
4899 | def average(values):
|
---|
4900 | """Computes the arithmetic mean of a list of numbers.
|
---|
4901 |
|
---|
4902 | >>> print average([20, 30, 70])
|
---|
4903 | 40.0
|
---|
4904 | """
|
---|
4905 | return sum(values, 0.0) / len(values)
|
---|
4906 |
|
---|
4907 | import doctest
|
---|
4908 | doctest.testmod() # automatically validate the embedded tests
|
---|
4909 | \end{verbatim}
|
---|
4910 |
|
---|
4911 | The \ulink{\module{unittest}}{../lib/module-unittest.html} module is not
|
---|
4912 | as effortless as the \module{doctest} module, but it allows a more
|
---|
4913 | comprehensive set of tests to be maintained in a separate file:
|
---|
4914 |
|
---|
4915 | \begin{verbatim}
|
---|
4916 | import unittest
|
---|
4917 |
|
---|
4918 | class TestStatisticalFunctions(unittest.TestCase):
|
---|
4919 |
|
---|
4920 | def test_average(self):
|
---|
4921 | self.assertEqual(average([20, 30, 70]), 40.0)
|
---|
4922 | self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
|
---|
4923 | self.assertRaises(ZeroDivisionError, average, [])
|
---|
4924 | self.assertRaises(TypeError, average, 20, 30, 70)
|
---|
4925 |
|
---|
4926 | unittest.main() # Calling from the command line invokes all tests
|
---|
4927 | \end{verbatim}
|
---|
4928 |
|
---|
4929 | \section{Batteries Included\label{batteries-included}}
|
---|
4930 |
|
---|
4931 | Python has a ``batteries included'' philosophy. This is best seen
|
---|
4932 | through the sophisticated and robust capabilities of its larger
|
---|
4933 | packages. For example:
|
---|
4934 |
|
---|
4935 | \begin{itemize}
|
---|
4936 | \item The \ulink{\module{xmlrpclib}}{../lib/module-xmlrpclib.html} and
|
---|
4937 | \ulink{\module{SimpleXMLRPCServer}}{../lib/module-SimpleXMLRPCServer.html}
|
---|
4938 | modules make implementing remote procedure calls into an almost trivial task.
|
---|
4939 | Despite the modules names, no direct knowledge or handling of XML is needed.
|
---|
4940 | \item The \ulink{\module{email}}{../lib/module-email.html} package is a library
|
---|
4941 | for managing email messages, including MIME and other RFC 2822-based message
|
---|
4942 | documents. Unlike \module{smtplib} and \module{poplib} which actually send
|
---|
4943 | and receive messages, the email package has a complete toolset for building
|
---|
4944 | or decoding complex message structures (including attachments) and for
|
---|
4945 | implementing internet encoding and header protocols.
|
---|
4946 | \item The \ulink{\module{xml.dom}}{../lib/module-xml.dom.html} and
|
---|
4947 | \ulink{\module{xml.sax}}{../lib/module-xml.sax.html} packages provide robust
|
---|
4948 | support for parsing this popular data interchange format. Likewise, the
|
---|
4949 | \ulink{\module{csv}}{../lib/module-csv.html} module supports direct reads and
|
---|
4950 | writes in a common database format. Together, these modules and packages
|
---|
4951 | greatly simplify data interchange between python applications and other
|
---|
4952 | tools.
|
---|
4953 | \item Internationalization is supported by a number of modules including
|
---|
4954 | \ulink{\module{gettext}}{../lib/module-gettext.html},
|
---|
4955 | \ulink{\module{locale}}{../lib/module-locale.html}, and the
|
---|
4956 | \ulink{\module{codecs}}{../lib/module-codecs.html} package.
|
---|
4957 | \end{itemize}
|
---|
4958 |
|
---|
4959 | \chapter{Brief Tour of the Standard Library -- Part II\label{briefTourTwo}}
|
---|
4960 |
|
---|
4961 | This second tour covers more advanced modules that support professional
|
---|
4962 | programming needs. These modules rarely occur in small scripts.
|
---|
4963 |
|
---|
4964 |
|
---|
4965 | \section{Output Formatting\label{output-formatting}}
|
---|
4966 |
|
---|
4967 | The \ulink{\module{repr}}{../lib/module-repr.html} module provides a
|
---|
4968 | version of \function{repr()} customized for abbreviated displays of large
|
---|
4969 | or deeply nested containers:
|
---|
4970 |
|
---|
4971 | \begin{verbatim}
|
---|
4972 | >>> import repr
|
---|
4973 | >>> repr.repr(set('supercalifragilisticexpialidocious'))
|
---|
4974 | "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
|
---|
4975 | \end{verbatim}
|
---|
4976 |
|
---|
4977 | The \ulink{\module{pprint}}{../lib/module-pprint.html} module offers
|
---|
4978 | more sophisticated control over printing both built-in and user defined
|
---|
4979 | objects in a way that is readable by the interpreter. When the result
|
---|
4980 | is longer than one line, the ``pretty printer'' adds line breaks and
|
---|
4981 | indentation to more clearly reveal data structure:
|
---|
4982 |
|
---|
4983 | \begin{verbatim}
|
---|
4984 | >>> import pprint
|
---|
4985 | >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
|
---|
4986 | ... 'yellow'], 'blue']]]
|
---|
4987 | ...
|
---|
4988 | >>> pprint.pprint(t, width=30)
|
---|
4989 | [[[['black', 'cyan'],
|
---|
4990 | 'white',
|
---|
4991 | ['green', 'red']],
|
---|
4992 | [['magenta', 'yellow'],
|
---|
4993 | 'blue']]]
|
---|
4994 | \end{verbatim}
|
---|
4995 |
|
---|
4996 | The \ulink{\module{textwrap}}{../lib/module-textwrap.html} module
|
---|
4997 | formats paragraphs of text to fit a given screen width:
|
---|
4998 |
|
---|
4999 | \begin{verbatim}
|
---|
5000 | >>> import textwrap
|
---|
5001 | >>> doc = """The wrap() method is just like fill() except that it returns
|
---|
5002 | ... a list of strings instead of one big string with newlines to separate
|
---|
5003 | ... the wrapped lines."""
|
---|
5004 | ...
|
---|
5005 | >>> print textwrap.fill(doc, width=40)
|
---|
5006 | The wrap() method is just like fill()
|
---|
5007 | except that it returns a list of strings
|
---|
5008 | instead of one big string with newlines
|
---|
5009 | to separate the wrapped lines.
