1 | \chapter{Data model\label{datamodel}}
|
---|
2 |
|
---|
3 |
|
---|
4 | \section{Objects, values and types\label{objects}}
|
---|
5 |
|
---|
6 | \dfn{Objects} are Python's abstraction for data. All data in a Python
|
---|
7 | program is represented by objects or by relations between objects.
|
---|
8 | (In a sense, and in conformance to Von Neumann's model of a
|
---|
9 | ``stored program computer,'' code is also represented by objects.)
|
---|
10 | \index{object}
|
---|
11 | \index{data}
|
---|
12 |
|
---|
13 | Every object has an identity, a type and a value. An object's
|
---|
14 | \emph{identity} never changes once it has been created; you may think
|
---|
15 | of it as the object's address in memory. The `\keyword{is}' operator
|
---|
16 | compares the identity of two objects; the
|
---|
17 | \function{id()}\bifuncindex{id} function returns an integer
|
---|
18 | representing its identity (currently implemented as its address).
|
---|
19 | An object's \dfn{type} is
|
---|
20 | also unchangeable.\footnote{Since Python 2.2, a gradual merging of
|
---|
21 | types and classes has been started that makes this and a few other
|
---|
22 | assertions made in this manual not 100\% accurate and complete:
|
---|
23 | for example, it \emph{is} now possible in some cases to change an
|
---|
24 | object's type, under certain controlled conditions. Until this manual
|
---|
25 | undergoes extensive revision, it must now be taken as authoritative
|
---|
26 | only regarding ``classic classes'', that are still the default, for
|
---|
27 | compatibility purposes, in Python 2.2 and 2.3. For more information,
|
---|
28 | see \url{http://www.python.org/doc/newstyle.html}.}
|
---|
29 | An object's type determines the operations that the object
|
---|
30 | supports (e.g., ``does it have a length?'') and also defines the
|
---|
31 | possible values for objects of that type. The
|
---|
32 | \function{type()}\bifuncindex{type} function returns an object's type
|
---|
33 | (which is an object itself). The \emph{value} of some
|
---|
34 | objects can change. Objects whose value can change are said to be
|
---|
35 | \emph{mutable}; objects whose value is unchangeable once they are
|
---|
36 | created are called \emph{immutable}.
|
---|
37 | (The value of an immutable container object that contains a reference
|
---|
38 | to a mutable object can change when the latter's value is changed;
|
---|
39 | however the container is still considered immutable, because the
|
---|
40 | collection of objects it contains cannot be changed. So, immutability
|
---|
41 | is not strictly the same as having an unchangeable value, it is more
|
---|
42 | subtle.)
|
---|
43 | An object's mutability is determined by its type; for instance,
|
---|
44 | numbers, strings and tuples are immutable, while dictionaries and
|
---|
45 | lists are mutable.
|
---|
46 | \index{identity of an object}
|
---|
47 | \index{value of an object}
|
---|
48 | \index{type of an object}
|
---|
49 | \index{mutable object}
|
---|
50 | \index{immutable object}
|
---|
51 |
|
---|
52 | Objects are never explicitly destroyed; however, when they become
|
---|
53 | unreachable they may be garbage-collected. An implementation is
|
---|
54 | allowed to postpone garbage collection or omit it altogether --- it is
|
---|
55 | a matter of implementation quality how garbage collection is
|
---|
56 | implemented, as long as no objects are collected that are still
|
---|
57 | reachable. (Implementation note: the current implementation uses a
|
---|
58 | reference-counting scheme with (optional) delayed detection of
|
---|
59 | cyclically linked garbage, which collects most objects as soon as they
|
---|
60 | become unreachable, but is not guaranteed to collect garbage
|
---|
61 | containing circular references. See the
|
---|
62 | \citetitle[../lib/module-gc.html]{Python Library Reference} for
|
---|
63 | information on controlling the collection of cyclic garbage.)
|
---|
64 | \index{garbage collection}
|
---|
65 | \index{reference counting}
|
---|
66 | \index{unreachable object}
|
---|
67 |
|
---|
68 | Note that the use of the implementation's tracing or debugging
|
---|
69 | facilities may keep objects alive that would normally be collectable.
