source: vendor/python/2.5/Doc/ref/ref5.tex

Last change on this file was 3225, checked in by bird, 18 years ago

Python 2.5

File size: 46.7 KB
Line 
1\chapter{Expressions\label{expressions}}
2\index{expression}
3
4This chapter explains the meaning of the elements of expressions in
5Python.
6
7\strong{Syntax Notes:} In this and the following chapters, extended
8BNF\index{BNF} notation will be used to describe syntax, not lexical
9analysis. When (one alternative of) a syntax rule has the form
10
11\begin{productionlist}[*]
12 \production{name}{\token{othername}}
13\end{productionlist}
14
15and no semantics are given, the semantics of this form of \code{name}
16are the same as for \code{othername}.
17\index{syntax}
18
19
20\section{Arithmetic conversions\label{conversions}}
21\indexii{arithmetic}{conversion}
22
23When a description of an arithmetic operator below uses the phrase
24``the numeric arguments are converted to a common type,'' the
25arguments are coerced using the coercion rules listed at
26~\ref{coercion-rules}. If both arguments are standard numeric types,
27the following coercions are applied:
28
29\begin{itemize}
30\item If either argument is a complex number, the other is converted
31 to complex;
32\item otherwise, if either argument is a floating point number,
33 the other is converted to floating point;
34\item otherwise, if either argument is a long integer,
35 the other is converted to long integer;
36\item otherwise, both must be plain integers and no conversion
37 is necessary.
38\end{itemize}
39
40Some additional rules apply for certain operators (e.g., a string left
41argument to the `\%' operator). Extensions can define their own
42coercions.
43
44
45\section{Atoms\label{atoms}}
46\index{atom}
47
48Atoms are the most basic elements of expressions. The simplest atoms
49are identifiers or literals. Forms enclosed in
50reverse quotes or in parentheses, brackets or braces are also
51categorized syntactically as atoms. The syntax for atoms is:
52
53\begin{productionlist}
54 \production{atom}
55 {\token{identifier} | \token{literal} | \token{enclosure}}
56 \production{enclosure}
57 {\token{parenth_form} | \token{list_display}}
58 \productioncont{| \token{generator_expression} | \token{dict_display}}
59 \productioncont{| \token{string_conversion}}
60\end{productionlist}
61
62
63\subsection{Identifiers (Names)\label{atom-identifiers}}
64\index{name}
65\index{identifier}
66
67An identifier occurring as an atom is a name. See
68section~\ref{naming} for documentation of naming and binding.
69
70When the name is bound to an object, evaluation of the atom yields
71that object. When a name is not bound, an attempt to evaluate it
72raises a \exception{NameError} exception.
73\exindex{NameError}
74
75\strong{Private name mangling:}
76\indexii{name}{mangling}%
77\indexii{private}{names}%
78When an identifier that textually occurs in a class definition begins
79with two or more underscore characters and does not end in two or more
80underscores, it is considered a \dfn{private name} of that class.
81Private names are transformed to a longer form before code is
82generated for them. The transformation inserts the class name in
83front of the name, with leading underscores removed, and a single
84underscore inserted in front of the class name. For example, the
85identifier \code{__spam} occurring in a class named \code{Ham} will be
86transformed to \code{_Ham__spam}. This transformation is independent
87of the syntactical context in which the identifier is used. If the
88transformed name is extremely long (longer than 255 characters),
89implementation defined truncation may happen. If the class name
90consists only of underscores, no transformation is done.
91
92
93\subsection{Literals\label{atom-literals}}
94\index{literal}
95
96Python supports string literals and various numeric literals:
97
98\begin{productionlist}
99 \production{literal}
100 {\token{stringliteral} | \token{integer} | \token{longinteger}}
101 \productioncont{| \token{floatnumber} | \token{imagnumber}}
102\end{productionlist}
103
104Evaluation of a literal yields an object of the given type (string,
105integer, long integer, floating point number, complex number) with the
106given value. The value may be approximated in the case of floating
107point and imaginary (complex) literals. See section \ref{literals}
108for details.
109
110All literals correspond to immutable data types, and hence the
111object's identity is less important than its value. Multiple
112evaluations of literals with the same value (either the same
113occurrence in the program text or a different occurrence) may obtain
114the same object or a different object with the same value.
115\indexiii{immutable}{data}{type}
116\indexii{immutable}{object}
117
118
119\subsection{Parenthesized forms\label{parenthesized}}
120\index{parenthesized form}
121
122A parenthesized form is an optional expression list enclosed in
123parentheses:
124
125\begin{productionlist}
126 \production{parenth_form}
127 {"(" [\token{expression_list}] ")"}
128\end{productionlist}
129
130A parenthesized expression list yields whatever that expression list
131yields: if the list contains at least one comma, it yields a tuple;
132otherwise, it yields the single expression that makes up the
133expression list.
134
135An empty pair of parentheses yields an empty tuple object. Since
136tuples are immutable, the rules for literals apply (i.e., two
137occurrences of the empty tuple may or may not yield the same object).
138\indexii{empty}{tuple}
139
140Note that tuples are not formed by the parentheses, but rather by use
141of the comma operator. The exception is the empty tuple, for which
142parentheses \emph{are} required --- allowing unparenthesized ``nothing''
143in expressions would cause ambiguities and allow common typos to
144pass uncaught.
145\index{comma}
146\indexii{tuple}{display}
147
148
149\subsection{List displays\label{lists}}
150\indexii{list}{display}
151\indexii{list}{comprehensions}
152
153A list display is a possibly empty series of expressions enclosed in
154square brackets:
155
156\begin{productionlist}
157 \production{test}
158 {\token{or_test} | \token{lambda_form}}
159 \production{testlist}
160 {\token{test} ( "," \token{test} )* [ "," ]}
161 \production{list_display}
162 {"[" [\token{listmaker}] "]"}
163 \production{listmaker}
164 {\token{expression} ( \token{list_for}
165 | ( "," \token{expression} )* [","] )}
166 \production{list_iter}
167 {\token{list_for} | \token{list_if}}
168 \production{list_for}
169 {"for" \token{expression_list} "in" \token{testlist}
170 [\token{list_iter}]}
171 \production{list_if}
172 {"if" \token{test} [\token{list_iter}]}
173\end{productionlist}
174
175A list display yields a new list object. Its contents are specified
176by providing either a list of expressions or a list comprehension.