|
---|
5010 | \end{verbatim}
|
---|
5011 |
|
---|
5012 | The \ulink{\module{locale}}{../lib/module-locale.html} module accesses
|
---|
5013 | a database of culture specific data formats. The grouping attribute
|
---|
5014 | of locale's format function provides a direct way of formatting numbers
|
---|
5015 | with group separators:
|
---|
5016 |
|
---|
5017 | \begin{verbatim}
|
---|
5018 | >>> import locale
|
---|
5019 | >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
|
---|
5020 | 'English_United States.1252'
|
---|
5021 | >>> conv = locale.localeconv() # get a mapping of conventions
|
---|
5022 | >>> x = 1234567.8
|
---|
5023 | >>> locale.format("%d", x, grouping=True)
|
---|
5024 | '1,234,567'
|
---|
5025 | >>> locale.format("%s%.*f", (conv['currency_symbol'],
|
---|
5026 | ... conv['frac_digits'], x), grouping=True)
|
---|
5027 | '$1,234,567.80'
|
---|
5028 | \end{verbatim}
|
---|
5029 |
|
---|
5030 |
|
---|
5031 | \section{Templating\label{templating}}
|
---|
5032 |
|
---|
5033 | The \ulink{\module{string}}{../lib/module-string.html} module includes a
|
---|
5034 | versatile \class{Template} class with a simplified syntax suitable for
|
---|
5035 | editing by end-users. This allows users to customize their applications
|
---|
5036 | without having to alter the application.
|
---|
5037 |
|
---|
5038 | The format uses placeholder names formed by \samp{\$} with valid Python
|
---|
5039 | identifiers (alphanumeric characters and underscores). Surrounding the
|
---|
5040 | placeholder with braces allows it to be followed by more alphanumeric letters
|
---|
5041 | with no intervening spaces. Writing \samp{\$\$} creates a single escaped
|
---|
5042 | \samp{\$}:
|
---|
5043 |
|
---|
5044 | \begin{verbatim}
|
---|
5045 | >>> from string import Template
|
---|
5046 | >>> t = Template('${village}folk send $$10 to $cause.')
|
---|
5047 | >>> t.substitute(village='Nottingham', cause='the ditch fund')
|
---|
5048 | 'Nottinghamfolk send $10 to the ditch fund.'
|
---|
5049 | \end{verbatim}
|
---|
5050 |
|
---|
5051 | The \method{substitute} method raises a \exception{KeyError} when a
|
---|
5052 | placeholder is not supplied in a dictionary or a keyword argument. For
|
---|
5053 | mail-merge style applications, user supplied data may be incomplete and the
|
---|
5054 | \method{safe_substitute} method may be more appropriate --- it will leave
|
---|
5055 | placeholders unchanged if data is missing:
|
---|
5056 |
|
---|
5057 | \begin{verbatim}
|
---|
5058 | >>> t = Template('Return the $item to $owner.')
|
---|
5059 | >>> d = dict(item='unladen swallow')
|
---|
5060 | >>> t.substitute(d)
|
---|
5061 | Traceback (most recent call last):
|
---|
5062 | . . .
|
---|
5063 | KeyError: 'owner'
|
---|
5064 | >>> t.safe_substitute(d)
|
---|
5065 | 'Return the unladen swallow to $owner.'
|
---|
5066 | \end{verbatim}
|
---|
5067 |
|
---|
5068 | Template subclasses can specify a custom delimiter. For example, a batch
|
---|
5069 | renaming utility for a photo browser may elect to use percent signs for
|
---|
5070 | placeholders such as the current date, image sequence number, or file format:
|
---|
5071 |
|
---|
5072 | \begin{verbatim}
|
---|
5073 | >>> import time, os.path
|
---|
5074 | >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
|
---|
5075 | >>> class BatchRename(Template):
|
---|
5076 | ... delimiter = '%'
|
---|
5077 | >>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')
|
---|
5078 | Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f
|
---|
5079 |
|
---|
5080 | >>> t = BatchRename(fmt)
|
---|
5081 | >>> date = time.strftime('%d%b%y')
|
---|
5082 | >>> for i, filename in enumerate(photofiles):
|
---|
5083 | ... base, ext = os.path.splitext(filename)
|
---|
5084 | ... newname = t.substitute(d=date, n=i, f=ext)
|
---|
5085 | ... print '%s --> %s' % (filename, newname)
|
---|
5086 |
|
---|
5087 | img_1074.jpg --> Ashley_0.jpg
|
---|
5088 | img_1076.jpg --> Ashley_1.jpg
|
---|
5089 | img_1077.jpg --> Ashley_2.jpg
|
---|
5090 | \end{verbatim}
|
---|
5091 |
|
---|
5092 | Another application for templating is separating program logic from the
|
---|
5093 | details of multiple output formats. This makes it possible to substitute
|
---|
5094 | custom templates for XML files, plain text reports, and HTML web reports.
|
---|
5095 |
|
---|
5096 |
|
---|
5097 | \section{Working with Binary Data Record Layouts\label{binary-formats}}
|
---|
5098 |
|
---|
5099 | The \ulink{\module{struct}}{../lib/module-struct.html} module provides
|
---|
5100 | \function{pack()} and \function{unpack()} functions for working with
|
---|
5101 | variable length binary record formats. The following example shows how
|
---|
5102 | to loop through header information in a ZIP file (with pack codes
|
---|
5103 | \code{"H"} and \code{"L"} representing two and four byte unsigned
|
---|
5104 | numbers respectively):
|
---|
5105 |
|
---|
5106 | \begin{verbatim}
|
---|
5107 | import struct
|
---|
5108 |
|
---|
5109 | data = open('myfile.zip', 'rb').read()
|
---|
5110 | start = 0
|
---|
5111 | for i in range(3): # show the first 3 file headers
|
---|
5112 | start += 14
|
---|
5113 | fields = struct.unpack('LLLHH', data[start:start+16])
|
---|
5114 | crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
|
---|
5115 |
|
---|
5116 | start += 16
|
---|
5117 | filename = data[start:start+filenamesize]
|
---|
5118 | start += filenamesize
|
---|
5119 | extra = data[start:start+extra_size]
|
---|
5120 | print filename, hex(crc32), comp_size, uncomp_size
|
---|
5121 |
|
---|
5122 | start += extra_size + comp_size # skip to the next header
|
---|
5123 | \end{verbatim}
|
---|
5124 |
|
---|
5125 |
|
---|
5126 | \section{Multi-threading\label{multi-threading}}
|
---|
5127 |
|
---|
5128 | Threading is a technique for decoupling tasks which are not sequentially
|
---|
5129 | dependent. Threads can be used to improve the responsiveness of
|
---|
5130 | applications that accept user input while other tasks run in the
|
---|
5131 | background. A related use case is running I/O in parallel with
|
---|
5132 | computations in another thread.
