1 | \chapter{Expressions\label{expressions}}
|
---|
2 | \index{expression}
|
---|
3 |
|
---|
4 | This chapter explains the meaning of the elements of expressions in
|
---|
5 | Python.
|
---|
6 |
|
---|
7 | \strong{Syntax Notes:} In this and the following chapters, extended
|
---|
8 | BNF\index{BNF} notation will be used to describe syntax, not lexical
|
---|
9 | analysis. When (one alternative of) a syntax rule has the form
|
---|
10 |
|
---|
11 | \begin{productionlist}[*]
|
---|
12 | \production{name}{\token{othername}}
|
---|
13 | \end{productionlist}
|
---|
14 |
|
---|
15 | and no semantics are given, the semantics of this form of \code{name}
|
---|
16 | are the same as for \code{othername}.
|
---|
17 | \index{syntax}
|
---|
18 |
|
---|
19 |
|
---|
20 | \section{Arithmetic conversions\label{conversions}}
|
---|
21 | \indexii{arithmetic}{conversion}
|
---|
22 |
|
---|
23 | When a description of an arithmetic operator below uses the phrase
|
---|
24 | ``the numeric arguments are converted to a common type,'' the
|
---|
25 | arguments are coerced using the coercion rules listed at
|
---|
26 | ~\ref{coercion-rules}. If both arguments are standard numeric types,
|
---|
27 | the following coercions are applied:
|
---|
28 |
|
---|
29 | \begin{itemize}
|
---|
30 | \item If either argument is a complex number, the other is converted
|
---|
31 | to complex;
|
---|
32 | \item otherwise, if either argument is a floating point number,
|
---|
33 | the other is converted to floating point;
|
---|
34 | \item otherwise, if either argument is a long integer,
|
---|
35 | the other is converted to long integer;
|
---|
36 | \item otherwise, both must be plain integers and no conversion
|
---|
37 | is necessary.
|
---|
38 | \end{itemize}
|
---|
39 |
|
---|
40 | Some additional rules apply for certain operators (e.g., a string left
|
---|
41 | argument to the `\%' operator). Extensions can define their own
|
---|
42 | coercions.
|
---|
43 |
|
---|
44 |
|
---|
45 | \section{Atoms\label{atoms}}
|
---|
46 | \index{atom}
|
---|
47 |
|
---|
48 | Atoms are the most basic elements of expressions. The simplest atoms
|
---|
49 | are identifiers or literals. Forms enclosed in
|
---|
50 | reverse quotes or in parentheses, brackets or braces are also
|
---|
51 | categorized syntactically as atoms. The syntax for atoms is:
|
---|
52 |
|
---|
53 | \begin{productionlist}
|
---|
54 | \production{atom}
|
---|
55 | {\token{identifier} | \token{literal} | \token{enclosure}}
|
---|
56 | \production{enclosure}
|
---|
57 | {\token{parenth_form} | \token{list_display}}
|
---|
58 | \productioncont{| \token{generator_expression} | \token{dict_display}}
|
---|
59 | \productioncont{| \token{string_conversion}}
|
---|
60 | \end{productionlist}
|
---|
61 |
|
---|
62 |
|
---|
63 | \subsection{Identifiers (Names)\label{atom-identifiers}}
|
---|
64 | \index{name}
|
---|
65 | \index{identifier}
|
---|
66 |
|
---|
67 | An identifier occurring as an atom is a name. See
|
---|
68 | section~\ref{naming} for documentation of naming and binding.
|
---|
69 |
|
---|
70 | When the name is bound to an object, evaluation of the atom yields
|
---|
71 | that object. When a name is not bound, an attempt to evaluate it
|
---|
72 | raises a \exception{NameError} exception.
|
---|
73 | \exindex{NameError}
|
---|
74 |
|
---|
75 | \strong{Private name mangling:}
|
---|
76 | \indexii{name}{mangling}%
|
---|
77 | \indexii{private}{names}%
|
---|
78 | When an identifier that textually occurs in a class definition begins
|
---|
79 | with two or more underscore characters and does not end in two or more
|
---|
80 | underscores, it is considered a \dfn{private name} of that class.
|
---|
81 | Private names are transformed to a longer form before code is
|
---|
82 | generated for them. The transformation inserts the class name in
|
---|
83 | front of the name, with leading underscores removed, and a single
|
---|
84 | underscore inserted in front of the class name. For example, the
|
---|
85 | identifier \code{__spam} occurring in a class named \code{Ham} will be
|
---|
86 | transformed to \code{_Ham__spam}. This transformation is independent
|
---|
87 | of the syntactical context in which the identifier is used. If the
|
---|
88 | transformed name is extremely long (longer than 255 characters),
|
---|
89 | implementation defined truncation may happen. If the class name
|
---|
90 | consists only of underscores, no transformation is done.
|
---|
91 |
|
---|
92 |
|
---|
93 | \subsection{Literals\label{atom-literals}}
|
---|
94 | \index{literal}
|
---|
95 |
|
---|
96 | Python supports string literals and various numeric literals:
|
---|
97 |
|
---|
98 | \begin{productionlist}
|
---|
99 | \production{literal}
|
---|
100 | {\token{stringliteral} | \token{integer} | \token{longinteger}}
|
---|
101 | \productioncont{| \token{floatnumber} | \token{imagnumber}}
|
---|
102 | \end{productionlist}
|
---|
103 |
|
---|
104 | Evaluation of a literal yields an object of the given type (string,
|
---|
105 | integer, long integer, floating point number, complex number) with the
|
---|
106 | given value. The value may be approximated in the case of floating
|
---|
107 | point and imaginary (complex) literals. See section \ref{literals}
|
---|
108 | for details.
|
---|
109 |
|
---|
110 | All literals correspond to immutable data types, and hence the
|
---|
111 | object's identity is less important than its value. Multiple
|
---|
112 | evaluations of literals with the same value (either the same
|
---|
113 | occurrence in the program text or a different occurrence) may obtain
|
---|
114 | the same object or a different object with the same value.
|
---|
115 | \indexiii{immutable}{data}{type}
|
---|
116 | \indexii{immutable}{object}
|
---|
117 |
|
---|
118 |
|
---|
119 | \subsection{Parenthesized forms\label{parenthesized}}
|
---|
120 | \index{parenthesized form}
|
---|
121 |
|
---|
122 | A parenthesized form is an optional expression list enclosed in
|
---|
123 | parentheses:
|
---|
124 |
|
---|
125 | \begin{productionlist}
|
---|
126 | \production{parenth_form}
|
---|
127 | {"(" [\token{expression_list}] ")"}
|
---|
128 | \end{productionlist}
|
---|
129 |
|
---|
130 | A parenthesized expression list yields whatever that expression list
|
---|
131 | yields: if the list contains at least one comma, it yields a tuple;
|
---|
132 | otherwise, it yields the single expression that makes up the
|
---|
133 | expression list.
|
---|
134 |
|
---|
135 | An empty pair of parentheses yields an empty tuple object. Since
|
---|
136 | tuples are immutable, the rules for literals apply (i.e., two
|
---|
137 | occurrences of the empty tuple may or may not yield the same object).
|
---|
138 | \indexii{empty}{tuple}
|
---|
139 |
|
---|
140 | Note that tuples are not formed by the parentheses, but rather by use
|
---|
141 | of the comma operator. The exception is the empty tuple, for which
|
---|
142 | parentheses \emph{are} required --- allowing unparenthesized ``nothing''
|
---|
143 | in expressions would cause ambiguities and allow common typos to
|
---|
144 | pass uncaught.
|
---|
145 | \index{comma}
|
---|
146 | \indexii{tuple}{display}
|
---|
147 |
|
---|
148 |
|
---|
149 | \subsection{List displays\label{lists}}
|
---|
150 | \indexii{list}{display}
|
---|
151 | \indexii{list}{comprehensions}
|
---|
152 |
|
---|
153 | A list display is a possibly empty series of expressions enclosed in
|
---|
154 | square brackets:
|
---|
155 |
|
---|
156 | \begin{productionlist}
|
---|
157 | \production{test}
|
---|
158 | {\token{or_test} | \token{lambda_form}}
|
---|
159 | \production{testlist}
|
---|
160 | {\token{test} ( "," \token{test} )* [ "," ]}
|
---|
161 | \production{list_display}
|
---|
162 | {"[" [\token{listmaker}] "]"}
|
---|
163 | \production{listmaker}
|
---|
164 | {\token{expression} ( \token{list_for}
|
---|
165 | | ( "," \token{expression} )* [","] )}
|
---|
166 | \production{list_iter}
|
---|
167 | {\token{list_for} | \token{list_if}}
|
---|
168 | \production{list_for}
|
---|
169 | {"for" \token{expression_list} "in" \token{testlist}
|
---|
170 | [\token{list_iter}]}
|
---|
171 | \production{list_if}
|
---|
172 | {"if" \token{test} [\token{list_iter}]}
|
---|
173 | \end{productionlist}
|
---|
174 |
|
---|
175 | A list display yields a new list object. Its contents are specified
|
---|
176 | by providing either a list of expressions or a list comprehension.