|
---|
70 | Also note that catching an exception with a
|
---|
71 | `\keyword{try}...\keyword{except}' statement may keep objects alive.
|
---|
72 |
|
---|
73 | Some objects contain references to ``external'' resources such as open
|
---|
74 | files or windows. It is understood that these resources are freed
|
---|
75 | when the object is garbage-collected, but since garbage collection is
|
---|
76 | not guaranteed to happen, such objects also provide an explicit way to
|
---|
77 | release the external resource, usually a \method{close()} method.
|
---|
78 | Programs are strongly recommended to explicitly close such
|
---|
79 | objects. The `\keyword{try}...\keyword{finally}' statement provides
|
---|
80 | a convenient way to do this.
|
---|
81 |
|
---|
82 | Some objects contain references to other objects; these are called
|
---|
83 | \emph{containers}. Examples of containers are tuples, lists and
|
---|
84 | dictionaries. The references are part of a container's value. In
|
---|
85 | most cases, when we talk about the value of a container, we imply the
|
---|
86 | values, not the identities of the contained objects; however, when we
|
---|
87 | talk about the mutability of a container, only the identities of
|
---|
88 | the immediately contained objects are implied. So, if an immutable
|
---|
89 | container (like a tuple)
|
---|
90 | contains a reference to a mutable object, its value changes
|
---|
91 | if that mutable object is changed.
|
---|
92 | \index{container}
|
---|
93 |
|
---|
94 | Types affect almost all aspects of object behavior. Even the importance
|
---|
95 | of object identity is affected in some sense: for immutable types,
|
---|
96 | operations that compute new values may actually return a reference to
|
---|
97 | any existing object with the same type and value, while for mutable
|
---|
98 | objects this is not allowed. E.g., after
|
---|
99 | \samp{a = 1; b = 1},
|
---|
100 | \code{a} and \code{b} may or may not refer to the same object with the
|
---|
101 | value one, depending on the implementation, but after
|
---|
102 | \samp{c = []; d = []}, \code{c} and \code{d}
|
---|
103 | are guaranteed to refer to two different, unique, newly created empty
|
---|
104 | lists.
|
---|
105 | (Note that \samp{c = d = []} assigns the same object to both
|
---|
106 | \code{c} and \code{d}.)
|
---|
107 |
|
---|
108 |
|
---|
109 | \section{The standard type hierarchy\label{types}}
|
---|
110 |
|
---|
111 | Below is a list of the types that are built into Python. Extension
|
---|
112 | modules (written in C, Java, or other languages, depending on
|
---|
113 | the implementation) can define additional types. Future versions of
|
---|
114 | Python may add types to the type hierarchy (e.g., rational
|
---|
115 | numbers, efficiently stored arrays of integers, etc.).
|
---|
116 | \index{type}
|
---|
117 | \indexii{data}{type}
|
---|
118 | \indexii{type}{hierarchy}
|
---|
119 | \indexii{extension}{module}
|
---|
120 | \indexii{C}{language}
|
---|
121 |
|
---|
122 | Some of the type descriptions below contain a paragraph listing
|
---|
123 | `special attributes.' These are attributes that provide access to the
|
---|
124 | implementation and are not intended for general use. Their definition
|
---|
125 | may change in the future.
|
---|
126 | \index{attribute}
|
---|
127 | \indexii{special}{attribute}
|
---|
128 | \indexiii{generic}{special}{attribute}
|
---|
129 |
|
---|
130 | \begin{description}
|
---|
131 |
|
---|
132 | \item[None]
|
---|
133 | This type has a single value. There is a single object with this value.
|
---|
134 | This object is accessed through the built-in name \code{None}.
|
---|
135 | It is used to signify the absence of a value in many situations, e.g.,
|
---|
136 | it is returned from functions that don't explicitly return anything.
|
---|
137 | Its truth value is false.
|
---|
138 | \obindex{None}
|
---|
139 |
|
---|
140 | \item[NotImplemented]
|
---|
141 | This type has a single value. There is a single object with this value.