|
---|
5133 |
|
---|
5134 | The following code shows how the high level
|
---|
5135 | \ulink{\module{threading}}{../lib/module-threading.html} module can run
|
---|
5136 | tasks in background while the main program continues to run:
|
---|
5137 |
|
---|
5138 | \begin{verbatim}
|
---|
5139 | import threading, zipfile
|
---|
5140 |
|
---|
5141 | class AsyncZip(threading.Thread):
|
---|
5142 | def __init__(self, infile, outfile):
|
---|
5143 | threading.Thread.__init__(self)
|
---|
5144 | self.infile = infile
|
---|
5145 | self.outfile = outfile
|
---|
5146 | def run(self):
|
---|
5147 | f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
|
---|
5148 | f.write(self.infile)
|
---|
5149 | f.close()
|
---|
5150 | print 'Finished background zip of: ', self.infile
|
---|
5151 |
|
---|
5152 | background = AsyncZip('mydata.txt', 'myarchive.zip')
|
---|
5153 | background.start()
|
---|
5154 | print 'The main program continues to run in foreground.'
|
---|
5155 |
|
---|
5156 | background.join() # Wait for the background task to finish
|
---|
5157 | print 'Main program waited until background was done.'
|
---|
5158 | \end{verbatim}
|
---|
5159 |
|
---|
5160 | The principal challenge of multi-threaded applications is coordinating
|
---|
5161 | threads that share data or other resources. To that end, the threading
|
---|
5162 | module provides a number of synchronization primitives including locks,
|
---|
5163 | events, condition variables, and semaphores.
|
---|
5164 |
|
---|
5165 | While those tools are powerful, minor design errors can result in
|
---|
5166 | problems that are difficult to reproduce. So, the preferred approach
|
---|
5167 | to task coordination is to concentrate all access to a resource
|
---|
5168 | in a single thread and then use the
|
---|
5169 | \ulink{\module{Queue}}{../lib/module-Queue.html} module to feed that
|
---|
5170 | thread with requests from other threads. Applications using
|
---|
5171 | \class{Queue} objects for inter-thread communication and coordination
|
---|
5172 | are easier to design, more readable, and more reliable.
|
---|
5173 |
|
---|
5174 |
|
---|
5175 | \section{Logging\label{logging}}
|
---|
5176 |
|
---|
5177 | The \ulink{\module{logging}}{../lib/module-logging.html} module offers
|
---|
5178 | a full featured and flexible logging system. At its simplest, log
|
---|
5179 | messages are sent to a file or to \code{sys.stderr}:
|
---|
5180 |
|
---|
5181 | \begin{verbatim}
|
---|
5182 | import logging
|
---|
5183 | logging.debug('Debugging information')
|
---|
5184 | logging.info('Informational message')
|
---|
5185 | logging.warning('Warning:config file %s not found', 'server.conf')
|
---|
5186 | logging.error('Error occurred')
|
---|
5187 | logging.critical('Critical error -- shutting down')
|
---|
5188 | \end{verbatim}
|
---|
5189 |
|
---|
5190 | This produces the following output:
|
---|
5191 |
|
---|
5192 | \begin{verbatim}
|
---|
5193 | WARNING:root:Warning:config file server.conf not found
|
---|
5194 | ERROR:root:Error occurred
|
---|
5195 | CRITICAL:root:Critical error -- shutting down
|
---|
5196 | \end{verbatim}
|
---|
5197 |
|
---|
5198 | By default, informational and debugging messages are suppressed and the
|
---|
5199 | output is sent to standard error. Other output options include routing
|
---|
5200 | messages through email, datagrams, sockets, or to an HTTP Server. New
|
---|
5201 | filters can select different routing based on message priority:
|
---|
5202 | \constant{DEBUG}, \constant{INFO}, \constant{WARNING}, \constant{ERROR},
|
---|
5203 | and \constant{CRITICAL}.
|
---|
5204 |
|
---|
5205 | The logging system can be configured directly from Python or can be
|
---|
5206 | loaded from a user editable configuration file for customized logging
|
---|
5207 | without altering the application.
|
---|
5208 |
|
---|
5209 |
|
---|
5210 | \section{Weak References\label{weak-references}}
|
---|
5211 |
|
---|
5212 | Python does automatic memory management (reference counting for most
|
---|
5213 | objects and garbage collection to eliminate cycles). The memory is
|
---|
5214 | freed shortly after the last reference to it has been eliminated.
|
---|
5215 |
|
---|
5216 | This approach works fine for most applications but occasionally there
|
---|
5217 | is a need to track objects only as long as they are being used by
|
---|
5218 | something else. Unfortunately, just tracking them creates a reference
|
---|
5219 | that makes them permanent. The
|
---|
5220 | \ulink{\module{weakref}}{../lib/module-weakref.html} module provides
|
---|
5221 | tools for tracking objects without creating a reference. When the
|
---|
5222 | object is no longer needed, it is automatically removed from a weakref
|
---|
5223 | table and a callback is triggered for weakref objects. Typical
|
---|
5224 | applications include caching objects that are expensive to create:
|
---|
5225 |
|
---|
5226 | \begin{verbatim}
|
---|
5227 | >>> import weakref, gc
|
---|
5228 | >>> class A:
|
---|
5229 | ... def __init__(self, value):
|
---|
5230 | ... self.value = value
|
---|
5231 | ... def __repr__(self):
|
---|
5232 | ... return str(self.value)
|
---|
5233 | ...
|
---|
5234 | >>> a = A(10) # create a reference
|
---|
5235 | >>> d = weakref.WeakValueDictionary()
|
---|
5236 | >>> d['primary'] = a # does not create a reference
|
---|
5237 | >>> d['primary'] # fetch the object if it is still alive
|
---|
5238 | 10
|
---|
5239 | >>> del a # remove the one reference
|
---|
5240 | >>> gc.collect() # run garbage collection right away
|
---|
5241 | 0
|
---|
5242 | >>> d['primary'] # entry was automatically removed
|
---|
5243 | Traceback (most recent call last):
|
---|
5244 | File "<pyshell#108>", line 1, in -toplevel-
|
---|
5245 | d['primary'] # entry was automatically removed
|
---|
5246 | File "C:/PY24/lib/weakref.py", line 46, in __getitem__
|
---|
5247 | o = self.data[key]()
|
---|
5248 | KeyError: 'primary'
|
---|
5249 | \end{verbatim}
|
---|
5250 |
|
---|
5251 | \section{Tools for Working with Lists\label{list-tools}}
|
---|
5252 |
|
---|
5253 | Many data structure needs can be met with the built-in list type.
|
---|
5254 | However, sometimes there is a need for alternative implementations
|
---|
5255 | with different performance trade-offs.
|
---|
5256 |
|
---|
5257 | The \ulink{\module{array}}{../lib/module-array.html} module provides an
|
---|
5258 | \class{array()} object that is like a list that stores only homogenous
|
---|
5259 | data and stores it more compactly. The following example shows an array
|
---|
5260 | of numbers stored as two byte unsigned binary numbers (typecode
|
---|
5261 | \code{"H"}) rather than the usual 16 bytes per entry for regular lists
|
---|
5262 | of python int objects:
|
---|
5263 |
|
---|
5264 | \begin{verbatim}
|
---|
5265 | >>> from array import array
|
---|
5266 | >>> a = array('H', [4000, 10, 700, 22222])
|
---|
5267 | >>> sum(a)
|
---|
5268 | 26932
|
---|
5269 | >>> a[1:3]
|
---|
5270 | array('H', [10, 700])
|
---|
5271 | \end{verbatim}
|
---|
5272 |
|
---|
5273 | The \ulink{\module{collections}}{../lib/module-collections.html} module
|
---|
5274 | provides a \class{deque()} object that is like a list with faster
|
---|
5275 | appends and pops from the left side but slower lookups in the middle.