177\indexii{list}{comprehensions}
178When a comma-separated list of expressions is supplied, its elements are
179evaluated from left to right and placed into the list object in that
180order. When a list comprehension is supplied, it consists of a
181single expression followed by at least one \keyword{for} clause and zero or
182more \keyword{for} or \keyword{if} clauses. In this
183case, the elements of the new list are those that would be produced
184by considering each of the \keyword{for} or \keyword{if} clauses a block,
185nesting from
186left to right, and evaluating the expression to produce a list element
187each time the innermost block is reached\footnote{In Python 2.3, a
188list comprehension "leaks" the control variables of each
189\samp{for} it contains into the containing scope. However, this
190behavior is deprecated, and relying on it will not work once this
191bug is fixed in a future release}.
192\obindex{list}
193\indexii{empty}{list}
194
195
196\subsection{Generator expressions\label{genexpr}}
197\indexii{generator}{expression}
198
199A generator expression is a compact generator notation in parentheses:
200
201\begin{productionlist}
202 \production{generator_expression}
203 {"(" \token{test} \token{genexpr_for} ")"}
204 \production{genexpr_for}
205 {"for" \token{expression_list} "in" \token{test}
206 [\token{genexpr_iter}]}
207 \production{genexpr_iter}
208 {\token{genexpr_for} | \token{genexpr_if}}
209 \production{genexpr_if}
210 {"if" \token{test} [\token{genexpr_iter}]}
211\end{productionlist}
212
213A generator expression yields a new generator object.
214\obindex{generator}
215\obindex{generator expression}
216It consists of a single expression followed by at least one
217\keyword{for} clause and zero or more \keyword{for} or \keyword{if}
218clauses. The iterating values of the new generator are those that
219would be produced by considering each of the \keyword{for} or
220\keyword{if} clauses a block, nesting from left to right, and
221evaluating the expression to yield a value that is reached the
222innermost block for each iteration.
223
224Variables used in the generator expression are evaluated lazily
225when the \method{next()} method is called for generator object
226(in the same fashion as normal generators). However, the leftmost
227\keyword{for} clause is immediately evaluated so that error produced
228by it can be seen before any other possible error in the code that
229handles the generator expression.
230Subsequent \keyword{for} clauses cannot be evaluated immediately since
231they may depend on the previous \keyword{for} loop.
232For example: \samp{(x*y for x in range(10) for y in bar(x))}.
233
234The parentheses can be omitted on calls with only one argument.
235See section \ref{calls} for the detail.
236
237
238\subsection{Dictionary displays\label{dict}}
239\indexii{dictionary}{display}
240
241A dictionary display is a possibly empty series of key/datum pairs
242enclosed in curly braces:
243\index{key}
244\index{datum}
245\index{key/datum pair}
246
247\begin{productionlist}
248 \production{dict_display}
249 {"\{" [\token{key_datum_list}] "\}"}
250 \production{key_datum_list}
251 {\token{key_datum} ("," \token{key_datum})* [","]}
252 \production{key_datum}
253 {\token{expression} ":" \token{expression}}
254\end{productionlist}
255
256A dictionary display yields a new dictionary object.
257\obindex{dictionary}
258
259The key/datum pairs are evaluated from left to right to define the
260entries of the dictionary: each key object is used as a key into the
261dictionary to store the corresponding datum.
262
263Restrictions on the types of the key values are listed earlier in
264section \ref{types}. (To summarize, the key type should be hashable,
265which excludes all mutable objects.) Clashes between duplicate keys
266are not detected; the last datum (textually rightmost in the display)
267stored for a given key value prevails.
268\indexii{immutable}{object}
269
270
271\subsection{String conversions\label{string-conversions}}
272\indexii{string}{conversion}
273\indexii{reverse}{quotes}
274\indexii{backward}{quotes}
275\index{back-quotes}
276
277A string conversion is an expression list enclosed in reverse (a.k.a.
278backward) quotes:
279
280\begin{productionlist}
281 \production{string_conversion}
282 {"`" \token{expression_list} "`"}
283\end{productionlist}
284
285A string conversion evaluates the contained expression list and
286converts the resulting object into a string according to rules
287specific to its type.
288
289If the object is a string, a number, \code{None}, or a tuple, list or
290dictionary containing only objects whose type is one of these, the
291resulting string is a valid Python expression which can be passed to
292the built-in function \function{eval()} to yield an expression with the
293same value (or an approximation, if floating point numbers are
294involved).
295
296(In particular, converting a string adds quotes around it and converts
297``funny'' characters to escape sequences that are safe to print.)
298
299Recursive objects (for example, lists or dictionaries that contain a
300reference to themselves, directly or indirectly) use \samp{...} to
301indicate a recursive reference, and the result cannot be passed to
302\function{eval()} to get an equal value (\exception{SyntaxError} will
303be raised instead).
304\obindex{recursive}
305
306The built-in function \function{repr()} performs exactly the same
307conversion in its argument as enclosing it in parentheses and reverse
308quotes does. The built-in function \function{str()} performs a
309similar but more user-friendly conversion.
310\bifuncindex{repr}
311\bifuncindex{str}
312
313
314\section{Primaries\label{primaries}}
315\index{primary}
316
317Primaries represent the most tightly bound operations of the language.