|
---|
142 | This object is accessed through the built-in name \code{NotImplemented}.
|
---|
143 | Numeric methods and rich comparison methods may return this value if
|
---|
144 | they do not implement the operation for the operands provided. (The
|
---|
145 | interpreter will then try the reflected operation, or some other
|
---|
146 | fallback, depending on the operator.) Its truth value is true.
|
---|
147 | \obindex{NotImplemented}
|
---|
148 |
|
---|
149 | \item[Ellipsis]
|
---|
150 | This type has a single value. There is a single object with this value.
|
---|
151 | This object is accessed through the built-in name \code{Ellipsis}.
|
---|
152 | It is used to indicate the presence of the \samp{...} syntax in a
|
---|
153 | slice. Its truth value is true.
|
---|
154 | \obindex{Ellipsis}
|
---|
155 |
|
---|
156 | \item[Numbers]
|
---|
157 | These are created by numeric literals and returned as results by
|
---|
158 | arithmetic operators and arithmetic built-in functions. Numeric
|
---|
159 | objects are immutable; once created their value never changes. Python
|
---|
160 | numbers are of course strongly related to mathematical numbers, but
|
---|
161 | subject to the limitations of numerical representation in computers.
|
---|
162 | \obindex{numeric}
|
---|
163 |
|
---|
164 | Python distinguishes between integers, floating point numbers, and
|
---|
165 | complex numbers:
|
---|
166 |
|
---|
167 | \begin{description}
|
---|
168 | \item[Integers]
|
---|
169 | These represent elements from the mathematical set of integers
|
---|
170 | (positive and negative).
|
---|
171 | \obindex{integer}
|
---|
172 |
|
---|
173 | There are three types of integers:
|
---|
174 |
|
---|
175 | \begin{description}
|
---|
176 |
|
---|
177 | \item[Plain integers]
|
---|
178 | These represent numbers in the range -2147483648 through 2147483647.
|
---|
179 | (The range may be larger on machines with a larger natural word
|
---|
180 | size, but not smaller.)
|
---|
181 | When the result of an operation would fall outside this range, the
|
---|
182 | result is normally returned as a long integer (in some cases, the
|
---|
183 | exception \exception{OverflowError} is raised instead).
|
---|
184 | For the purpose of shift and mask operations, integers are assumed to
|
---|
185 | have a binary, 2's complement notation using 32 or more bits, and
|
---|
186 | hiding no bits from the user (i.e., all 4294967296 different bit
|
---|
187 | patterns correspond to different values).
|
---|
188 | \obindex{plain integer}
|
---|
189 | \withsubitem{(built-in exception)}{\ttindex{OverflowError}}
|
---|
190 |
|
---|
191 | \item[Long integers]
|
---|
192 | These represent numbers in an unlimited range, subject to available
|
---|
193 | (virtual) memory only. For the purpose of shift and mask operations,
|
---|
194 | a binary representation is assumed, and negative numbers are
|
---|
195 | represented in a variant of 2's complement which gives the illusion of
|
---|
196 | an infinite string of sign bits extending to the left.
|
---|
197 | \obindex{long integer}
|
---|
198 |
|
---|
199 | \item[Booleans]
|
---|
200 | These represent the truth values False and True. The two objects
|
---|
201 | representing the values False and True are the only Boolean objects.
|
---|
202 | The Boolean type is a subtype of plain integers, and Boolean values
|
---|
203 | behave like the values 0 and 1, respectively, in almost all contexts,
|
---|
204 | the exception being that when converted to a string, the strings
|
---|
205 | \code{"False"} or \code{"True"} are returned, respectively.
|
---|
206 | \obindex{Boolean}
|
---|
207 | \ttindex{False}
|
---|
208 | \ttindex{True}
|
---|
209 |
|
---|
210 | \end{description} % Integers
|
---|
211 |
|
---|
212 | The rules for integer representation are intended to give the most
|
---|
213 | meaningful interpretation of shift and mask operations involving
|
---|
214 | negative integers and the least surprises when switching between the
|
---|
215 | plain and long integer domains. Any operation except left shift,
|
---|
216 | if it yields a result in the plain integer domain without causing
|
---|
217 | overflow, will yield the same result in the long integer domain or
|
---|
218 | when using mixed operands.