|
---|
5276 | These objects are well suited for implementing queues and breadth first
|
---|
5277 | tree searches:
|
---|
5278 |
|
---|
5279 | \begin{verbatim}
|
---|
5280 | >>> from collections import deque
|
---|
5281 | >>> d = deque(["task1", "task2", "task3"])
|
---|
5282 | >>> d.append("task4")
|
---|
5283 | >>> print "Handling", d.popleft()
|
---|
5284 | Handling task1
|
---|
5285 |
|
---|
5286 | unsearched = deque([starting_node])
|
---|
5287 | def breadth_first_search(unsearched):
|
---|
5288 | node = unsearched.popleft()
|
---|
5289 | for m in gen_moves(node):
|
---|
5290 | if is_goal(m):
|
---|
5291 | return m
|
---|
5292 | unsearched.append(m)
|
---|
5293 | \end{verbatim}
|
---|
5294 |
|
---|
5295 | In addition to alternative list implementations, the library also offers
|
---|
5296 | other tools such as the \ulink{\module{bisect}}{../lib/module-bisect.html}
|
---|
5297 | module with functions for manipulating sorted lists:
|
---|
5298 |
|
---|
5299 | \begin{verbatim}
|
---|
5300 | >>> import bisect
|
---|
5301 | >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
|
---|
5302 | >>> bisect.insort(scores, (300, 'ruby'))
|
---|
5303 | >>> scores
|
---|
5304 | [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
|
---|
5305 | \end{verbatim}
|
---|
5306 |
|
---|
5307 | The \ulink{\module{heapq}}{../lib/module-heapq.html} module provides
|
---|
5308 | functions for implementing heaps based on regular lists. The lowest
|
---|
5309 | valued entry is always kept at position zero. This is useful for
|
---|
5310 | applications which repeatedly access the smallest element but do not
|
---|
5311 | want to run a full list sort:
|
---|
5312 |
|
---|
5313 | \begin{verbatim}
|
---|
5314 | >>> from heapq import heapify, heappop, heappush
|
---|
5315 | >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
|
---|
5316 | >>> heapify(data) # rearrange the list into heap order
|
---|
5317 | >>> heappush(data, -5) # add a new entry
|
---|
5318 | >>> [heappop(data) for i in range(3)] # fetch the three smallest entries
|
---|
5319 | [-5, 0, 1]
|
---|
5320 | \end{verbatim}
|
---|
5321 |
|
---|
5322 |
|
---|
5323 | \section{Decimal Floating Point Arithmetic\label{decimal-fp}}
|
---|
5324 |
|
---|
5325 | The \ulink{\module{decimal}}{../lib/module-decimal.html} module offers a
|
---|
5326 | \class{Decimal} datatype for decimal floating point arithmetic. Compared to
|
---|
5327 | the built-in \class{float} implementation of binary floating point, the new
|
---|
5328 | class is especially helpful for financial applications and other uses which
|
---|
5329 | require exact decimal representation, control over precision, control over
|
---|
5330 | rounding to meet legal or regulatory requirements, tracking of significant
|
---|
5331 | decimal places, or for applications where the user expects the results to
|
---|
5332 | match calculations done by hand.
|
---|
5333 |
|
---|
5334 | For example, calculating a 5\%{} tax on a 70 cent phone charge gives
|
---|
5335 | different results in decimal floating point and binary floating point.
|
---|
5336 | The difference becomes significant if the results are rounded to the
|
---|
5337 | nearest cent:
|
---|
5338 |
|
---|
5339 | \begin{verbatim}
|
---|
5340 | >>> from decimal import *
|
---|
5341 | >>> Decimal('0.70') * Decimal('1.05')
|
---|
5342 | Decimal("0.7350")
|
---|
5343 | >>> .70 * 1.05
|
---|
5344 | 0.73499999999999999
|
---|
5345 | \end{verbatim}
|
---|
5346 |
|
---|
5347 | The \class{Decimal} result keeps a trailing zero, automatically inferring four
|
---|
5348 | place significance from multiplicands with two place significance. Decimal reproduces
|
---|
5349 | mathematics as done by hand and avoids issues that can arise when binary
|
---|
5350 | floating point cannot exactly represent decimal quantities.
|
---|
5351 |
|
---|
5352 | Exact representation enables the \class{Decimal} class to perform
|
---|
5353 | modulo calculations and equality tests that are unsuitable for binary
|
---|
5354 | floating point:
|
---|
5355 |
|
---|
5356 | \begin{verbatim}
|
---|
5357 | >>> Decimal('1.00') % Decimal('.10')
|
---|
5358 | Decimal("0.00")
|
---|
5359 | >>> 1.00 % 0.10
|
---|
5360 | 0.09999999999999995
|
---|
5361 |
|
---|
5362 | >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
|
---|
5363 | True
|
---|
5364 | >>> sum([0.1]*10) == 1.0
|
---|
5365 | False
|
---|
5366 | \end{verbatim}
|
---|
5367 |
|
---|
5368 | The \module{decimal} module provides arithmetic with as much precision as
|
---|
5369 | needed:
|
---|
5370 |
|
---|
5371 | \begin{verbatim}
|
---|
5372 | >>> getcontext().prec = 36
|
---|
5373 | >>> Decimal(1) / Decimal(7)
|
---|
5374 | Decimal("0.142857142857142857142857142857142857")
|
---|
5375 | \end{verbatim}
|
---|
5376 |
|
---|
5377 |
|
---|
5378 |
|
---|
5379 | \chapter{What Now? \label{whatNow}}
|
---|
5380 |
|
---|
5381 | Reading this tutorial has probably reinforced your interest in using
|
---|
5382 | Python --- you should be eager to apply Python to solving your
|
---|
5383 | real-world problems. Where should you go to learn more?
|
---|
5384 |
|
---|
5385 | This tutorial is part of Python's documentation set.
|
---|
5386 | Some other documents in the set are:
|
---|
5387 |
|
---|
5388 | \begin{itemize}
|
---|
5389 |
|
---|
5390 | \item \citetitle[../lib/lib.html]{Python Library Reference}:
|
---|
5391 |
|
---|
5392 | You should browse through this manual, which gives complete (though
|
---|
5393 | terse) reference material about types, functions, and the modules in
|
---|
5394 | the standard library. The standard Python distribution includes a
|
---|
5395 | \emph{lot} of additional code. There are modules to read \UNIX{}
|
---|
5396 | mailboxes, retrieve documents via HTTP, generate random numbers, parse
|
---|
5397 | command-line options, write CGI programs, compress data, and many other tasks.