318Their syntax is:
319
320\begin{productionlist}
321 \production{primary}
322 {\token{atom} | \token{attributeref}
323 | \token{subscription} | \token{slicing} | \token{call}}
324\end{productionlist}
325
326
327\subsection{Attribute references\label{attribute-references}}
328\indexii{attribute}{reference}
329
330An attribute reference is a primary followed by a period and a name:
331
332\begin{productionlist}
333 \production{attributeref}
334 {\token{primary} "." \token{identifier}}
335\end{productionlist}
336
337The primary must evaluate to an object of a type that supports
338attribute references, e.g., a module, list, or an instance. This
339object is then asked to produce the attribute whose name is the
340identifier. If this attribute is not available, the exception
341\exception{AttributeError}\exindex{AttributeError} is raised.
342Otherwise, the type and value of the object produced is determined by
343the object. Multiple evaluations of the same attribute reference may
344yield different objects.
345\obindex{module}
346\obindex{list}
347
348
349\subsection{Subscriptions\label{subscriptions}}
350\index{subscription}
351
352A subscription selects an item of a sequence (string, tuple or list)
353or mapping (dictionary) object:
354\obindex{sequence}
355\obindex{mapping}
356\obindex{string}
357\obindex{tuple}
358\obindex{list}
359\obindex{dictionary}
360\indexii{sequence}{item}
361
362\begin{productionlist}
363 \production{subscription}
364 {\token{primary} "[" \token{expression_list} "]"}
365\end{productionlist}
366
367The primary must evaluate to an object of a sequence or mapping type.
368
369If the primary is a mapping, the expression list must evaluate to an
370object whose value is one of the keys of the mapping, and the
371subscription selects the value in the mapping that corresponds to that
372key. (The expression list is a tuple except if it has exactly one
373item.)
374
375If the primary is a sequence, the expression (list) must evaluate to a
376plain integer. If this value is negative, the length of the sequence
377is added to it (so that, e.g., \code{x[-1]} selects the last item of
378\code{x}.) The resulting value must be a nonnegative integer less
379than the number of items in the sequence, and the subscription selects
380the item whose index is that value (counting from zero).
381
382A string's items are characters. A character is not a separate data
383type but a string of exactly one character.
384\index{character}
385\indexii{string}{item}
386
387
388\subsection{Slicings\label{slicings}}
389\index{slicing}
390\index{slice}
391
392A slicing selects a range of items in a sequence object (e.g., a
393string, tuple or list). Slicings may be used as expressions or as
394targets in assignment or \keyword{del} statements. The syntax for a
395slicing:
396\obindex{sequence}
397\obindex{string}
398\obindex{tuple}
399\obindex{list}
400
401\begin{productionlist}
402 \production{slicing}
403 {\token{simple_slicing} | \token{extended_slicing}}
404 \production{simple_slicing}
405 {\token{primary} "[" \token{short_slice} "]"}
406 \production{extended_slicing}
407 {\token{primary} "[" \token{slice_list} "]" }
408 \production{slice_list}
409 {\token{slice_item} ("," \token{slice_item})* [","]}
410 \production{slice_item}
411 {\token{expression} | \token{proper_slice} | \token{ellipsis}}
412 \production{proper_slice}
413 {\token{short_slice} | \token{long_slice}}
414 \production{short_slice}
415 {[\token{lower_bound}] ":" [\token{upper_bound}]}
416 \production{long_slice}
417 {\token{short_slice} ":" [\token{stride}]}
418 \production{lower_bound}
419 {\token{expression}}
420 \production{upper_bound}
421 {\token{expression}}
422 \production{stride}
423 {\token{expression}}
424 \production{ellipsis}
425 {"..."}
426\end{productionlist}
427
428There is ambiguity in the formal syntax here: anything that looks like
429an expression list also looks like a slice list, so any subscription
430can be interpreted as a slicing. Rather than further complicating the
431syntax, this is disambiguated by defining that in this case the
432interpretation as a subscription takes priority over the
433interpretation as a slicing (this is the case if the slice list
434contains no proper slice nor ellipses). Similarly, when the slice
435list has exactly one short slice and no trailing comma, the
436interpretation as a simple slicing takes priority over that as an
437extended slicing.\indexii{extended}{slicing}
438
439The semantics for a simple slicing are as follows. The primary must
440evaluate to a sequence object. The lower and upper bound expressions,
441if present, must evaluate to plain integers; defaults are zero and the
442\code{sys.maxint}, respectively. If either bound is negative, the
443sequence's length is added to it. The slicing now selects all items
444with index \var{k} such that
445\code{\var{i} <= \var{k} < \var{j}} where \var{i}
446and \var{j} are the specified lower and upper bounds. This may be an
447empty sequence. It is not an error if \var{i} or \var{j} lie outside the
448range of valid indexes (such items don't exist so they aren't
449selected).
450
451The semantics for an extended slicing are as follows. The primary
452must evaluate to a mapping object, and it is indexed with a key that
453is constructed from the slice list, as follows. If the slice list
454contains at least one comma, the key is a tuple containing the
455conversion of the slice items; otherwise, the conversion of the lone
456slice item is the key. The conversion of a slice item that is an
457expression is that expression. The conversion of an ellipsis slice
458item is the built-in \code{Ellipsis} object. The conversion of a
459proper slice is a slice object (see section \ref{types}) whose
460\member{start}, \member{stop} and \member{step} attributes are the
461values of the expressions given as lower bound, upper bound and
462stride, respectively, substituting \code{None} for missing
463expressions.
464\withsubitem{(slice object attribute)}{\ttindex{start}
465 \ttindex{stop}\ttindex{step}}
466
467
468\subsection{Calls\label{calls}}
469\index{call}
470
471A call calls a callable object (e.g., a function) with a possibly empty
472series of arguments:
473\obindex{callable}
474
475\begin{productionlist}
476 \production{call}
477 {\token{primary} "(" [\token{argument_list} [","]] ")"}
478 {\token{primary} "(" [\token{argument_list} [","] |
479 \token{test} \token{genexpr_for} ] ")"}
480 \production{argument_list}
481 {\token{positional_arguments} ["," \token{keyword_arguments}]}
482 \productioncont{ ["," "*" \token{expression}]}
483 \productioncont{ ["," "**" \token{expression}]}
484 \productioncont{| \token{keyword_arguments} ["," "*" \token{expression}]}
485 \productioncont{ ["," "**" \token{expression}]}
486 \productioncont{| "*" \token{expression} ["," "**" \token{expression}]}
487 \productioncont{| "**" \token{expression}}
488 \production{positional_arguments}
489 {\token{expression} ("," \token{expression})*}
490 \production{keyword_arguments}
491 {\token{keyword_item} ("," \token{keyword_item})*}
492 \production{keyword_item}
493 {\token{identifier} "=" \token{expression}}
494\end{productionlist}
495
496A trailing comma may be present after the positional and keyword
497arguments but does not affect the semantics.