|
---|
177 | \indexii{list}{comprehensions}
|
---|
178 | When a comma-separated list of expressions is supplied, its elements are
|
---|
179 | evaluated from left to right and placed into the list object in that
|
---|
180 | order. When a list comprehension is supplied, it consists of a
|
---|
181 | single expression followed by at least one \keyword{for} clause and zero or
|
---|
182 | more \keyword{for} or \keyword{if} clauses. In this
|
---|
183 | case, the elements of the new list are those that would be produced
|
---|
184 | by considering each of the \keyword{for} or \keyword{if} clauses a block,
|
---|
185 | nesting from
|
---|
186 | left to right, and evaluating the expression to produce a list element
|
---|
187 | each time the innermost block is reached\footnote{In Python 2.3, a
|
---|
188 | list comprehension "leaks" the control variables of each
|
---|
189 | \samp{for} it contains into the containing scope. However, this
|
---|
190 | behavior is deprecated, and relying on it will not work once this
|
---|
191 | bug is fixed in a future release}.
|
---|
192 | \obindex{list}
|
---|
193 | \indexii{empty}{list}
|
---|
194 |
|
---|
195 |
|
---|
196 | \subsection{Generator expressions\label{genexpr}}
|
---|
197 | \indexii{generator}{expression}
|
---|
198 |
|
---|
199 | A generator expression is a compact generator notation in parentheses:
|
---|
200 |
|
---|
201 | \begin{productionlist}
|
---|
202 | \production{generator_expression}
|
---|
203 | {"(" \token{test} \token{genexpr_for} ")"}
|
---|
204 | \production{genexpr_for}
|
---|
205 | {"for" \token{expression_list} "in" \token{test}
|
---|
206 | [\token{genexpr_iter}]}
|
---|
207 | \production{genexpr_iter}
|
---|
208 | {\token{genexpr_for} | \token{genexpr_if}}
|
---|
209 | \production{genexpr_if}
|
---|
210 | {"if" \token{test} [\token{genexpr_iter}]}
|
---|
211 | \end{productionlist}
|
---|
212 |
|
---|
213 | A generator expression yields a new generator object.
|
---|
214 | \obindex{generator}
|
---|
215 | \obindex{generator expression}
|
---|
216 | It consists of a single expression followed by at least one
|
---|
217 | \keyword{for} clause and zero or more \keyword{for} or \keyword{if}
|
---|
218 | clauses. The iterating values of the new generator are those that
|
---|
219 | would be produced by considering each of the \keyword{for} or
|
---|
220 | \keyword{if} clauses a block, nesting from left to right, and
|
---|
221 | evaluating the expression to yield a value that is reached the
|
---|
222 | innermost block for each iteration.
|
---|
223 |
|
---|
224 | Variables used in the generator expression are evaluated lazily
|
---|
225 | when the \method{next()} method is called for generator object
|
---|
226 | (in the same fashion as normal generators). However, the leftmost
|
---|
227 | \keyword{for} clause is immediately evaluated so that error produced
|
---|
228 | by it can be seen before any other possible error in the code that
|
---|
229 | handles the generator expression.
|
---|
230 | Subsequent \keyword{for} clauses cannot be evaluated immediately since
|
---|
231 | they may depend on the previous \keyword{for} loop.
|
---|
232 | For example: \samp{(x*y for x in range(10) for y in bar(x))}.
|
---|
233 |
|
---|
234 | The parentheses can be omitted on calls with only one argument.
|
---|
235 | See section \ref{calls} for the detail.
|
---|
236 |
|
---|
237 |
|
---|
238 | \subsection{Dictionary displays\label{dict}}
|
---|
239 | \indexii{dictionary}{display}
|
---|
240 |
|
---|
241 | A dictionary display is a possibly empty series of key/datum pairs
|
---|
242 | enclosed in curly braces:
|
---|
243 | \index{key}
|
---|
244 | \index{datum}
|
---|
245 | \index{key/datum pair}
|
---|
246 |
|
---|
247 | \begin{productionlist}
|
---|
248 | \production{dict_display}
|
---|
249 | {"\{" [\token{key_datum_list}] "\}"}
|
---|
250 | \production{key_datum_list}
|
---|
251 | {\token{key_datum} ("," \token{key_datum})* [","]}
|
---|
252 | \production{key_datum}
|
---|
253 | {\token{expression} ":" \token{expression}}
|
---|
254 | \end{productionlist}
|
---|
255 |
|
---|
256 | A dictionary display yields a new dictionary object.
|
---|
257 | \obindex{dictionary}
|
---|
258 |
|
---|
259 | The key/datum pairs are evaluated from left to right to define the
|
---|
260 | entries of the dictionary: each key object is used as a key into the
|
---|
261 | dictionary to store the corresponding datum.
|
---|
262 |
|
---|
263 | Restrictions on the types of the key values are listed earlier in
|
---|
264 | section \ref{types}. (To summarize, the key type should be hashable,
|
---|
265 | which excludes all mutable objects.) Clashes between duplicate keys
|
---|
266 | are not detected; the last datum (textually rightmost in the display)
|
---|
267 | stored for a given key value prevails.
|
---|
268 | \indexii{immutable}{object}
|
---|
269 |
|
---|
270 |
|
---|
271 | \subsection{String conversions\label{string-conversions}}
|
---|
272 | \indexii{string}{conversion}
|
---|
273 | \indexii{reverse}{quotes}
|
---|
274 | \indexii{backward}{quotes}
|
---|
275 | \index{back-quotes}
|
---|
276 |
|
---|
277 | A string conversion is an expression list enclosed in reverse (a.k.a.
|
---|
278 | backward) quotes:
|
---|
279 |
|
---|
280 | \begin{productionlist}
|
---|
281 | \production{string_conversion}
|
---|
282 | {"`" \token{expression_list} "`"}
|
---|
283 | \end{productionlist}
|
---|
284 |
|
---|
285 | A string conversion evaluates the contained expression list and
|
---|
286 | converts the resulting object into a string according to rules
|
---|
287 | specific to its type.
|
---|
288 |
|
---|
289 | If the object is a string, a number, \code{None}, or a tuple, list or
|
---|
290 | dictionary containing only objects whose type is one of these, the
|
---|
291 | resulting string is a valid Python expression which can be passed to
|
---|
292 | the built-in function \function{eval()} to yield an expression with the
|
---|
293 | same value (or an approximation, if floating point numbers are
|
---|
294 | involved).
|
---|
295 |
|
---|
296 | (In particular, converting a string adds quotes around it and converts
|
---|
297 | ``funny'' characters to escape sequences that are safe to print.)
|
---|
298 |
|
---|
299 | Recursive objects (for example, lists or dictionaries that contain a
|
---|
300 | reference to themselves, directly or indirectly) use \samp{...} to
|
---|
301 | indicate a recursive reference, and the result cannot be passed to
|
---|
302 | \function{eval()} to get an equal value (\exception{SyntaxError} will
|
---|
303 | be raised instead).
|
---|
304 | \obindex{recursive}
|
---|
305 |
|
---|
306 | The built-in function \function{repr()} performs exactly the same
|
---|
307 | conversion in its argument as enclosing it in parentheses and reverse
|
---|
308 | quotes does. The built-in function \function{str()} performs a
|
---|
309 | similar but more user-friendly conversion.
|
---|
310 | \bifuncindex{repr}
|
---|
311 | \bifuncindex{str}
|
---|
312 |
|
---|
313 |
|
---|
314 | \section{Primaries\label{primaries}}
|
---|
315 | \index{primary}
|
---|
316 |
|
---|
317 | Primaries represent the most tightly bound operations of the language.