|
---|
5398 | Skimming through the Library Reference will give you an idea of
|
---|
5399 | what's available.
|
---|
5400 |
|
---|
5401 | \item \citetitle[../inst/inst.html]{Installing Python Modules}
|
---|
5402 | explains how to install external modules written by other Python
|
---|
5403 | users.
|
---|
5404 |
|
---|
5405 | \item \citetitle[../ref/ref.html]{Language Reference}: A detailed
|
---|
5406 | explanation of Python's syntax and semantics. It's heavy reading,
|
---|
5407 | but is useful as a complete guide to the language itself.
|
---|
5408 |
|
---|
5409 | \end{itemize}
|
---|
5410 |
|
---|
5411 | More Python resources:
|
---|
5412 |
|
---|
5413 | \begin{itemize}
|
---|
5414 |
|
---|
5415 | \item \url{http://www.python.org}: The major Python Web site. It contains
|
---|
5416 | code, documentation, and pointers to Python-related pages around the
|
---|
5417 | Web. This Web site is mirrored in various places around the
|
---|
5418 | world, such as Europe, Japan, and Australia; a mirror may be faster
|
---|
5419 | than the main site, depending on your geographical location.
|
---|
5420 |
|
---|
5421 | \item \url{http://docs.python.org}: Fast access to Python's
|
---|
5422 | documentation.
|
---|
5423 |
|
---|
5424 | \item \url{http://cheeseshop.python.org}:
|
---|
5425 | The Python Package Index, nicknamed the Cheese Shop,
|
---|
5426 | is an index of user-created Python modules that are available for
|
---|
5427 | download. Once you begin releasing code, you can register it
|
---|
5428 | here so that others can find it.
|
---|
5429 |
|
---|
5430 | \item \url{http://aspn.activestate.com/ASPN/Python/Cookbook/}: The
|
---|
5431 | Python Cookbook is a sizable collection of code examples, larger
|
---|
5432 | modules, and useful scripts. Particularly notable contributions are
|
---|
5433 | collected in a book also titled \citetitle{Python Cookbook} (O'Reilly
|
---|
5434 | \& Associates, ISBN 0-596-00797-3.)
|
---|
5435 |
|
---|
5436 | \end{itemize}
|
---|
5437 |
|
---|
5438 |
|
---|
5439 | For Python-related questions and problem reports, you can post to the
|
---|
5440 | newsgroup \newsgroup{comp.lang.python}, or send them to the mailing
|
---|
5441 | list at \email{python-list@python.org}. The newsgroup and mailing list
|
---|
5442 | are gatewayed, so messages posted to one will automatically be
|
---|
5443 | forwarded to the other. There are around 120 postings a day (with peaks
|
---|
5444 | up to several hundred),
|
---|
5445 | % Postings figure based on average of last six months activity as
|
---|
5446 | % reported by www.egroups.com; Jan. 2000 - June 2000: 21272 msgs / 182
|
---|
5447 | % days = 116.9 msgs / day and steadily increasing.
|
---|
5448 | asking (and answering) questions, suggesting new features, and
|
---|
5449 | announcing new modules. Before posting, be sure to check the list of
|
---|
5450 | \ulink{Frequently Asked Questions}{http://www.python.org/doc/faq/} (also called the FAQ), or look for it in the
|
---|
5451 | \file{Misc/} directory of the Python source distribution. Mailing
|
---|
5452 | list archives are available at \url{http://mail.python.org/pipermail/}.
|
---|
5453 | The FAQ answers many of the questions that come up again and again,
|
---|
5454 | and may already contain the solution for your problem.
|
---|
5455 |
|
---|
5456 |
|
---|
5457 | \appendix
|
---|
5458 |
|
---|
5459 | \chapter{Interactive Input Editing and History Substitution\label{interacting}}
|
---|
5460 |
|
---|
5461 | Some versions of the Python interpreter support editing of the current
|
---|
5462 | input line and history substitution, similar to facilities found in
|
---|
5463 | the Korn shell and the GNU Bash shell. This is implemented using the
|
---|
5464 | \emph{GNU Readline} library, which supports Emacs-style and vi-style
|
---|
5465 | editing. This library has its own documentation which I won't
|
---|
5466 | duplicate here; however, the basics are easily explained. The
|
---|
5467 | interactive editing and history described here are optionally
|
---|
5468 | available in the \UNIX{} and Cygwin versions of the interpreter.
|
---|
5469 |
|
---|
5470 | This chapter does \emph{not} document the editing facilities of Mark
|
---|
5471 | Hammond's PythonWin package or the Tk-based environment, IDLE,
|
---|
5472 | distributed with Python. The command line history recall which
|
---|
5473 | operates within DOS boxes on NT and some other DOS and Windows flavors
|
---|
5474 | is yet another beast.
|
---|
5475 |
|
---|
5476 | \section{Line Editing \label{lineEditing}}
|
---|
5477 |
|
---|
5478 | If supported, input line editing is active whenever the interpreter
|
---|
5479 | prints a primary or secondary prompt. The current line can be edited
|
---|
5480 | using the conventional Emacs control characters. The most important
|
---|
5481 | of these are: \kbd{C-A} (Control-A) moves the cursor to the beginning
|
---|
5482 | of the line, \kbd{C-E} to the end, \kbd{C-B} moves it one position to
|
---|
5483 | the left, \kbd{C-F} to the right. Backspace erases the character to
|
---|
5484 | the left of the cursor, \kbd{C-D} the character to its right.
|
---|
5485 | \kbd{C-K} kills (erases) the rest of the line to the right of the
|
---|
5486 | cursor, \kbd{C-Y} yanks back the last killed string.
|
---|
5487 | \kbd{C-underscore} undoes the last change you made; it can be repeated
|
---|
5488 | for cumulative effect.
|
---|
5489 |
|
---|
5490 | \section{History Substitution \label{history}}
|
---|
5491 |
|
---|
5492 | History substitution works as follows. All non-empty input lines
|
---|
5493 | issued are saved in a history buffer, and when a new prompt is given
|
---|
5494 | you are positioned on a new line at the bottom of this buffer.
|
---|
5495 | \kbd{C-P} moves one line up (back) in the history buffer,
|
---|
5496 | \kbd{C-N} moves one down. Any line in the history buffer can be
|
---|
5497 | edited; an asterisk appears in front of the prompt to mark a line as
|
---|
5498 | modified. Pressing the \kbd{Return} key passes the current line to
|
---|
5499 | the interpreter. \kbd{C-R} starts an incremental reverse search;
|
---|
5500 | \kbd{C-S} starts a forward search.