498
499The primary must evaluate to a callable object (user-defined
500functions, built-in functions, methods of built-in objects, class
501objects, methods of class instances, and certain class instances
502themselves are callable; extensions may define additional callable
503object types). All argument expressions are evaluated before the call
504is attempted. Please refer to section \ref{function} for the syntax
505of formal parameter lists.
506
507If keyword arguments are present, they are first converted to
508positional arguments, as follows. First, a list of unfilled slots is
509created for the formal parameters. If there are N positional
510arguments, they are placed in the first N slots. Next, for each
511keyword argument, the identifier is used to determine the
512corresponding slot (if the identifier is the same as the first formal
513parameter name, the first slot is used, and so on). If the slot is
514already filled, a \exception{TypeError} exception is raised.
515Otherwise, the value of the argument is placed in the slot, filling it
516(even if the expression is \code{None}, it fills the slot). When all
517arguments have been processed, the slots that are still unfilled are
518filled with the corresponding default value from the function
519definition. (Default values are calculated, once, when the function
520is defined; thus, a mutable object such as a list or dictionary used
521as default value will be shared by all calls that don't specify an
522argument value for the corresponding slot; this should usually be
523avoided.) If there are any unfilled slots for which no default value
524is specified, a \exception{TypeError} exception is raised. Otherwise,
525the list of filled slots is used as the argument list for the call.
526
527If there are more positional arguments than there are formal parameter
528slots, a \exception{TypeError} exception is raised, unless a formal
529parameter using the syntax \samp{*identifier} is present; in this
530case, that formal parameter receives a tuple containing the excess
531positional arguments (or an empty tuple if there were no excess
532positional arguments).
533
534If any keyword argument does not correspond to a formal parameter
535name, a \exception{TypeError} exception is raised, unless a formal
536parameter using the syntax \samp{**identifier} is present; in this
537case, that formal parameter receives a dictionary containing the
538excess keyword arguments (using the keywords as keys and the argument
539values as corresponding values), or a (new) empty dictionary if there
540were no excess keyword arguments.
541
542If the syntax \samp{*expression} appears in the function call,
543\samp{expression} must evaluate to a sequence. Elements from this
544sequence are treated as if they were additional positional arguments;
545if there are postional arguments \var{x1},...,\var{xN} , and
546\samp{expression} evaluates to a sequence \var{y1},...,\var{yM}, this
547is equivalent to a call with M+N positional arguments
548\var{x1},...,\var{xN},\var{y1},...,\var{yM}.
549
550A consequence of this is that although the \samp{*expression} syntax
551appears \emph{after} any keyword arguments, it is processed
552\emph{before} the keyword arguments (and the
553\samp{**expression} argument, if any -- see below). So:
554
555\begin{verbatim}
556>>> def f(a, b):
557... print a, b
558...
559>>> f(b=1, *(2,))
5602 1
561>>> f(a=1, *(2,))
562Traceback (most recent call last):
563 File "<stdin>", line 1, in ?
564TypeError: f() got multiple values for keyword argument 'a'
565>>> f(1, *(2,))
5661 2
567\end{verbatim}
568
569It is unusual for both keyword arguments and the
570\samp{*expression} syntax to be used in the same call, so in practice
571this confusion does not arise.
572
573If the syntax \samp{**expression} appears in the function call,
574\samp{expression} must evaluate to a (subclass of) dictionary, the
575contents of which are treated as additional keyword arguments. In the
576case of a keyword appearing in both \samp{expression} and as an
577explicit keyword argument, a \exception{TypeError} exception is
578raised.
579
580Formal parameters using the syntax \samp{*identifier} or
581\samp{**identifier} cannot be used as positional argument slots or
582as keyword argument names. Formal parameters using the syntax
583\samp{(sublist)} cannot be used as keyword argument names; the
584outermost sublist corresponds to a single unnamed argument slot, and
585the argument value is assigned to the sublist using the usual tuple
586assignment rules after all other parameter processing is done.
587
588A call always returns some value, possibly \code{None}, unless it
589raises an exception. How this value is computed depends on the type
590of the callable object.
591
592If it is---
593
594\begin{description}
595
596\item[a user-defined function:] The code block for the function is
597executed, passing it the argument list. The first thing the code
598block will do is bind the formal parameters to the arguments; this is
599described in section \ref{function}. When the code block executes a
600\keyword{return} statement, this specifies the return value of the
601function call.
602\indexii{function}{call}
603\indexiii{user-defined}{function}{call}
604\obindex{user-defined function}
605\obindex{function}
606
607\item[a built-in function or method:] The result is up to the
608interpreter; see the \citetitle[../lib/built-in-funcs.html]{Python
609Library Reference} for the descriptions of built-in functions and
610methods.
611\indexii{function}{call}
612\indexii{built-in function}{call}
613\indexii{method}{call}
614\indexii{built-in method}{call}
615\obindex{built-in method}
616\obindex{built-in function}
617\obindex{method}
618\obindex{function}
619
620\item[a class object:] A new instance of that class is returned.
621\obindex{class}
622\indexii{class object}{call}
623
624\item[a class instance method:] The corresponding user-defined
625function is called, with an argument list that is one longer than the
626argument list of the call: the instance becomes the first argument.