|
---|
318 | Their syntax is:
|
---|
319 |
|
---|
320 | \begin{productionlist}
|
---|
321 | \production{primary}
|
---|
322 | {\token{atom} | \token{attributeref}
|
---|
323 | | \token{subscription} | \token{slicing} | \token{call}}
|
---|
324 | \end{productionlist}
|
---|
325 |
|
---|
326 |
|
---|
327 | \subsection{Attribute references\label{attribute-references}}
|
---|
328 | \indexii{attribute}{reference}
|
---|
329 |
|
---|
330 | An attribute reference is a primary followed by a period and a name:
|
---|
331 |
|
---|
332 | \begin{productionlist}
|
---|
333 | \production{attributeref}
|
---|
334 | {\token{primary} "." \token{identifier}}
|
---|
335 | \end{productionlist}
|
---|
336 |
|
---|
337 | The primary must evaluate to an object of a type that supports
|
---|
338 | attribute references, e.g., a module, list, or an instance. This
|
---|
339 | object is then asked to produce the attribute whose name is the
|
---|
340 | identifier. If this attribute is not available, the exception
|
---|
341 | \exception{AttributeError}\exindex{AttributeError} is raised.
|
---|
342 | Otherwise, the type and value of the object produced is determined by
|
---|
343 | the object. Multiple evaluations of the same attribute reference may
|
---|
344 | yield different objects.
|
---|
345 | \obindex{module}
|
---|
346 | \obindex{list}
|
---|
347 |
|
---|
348 |
|
---|
349 | \subsection{Subscriptions\label{subscriptions}}
|
---|
350 | \index{subscription}
|
---|
351 |
|
---|
352 | A subscription selects an item of a sequence (string, tuple or list)
|
---|
353 | or mapping (dictionary) object:
|
---|
354 | \obindex{sequence}
|
---|
355 | \obindex{mapping}
|
---|
356 | \obindex{string}
|
---|
357 | \obindex{tuple}
|
---|
358 | \obindex{list}
|
---|
359 | \obindex{dictionary}
|
---|
360 | \indexii{sequence}{item}
|
---|
361 |
|
---|
362 | \begin{productionlist}
|
---|
363 | \production{subscription}
|
---|
364 | {\token{primary} "[" \token{expression_list} "]"}
|
---|
365 | \end{productionlist}
|
---|
366 |
|
---|
367 | The primary must evaluate to an object of a sequence or mapping type.
|
---|
368 |
|
---|
369 | If the primary is a mapping, the expression list must evaluate to an
|
---|
370 | object whose value is one of the keys of the mapping, and the
|
---|
371 | subscription selects the value in the mapping that corresponds to that
|
---|
372 | key. (The expression list is a tuple except if it has exactly one
|
---|
373 | item.)
|
---|
374 |
|
---|
375 | If the primary is a sequence, the expression (list) must evaluate to a
|
---|
376 | plain integer. If this value is negative, the length of the sequence
|
---|
377 | is added to it (so that, e.g., \code{x[-1]} selects the last item of
|
---|
378 | \code{x}.) The resulting value must be a nonnegative integer less
|
---|
379 | than the number of items in the sequence, and the subscription selects
|
---|
380 | the item whose index is that value (counting from zero).
|
---|
381 |
|
---|
382 | A string's items are characters. A character is not a separate data
|
---|
383 | type but a string of exactly one character.
|
---|
384 | \index{character}
|
---|
385 | \indexii{string}{item}
|
---|
386 |
|
---|
387 |
|
---|
388 | \subsection{Slicings\label{slicings}}
|
---|
389 | \index{slicing}
|
---|
390 | \index{slice}
|
---|
391 |
|
---|
392 | A slicing selects a range of items in a sequence object (e.g., a
|
---|
393 | string, tuple or list). Slicings may be used as expressions or as
|
---|
394 | targets in assignment or \keyword{del} statements. The syntax for a
|
---|
395 | slicing:
|
---|
396 | \obindex{sequence}
|
---|
397 | \obindex{string}
|
---|
398 | \obindex{tuple}
|
---|
399 | \obindex{list}
|
---|
400 |
|
---|
401 | \begin{productionlist}
|
---|
402 | \production{slicing}
|
---|
403 | {\token{simple_slicing} | \token{extended_slicing}}
|
---|
404 | \production{simple_slicing}
|
---|
405 | {\token{primary} "[" \token{short_slice} "]"}
|
---|
406 | \production{extended_slicing}
|
---|
407 | {\token{primary} "[" \token{slice_list} "]" }
|
---|
408 | \production{slice_list}
|
---|
409 | {\token{slice_item} ("," \token{slice_item})* [","]}
|
---|
410 | \production{slice_item}
|
---|
411 | {\token{expression} | \token{proper_slice} | \token{ellipsis}}
|
---|
412 | \production{proper_slice}
|
---|
413 | {\token{short_slice} | \token{long_slice}}
|
---|
414 | \production{short_slice}
|
---|
415 | {[\token{lower_bound}] ":" [\token{upper_bound}]}
|
---|
416 | \production{long_slice}
|
---|
417 | {\token{short_slice} ":" [\token{stride}]}
|
---|
418 | \production{lower_bound}
|
---|
419 | {\token{expression}}
|
---|
420 | \production{upper_bound}
|
---|
421 | {\token{expression}}
|
---|
422 | \production{stride}
|
---|
423 | {\token{expression}}
|
---|
424 | \production{ellipsis}
|
---|
425 | {"..."}
|
---|
426 | \end{productionlist}
|
---|
427 |
|
---|
428 | There is ambiguity in the formal syntax here: anything that looks like
|
---|
429 | an expression list also looks like a slice list, so any subscription
|
---|
430 | can be interpreted as a slicing. Rather than further complicating the
|
---|
431 | syntax, this is disambiguated by defining that in this case the
|
---|
432 | interpretation as a subscription takes priority over the
|
---|
433 | interpretation as a slicing (this is the case if the slice list
|
---|
434 | contains no proper slice nor ellipses). Similarly, when the slice
|
---|
435 | list has exactly one short slice and no trailing comma, the
|
---|
436 | interpretation as a simple slicing takes priority over that as an
|
---|
437 | extended slicing.\indexii{extended}{slicing}
|
---|
438 |
|
---|
439 | The semantics for a simple slicing are as follows. The primary must
|
---|
440 | evaluate to a sequence object. The lower and upper bound expressions,
|
---|
441 | if present, must evaluate to plain integers; defaults are zero and the
|
---|
442 | \code{sys.maxint}, respectively. If either bound is negative, the
|
---|
443 | sequence's length is added to it. The slicing now selects all items
|
---|
444 | with index \var{k} such that
|
---|
445 | \code{\var{i} <= \var{k} < \var{j}} where \var{i}
|
---|
446 | and \var{j} are the specified lower and upper bounds. This may be an
|
---|
447 | empty sequence. It is not an error if \var{i} or \var{j} lie outside the
|
---|
448 | range of valid indexes (such items don't exist so they aren't
|
---|
449 | selected).
|
---|
450 |
|
---|
451 | The semantics for an extended slicing are as follows. The primary
|
---|
452 | must evaluate to a mapping object, and it is indexed with a key that
|
---|
453 | is constructed from the slice list, as follows. If the slice list
|
---|
454 | contains at least one comma, the key is a tuple containing the
|
---|
455 | conversion of the slice items; otherwise, the conversion of the lone
|
---|
456 | slice item is the key. The conversion of a slice item that is an
|
---|
457 | expression is that expression. The conversion of an ellipsis slice
|
---|
458 | item is the built-in \code{Ellipsis} object. The conversion of a
|
---|
459 | proper slice is a slice object (see section \ref{types}) whose
|
---|
460 | \member{start}, \member{stop} and \member{step} attributes are the
|
---|
461 | values of the expressions given as lower bound, upper bound and
|
---|
462 | stride, respectively, substituting \code{None} for missing
|
---|
463 | expressions.