|
---|
219 | \indexii{integer}{representation}
|
---|
220 |
|
---|
221 | \item[Floating point numbers]
|
---|
222 | These represent machine-level double precision floating point numbers.
|
---|
223 | You are at the mercy of the underlying machine architecture (and
|
---|
224 | C or Java implementation) for the accepted range and handling of overflow.
|
---|
225 | Python does not support single-precision floating point numbers; the
|
---|
226 | savings in processor and memory usage that are usually the reason for using
|
---|
227 | these is dwarfed by the overhead of using objects in Python, so there
|
---|
228 | is no reason to complicate the language with two kinds of floating
|
---|
229 | point numbers.
|
---|
230 | \obindex{floating point}
|
---|
231 | \indexii{floating point}{number}
|
---|
232 | \indexii{C}{language}
|
---|
233 | \indexii{Java}{language}
|
---|
234 |
|
---|
235 | \item[Complex numbers]
|
---|
236 | These represent complex numbers as a pair of machine-level double
|
---|
237 | precision floating point numbers. The same caveats apply as for
|
---|
238 | floating point numbers. The real and imaginary parts of a complex
|
---|
239 | number \code{z} can be retrieved through the read-only attributes
|
---|
240 | \code{z.real} and \code{z.imag}.
|
---|
241 | \obindex{complex}
|
---|
242 | \indexii{complex}{number}
|
---|
243 |
|
---|
244 | \end{description} % Numbers
|
---|
245 |
|
---|
246 |
|
---|
247 | \item[Sequences]
|
---|
248 | These represent finite ordered sets indexed by non-negative numbers.
|
---|
249 | The built-in function \function{len()}\bifuncindex{len} returns the
|
---|
250 | number of items of a sequence.
|
---|
251 | When the length of a sequence is \var{n}, the
|
---|
252 | index set contains the numbers 0, 1, \ldots, \var{n}-1. Item
|
---|
253 | \var{i} of sequence \var{a} is selected by \code{\var{a}[\var{i}]}.
|
---|
254 | \obindex{sequence}
|
---|
255 | \index{index operation}
|
---|
256 | \index{item selection}
|
---|
257 | \index{subscription}
|
---|
258 |
|
---|
259 | Sequences also support slicing: \code{\var{a}[\var{i}:\var{j}]}
|
---|
260 | selects all items with index \var{k} such that \var{i} \code{<=}
|
---|
261 | \var{k} \code{<} \var{j}. When used as an expression, a slice is a
|
---|
262 | sequence of the same type. This implies that the index set is
|
---|
263 | renumbered so that it starts at 0.
|
---|
264 | \index{slicing}
|
---|
265 |
|
---|
266 | Some sequences also support ``extended slicing'' with a third ``step''
|
---|
267 | parameter: \code{\var{a}[\var{i}:\var{j}:\var{k}]} selects all items
|
---|
268 | of \var{a} with index \var{x} where \code{\var{x} = \var{i} +
|
---|
269 | \var{n}*\var{k}}, \var{n} \code{>=} \code{0} and \var{i} \code{<=}
|
---|
270 | \var{x} \code{<} \var{j}.
|
---|
271 | \index{extended slicing}
|
---|
272 |
|
---|
273 | Sequences are distinguished according to their mutability:
|
---|
274 |
|
---|
275 | \begin{description}
|
---|
276 |
|
---|
277 | \item[Immutable sequences]
|
---|
278 | An object of an immutable sequence type cannot change once it is
|
---|
279 | created. (If the object contains references to other objects,
|
---|
280 | these other objects may be mutable and may be changed; however,
|
---|
281 | the collection of objects directly referenced by an immutable object
|
---|
282 | cannot change.)