627\obindex{class instance}
628\obindex{instance}
629\indexii{class instance}{call}
630
631\item[a class instance:] The class must define a \method{__call__()}
632method; the effect is then the same as if that method was called.
633\indexii{instance}{call}
634\withsubitem{(object method)}{\ttindex{__call__()}}
635
636\end{description}
637
638
639\section{The power operator\label{power}}
640
641The power operator binds more tightly than unary operators on its
642left; it binds less tightly than unary operators on its right. The
643syntax is:
644
645\begin{productionlist}
646 \production{power}
647 {\token{primary} ["**" \token{u_expr}]}
648\end{productionlist}
649
650Thus, in an unparenthesized sequence of power and unary operators, the
651operators are evaluated from right to left (this does not constrain
652the evaluation order for the operands).
653
654The power operator has the same semantics as the built-in
655\function{pow()} function, when called with two arguments: it yields
656its left argument raised to the power of its right argument. The
657numeric arguments are first converted to a common type. The result
658type is that of the arguments after coercion.
659
660With mixed operand types, the coercion rules for binary arithmetic
661operators apply. For int and long int operands, the result has the
662same type as the operands (after coercion) unless the second argument
663is negative; in that case, all arguments are converted to float and a
664float result is delivered. For example, \code{10**2} returns \code{100},
665but \code{10**-2} returns \code{0.01}. (This last feature was added in
666Python 2.2. In Python 2.1 and before, if both arguments were of integer
667types and the second argument was negative, an exception was raised).
668
669Raising \code{0.0} to a negative power results in a
670\exception{ZeroDivisionError}. Raising a negative number to a
671fractional power results in a \exception{ValueError}.
672
673
674\section{Unary arithmetic operations \label{unary}}
675\indexiii{unary}{arithmetic}{operation}
676\indexiii{unary}{bit-wise}{operation}
677
678All unary arithmetic (and bit-wise) operations have the same priority:
679
680\begin{productionlist}
681 \production{u_expr}
682 {\token{power} | "-" \token{u_expr}
683 | "+" \token{u_expr} | "{\~}" \token{u_expr}}
684\end{productionlist}
685
686The unary \code{-} (minus) operator yields the negation of its
687numeric argument.
688\index{negation}
689\index{minus}
690
691The unary \code{+} (plus) operator yields its numeric argument
692unchanged.
693\index{plus}
694
695The unary \code{\~} (invert) operator yields the bit-wise inversion
696of its plain or long integer argument. The bit-wise inversion of
697\code{x} is defined as \code{-(x+1)}. It only applies to integral
698numbers.
699\index{inversion}
700
701In all three cases, if the argument does not have the proper type,
702a \exception{TypeError} exception is raised.
703\exindex{TypeError}
704
705
706\section{Binary arithmetic operations\label{binary}}
707\indexiii{binary}{arithmetic}{operation}
708
709The binary arithmetic operations have the conventional priority
710levels. Note that some of these operations also apply to certain
711non-numeric types. Apart from the power operator, there are only two
712levels, one for multiplicative operators and one for additive
713operators:
714
715\begin{productionlist}
716 \production{m_expr}
717 {\token{u_expr} | \token{m_expr} "*" \token{u_expr}
718 | \token{m_expr} "//" \token{u_expr}
719 | \token{m_expr} "/" \token{u_expr}}
720 \productioncont{| \token{m_expr} "\%" \token{u_expr}}
721 \production{a_expr}
722 {\token{m_expr} | \token{a_expr} "+" \token{m_expr}
723 | \token{a_expr} "-" \token{m_expr}}
724\end{productionlist}
725
726The \code{*} (multiplication) operator yields the product of its
727arguments. The arguments must either both be numbers, or one argument
728must be an integer (plain or long) and the other must be a sequence.
729In the former case, the numbers are converted to a common type and
730then multiplied together. In the latter case, sequence repetition is
731performed; a negative repetition factor yields an empty sequence.
732\index{multiplication}
733
734The \code{/} (division) and \code{//} (floor division) operators yield
735the quotient of their arguments. The numeric arguments are first
736converted to a common type. Plain or long integer division yields an
737integer of the same type; the result is that of mathematical division
738with the `floor' function applied to the result. Division by zero
739raises the
740\exception{ZeroDivisionError} exception.
741\exindex{ZeroDivisionError}
742\index{division}
743
744The \code{\%} (modulo) operator yields the remainder from the
745division of the first argument by the second. The numeric arguments
746are first converted to a common type. A zero right argument raises
747the \exception{ZeroDivisionError} exception. The arguments may be floating
748point numbers, e.g., \code{3.14\%0.7} equals \code{0.34} (since
749\code{3.14} equals \code{4*0.7 + 0.34}.) The modulo operator always
750yields a result with the same sign as its second operand (or zero);
751the absolute value of the result is strictly smaller than the absolute
752value of the second operand\footnote{
753 While \code{abs(x\%y) < abs(y)} is true mathematically, for
754 floats it may not be true numerically due to roundoff. For
755 example, and assuming a platform on which a Python float is an
756 IEEE 754 double-precision number, in order that \code{-1e-100 \% 1e100}
757 have the same sign as \code{1e100}, the computed result is
758 \code{-1e-100 + 1e100}, which is numerically exactly equal
759 to \code{1e100}. Function \function{fmod()} in the \module{math}
760 module returns a result whose sign matches the sign of the
761 first argument instead, and so returns \code{-1e-100} in this case.
762 Which approach is more appropriate depends on the application.
763}.
764\index{modulo}
765
766The integer division and modulo operators are connected by the
767following identity: \code{x == (x/y)*y + (x\%y)}. Integer division and
768modulo are also connected with the built-in function \function{divmod()}:
769\code{divmod(x, y) == (x/y, x\%y)}. These identities don't hold for
770floating point numbers; there similar identities hold
771approximately where \code{x/y} is replaced by \code{floor(x/y)} or
772\code{floor(x/y) - 1}\footnote{
773 If x is very close to an exact integer multiple of y, it's
774 possible for \code{floor(x/y)} to be one larger than
775 \code{(x-x\%y)/y} due to rounding. In such cases, Python returns
776 the latter result, in order to preserve that \code{divmod(x,y)[0]
777 * y + x \%{} y} be very close to \code{x}.