|
---|
464 | \withsubitem{(slice object attribute)}{\ttindex{start}
|
---|
465 | \ttindex{stop}\ttindex{step}}
|
---|
466 |
|
---|
467 |
|
---|
468 | \subsection{Calls\label{calls}}
|
---|
469 | \index{call}
|
---|
470 |
|
---|
471 | A call calls a callable object (e.g., a function) with a possibly empty
|
---|
472 | series of arguments:
|
---|
473 | \obindex{callable}
|
---|
474 |
|
---|
475 | \begin{productionlist}
|
---|
476 | \production{call}
|
---|
477 | {\token{primary} "(" [\token{argument_list} [","]] ")"}
|
---|
478 | {\token{primary} "(" [\token{argument_list} [","] |
|
---|
479 | \token{test} \token{genexpr_for} ] ")"}
|
---|
480 | \production{argument_list}
|
---|
481 | {\token{positional_arguments} ["," \token{keyword_arguments}]}
|
---|
482 | \productioncont{ ["," "*" \token{expression}]}
|
---|
483 | \productioncont{ ["," "**" \token{expression}]}
|
---|
484 | \productioncont{| \token{keyword_arguments} ["," "*" \token{expression}]}
|
---|
485 | \productioncont{ ["," "**" \token{expression}]}
|
---|
486 | \productioncont{| "*" \token{expression} ["," "**" \token{expression}]}
|
---|
487 | \productioncont{| "**" \token{expression}}
|
---|
488 | \production{positional_arguments}
|
---|
489 | {\token{expression} ("," \token{expression})*}
|
---|
490 | \production{keyword_arguments}
|
---|
491 | {\token{keyword_item} ("," \token{keyword_item})*}
|
---|
492 | \production{keyword_item}
|
---|
493 | {\token{identifier} "=" \token{expression}}
|
---|
494 | \end{productionlist}
|
---|
495 |
|
---|
496 | A trailing comma may be present after the positional and keyword
|
---|
497 | arguments but does not affect the semantics.
|
---|
498 |
|
---|
499 | The primary must evaluate to a callable object (user-defined
|
---|
500 | functions, built-in functions, methods of built-in objects, class
|
---|
501 | objects, methods of class instances, and certain class instances
|
---|
502 | themselves are callable; extensions may define additional callable
|
---|
503 | object types). All argument expressions are evaluated before the call
|
---|
504 | is attempted. Please refer to section \ref{function} for the syntax
|
---|
505 | of formal parameter lists.
|
---|
506 |
|
---|
507 | If keyword arguments are present, they are first converted to
|
---|
508 | positional arguments, as follows. First, a list of unfilled slots is
|
---|
509 | created for the formal parameters. If there are N positional
|
---|
510 | arguments, they are placed in the first N slots. Next, for each
|
---|
511 | keyword argument, the identifier is used to determine the
|
---|
512 | corresponding slot (if the identifier is the same as the first formal
|
---|
513 | parameter name, the first slot is used, and so on). If the slot is
|
---|
514 | already filled, a \exception{TypeError} exception is raised.
|
---|
515 | Otherwise, the value of the argument is placed in the slot, filling it
|
---|
516 | (even if the expression is \code{None}, it fills the slot). When all
|
---|
517 | arguments have been processed, the slots that are still unfilled are
|
---|
518 | filled with the corresponding default value from the function
|
---|
519 | definition. (Default values are calculated, once, when the function
|
---|
520 | is defined; thus, a mutable object such as a list or dictionary used
|
---|
521 | as default value will be shared by all calls that don't specify an
|
---|
522 | argument value for the corresponding slot; this should usually be
|
---|
523 | avoided.) If there are any unfilled slots for which no default value
|
---|
524 | is specified, a \exception{TypeError} exception is raised. Otherwise,
|
---|
525 | the list of filled slots is used as the argument list for the call.
|
---|
526 |
|
---|
527 | If there are more positional arguments than there are formal parameter
|
---|
528 | slots, a \exception{TypeError} exception is raised, unless a formal
|
---|
529 | parameter using the syntax \samp{*identifier} is present; in this
|
---|
530 | case, that formal parameter receives a tuple containing the excess
|
---|
531 | positional arguments (or an empty tuple if there were no excess
|
---|
532 | positional arguments).
|
---|
533 |
|
---|
534 | If any keyword argument does not correspond to a formal parameter
|
---|
535 | name, a \exception{TypeError} exception is raised, unless a formal
|
---|
536 | parameter using the syntax \samp{**identifier} is present; in this
|
---|
537 | case, that formal parameter receives a dictionary containing the
|
---|
538 | excess keyword arguments (using the keywords as keys and the argument
|
---|
539 | values as corresponding values), or a (new) empty dictionary if there
|
---|
540 | were no excess keyword arguments.
|
---|
541 |
|
---|
542 | If the syntax \samp{*expression} appears in the function call,
|
---|
543 | \samp{expression} must evaluate to a sequence. Elements from this
|
---|
544 | sequence are treated as if they were additional positional arguments;
|
---|
545 | if there are postional arguments \var{x1},...,\var{xN} , and
|
---|
546 | \samp{expression} evaluates to a sequence \var{y1},...,\var{yM}, this
|
---|
547 | is equivalent to a call with M+N positional arguments
|
---|
548 | \var{x1},...,\var{xN},\var{y1},...,\var{yM}.
|
---|
549 |
|
---|
550 | A consequence of this is that although the \samp{*expression} syntax
|
---|
551 | appears \emph{after} any keyword arguments, it is processed
|
---|
552 | \emph{before} the keyword arguments (and the
|
---|
553 | \samp{**expression} argument, if any -- see below). So:
|
---|
554 |
|
---|
555 | \begin{verbatim}
|
---|
556 | >>> def f(a, b):
|
---|
557 | ... print a, b
|
---|
558 | ...
|
---|
559 | >>> f(b=1, *(2,))
|
---|
560 | 2 1
|
---|
561 | >>> f(a=1, *(2,))
|
---|
562 | Traceback (most recent call last):
|
---|
563 | File "<stdin>", line 1, in ?
|
---|
564 | TypeError: f() got multiple values for keyword argument 'a'
|
---|
565 | >>> f(1, *(2,))
|
---|
566 | 1 2
|
---|
567 | \end{verbatim}
|
---|
568 |
|
---|
569 | It is unusual for both keyword arguments and the
|
---|
570 | \samp{*expression} syntax to be used in the same call, so in practice
|
---|
571 | this confusion does not arise.
|
---|
572 |
|
---|
573 | If the syntax \samp{**expression} appears in the function call,
|
---|
574 | \samp{expression} must evaluate to a (subclass of) dictionary, the
|
---|
575 | contents of which are treated as additional keyword arguments. In the
|
---|
576 | case of a keyword appearing in both \samp{expression} and as an
|
---|
577 | explicit keyword argument, a \exception{TypeError} exception is
|
---|
578 | raised.
|
---|
579 |
|
---|
580 | Formal parameters using the syntax \samp{*identifier} or
|
---|
581 | \samp{**identifier} cannot be used as positional argument slots or
|
---|
582 | as keyword argument names. Formal parameters using the syntax
|
---|
583 | \samp{(sublist)} cannot be used as keyword argument names; the
|
---|
584 | outermost sublist corresponds to a single unnamed argument slot, and
|
---|
585 | the argument value is assigned to the sublist using the usual tuple
|
---|
586 | assignment rules after all other parameter processing is done.
|
---|
587 |
|
---|
588 | A call always returns some value, possibly \code{None}, unless it
|
---|
589 | raises an exception. How this value is computed depends on the type
|
---|
590 | of the callable object.
|
---|
591 |
|
---|
592 | If it is---
|
---|
593 |
|
---|
594 | \begin{description}
|
---|
595 |
|
---|
596 | \item[a user-defined function:] The code block for the function is
|
---|
597 | executed, passing it the argument list. The first thing the code
|
---|
598 | block will do is bind the formal parameters to the arguments; this is
|
---|
599 | described in section \ref{function}. When the code block executes a
|
---|
600 | \keyword{return} statement, this specifies the return value of the
|
---|
601 | function call.
|
---|
602 | \indexii{function}{call}
|
---|
603 | \indexiii{user-defined}{function}{call}
|
---|
604 | \obindex{user-defined function}
|
---|
605 | \obindex{function}
|
---|
606 |
|
---|
607 | \item[a built-in function or method:] The result is up to the
|
---|
608 | interpreter; see the \citetitle[../lib/built-in-funcs.html]{Python
|
---|
609 | Library Reference} for the descriptions of built-in functions and
|
---|
610 | methods.
|
---|
611 | \indexii{function}{call}
|
---|
612 | \indexii{built-in function}{call}
|
---|
613 | \indexii{method}{call}
|
---|
614 | \indexii{built-in method}{call}
|
---|
615 | \obindex{built-in method}
|
---|
616 | \obindex{built-in function}
|
---|
617 | \obindex{method}
|
---|
618 | \obindex{function}
|
---|
619 |
|
---|
620 | \item[a class object:] A new instance of that class is returned.