|
---|
283 | \obindex{immutable sequence}
|
---|
284 | \obindex{immutable}
|
---|
285 |
|
---|
286 | The following types are immutable sequences:
|
---|
287 |
|
---|
288 | \begin{description}
|
---|
289 |
|
---|
290 | \item[Strings]
|
---|
291 | The items of a string are characters. There is no separate
|
---|
292 | character type; a character is represented by a string of one item.
|
---|
293 | Characters represent (at least) 8-bit bytes. The built-in
|
---|
294 | functions \function{chr()}\bifuncindex{chr} and
|
---|
295 | \function{ord()}\bifuncindex{ord} convert between characters and
|
---|
296 | nonnegative integers representing the byte values. Bytes with the
|
---|
297 | values 0-127 usually represent the corresponding \ASCII{} values, but
|
---|
298 | the interpretation of values is up to the program. The string
|
---|
299 | data type is also used to represent arrays of bytes, e.g., to hold data
|
---|
300 | read from a file.
|
---|
301 | \obindex{string}
|
---|
302 | \index{character}
|
---|
303 | \index{byte}
|
---|
304 | \index{ASCII@\ASCII}
|
---|
305 |
|
---|
306 | (On systems whose native character set is not \ASCII, strings may use
|
---|
307 | EBCDIC in their internal representation, provided the functions
|
---|
308 | \function{chr()} and \function{ord()} implement a mapping between \ASCII{} and
|
---|
309 | EBCDIC, and string comparison preserves the \ASCII{} order.
|
---|
310 | Or perhaps someone can propose a better rule?)
|
---|
311 | \index{ASCII@\ASCII}
|
---|
312 | \index{EBCDIC}
|
---|
313 | \index{character set}
|
---|
314 | \indexii{string}{comparison}
|
---|
315 | \bifuncindex{chr}
|
---|
316 | \bifuncindex{ord}
|
---|
317 |
|
---|
318 | \item[Unicode]
|
---|
319 | The items of a Unicode object are Unicode code units. A Unicode code
|
---|
320 | unit is represented by a Unicode object of one item and can hold
|
---|
321 | either a 16-bit or 32-bit value representing a Unicode ordinal (the
|
---|
322 | maximum value for the ordinal is given in \code{sys.maxunicode}, and
|
---|
323 | depends on how Python is configured at compile time). Surrogate pairs
|
---|
324 | may be present in the Unicode object, and will be reported as two
|
---|
325 | separate items. The built-in functions
|
---|
326 | \function{unichr()}\bifuncindex{unichr} and
|
---|
327 | \function{ord()}\bifuncindex{ord} convert between code units and
|
---|
328 | nonnegative integers representing the Unicode ordinals as defined in
|
---|
329 | the Unicode Standard 3.0. Conversion from and to other encodings are
|
---|
330 | possible through the Unicode method \method{encode()} and the built-in
|
---|
331 | function \function{unicode()}.\bifuncindex{unicode}
|
---|
332 | \obindex{unicode}
|
---|
333 | \index{character}
|
---|
334 | \index{integer}
|
---|
335 | \index{Unicode}
|
---|
336 |
|
---|
337 | \item[Tuples]
|
---|
338 | The items of a tuple are arbitrary Python objects.
|
---|
339 | Tuples of two or more items are formed by comma-separated lists
|
---|
340 | of expressions. A tuple of one item (a `singleton') can be formed
|
---|
341 | by affixing a comma to an expression (an expression by itself does
|
---|
342 | not create a tuple, since parentheses must be usable for grouping of
|
---|
343 | expressions). An empty tuple can be formed by an empty pair of
|
---|
344 | parentheses.
|
---|
345 | \obindex{tuple}
|
---|
346 | \indexii{singleton}{tuple}
|
---|
347 | \indexii{empty}{tuple}
|
---|
348 |
|
---|
349 | \end{description} % Immutable sequences
|
---|
350 |
|
---|
351 | \item[Mutable sequences]
|
---|
352 | Mutable sequences can be changed after they are created. The
|
---|
353 | subscription and slicing notations can be used as the target of
|
---|
354 | assignment and \keyword{del} (delete) statements.