778}.
779
780In addition to performing the modulo operation on numbers, the \code{\%}
781operator is also overloaded by string and unicode objects to perform
782string formatting (also known as interpolation). The syntax for string
783formatting is described in the
784\citetitle[../lib/typesseq-strings.html]{Python Library Reference},
785section ``Sequence Types''.
786
787\deprecated{2.3}{The floor division operator, the modulo operator,
788and the \function{divmod()} function are no longer defined for complex
789numbers. Instead, convert to a floating point number using the
790\function{abs()} function if appropriate.}
791
792The \code{+} (addition) operator yields the sum of its arguments.
793The arguments must either both be numbers or both sequences of the
794same type. In the former case, the numbers are converted to a common
795type and then added together. In the latter case, the sequences are
796concatenated.
797\index{addition}
798
799The \code{-} (subtraction) operator yields the difference of its
800arguments. The numeric arguments are first converted to a common
801type.
802\index{subtraction}
803
804
805\section{Shifting operations\label{shifting}}
806\indexii{shifting}{operation}
807
808The shifting operations have lower priority than the arithmetic
809operations:
810
811\begin{productionlist}
812 % The empty groups below prevent conversion to guillemets.
813 \production{shift_expr}
814 {\token{a_expr}
815 | \token{shift_expr} ( "<{}<" | ">{}>" ) \token{a_expr}}
816\end{productionlist}
817
818These operators accept plain or long integers as arguments. The
819arguments are converted to a common type. They shift the first
820argument to the left or right by the number of bits given by the
821second argument.
822
823A right shift by \var{n} bits is defined as division by
824\code{pow(2,\var{n})}. A left shift by \var{n} bits is defined as
825multiplication with \code{pow(2,\var{n})}; for plain integers there is
826no overflow check so in that case the operation drops bits and flips
827the sign if the result is not less than \code{pow(2,31)} in absolute
828value. Negative shift counts raise a \exception{ValueError}
829exception.
830\exindex{ValueError}
831
832
833\section{Binary bit-wise operations\label{bitwise}}
834\indexiii{binary}{bit-wise}{operation}
835
836Each of the three bitwise operations has a different priority level:
837
838\begin{productionlist}
839 \production{and_expr}
840 {\token{shift_expr} | \token{and_expr} "\&" \token{shift_expr}}
841 \production{xor_expr}
842 {\token{and_expr} | \token{xor_expr} "\textasciicircum" \token{and_expr}}
843 \production{or_expr}
844 {\token{xor_expr} | \token{or_expr} "|" \token{xor_expr}}
845\end{productionlist}
846
847The \code{\&} operator yields the bitwise AND of its arguments, which
848must be plain or long integers. The arguments are converted to a
849common type.
850\indexii{bit-wise}{and}
851
852The \code{\^} operator yields the bitwise XOR (exclusive OR) of its
853arguments, which must be plain or long integers. The arguments are
854converted to a common type.
855\indexii{bit-wise}{xor}
856\indexii{exclusive}{or}
857
858The \code{|} operator yields the bitwise (inclusive) OR of its
859arguments, which must be plain or long integers. The arguments are
860converted to a common type.
861\indexii{bit-wise}{or}
862\indexii{inclusive}{or}
863
864
865\section{Comparisons\label{comparisons}}
866\index{comparison}
867
868Unlike C, all comparison operations in Python have the same priority,
869which is lower than that of any arithmetic, shifting or bitwise
870operation. Also unlike C, expressions like \code{a < b < c} have the
871interpretation that is conventional in mathematics:
872\indexii{C}{language}
873
874\begin{productionlist}
875 \production{comparison}
876 {\token{or_expr} ( \token{comp_operator} \token{or_expr} )*}
877 \production{comp_operator}
878 {"<" | ">" | "==" | ">=" | "<=" | "<>" | "!="}
879 \productioncont{| "is" ["not"] | ["not"] "in"}
880\end{productionlist}
881
882Comparisons yield boolean values: \code{True} or \code{False}.
883
884Comparisons can be chained arbitrarily, e.g., \code{x < y <= z} is
885equivalent to \code{x < y and y <= z}, except that \code{y} is
886evaluated only once (but in both cases \code{z} is not evaluated at all
887when \code{x < y} is found to be false).
888\indexii{chaining}{comparisons}
889
890Formally, if \var{a}, \var{b}, \var{c}, \ldots, \var{y}, \var{z} are
891expressions and \var{opa}, \var{opb}, \ldots, \var{opy} are comparison
892operators, then \var{a opa b opb c} \ldots \var{y opy z} is equivalent
893to \var{a opa b} \keyword{and} \var{b opb c} \keyword{and} \ldots
894\var{y opy z}, except that each expression is evaluated at most once.
895
896Note that \var{a opa b opb c} doesn't imply any kind of comparison
897between \var{a} and \var{c}, so that, e.g., \code{x < y > z} is
898perfectly legal (though perhaps not pretty).
899
900The forms \code{<>} and \code{!=} are equivalent; for consistency with
901C, \code{!=} is preferred; where \code{!=} is mentioned below
902\code{<>} is also accepted. The \code{<>} spelling is considered
903obsolescent.
904
905The operators \code{<}, \code{>}, \code{==}, \code{>=}, \code{<=}, and
906\code{!=} compare
907the values of two objects. The objects need not have the same type.
908If both are numbers, they are converted to a common type. Otherwise,
909objects of different types \emph{always} compare unequal, and are
910ordered consistently but arbitrarily. You can control comparison
911behavior of objects of non-builtin types by defining a \code{__cmp__}
912method or rich comparison methods like \code{__gt__}, described in
913section~\ref{specialnames}.