|
---|
621 | \obindex{class}
|
---|
622 | \indexii{class object}{call}
|
---|
623 |
|
---|
624 | \item[a class instance method:] The corresponding user-defined
|
---|
625 | function is called, with an argument list that is one longer than the
|
---|
626 | argument list of the call: the instance becomes the first argument.
|
---|
627 | \obindex{class instance}
|
---|
628 | \obindex{instance}
|
---|
629 | \indexii{class instance}{call}
|
---|
630 |
|
---|
631 | \item[a class instance:] The class must define a \method{__call__()}
|
---|
632 | method; the effect is then the same as if that method was called.
|
---|
633 | \indexii{instance}{call}
|
---|
634 | \withsubitem{(object method)}{\ttindex{__call__()}}
|
---|
635 |
|
---|
636 | \end{description}
|
---|
637 |
|
---|
638 |
|
---|
639 | \section{The power operator\label{power}}
|
---|
640 |
|
---|
641 | The power operator binds more tightly than unary operators on its
|
---|
642 | left; it binds less tightly than unary operators on its right. The
|
---|
643 | syntax is:
|
---|
644 |
|
---|
645 | \begin{productionlist}
|
---|
646 | \production{power}
|
---|
647 | {\token{primary} ["**" \token{u_expr}]}
|
---|
648 | \end{productionlist}
|
---|
649 |
|
---|
650 | Thus, in an unparenthesized sequence of power and unary operators, the
|
---|
651 | operators are evaluated from right to left (this does not constrain
|
---|
652 | the evaluation order for the operands).
|
---|
653 |
|
---|
654 | The power operator has the same semantics as the built-in
|
---|
655 | \function{pow()} function, when called with two arguments: it yields
|
---|
656 | its left argument raised to the power of its right argument. The
|
---|
657 | numeric arguments are first converted to a common type. The result
|
---|
658 | type is that of the arguments after coercion.
|
---|
659 |
|
---|
660 | With mixed operand types, the coercion rules for binary arithmetic
|
---|
661 | operators apply. For int and long int operands, the result has the
|
---|
662 | same type as the operands (after coercion) unless the second argument
|
---|
663 | is negative; in that case, all arguments are converted to float and a
|
---|
664 | float result is delivered. For example, \code{10**2} returns \code{100},
|
---|
665 | but \code{10**-2} returns \code{0.01}. (This last feature was added in
|
---|
666 | Python 2.2. In Python 2.1 and before, if both arguments were of integer
|
---|
667 | types and the second argument was negative, an exception was raised).
|
---|
668 |
|
---|
669 | Raising \code{0.0} to a negative power results in a
|
---|
670 | \exception{ZeroDivisionError}. Raising a negative number to a
|
---|
671 | fractional power results in a \exception{ValueError}.
|
---|
672 |
|
---|
673 |
|
---|
674 | \section{Unary arithmetic operations \label{unary}}
|
---|
675 | \indexiii{unary}{arithmetic}{operation}
|
---|
676 | \indexiii{unary}{bit-wise}{operation}
|
---|
677 |
|
---|
678 | All unary arithmetic (and bit-wise) operations have the same priority:
|
---|
679 |
|
---|
680 | \begin{productionlist}
|
---|
681 | \production{u_expr}
|
---|
682 | {\token{power} | "-" \token{u_expr}
|
---|
683 | | "+" \token{u_expr} | "{\~}" \token{u_expr}}
|
---|
684 | \end{productionlist}
|
---|
685 |
|
---|
686 | The unary \code{-} (minus) operator yields the negation of its
|
---|
687 | numeric argument.
|
---|
688 | \index{negation}
|
---|
689 | \index{minus}
|
---|
690 |
|
---|
691 | The unary \code{+} (plus) operator yields its numeric argument
|
---|
692 | unchanged.
|
---|
693 | \index{plus}
|
---|
694 |
|
---|
695 | The unary \code{\~} (invert) operator yields the bit-wise inversion
|
---|
696 | of its plain or long integer argument. The bit-wise inversion of
|
---|
697 | \code{x} is defined as \code{-(x+1)}. It only applies to integral
|
---|
698 | numbers.
|
---|
699 | \index{inversion}
|
---|
700 |
|
---|
701 | In all three cases, if the argument does not have the proper type,
|
---|
702 | a \exception{TypeError} exception is raised.
|
---|
703 | \exindex{TypeError}
|
---|
704 |
|
---|
705 |
|
---|
706 | \section{Binary arithmetic operations\label{binary}}
|
---|
707 | \indexiii{binary}{arithmetic}{operation}
|
---|
708 |
|
---|
709 | The binary arithmetic operations have the conventional priority
|
---|
710 | levels. Note that some of these operations also apply to certain
|
---|
711 | non-numeric types. Apart from the power operator, there are only two
|
---|
712 | levels, one for multiplicative operators and one for additive
|
---|
713 | operators:
|
---|
714 |
|
---|
715 | \begin{productionlist}
|
---|
716 | \production{m_expr}
|
---|
717 | {\token{u_expr} | \token{m_expr} "*" \token{u_expr}
|
---|
718 | | \token{m_expr} "//" \token{u_expr}
|
---|
719 | | \token{m_expr} "/" \token{u_expr}}
|
---|
720 | \productioncont{| \token{m_expr} "\%" \token{u_expr}}
|
---|
721 | \production{a_expr}
|
---|
722 | {\token{m_expr} | \token{a_expr} "+" \token{m_expr}
|
---|
723 | | \token{a_expr} "-" \token{m_expr}}
|
---|
724 | \end{productionlist}
|
---|
725 |
|
---|
726 | The \code{*} (multiplication) operator yields the product of its
|
---|
727 | arguments. The arguments must either both be numbers, or one argument
|
---|
728 | must be an integer (plain or long) and the other must be a sequence.
|
---|
729 | In the former case, the numbers are converted to a common type and
|
---|
730 | then multiplied together. In the latter case, sequence repetition is
|
---|
731 | performed; a negative repetition factor yields an empty sequence.
|
---|
732 | \index{multiplication}
|
---|
733 |
|
---|
734 | The \code{/} (division) and \code{//} (floor division) operators yield
|
---|
735 | the quotient of their arguments. The numeric arguments are first
|
---|
736 | converted to a common type. Plain or long integer division yields an
|
---|
737 | integer of the same type; the result is that of mathematical division
|
---|
738 | with the `floor' function applied to the result. Division by zero
|
---|
739 | raises the
|
---|
740 | \exception{ZeroDivisionError} exception.
|
---|
741 | \exindex{ZeroDivisionError}
|
---|
742 | \index{division}
|
---|
743 |
|
---|
744 | The \code{\%} (modulo) operator yields the remainder from the
|
---|
745 | division of the first argument by the second. The numeric arguments
|
---|
746 | are first converted to a common type. A zero right argument raises
|
---|
747 | the \exception{ZeroDivisionError} exception. The arguments may be floating
|
---|
748 | point numbers, e.g., \code{3.14\%0.7} equals \code{0.34} (since
|
---|
749 | \code{3.14} equals \code{4*0.7 + 0.34}.) The modulo operator always
|
---|
750 | yields a result with the same sign as its second operand (or zero);
|
---|
751 | the absolute value of the result is strictly smaller than the absolute
|
---|
752 | value of the second operand\footnote{
|
---|
753 | While \code{abs(x\%y) < abs(y)} is true mathematically, for
|
---|
754 | floats it may not be true numerically due to roundoff. For
|
---|
755 | example, and assuming a platform on which a Python float is an
|
---|
756 | IEEE 754 double-precision number, in order that \code{-1e-100 \% 1e100}
|
---|
757 | have the same sign as \code{1e100}, the computed result is
|
---|
758 | \code{-1e-100 + 1e100}, which is numerically exactly equal
|
---|
759 | to \code{1e100}. Function \function{fmod()} in the \module{math}
|
---|
760 | module returns a result whose sign matches the sign of the
|
---|
761 | first argument instead, and so returns \code{-1e-100} in this case.
|
---|
762 | Which approach is more appropriate depends on the application.
|
---|
763 | }.