|
---|
5501 |
|
---|
5502 | \section{Key Bindings \label{keyBindings}}
|
---|
5503 |
|
---|
5504 | The key bindings and some other parameters of the Readline library can
|
---|
5505 | be customized by placing commands in an initialization file called
|
---|
5506 | \file{\~{}/.inputrc}. Key bindings have the form
|
---|
5507 |
|
---|
5508 | \begin{verbatim}
|
---|
5509 | key-name: function-name
|
---|
5510 | \end{verbatim}
|
---|
5511 |
|
---|
5512 | or
|
---|
5513 |
|
---|
5514 | \begin{verbatim}
|
---|
5515 | "string": function-name
|
---|
5516 | \end{verbatim}
|
---|
5517 |
|
---|
5518 | and options can be set with
|
---|
5519 |
|
---|
5520 | \begin{verbatim}
|
---|
5521 | set option-name value
|
---|
5522 | \end{verbatim}
|
---|
5523 |
|
---|
5524 | For example:
|
---|
5525 |
|
---|
5526 | \begin{verbatim}
|
---|
5527 | # I prefer vi-style editing:
|
---|
5528 | set editing-mode vi
|
---|
5529 |
|
---|
5530 | # Edit using a single line:
|
---|
5531 | set horizontal-scroll-mode On
|
---|
5532 |
|
---|
5533 | # Rebind some keys:
|
---|
5534 | Meta-h: backward-kill-word
|
---|
5535 | "\C-u": universal-argument
|
---|
5536 | "\C-x\C-r": re-read-init-file
|
---|
5537 | \end{verbatim}
|
---|
5538 |
|
---|
5539 | Note that the default binding for \kbd{Tab} in Python is to insert a
|
---|
5540 | \kbd{Tab} character instead of Readline's default filename completion
|
---|
5541 | function. If you insist, you can override this by putting
|
---|
5542 |
|
---|
5543 | \begin{verbatim}
|
---|
5544 | Tab: complete
|
---|
5545 | \end{verbatim}
|
---|
5546 |
|
---|
5547 | in your \file{\~{}/.inputrc}. (Of course, this makes it harder to
|
---|
5548 | type indented continuation lines if you're accustomed to using
|
---|
5549 | \kbd{Tab} for that purpose.)
|
---|
5550 |
|
---|
5551 | Automatic completion of variable and module names is optionally
|
---|
5552 | available. To enable it in the interpreter's interactive mode, add
|
---|
5553 | the following to your startup file:\footnote{
|
---|
5554 | Python will execute the contents of a file identified by the
|
---|
5555 | \envvar{PYTHONSTARTUP} environment variable when you start an
|
---|
5556 | interactive interpreter.}
|
---|
5557 | \refstmodindex{rlcompleter}\refbimodindex{readline}
|
---|
5558 |
|
---|
5559 | \begin{verbatim}
|
---|
5560 | import rlcompleter, readline
|
---|
5561 | readline.parse_and_bind('tab: complete')
|
---|
5562 | \end{verbatim}
|
---|
5563 |
|
---|
5564 | This binds the \kbd{Tab} key to the completion function, so hitting
|
---|
5565 | the \kbd{Tab} key twice suggests completions; it looks at Python
|
---|
5566 | statement names, the current local variables, and the available module
|
---|
5567 | names. For dotted expressions such as \code{string.a}, it will
|
---|
5568 | evaluate the expression up to the final \character{.} and then
|
---|
5569 | suggest completions from the attributes of the resulting object. Note
|
---|
5570 | that this may execute application-defined code if an object with a
|
---|
5571 | \method{__getattr__()} method is part of the expression.
|
---|
5572 |
|
---|
5573 | A more capable startup file might look like this example. Note that
|
---|
5574 | this deletes the names it creates once they are no longer needed; this
|
---|
5575 | is done since the startup file is executed in the same namespace as
|
---|
5576 | the interactive commands, and removing the names avoids creating side
|
---|
5577 | effects in the interactive environment. You may find it convenient
|
---|
5578 | to keep some of the imported modules, such as
|
---|
5579 | \ulink{\module{os}}{../lib/module-os.html}, which turn
|
---|
5580 | out to be needed in most sessions with the interpreter.
|
---|
5581 |
|
---|
5582 | \begin{verbatim}
|
---|
5583 | # Add auto-completion and a stored history file of commands to your Python
|
---|
5584 | # interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
|
---|
5585 | # bound to the Esc key by default (you can change it - see readline docs).
|
---|
5586 | #
|
---|
5587 | # Store the file in ~/.pystartup, and set an environment variable to point
|
---|
5588 | # to it: "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash.
|
---|
5589 | #
|
---|
5590 | # Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
|
---|
5591 | # full path to your home directory.
|
---|
5592 |
|
---|
5593 | import atexit
|
---|
5594 | import os
|
---|
5595 | import readline
|
---|
5596 | import rlcompleter
|
---|
5597 |
|
---|
5598 | historyPath = os.path.expanduser("~/.pyhistory")
|
---|
5599 |
|
---|
5600 | def save_history(historyPath=historyPath):
|
---|
5601 | import readline
|
---|
5602 | readline.write_history_file(historyPath)
|
---|
5603 |
|
---|
5604 | if os.path.exists(historyPath):
|
---|
5605 | readline.read_history_file(historyPath)
|
---|
5606 |
|
---|
5607 | atexit.register(save_history)
|
---|
5608 | del os, atexit, readline, rlcompleter, save_history, historyPath
|
---|
5609 | \end{verbatim}
|
---|
5610 |
|
---|
5611 |
|
---|
5612 | \section{Commentary \label{commentary}}
|
---|
5613 |
|
---|
5614 | This facility is an enormous step forward compared to earlier versions
|
---|
5615 | of the interpreter; however, some wishes are left: It would be nice if
|
---|
5616 | the proper indentation were suggested on continuation lines (the
|
---|
5617 | parser knows if an indent token is required next). The completion
|
---|
5618 | mechanism might use the interpreter's symbol table. A command to
|
---|
5619 | check (or even suggest) matching parentheses, quotes, etc., would also
|
---|
5620 | be useful.
|
---|
5621 |
|
---|
5622 |
|
---|
5623 | \chapter{Floating Point Arithmetic: Issues and Limitations\label{fp-issues}}
|
---|
5624 | \sectionauthor{Tim Peters}{tim_one@users.sourceforge.net}
|
---|
5625 |
|
---|
5626 | Floating-point numbers are represented in computer hardware as
|
---|
5627 | base 2 (binary) fractions. For example, the decimal fraction
|
---|
5628 |
|
---|
5629 | \begin{verbatim}
|
---|
5630 | 0.125
|
---|
5631 | \end{verbatim}
|
---|
5632 |
|
---|
5633 | has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction
|
---|
5634 |
|
---|
5635 | \begin{verbatim}
|
---|
5636 | 0.001
|
---|
5637 | \end{verbatim}
|
---|
5638 |
|
---|
5639 | has value 0/2 + 0/4 + 1/8. These two fractions have identical values,
|
---|
5640 | the only real difference being that the first is written in base 10
|
---|
5641 | fractional notation, and the second in base 2.