|
---|
355 | \obindex{mutable sequence}
|
---|
356 | \obindex{mutable}
|
---|
357 | \indexii{assignment}{statement}
|
---|
358 | \index{delete}
|
---|
359 | \stindex{del}
|
---|
360 | \index{subscription}
|
---|
361 | \index{slicing}
|
---|
362 |
|
---|
363 | There is currently a single intrinsic mutable sequence type:
|
---|
364 |
|
---|
365 | \begin{description}
|
---|
366 |
|
---|
367 | \item[Lists]
|
---|
368 | The items of a list are arbitrary Python objects. Lists are formed
|
---|
369 | by placing a comma-separated list of expressions in square brackets.
|
---|
370 | (Note that there are no special cases needed to form lists of length 0
|
---|
371 | or 1.)
|
---|
372 | \obindex{list}
|
---|
373 |
|
---|
374 | \end{description} % Mutable sequences
|
---|
375 |
|
---|
376 | The extension module \module{array}\refstmodindex{array} provides an
|
---|
377 | additional example of a mutable sequence type.
|
---|
378 |
|
---|
379 |
|
---|
380 | \end{description} % Sequences
|
---|
381 |
|
---|
382 | \item[Mappings]
|
---|
383 | These represent finite sets of objects indexed by arbitrary index sets.
|
---|
384 | The subscript notation \code{a[k]} selects the item indexed
|
---|
385 | by \code{k} from the mapping \code{a}; this can be used in
|
---|
386 | expressions and as the target of assignments or \keyword{del} statements.
|
---|
387 | The built-in function \function{len()} returns the number of items
|
---|
388 | in a mapping.
|
---|
389 | \bifuncindex{len}
|
---|
390 | \index{subscription}
|
---|
391 | \obindex{mapping}
|
---|
392 |
|
---|
393 | There is currently a single intrinsic mapping type:
|
---|
394 |
|
---|
395 | \begin{description}
|
---|
396 |
|
---|
397 | \item[Dictionaries]
|
---|
398 | These\obindex{dictionary} represent finite sets of objects indexed by
|
---|
399 | nearly arbitrary values. The only types of values not acceptable as
|
---|
400 | keys are values containing lists or dictionaries or other mutable
|
---|
401 | types that are compared by value rather than by object identity, the
|
---|
402 | reason being that the efficient implementation of dictionaries
|
---|
403 | requires a key's hash value to remain constant.
|
---|
404 | Numeric types used for keys obey the normal rules for numeric
|
---|
405 | comparison: if two numbers compare equal (e.g., \code{1} and
|
---|
406 | \code{1.0}) then they can be used interchangeably to index the same
|
---|
407 | dictionary entry.
|
---|
408 |
|
---|
409 | Dictionaries are mutable; they can be created by the
|
---|
410 | \code{\{...\}} notation (see section~\ref{dict}, ``Dictionary
|
---|
411 | Displays'').
|
---|
412 |
|
---|
413 | The extension modules \module{dbm}\refstmodindex{dbm},
|
---|
414 | \module{gdbm}\refstmodindex{gdbm}, and
|
---|
415 | \module{bsddb}\refstmodindex{bsddb} provide additional examples of
|
---|
416 | mapping types.
|
---|
417 |
|
---|
418 | \end{description} % Mapping types
|
---|
419 |
|
---|
420 | \item[Callable types]
|
---|
421 | These\obindex{callable} are the types to which the function call
|
---|
422 | operation (see section~\ref{calls}, ``Calls'') can be applied:
|
---|
423 | \indexii{function}{call}
|
---|
424 | \index{invocation}
|
---|
425 | \indexii{function}{argument}
|
---|
426 |
|
---|
427 | \begin{description}
|
---|
428 |
|
---|
429 | \item[User-defined functions]
|
---|
430 | A user-defined function object is created by a function definition
|
---|
431 | (see section~\ref{function}, ``Function definitions''). It should be
|
---|
432 | called with an argument
|
---|
433 | list containing the same number of items as the function's formal
|
---|
434 | parameter list.