|
---|
764 | \index{modulo}
|
---|
765 |
|
---|
766 | The integer division and modulo operators are connected by the
|
---|
767 | following identity: \code{x == (x/y)*y + (x\%y)}. Integer division and
|
---|
768 | modulo are also connected with the built-in function \function{divmod()}:
|
---|
769 | \code{divmod(x, y) == (x/y, x\%y)}. These identities don't hold for
|
---|
770 | floating point numbers; there similar identities hold
|
---|
771 | approximately where \code{x/y} is replaced by \code{floor(x/y)} or
|
---|
772 | \code{floor(x/y) - 1}\footnote{
|
---|
773 | If x is very close to an exact integer multiple of y, it's
|
---|
774 | possible for \code{floor(x/y)} to be one larger than
|
---|
775 | \code{(x-x\%y)/y} due to rounding. In such cases, Python returns
|
---|
776 | the latter result, in order to preserve that \code{divmod(x,y)[0]
|
---|
777 | * y + x \%{} y} be very close to \code{x}.
|
---|
778 | }.
|
---|
779 |
|
---|
780 | In addition to performing the modulo operation on numbers, the \code{\%}
|
---|
781 | operator is also overloaded by string and unicode objects to perform
|
---|
782 | string formatting (also known as interpolation). The syntax for string
|
---|
783 | formatting is described in the
|
---|
784 | \citetitle[../lib/typesseq-strings.html]{Python Library Reference},
|
---|
785 | section ``Sequence Types''.
|
---|
786 |
|
---|
787 | \deprecated{2.3}{The floor division operator, the modulo operator,
|
---|
788 | and the \function{divmod()} function are no longer defined for complex
|
---|
789 | numbers. Instead, convert to a floating point number using the
|
---|
790 | \function{abs()} function if appropriate.}
|
---|
791 |
|
---|
792 | The \code{+} (addition) operator yields the sum of its arguments.
|
---|
793 | The arguments must either both be numbers or both sequences of the
|
---|
794 | same type. In the former case, the numbers are converted to a common
|
---|
795 | type and then added together. In the latter case, the sequences are
|
---|
796 | concatenated.
|
---|
797 | \index{addition}
|
---|
798 |
|
---|
799 | The \code{-} (subtraction) operator yields the difference of its
|
---|
800 | arguments. The numeric arguments are first converted to a common
|
---|
801 | type.
|
---|
802 | \index{subtraction}
|
---|
803 |
|
---|
804 |
|
---|
805 | \section{Shifting operations\label{shifting}}
|
---|
806 | \indexii{shifting}{operation}
|
---|
807 |
|
---|
808 | The shifting operations have lower priority than the arithmetic
|
---|
809 | operations:
|
---|
810 |
|
---|
811 | \begin{productionlist}
|
---|
812 | % The empty groups below prevent conversion to guillemets.
|
---|
813 | \production{shift_expr}
|
---|
814 | {\token{a_expr}
|
---|
815 | | \token{shift_expr} ( "<{}<" | ">{}>" ) \token{a_expr}}
|
---|
816 | \end{productionlist}
|
---|
817 |
|
---|
818 | These operators accept plain or long integers as arguments. The
|
---|
819 | arguments are converted to a common type. They shift the first
|
---|
820 | argument to the left or right by the number of bits given by the
|
---|
821 | second argument.
|
---|
822 |
|
---|
823 | A right shift by \var{n} bits is defined as division by
|
---|
824 | \code{pow(2,\var{n})}. A left shift by \var{n} bits is defined as
|
---|
825 | multiplication with \code{pow(2,\var{n})}; for plain integers there is
|
---|
826 | no overflow check so in that case the operation drops bits and flips
|
---|
827 | the sign if the result is not less than \code{pow(2,31)} in absolute
|
---|
828 | value. Negative shift counts raise a \exception{ValueError}
|
---|
829 | exception.
|
---|
830 | \exindex{ValueError}
|
---|
831 |
|
---|
832 |
|
---|
833 | \section{Binary bit-wise operations\label{bitwise}}
|
---|
834 | \indexiii{binary}{bit-wise}{operation}
|
---|
835 |
|
---|
836 | Each of the three bitwise operations has a different priority level:
|
---|
837 |
|
---|
838 | \begin{productionlist}
|
---|
839 | \production{and_expr}
|
---|
840 | {\token{shift_expr} | \token{and_expr} "\&" \token{shift_expr}}
|
---|
841 | \production{xor_expr}
|
---|
842 | {\token{and_expr} | \token{xor_expr} "\textasciicircum" \token{and_expr}}
|
---|
843 | \production{or_expr}
|
---|
844 | {\token{xor_expr} | \token{or_expr} "|" \token{xor_expr}}
|
---|
845 | \end{productionlist}
|
---|
846 |
|
---|
847 | The \code{\&} operator yields the bitwise AND of its arguments, which
|
---|
848 | must be plain or long integers. The arguments are converted to a
|
---|
849 | common type.
|
---|
850 | \indexii{bit-wise}{and}
|
---|
851 |
|
---|
852 | The \code{\^} operator yields the bitwise XOR (exclusive OR) of its
|
---|
853 | arguments, which must be plain or long integers. The arguments are
|
---|
854 | converted to a common type.
|
---|
855 | \indexii{bit-wise}{xor}
|
---|
856 | \indexii{exclusive}{or}
|
---|
857 |
|
---|
858 | The \code{|} operator yields the bitwise (inclusive) OR of its
|
---|
859 | arguments, which must be plain or long integers. The arguments are
|
---|
860 | converted to a common type.
|
---|
861 | \indexii{bit-wise}{or}
|
---|
862 | \indexii{inclusive}{or}
|
---|
863 |
|
---|
864 |
|
---|
865 | \section{Comparisons\label{comparisons}}
|
---|
866 | \index{comparison}
|
---|
867 |
|
---|
868 | Unlike C, all comparison operations in Python have the same priority,
|
---|
869 | which is lower than that of any arithmetic, shifting or bitwise
|
---|
870 | operation. Also unlike C, expressions like \code{a < b < c} have the
|
---|
871 | interpretation that is conventional in mathematics:
|
---|
872 | \indexii{C}{language}
|
---|
873 |
|
---|
874 | \begin{productionlist}
|
---|
875 | \production{comparison}
|
---|
876 | {\token{or_expr} ( \token{comp_operator} \token{or_expr} )*}
|
---|
877 | \production{comp_operator}
|
---|
878 | {"<" | ">" | "==" | ">=" | "<=" | "<>" | "!="}
|
---|
879 | \productioncont{| "is" ["not"] | ["not"] "in"}
|
---|
880 | \end{productionlist}
|
---|
881 |
|
---|
882 | Comparisons yield boolean values: \code{True} or \code{False}.
|
---|
883 |
|
---|
884 | Comparisons can be chained arbitrarily, e.g., \code{x < y <= z} is
|
---|
885 | equivalent to \code{x < y and y <= z}, except that \code{y} is
|
---|
886 | evaluated only once (but in both cases \code{z} is not evaluated at all
|
---|
887 | when \code{x < y} is found to be false).
|
---|
888 | \indexii{chaining}{comparisons}
|
---|
889 |
|
---|
890 | Formally, if \var{a}, \var{b}, \var{c}, \ldots, \var{y}, \var{z} are
|
---|
891 | expressions and \var{opa}, \var{opb}, \ldots, \var{opy} are comparison
|
---|
892 | operators, then \var{a opa b opb c} \ldots \var{y opy z} is equivalent
|
---|
893 | to \var{a opa b} \keyword{and} \var{b opb c} \keyword{and} \ldots
|
---|
894 | \var{y opy z}, except that each expression is evaluated at most once.
|
---|
895 |
|
---|
896 | Note that \var{a opa b opb c} doesn't imply any kind of comparison
|
---|
897 | between \var{a} and \var{c}, so that, e.g., \code{x < y > z} is
|
---|
898 | perfectly legal (though perhaps not pretty).
|
---|
899 |
|
---|
900 | The forms \code{<>} and \code{!=} are equivalent; for consistency with
|
---|
901 | C, \code{!=} is preferred; where \code{!=} is mentioned below
|
---|
902 | \code{<>} is also accepted. The \code{<>} spelling is considered
|
---|
903 | obsolescent.
|
---|
904 |
|
---|
905 | The operators \code{<}, \code{>}, \code{==}, \code{>=}, \code{<=}, and
|
---|
906 | \code{!=} compare
|
---|
907 | the values of two objects. The objects need not have the same type.