914
915(This unusual definition of comparison was used to simplify the
916definition of operations like sorting and the \keyword{in} and
917\keyword{not in} operators. In the future, the comparison rules for
918objects of different types are likely to change.)
919
920Comparison of objects of the same type depends on the type:
921
922\begin{itemize}
923
924\item
925Numbers are compared arithmetically.
926
927\item
928Strings are compared lexicographically using the numeric equivalents
929(the result of the built-in function \function{ord()}) of their
930characters. Unicode and 8-bit strings are fully interoperable in this
931behavior.
932
933\item
934Tuples and lists are compared lexicographically using comparison of
935corresponding elements. This means that to compare equal, each
936element must compare equal and the two sequences must be of the same
937type and have the same length.
938
939If not equal, the sequences are ordered the same as their first
940differing elements. For example, \code{cmp([1,2,x], [1,2,y])} returns
941the same as \code{cmp(x,y)}. If the corresponding element does not
942exist, the shorter sequence is ordered first (for example,
943\code{[1,2] < [1,2,3]}).
944
945\item
946Mappings (dictionaries) compare equal if and only if their sorted
947(key, value) lists compare equal.\footnote{The implementation computes
948 this efficiently, without constructing lists or sorting.}
949Outcomes other than equality are resolved consistently, but are not
950otherwise defined.\footnote{Earlier versions of Python used
951 lexicographic comparison of the sorted (key, value) lists, but this
952 was very expensive for the common case of comparing for equality. An
953 even earlier version of Python compared dictionaries by identity only,
954 but this caused surprises because people expected to be able to test
955 a dictionary for emptiness by comparing it to \code{\{\}}.}
956
957\item
958Most other objects of builtin types compare unequal unless they are
959the same object;
960the choice whether one object is considered smaller or larger than
961another one is made arbitrarily but consistently within one
962execution of a program.
963
964\end{itemize}
965
966The operators \keyword{in} and \keyword{not in} test for set
967membership. \code{\var{x} in \var{s}} evaluates to true if \var{x}
968is a member of the set \var{s}, and false otherwise. \code{\var{x}
969not in \var{s}} returns the negation of \code{\var{x} in \var{s}}.
970The set membership test has traditionally been bound to sequences; an
971object is a member of a set if the set is a sequence and contains an
972element equal to that object. However, it is possible for an object
973to support membership tests without being a sequence. In particular,
974dictionaries support membership testing as a nicer way of spelling
975\code{\var{key} in \var{dict}}; other mapping types may follow suit.
976
977For the list and tuple types, \code{\var{x} in \var{y}} is true if and
978only if there exists an index \var{i} such that
979\code{\var{x} == \var{y}[\var{i}]} is true.
980
981For the Unicode and string types, \code{\var{x} in \var{y}} is true if
982and only if \var{x} is a substring of \var{y}. An equivalent test is
983\code{y.find(x) != -1}. Note, \var{x} and \var{y} need not be the
984same type; consequently, \code{u'ab' in 'abc'} will return \code{True}.
985Empty strings are always considered to be a substring of any other string,
986so \code{"" in "abc"} will return \code{True}.
987\versionchanged[Previously, \var{x} was required to be a string of
988length \code{1}]{2.3}
989
990For user-defined classes which define the \method{__contains__()} method,
991\code{\var{x} in \var{y}} is true if and only if
992\code{\var{y}.__contains__(\var{x})} is true.
993
994For user-defined classes which do not define \method{__contains__()} and
995do define \method{__getitem__()}, \code{\var{x} in \var{y}} is true if
996and only if there is a non-negative integer index \var{i} such that
997\code{\var{x} == \var{y}[\var{i}]}, and all lower integer indices
998do not raise \exception{IndexError} exception. (If any other exception
999is raised, it is as if \keyword{in} raised that exception).
1000
1001The operator \keyword{not in} is defined to have the inverse true value
1002of \keyword{in}.
1003\opindex{in}
1004\opindex{not in}
1005\indexii{membership}{test}
1006\obindex{sequence}
1007
1008The operators \keyword{is} and \keyword{is not} test for object identity:
1009\code{\var{x} is \var{y}} is true if and only if \var{x} and \var{y}
1010are the same object. \code{\var{x} is not \var{y}} yields the inverse
1011truth value.
1012\opindex{is}
1013\opindex{is not}
1014\indexii{identity}{test}
1015
1016
1017\section{Boolean operations\label{Booleans}}
1018\indexii{Boolean}{operation}
1019
1020Boolean operations have the lowest priority of all Python operations:
1021
1022\begin{productionlist}
1023 \production{expression}
1024 {\token{or_test} [\token{if} \token{or_test} \token{else}
1025 \token{test}] | \token{lambda_form}}
1026 \production{or_test}
1027 {\token{and_test} | \token{or_test} "or" \token{and_test}}
1028 \production{and_test}
1029 {\token{not_test} | \token{and_test} "and" \token{not_test}}
1030 \production{not_test}
1031 {\token{comparison} | "not" \token{not_test}}
1032\end{productionlist}
1033
1034In the context of Boolean operations, and also when expressions are
1035used by control flow statements, the following values are interpreted
1036as false: \code{False}, \code{None}, numeric zero of all types, and empty
1037strings and containers (including strings, tuples, lists, dictionaries,
1038sets and frozensets). All other values are interpreted as true.
1039
1040The operator \keyword{not} yields \code{True} if its argument is false,
1041\code{False} otherwise.
1042\opindex{not}
1043
1044The expression \code{\var{x} if \var{C} else \var{y}} first evaluates
1045\var{C} (\emph{not} \var{x}); if \var{C} is true, \var{x} is evaluated and
1046its value is returned; otherwise, \var{y} is evaluated and its value is
1047returned. \versionadded{2.5}
1048
1049The expression \code{\var{x} and \var{y}} first evaluates \var{x}; if
1050\var{x} is false, its value is returned; otherwise, \var{y} is
1051evaluated and the resulting value is returned.