|
---|
5642 |
|
---|
5643 | Unfortunately, most decimal fractions cannot be represented exactly as
|
---|
5644 | binary fractions. A consequence is that, in general, the decimal
|
---|
5645 | floating-point numbers you enter are only approximated by the binary
|
---|
5646 | floating-point numbers actually stored in the machine.
|
---|
5647 |
|
---|
5648 | The problem is easier to understand at first in base 10. Consider the
|
---|
5649 | fraction 1/3. You can approximate that as a base 10 fraction:
|
---|
5650 |
|
---|
5651 | \begin{verbatim}
|
---|
5652 | 0.3
|
---|
5653 | \end{verbatim}
|
---|
5654 |
|
---|
5655 | or, better,
|
---|
5656 |
|
---|
5657 | \begin{verbatim}
|
---|
5658 | 0.33
|
---|
5659 | \end{verbatim}
|
---|
5660 |
|
---|
5661 | or, better,
|
---|
5662 |
|
---|
5663 | \begin{verbatim}
|
---|
5664 | 0.333
|
---|
5665 | \end{verbatim}
|
---|
5666 |
|
---|
5667 | and so on. No matter how many digits you're willing to write down, the
|
---|
5668 | result will never be exactly 1/3, but will be an increasingly better
|
---|
5669 | approximation of 1/3.
|
---|
5670 |
|
---|
5671 | In the same way, no matter how many base 2 digits you're willing to
|
---|
5672 | use, the decimal value 0.1 cannot be represented exactly as a base 2
|
---|
5673 | fraction. In base 2, 1/10 is the infinitely repeating fraction
|
---|
5674 |
|
---|
5675 | \begin{verbatim}
|
---|
5676 | 0.0001100110011001100110011001100110011001100110011...
|
---|
5677 | \end{verbatim}
|
---|
5678 |
|
---|
5679 | Stop at any finite number of bits, and you get an approximation. This
|
---|
5680 | is why you see things like:
|
---|
5681 |
|
---|
5682 | \begin{verbatim}
|
---|
5683 | >>> 0.1
|
---|
5684 | 0.10000000000000001
|
---|
5685 | \end{verbatim}
|
---|
5686 |
|
---|
5687 | On most machines today, that is what you'll see if you enter 0.1 at
|
---|
5688 | a Python prompt. You may not, though, because the number of bits
|
---|
5689 | used by the hardware to store floating-point values can vary across
|
---|
5690 | machines, and Python only prints a decimal approximation to the true
|
---|
5691 | decimal value of the binary approximation stored by the machine. On
|
---|
5692 | most machines, if Python were to print the true decimal value of
|
---|
5693 | the binary approximation stored for 0.1, it would have to display
|
---|
5694 |
|
---|
5695 | \begin{verbatim}
|
---|
5696 | >>> 0.1
|
---|
5697 | 0.1000000000000000055511151231257827021181583404541015625
|
---|
5698 | \end{verbatim}
|
---|
5699 |
|
---|
5700 | instead! The Python prompt uses the builtin
|
---|
5701 | \function{repr()} function to obtain a string version of everything it
|
---|
5702 | displays. For floats, \code{repr(\var{float})} rounds the true
|
---|
5703 | decimal value to 17 significant digits, giving
|
---|
5704 |
|
---|
5705 | \begin{verbatim}
|
---|
5706 | 0.10000000000000001
|
---|
5707 | \end{verbatim}
|
---|
5708 |
|
---|
5709 | \code{repr(\var{float})} produces 17 significant digits because it
|
---|
5710 | turns out that's enough (on most machines) so that
|
---|
5711 | \code{eval(repr(\var{x})) == \var{x}} exactly for all finite floats
|
---|
5712 | \var{x}, but rounding to 16 digits is not enough to make that true.
|
---|
5713 |
|
---|
5714 | Note that this is in the very nature of binary floating-point: this is
|
---|
5715 | not a bug in Python, and it is not a bug in your code either. You'll
|
---|
5716 | see the same kind of thing in all languages that support your
|
---|
5717 | hardware's floating-point arithmetic (although some languages may
|
---|
5718 | not \emph{display} the difference by default, or in all output modes).
|
---|
5719 |
|
---|
5720 | Python's builtin \function{str()} function produces only 12
|
---|
5721 | significant digits, and you may wish to use that instead. It's
|
---|
5722 | unusual for \code{eval(str(\var{x}))} to reproduce \var{x}, but the
|
---|
5723 | output may be more pleasant to look at:
|
---|
5724 |
|
---|
5725 | \begin{verbatim}
|
---|
5726 | >>> print str(0.1)
|
---|
5727 | 0.1
|
---|
5728 | \end{verbatim}
|
---|
5729 |
|
---|
5730 | It's important to realize that this is, in a real sense, an illusion:
|
---|
5731 | the value in the machine is not exactly 1/10, you're simply rounding
|
---|
5732 | the \emph{display} of the true machine value.
|
---|
5733 |
|
---|
5734 | Other surprises follow from this one. For example, after seeing
|
---|
5735 |
|
---|
5736 | \begin{verbatim}
|
---|
5737 | >>> 0.1
|
---|
5738 | 0.10000000000000001
|
---|
5739 | \end{verbatim}
|
---|
5740 |
|
---|
5741 | you may be tempted to use the \function{round()} function to chop it
|
---|
5742 | back to the single digit you expect. But that makes no difference:
|
---|
5743 |
|
---|
5744 | \begin{verbatim}
|
---|
5745 | >>> round(0.1, 1)
|
---|
5746 | 0.10000000000000001
|
---|
5747 | \end{verbatim}
|
---|
5748 |
|
---|
5749 | The problem is that the binary floating-point value stored for "0.1"
|
---|
5750 | was already the best possible binary approximation to 1/10, so trying
|
---|
5751 | to round it again can't make it better: it was already as good as it
|
---|
5752 | gets.
|
---|
5753 |
|
---|
5754 | Another consequence is that since 0.1 is not exactly 1/10,
|
---|
5755 | summing ten values of 0.1 may not yield exactly 1.0, either:
|
---|
5756 |
|
---|
5757 | \begin{verbatim}
|
---|
5758 | >>> sum = 0.0
|
---|
5759 | >>> for i in range(10):
|
---|
5760 | ... sum += 0.1
|
---|
5761 | ...
|
---|
5762 | >>> sum
|
---|
5763 | 0.99999999999999989
|
---|
5764 | \end{verbatim}
|
---|
5765 |
|
---|
5766 | Binary floating-point arithmetic holds many surprises like this. The
|
---|
5767 | problem with "0.1" is explained in precise detail below, in the
|
---|
5768 | "Representation Error" section. See
|
---|
5769 | \citetitle[http://www.lahey.com/float.htm]{The Perils of Floating
|
---|
5770 | Point} for a more complete account of other common surprises.