|
---|
908 | If both are numbers, they are converted to a common type. Otherwise,
|
---|
909 | objects of different types \emph{always} compare unequal, and are
|
---|
910 | ordered consistently but arbitrarily. You can control comparison
|
---|
911 | behavior of objects of non-builtin types by defining a \code{__cmp__}
|
---|
912 | method or rich comparison methods like \code{__gt__}, described in
|
---|
913 | section~\ref{specialnames}.
|
---|
914 |
|
---|
915 | (This unusual definition of comparison was used to simplify the
|
---|
916 | definition of operations like sorting and the \keyword{in} and
|
---|
917 | \keyword{not in} operators. In the future, the comparison rules for
|
---|
918 | objects of different types are likely to change.)
|
---|
919 |
|
---|
920 | Comparison of objects of the same type depends on the type:
|
---|
921 |
|
---|
922 | \begin{itemize}
|
---|
923 |
|
---|
924 | \item
|
---|
925 | Numbers are compared arithmetically.
|
---|
926 |
|
---|
927 | \item
|
---|
928 | Strings are compared lexicographically using the numeric equivalents
|
---|
929 | (the result of the built-in function \function{ord()}) of their
|
---|
930 | characters. Unicode and 8-bit strings are fully interoperable in this
|
---|
931 | behavior.
|
---|
932 |
|
---|
933 | \item
|
---|
934 | Tuples and lists are compared lexicographically using comparison of
|
---|
935 | corresponding elements. This means that to compare equal, each
|
---|
936 | element must compare equal and the two sequences must be of the same
|
---|
937 | type and have the same length.
|
---|
938 |
|
---|
939 | If not equal, the sequences are ordered the same as their first
|
---|
940 | differing elements. For example, \code{cmp([1,2,x], [1,2,y])} returns
|
---|
941 | the same as \code{cmp(x,y)}. If the corresponding element does not
|
---|
942 | exist, the shorter sequence is ordered first (for example,
|
---|
943 | \code{[1,2] < [1,2,3]}).
|
---|
944 |
|
---|
945 | \item
|
---|
946 | Mappings (dictionaries) compare equal if and only if their sorted
|
---|
947 | (key, value) lists compare equal.\footnote{The implementation computes
|
---|
948 | this efficiently, without constructing lists or sorting.}
|
---|
949 | Outcomes other than equality are resolved consistently, but are not
|
---|
950 | otherwise defined.\footnote{Earlier versions of Python used
|
---|
951 | lexicographic comparison of the sorted (key, value) lists, but this
|
---|
952 | was very expensive for the common case of comparing for equality. An
|
---|
953 | even earlier version of Python compared dictionaries by identity only,
|
---|
954 | but this caused surprises because people expected to be able to test
|
---|
955 | a dictionary for emptiness by comparing it to \code{\{\}}.}
|
---|
956 |
|
---|
957 | \item
|
---|
958 | Most other objects of builtin types compare unequal unless they are
|
---|
959 | the same object;
|
---|
960 | the choice whether one object is considered smaller or larger than
|
---|
961 | another one is made arbitrarily but consistently within one
|
---|
962 | execution of a program.
|
---|
963 |
|
---|
964 | \end{itemize}
|
---|
965 |
|
---|
966 | The operators \keyword{in} and \keyword{not in} test for set
|
---|
967 | membership. \code{\var{x} in \var{s}} evaluates to true if \var{x}
|
---|
968 | is a member of the set \var{s}, and false otherwise. \code{\var{x}
|
---|
969 | not in \var{s}} returns the negation of \code{\var{x} in \var{s}}.
|
---|
970 | The set membership test has traditionally been bound to sequences; an
|
---|
971 | object is a member of a set if the set is a sequence and contains an
|
---|
972 | element equal to that object. However, it is possible for an object
|
---|
973 | to support membership tests without being a sequence. In particular,
|
---|
974 | dictionaries support membership testing as a nicer way of spelling
|
---|
975 | \code{\var{key} in \var{dict}}; other mapping types may follow suit.
|
---|
976 |
|
---|
977 | For the list and tuple types, \code{\var{x} in \var{y}} is true if and
|
---|
978 | only if there exists an index \var{i} such that
|
---|
979 | \code{\var{x} == \var{y}[\var{i}]} is true.
|
---|
980 |
|
---|
981 | For the Unicode and string types, \code{\var{x} in \var{y}} is true if
|
---|
982 | and only if \var{x} is a substring of \var{y}. An equivalent test is
|
---|
983 | \code{y.find(x) != -1}. Note, \var{x} and \var{y} need not be the
|
---|
984 | same type; consequently, \code{u'ab' in 'abc'} will return \code{True}.
|
---|
985 | Empty strings are always considered to be a substring of any other string,
|
---|
986 | so \code{"" in "abc"} will return \code{True}.
|
---|
987 | \versionchanged[Previously, \var{x} was required to be a string of
|
---|
988 | length \code{1}]{2.3}
|
---|
989 |
|
---|
990 | For user-defined classes which define the \method{__contains__()} method,
|
---|
991 | \code{\var{x} in \var{y}} is true if and only if
|
---|
992 | \code{\var{y}.__contains__(\var{x})} is true.
|
---|
993 |
|
---|
994 | For user-defined classes which do not define \method{__contains__()} and
|
---|
995 | do define \method{__getitem__()}, \code{\var{x} in \var{y}} is true if
|
---|
996 | and only if there is a non-negative integer index \var{i} such that
|
---|
997 | \code{\var{x} == \var{y}[\var{i}]}, and all lower integer indices
|
---|
998 | do not raise \exception{IndexError} exception. (If any other exception
|
---|
999 | is raised, it is as if \keyword{in} raised that exception).
|
---|
1000 |
|
---|
1001 | The operator \keyword{not in} is defined to have the inverse true value
|
---|
1002 | of \keyword{in}.
|
---|
1003 | \opindex{in}
|
---|
1004 | \opindex{not in}
|
---|
1005 | \indexii{membership}{test}
|
---|
1006 | \obindex{sequence}
|
---|
1007 |
|
---|
1008 | The operators \keyword{is} and \keyword{is not} test for object identity:
|
---|
1009 | \code{\var{x} is \var{y}} is true if and only if \var{x} and \var{y}
|
---|
1010 | are the same object. \code{\var{x} is not \var{y}} yields the inverse
|
---|
1011 | truth value.
|
---|
1012 | \opindex{is}
|
---|
1013 | \opindex{is not}
|
---|
1014 | \indexii{identity}{test}
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | \section{Boolean operations\label{Booleans}}
|
---|
1018 | \indexii{Boolean}{operation}
|
---|
1019 |
|
---|
1020 | Boolean operations have the lowest priority of all Python operations:
|
---|
1021 |
|
---|
1022 | \begin{productionlist}
|
---|
1023 | \production{expression}
|
---|
1024 | {\token{or_test} [\token{if} \token{or_test} \token{else}
|
---|
1025 | \token{test}] | \token{lambda_form}}
|
---|
1026 | \production{or_test}
|
---|
1027 | {\token{and_test} | \token{or_test} "or" \token{and_test}}
|
---|
1028 | \production{and_test}
|
---|
1029 | {\token{not_test} | \token{and_test} "and" \token{not_test}}
|
---|
1030 | \production{not_test}
|
---|
1031 | {\token{comparison} | "not" \token{not_test}}
|
---|
1032 | \end{productionlist}
|
---|
1033 |
|
---|
1034 | In the context of Boolean operations, and also when expressions are
|
---|
1035 | used by control flow statements, the following values are interpreted
|
---|
1036 | as false: \code{False}, \code{None}, numeric zero of all types, and empty
|
---|
1037 | strings and containers (including strings, tuples, lists, dictionaries,
|
---|
1038 | sets and frozensets). All other values are interpreted as true.
|
---|
1039 |
|
---|
1040 | The operator \keyword{not} yields \code{True} if its argument is false,
|
---|
1041 | \code{False} otherwise.
|
---|
1042 | \opindex{not}
|
---|
1043 |
|
---|
1044 | The expression \code{\var{x} if \var{C} else \var{y}} first evaluates
|
---|
1045 | \var{C} (\emph{not} \var{x}); if \var{C} is true, \var{x} is evaluated and
|
---|
1046 | its value is returned; otherwise, \var{y} is evaluated and its value is
|
---|
1047 | returned. \versionadded{2.5}
|
---|
1048 |
|
---|
1049 | The expression \code{\var{x} and \var{y}} first evaluates \var{x}; if
|
---|
1050 | \var{x} is false, its value is returned; otherwise, \var{y} is
|
---|
1051 | evaluated and the resulting value is returned.