1052\opindex{and}
1053
1054The expression \code{\var{x} or \var{y}} first evaluates \var{x}; if
1055\var{x} is true, its value is returned; otherwise, \var{y} is
1056evaluated and the resulting value is returned.
1057\opindex{or}
1058
1059(Note that neither \keyword{and} nor \keyword{or} restrict the value
1060and type they return to \code{False} and \code{True}, but rather return the
1061last evaluated argument.
1062This is sometimes useful, e.g., if \code{s} is a string that should be
1063replaced by a default value if it is empty, the expression
1064\code{s or 'foo'} yields the desired value. Because \keyword{not} has to
1065invent a value anyway, it does not bother to return a value of the
1066same type as its argument, so e.g., \code{not 'foo'} yields \code{False},
1067not \code{''}.)
1068
1069\section{Lambdas\label{lambdas}}
1070\indexii{lambda}{expression}
1071\indexii{lambda}{form}
1072\indexii{anonymous}{function}
1073
1074\begin{productionlist}
1075 \production{lambda_form}
1076 {"lambda" [\token{parameter_list}]: \token{expression}}
1077\end{productionlist}
1078
1079Lambda forms (lambda expressions) have the same syntactic position as
1080expressions. They are a shorthand to create anonymous functions; the
1081expression \code{lambda \var{arguments}: \var{expression}}
1082yields a function object. The unnamed object behaves like a function
1083object defined with
1084
1085\begin{verbatim}
1086def name(arguments):
1087 return expression
1088\end{verbatim}
1089
1090See section \ref{function} for the syntax of parameter lists. Note
1091that functions created with lambda forms cannot contain statements.
1092\label{lambda}
1093
1094\section{Expression lists\label{exprlists}}
1095\indexii{expression}{list}
1096
1097\begin{productionlist}
1098 \production{expression_list}
1099 {\token{expression} ( "," \token{expression} )* [","]}
1100\end{productionlist}
1101
1102An expression list containing at least one comma yields a
1103tuple. The length of the tuple is the number of expressions in the
1104list. The expressions are evaluated from left to right.
1105\obindex{tuple}
1106
1107The trailing comma is required only to create a single tuple (a.k.a. a
1108\emph{singleton}); it is optional in all other cases. A single
1109expression without a trailing comma doesn't create a
1110tuple, but rather yields the value of that expression.
1111(To create an empty tuple, use an empty pair of parentheses:
1112\code{()}.)
1113\indexii{trailing}{comma}
1114
1115\section{Evaluation order\label{evalorder}}
1116\indexii{evaluation}{order}
1117
1118Python evaluates expressions from left to right. Notice that while
1119evaluating an assignment, the right-hand side is evaluated before
1120the left-hand side.
1121
1122In the following lines, expressions will be evaluated in the
1123arithmetic order of their suffixes:
1124
1125\begin{verbatim}
1126expr1, expr2, expr3, expr4
1127(expr1, expr2, expr3, expr4)
1128{expr1: expr2, expr3: expr4}
1129expr1 + expr2 * (expr3 - expr4)
1130func(expr1, expr2, *expr3, **expr4)
1131expr3, expr4 = expr1, expr2
1132\end{verbatim}
1133
1134\section{Summary\label{summary}}
1135
1136The following table summarizes the operator
1137precedences\indexii{operator}{precedence} in Python, from lowest
1138precedence (least binding) to highest precedence (most binding).
1139Operators in the same box have the same precedence. Unless the syntax
1140is explicitly given, operators are binary. Operators in the same box
1141group left to right (except for comparisons, including tests, which all
1142have the same precedence and chain from left to right --- see section
1143\ref{comparisons} -- and exponentiation, which groups from right to left).
1144
1145\begin{tableii}{c|l}{textrm}{Operator}{Description}
1146 \lineii{\keyword{lambda}} {Lambda expression}
1147 \hline
1148 \lineii{\keyword{or}} {Boolean OR}
1149 \hline
1150 \lineii{\keyword{and}} {Boolean AND}
1151 \hline
1152 \lineii{\keyword{not} \var{x}} {Boolean NOT}
1153 \hline
1154 \lineii{\keyword{in}, \keyword{not} \keyword{in}}{Membership tests}
1155 \lineii{\keyword{is}, \keyword{is not}}{Identity tests}
1156 \lineii{\code{<}, \code{<=}, \code{>}, \code{>=},
1157 \code{<>}, \code{!=}, \code{==}}
1158 {Comparisons}
1159 \hline
1160 \lineii{\code{|}} {Bitwise OR}
1161 \hline
1162 \lineii{\code{\^}} {Bitwise XOR}
1163 \hline
1164 \lineii{\code{\&}} {Bitwise AND}
1165 \hline
1166 \lineii{\code{<<}, \code{>>}} {Shifts}
1167 \hline
1168 \lineii{\code{+}, \code{-}}{Addition and subtraction}
1169 \hline
1170 \lineii{\code{*}, \code{/}, \code{\%}}
1171 {Multiplication, division, remainder}
1172 \hline
1173 \lineii{\code{+\var{x}}, \code{-\var{x}}} {Positive, negative}
1174 \lineii{\code{\~\var{x}}} {Bitwise not}
1175 \hline
1176 \lineii{\code{**}} {Exponentiation}
1177 \hline
1178 \lineii{\code{\var{x}.\var{attribute}}} {Attribute reference}
1179 \lineii{\code{\var{x}[\var{index}]}} {Subscription}
1180 \lineii{\code{\var{x}[\var{index}:\var{index}]}} {Slicing}
1181 \lineii{\code{\var{f}(\var{arguments}...)}} {Function call}
1182 \hline
1183 \lineii{\code{(\var{expressions}\ldots)}} {Binding or tuple display}
1184 \lineii{\code{[\var{expressions}\ldots]}} {List display}
1185 \lineii{\code{\{\var{key}:\var{datum}\ldots\}}}{Dictionary display}
1186 \lineii{\code{`\var{expressions}\ldots`}} {String conversion}
1187\end{tableii}
Note: See TracBrowser for help on using the repository browser.