|
---|
435 | \indexii{user-defined}{function}
|
---|
436 | \obindex{function}
|
---|
437 | \obindex{user-defined function}
|
---|
438 |
|
---|
439 | Special attributes:
|
---|
440 |
|
---|
441 | \begin{tableiii}{lll}{member}{Attribute}{Meaning}{}
|
---|
442 | \lineiii{func_doc}{The function's documentation string, or
|
---|
443 | \code{None} if unavailable}{Writable}
|
---|
444 |
|
---|
445 | \lineiii{__doc__}{Another way of spelling
|
---|
446 | \member{func_doc}}{Writable}
|
---|
447 |
|
---|
448 | \lineiii{func_name}{The function's name}{Writable}
|
---|
449 |
|
---|
450 | \lineiii{__name__}{Another way of spelling
|
---|
451 | \member{func_name}}{Writable}
|
---|
452 |
|
---|
453 | \lineiii{__module__}{The name of the module the function was defined
|
---|
454 | in, or \code{None} if unavailable.}{Writable}
|
---|
455 |
|
---|
456 | \lineiii{func_defaults}{A tuple containing default argument values
|
---|
457 | for those arguments that have defaults, or \code{None} if no
|
---|
458 | arguments have a default value}{Writable}
|
---|
459 |
|
---|
460 | \lineiii{func_code}{The code object representing the compiled
|
---|
461 | function body.}{Writable}
|
---|
462 |
|
---|
463 | \lineiii{func_globals}{A reference to the dictionary that holds the
|
---|
464 | function's global variables --- the global namespace of the module
|
---|
465 | in which the function was defined.}{Read-only}
|
---|
466 |
|
---|
467 | \lineiii{func_dict}{The namespace supporting arbitrary function
|
---|
468 | attributes.}{Writable}
|
---|
469 |
|
---|
470 | \lineiii{func_closure}{\code{None} or a tuple of cells that contain
|
---|
471 | bindings for the function's free variables.}{Read-only}
|
---|
472 | \end{tableiii}
|
---|
473 |
|
---|
474 | Most of the attributes labelled ``Writable'' check the type of the
|
---|
475 | assigned value.
|
---|
476 |
|
---|
477 | \versionchanged[\code{func_name} is now writable]{2.4}
|
---|
478 |
|
---|
479 | Function objects also support getting and setting arbitrary
|
---|
480 | attributes, which can be used, for example, to attach metadata to
|
---|
481 | functions. Regular attribute dot-notation is used to get and set such
|
---|
482 | attributes. \emph{Note that the current implementation only supports
|
---|
483 | function attributes on user-defined functions. Function attributes on
|
---|
484 | built-in functions may be supported in the future.}
|
---|
485 |
|
---|
486 | Additional information about a function's definition can be retrieved
|
---|
487 | from its code object; see the description of internal types below.
|
---|
488 |
|
---|
489 | \withsubitem{(function attribute)}{
|
---|
490 | \ttindex{func_doc}
|
---|
491 | \ttindex{__doc__}
|
---|
492 | \ttindex{__name__}
|
---|
493 | \ttindex{__module__}
|
---|
494 | \ttindex{__dict__}
|
---|
495 | \ttindex{func_defaults}
|
---|
496 | \ttindex{func_closure}
|
---|
497 | \ttindex{func_code}
|
---|
498 | \ttindex{func_globals}
|
---|
499 | \ttindex{func_dict}}
|
---|
500 | \indexii{global}{namespace}
|
---|
501 |
|
---|
502 | \item[User-defined methods]
|
---|
503 | A user-defined method object combines a class, a class instance (or
|
---|
504 | \code{None}) and any callable object (normally a user-defined
|
---|
505 | function).
|
---|
506 | \obindex{method}
|
---|
507 | \obindex{user-defined method}
|
---|
508 | \indexii{user-defined}{method}
|
---|
509 |
|
---|
510 | Special read-only attributes: \member{im_self} is the class instance
|
---|
511 | object, \member{im_func} is the function object;
|
---|
512 | \member{im_class} is the class of \member{im_self} for bound methods
|
---|
513 | or the class that asked for the method for unbound methods;
|
---|
514 | \member{__doc__} is the method's documentation (same as
|
---|
515 | \code{im_func.__doc__}); \member{__name__} is the method name (same as
|
---|
516 | \code{im_func.__name__}); \member{__module__} is the name of the
|
---|
517 | module the method was defined in, or \code{None} if unavailable.