|
---|
1052 | \opindex{and}
|
---|
1053 |
|
---|
1054 | The expression \code{\var{x} or \var{y}} first evaluates \var{x}; if
|
---|
1055 | \var{x} is true, its value is returned; otherwise, \var{y} is
|
---|
1056 | evaluated and the resulting value is returned.
|
---|
1057 | \opindex{or}
|
---|
1058 |
|
---|
1059 | (Note that neither \keyword{and} nor \keyword{or} restrict the value
|
---|
1060 | and type they return to \code{False} and \code{True}, but rather return the
|
---|
1061 | last evaluated argument.
|
---|
1062 | This is sometimes useful, e.g., if \code{s} is a string that should be
|
---|
1063 | replaced by a default value if it is empty, the expression
|
---|
1064 | \code{s or 'foo'} yields the desired value. Because \keyword{not} has to
|
---|
1065 | invent a value anyway, it does not bother to return a value of the
|
---|
1066 | same type as its argument, so e.g., \code{not 'foo'} yields \code{False},
|
---|
1067 | not \code{''}.)
|
---|
1068 |
|
---|
1069 | \section{Lambdas\label{lambdas}}
|
---|
1070 | \indexii{lambda}{expression}
|
---|
1071 | \indexii{lambda}{form}
|
---|
1072 | \indexii{anonymous}{function}
|
---|
1073 |
|
---|
1074 | \begin{productionlist}
|
---|
1075 | \production{lambda_form}
|
---|
1076 | {"lambda" [\token{parameter_list}]: \token{expression}}
|
---|
1077 | \end{productionlist}
|
---|
1078 |
|
---|
1079 | Lambda forms (lambda expressions) have the same syntactic position as
|
---|
1080 | expressions. They are a shorthand to create anonymous functions; the
|
---|
1081 | expression \code{lambda \var{arguments}: \var{expression}}
|
---|
1082 | yields a function object. The unnamed object behaves like a function
|
---|
1083 | object defined with
|
---|
1084 |
|
---|
1085 | \begin{verbatim}
|
---|
1086 | def name(arguments):
|
---|
1087 | return expression
|
---|
1088 | \end{verbatim}
|
---|
1089 |
|
---|
1090 | See section \ref{function} for the syntax of parameter lists. Note
|
---|
1091 | that functions created with lambda forms cannot contain statements.
|
---|
1092 | \label{lambda}
|
---|
1093 |
|
---|
1094 | \section{Expression lists\label{exprlists}}
|
---|
1095 | \indexii{expression}{list}
|
---|
1096 |
|
---|
1097 | \begin{productionlist}
|
---|
1098 | \production{expression_list}
|
---|
1099 | {\token{expression} ( "," \token{expression} )* [","]}
|
---|
1100 | \end{productionlist}
|
---|
1101 |
|
---|
1102 | An expression list containing at least one comma yields a
|
---|
1103 | tuple. The length of the tuple is the number of expressions in the
|
---|
1104 | list. The expressions are evaluated from left to right.
|
---|
1105 | \obindex{tuple}
|
---|
1106 |
|
---|
1107 | The trailing comma is required only to create a single tuple (a.k.a. a
|
---|
1108 | \emph{singleton}); it is optional in all other cases. A single
|
---|
1109 | expression without a trailing comma doesn't create a
|
---|
1110 | tuple, but rather yields the value of that expression.
|
---|
1111 | (To create an empty tuple, use an empty pair of parentheses:
|
---|
1112 | \code{()}.)
|
---|
1113 | \indexii{trailing}{comma}
|
---|
1114 |
|
---|
1115 | \section{Evaluation order\label{evalorder}}
|
---|
1116 | \indexii{evaluation}{order}
|
---|
1117 |
|
---|
1118 | Python evaluates expressions from left to right. Notice that while
|
---|
1119 | evaluating an assignment, the right-hand side is evaluated before
|
---|
1120 | the left-hand side.
|
---|
1121 |
|
---|
1122 | In the following lines, expressions will be evaluated in the
|
---|
1123 | arithmetic order of their suffixes:
|
---|
1124 |
|
---|
1125 | \begin{verbatim}
|
---|
1126 | expr1, expr2, expr3, expr4
|
---|
1127 | (expr1, expr2, expr3, expr4)
|
---|
1128 | {expr1: expr2, expr3: expr4}
|
---|
1129 | expr1 + expr2 * (expr3 - expr4)
|
---|
1130 | func(expr1, expr2, *expr3, **expr4)
|
---|
1131 | expr3, expr4 = expr1, expr2
|
---|
1132 | \end{verbatim}
|
---|
1133 |
|
---|
1134 | \section{Summary\label{summary}}
|
---|
1135 |
|
---|
1136 | The following table summarizes the operator
|
---|
1137 | precedences\indexii{operator}{precedence} in Python, from lowest
|
---|
1138 | precedence (least binding) to highest precedence (most binding).
|
---|
1139 | Operators in the same box have the same precedence. Unless the syntax
|
---|
1140 | is explicitly given, operators are binary. Operators in the same box
|
---|
1141 | group left to right (except for comparisons, including tests, which all
|
---|
1142 | have the same precedence and chain from left to right --- see section
|
---|
1143 | \ref{comparisons} -- and exponentiation, which groups from right to left).
|
---|
1144 |
|
---|
1145 | \begin{tableii}{c|l}{textrm}{Operator}{Description}
|
---|
1146 | \lineii{\keyword{lambda}} {Lambda expression}
|
---|
1147 | \hline
|
---|
1148 | \lineii{\keyword{or}} {Boolean OR}
|
---|
1149 | \hline
|
---|
1150 | \lineii{\keyword{and}} {Boolean AND}
|
---|
1151 | \hline
|
---|
1152 | \lineii{\keyword{not} \var{x}} {Boolean NOT}
|
---|
1153 | \hline
|
---|
1154 | \lineii{\keyword{in}, \keyword{not} \keyword{in}}{Membership tests}
|
---|
1155 | \lineii{\keyword{is}, \keyword{is not}}{Identity tests}
|
---|
1156 | \lineii{\code{<}, \code{<=}, \code{>}, \code{>=},
|
---|
1157 | \code{<>}, \code{!=}, \code{==}}
|
---|
1158 | {Comparisons}
|
---|
1159 | \hline
|
---|
1160 | \lineii{\code{|}} {Bitwise OR}
|
---|
1161 | \hline
|
---|
1162 | \lineii{\code{\^}} {Bitwise XOR}
|
---|
1163 | \hline
|
---|
1164 | \lineii{\code{\&}} {Bitwise AND}
|
---|
1165 | \hline
|
---|
1166 | \lineii{\code{<<}, \code{>>}} {Shifts}
|
---|
1167 | \hline
|
---|
1168 | \lineii{\code{+}, \code{-}}{Addition and subtraction}
|
---|
1169 | \hline
|
---|
1170 | \lineii{\code{*}, \code{/}, \code{\%}}
|
---|
1171 | {Multiplication, division, remainder}
|
---|
1172 | \hline
|
---|
1173 | \lineii{\code{+\var{x}}, \code{-\var{x}}} {Positive, negative}
|
---|
1174 | \lineii{\code{\~\var{x}}} {Bitwise not}
|
---|
1175 | \hline
|
---|
1176 | \lineii{\code{**}} {Exponentiation}
|
---|
1177 | \hline
|
---|
1178 | \lineii{\code{\var{x}.\var{attribute}}} {Attribute reference}
|
---|
1179 | \lineii{\code{\var{x}[\var{index}]}} {Subscription}
|
---|
1180 | \lineii{\code{\var{x}[\var{index}:\var{index}]}} {Slicing}
|
---|
1181 | \lineii{\code{\var{f}(\var{arguments}...)}} {Function call}
|
---|
1182 | \hline
|
---|
1183 | \lineii{\code{(\var{expressions}\ldots)}} {Binding or tuple display}
|
---|
1184 | \lineii{\code{[\var{expressions}\ldots]}} {List display}
|
---|
1185 | \lineii{\code{\{\var{key}:\var{datum}\ldots\}}}{Dictionary display}
|
---|
1186 | \lineii{\code{`\var{expressions}\ldots`}} {String conversion}
|
---|
1187 | \end{tableii}
|
---|