|
---|
5771 |
|
---|
5772 | As that says near the end, ``there are no easy answers.'' Still,
|
---|
5773 | don't be unduly wary of floating-point! The errors in Python float
|
---|
5774 | operations are inherited from the floating-point hardware, and on most
|
---|
5775 | machines are on the order of no more than 1 part in 2**53 per
|
---|
5776 | operation. That's more than adequate for most tasks, but you do need
|
---|
5777 | to keep in mind that it's not decimal arithmetic, and that every float
|
---|
5778 | operation can suffer a new rounding error.
|
---|
5779 |
|
---|
5780 | While pathological cases do exist, for most casual use of
|
---|
5781 | floating-point arithmetic you'll see the result you expect in the end
|
---|
5782 | if you simply round the display of your final results to the number of
|
---|
5783 | decimal digits you expect. \function{str()} usually suffices, and for
|
---|
5784 | finer control see the discussion of Python's \code{\%} format
|
---|
5785 | operator: the \code{\%g}, \code{\%f} and \code{\%e} format codes
|
---|
5786 | supply flexible and easy ways to round float results for display.
|
---|
5787 |
|
---|
5788 |
|
---|
5789 | \section{Representation Error
|
---|
5790 | \label{fp-error}}
|
---|
5791 |
|
---|
5792 | This section explains the ``0.1'' example in detail, and shows how
|
---|
5793 | you can perform an exact analysis of cases like this yourself. Basic
|
---|
5794 | familiarity with binary floating-point representation is assumed.
|
---|
5795 |
|
---|
5796 | \dfn{Representation error} refers to the fact that some (most, actually)
|
---|
5797 | decimal fractions cannot be represented exactly as binary (base 2)
|
---|
5798 | fractions. This is the chief reason why Python (or Perl, C, \Cpp,
|
---|
5799 | Java, Fortran, and many others) often won't display the exact decimal
|
---|
5800 | number you expect:
|
---|
5801 |
|
---|
5802 | \begin{verbatim}
|
---|
5803 | >>> 0.1
|
---|
5804 | 0.10000000000000001
|
---|
5805 | \end{verbatim}
|
---|
5806 |
|
---|
5807 | Why is that? 1/10 is not exactly representable as a binary fraction.
|
---|
5808 | Almost all machines today (November 2000) use IEEE-754 floating point
|
---|
5809 | arithmetic, and almost all platforms map Python floats to IEEE-754
|
---|
5810 | "double precision". 754 doubles contain 53 bits of precision, so on
|
---|
5811 | input the computer strives to convert 0.1 to the closest fraction it can
|
---|
5812 | of the form \var{J}/2**\var{N} where \var{J} is an integer containing
|
---|
5813 | exactly 53 bits. Rewriting
|
---|
5814 |
|
---|
5815 | \begin{verbatim}
|
---|
5816 | 1 / 10 ~= J / (2**N)
|
---|
5817 | \end{verbatim}
|
---|
5818 |
|
---|
5819 | as
|
---|
5820 |
|
---|
5821 | \begin{verbatim}
|
---|
5822 | J ~= 2**N / 10
|
---|
5823 | \end{verbatim}
|
---|
5824 |
|
---|
5825 | and recalling that \var{J} has exactly 53 bits (is \code{>= 2**52} but
|
---|
5826 | \code{< 2**53}), the best value for \var{N} is 56:
|
---|
5827 |
|
---|
5828 | \begin{verbatim}
|
---|
5829 | >>> 2**52
|
---|
5830 | 4503599627370496L
|
---|
5831 | >>> 2**53
|
---|
5832 | 9007199254740992L
|
---|
5833 | >>> 2**56/10
|
---|
5834 | 7205759403792793L
|
---|
5835 | \end{verbatim}
|
---|
5836 |
|
---|
5837 | That is, 56 is the only value for \var{N} that leaves \var{J} with
|
---|
5838 | exactly 53 bits. The best possible value for \var{J} is then that
|
---|
5839 | quotient rounded:
|
---|
5840 |
|
---|
5841 | \begin{verbatim}
|
---|
5842 | >>> q, r = divmod(2**56, 10)
|
---|
5843 | >>> r
|
---|
5844 | 6L
|
---|
5845 | \end{verbatim}
|
---|
5846 |
|
---|
5847 | Since the remainder is more than half of 10, the best approximation is
|
---|
5848 | obtained by rounding up:
|
---|
5849 |
|
---|
5850 | \begin{verbatim}
|
---|
5851 | >>> q+1
|
---|
5852 | 7205759403792794L
|
---|
5853 | \end{verbatim}
|
---|
5854 |
|
---|
5855 | Therefore the best possible approximation to 1/10 in 754 double
|
---|
5856 | precision is that over 2**56, or
|
---|
5857 |
|
---|
5858 | \begin{verbatim}
|
---|
5859 | 7205759403792794 / 72057594037927936
|
---|
5860 | \end{verbatim}
|
---|
5861 |
|
---|
5862 | Note that since we rounded up, this is actually a little bit larger than
|
---|
5863 | 1/10; if we had not rounded up, the quotient would have been a little
|
---|
5864 | bit smaller than 1/10. But in no case can it be \emph{exactly} 1/10!
|
---|
5865 |
|
---|
5866 | So the computer never ``sees'' 1/10: what it sees is the exact
|
---|
5867 | fraction given above, the best 754 double approximation it can get:
|
---|
5868 |
|
---|
5869 | \begin{verbatim}
|
---|
5870 | >>> .1 * 2**56
|
---|
5871 | 7205759403792794.0
|
---|
5872 | \end{verbatim}
|
---|
5873 |
|
---|
5874 | If we multiply that fraction by 10**30, we can see the (truncated)
|
---|
5875 | value of its 30 most significant decimal digits:
|
---|
5876 |
|
---|
5877 | \begin{verbatim}
|
---|
5878 | >>> 7205759403792794 * 10**30 / 2**56
|
---|
5879 | 100000000000000005551115123125L
|
---|
5880 | \end{verbatim}
|
---|
5881 |
|
---|
5882 | meaning that the exact number stored in the computer is approximately
|
---|
5883 | equal to the decimal value 0.100000000000000005551115123125. Rounding
|
---|
5884 | that to 17 significant digits gives the 0.10000000000000001 that Python
|
---|
5885 | displays (well, will display on any 754-conforming platform that does
|
---|
5886 | best-possible input and output conversions in its C library --- yours may
|
---|
5887 | not!).
|
---|
5888 |
|
---|
5889 | \chapter{History and License}
|
---|
5890 | \input{license}
|
---|
5891 |
|
---|
5892 | \input{glossary}
|
---|
5893 |
|
---|
5894 | \input{tut.ind}
|
---|
5895 |
|
---|
5896 | \end{document}
|
---|