|
---|
518 | \versionchanged[\member{im_self} used to refer to the class that
|
---|
519 | defined the method]{2.2}
|
---|
520 | \withsubitem{(method attribute)}{
|
---|
521 | \ttindex{__doc__}
|
---|
522 | \ttindex{__name__}
|
---|
523 | \ttindex{__module__}
|
---|
524 | \ttindex{im_func}
|
---|
525 | \ttindex{im_self}}
|
---|
526 |
|
---|
527 | Methods also support accessing (but not setting) the arbitrary
|
---|
528 | function attributes on the underlying function object.
|
---|
529 |
|
---|
530 | User-defined method objects may be created when getting an attribute
|
---|
531 | of a class (perhaps via an instance of that class), if that attribute
|
---|
532 | is a user-defined function object, an unbound user-defined method object,
|
---|
533 | or a class method object.
|
---|
534 | When the attribute is a user-defined method object, a new
|
---|
535 | method object is only created if the class from which it is being
|
---|
536 | retrieved is the same as, or a derived class of, the class stored
|
---|
537 | in the original method object; otherwise, the original method object
|
---|
538 | is used as it is.
|
---|
539 |
|
---|
540 | When a user-defined method object is created by retrieving
|
---|
541 | a user-defined function object from a class, its \member{im_self}
|
---|
542 | attribute is \code{None} and the method object is said to be unbound.
|
---|
543 | When one is created by retrieving a user-defined function object
|
---|
544 | from a class via one of its instances, its \member{im_self} attribute
|
---|
545 | is the instance, and the method object is said to be bound.
|
---|
546 | In either case, the new method's \member{im_class} attribute
|
---|
547 | is the class from which the retrieval takes place, and
|
---|
548 | its \member{im_func} attribute is the original function object.
|
---|
549 | \withsubitem{(method attribute)}{
|
---|
550 | \ttindex{im_class}\ttindex{im_func}\ttindex{im_self}}
|
---|
551 |
|
---|
552 | When a user-defined method object is created by retrieving another
|
---|
553 | method object from a class or instance, the behaviour is the same
|
---|
554 | as for a function object, except that the \member{im_func} attribute
|
---|
555 | of the new instance is not the original method object but its
|
---|
556 | \member{im_func} attribute.
|
---|
557 | \withsubitem{(method attribute)}{
|
---|
558 | \ttindex{im_func}}
|
---|
559 |
|
---|
560 | When a user-defined method object is created by retrieving a
|
---|
561 | class method object from a class or instance, its \member{im_self}
|
---|
562 | attribute is the class itself (the same as the \member{im_class}
|
---|
563 | attribute), and its \member{im_func} attribute is the function
|
---|
564 | object underlying the class method.
|
---|
565 | \withsubitem{(method attribute)}{
|
---|
566 | \ttindex{im_class}\ttindex{im_func}\ttindex{im_self}}
|
---|
567 |
|
---|
568 | When an unbound user-defined method object is called, the underlying
|
---|
569 | function (\member{im_func}) is called, with the restriction that the
|
---|
570 | first argument must be an instance of the proper class
|
---|
571 | (\member{im_class}) or of a derived class thereof.
|
---|
572 |
|
---|
573 | When a bound user-defined method object is called, the underlying
|
---|
574 | function (\member{im_func}) is called, inserting the class instance
|
---|
575 | (\member{im_self}) in front of the argument list. For instance, when
|
---|
576 | \class{C} is a class which contains a definition for a function
|
---|
577 | \method{f()}, and \code{x} is an instance of \class{C}, calling
|
---|
578 | \code{x.f(1)} is equivalent to calling \code{C.f(x, 1)}.
|
---|
579 |
|
---|
580 | When a user-defined method object is derived from a class method object,
|
---|
581 | the ``class instance'' stored in \member{im_self} will actually be the
|
---|
582 | class itself, so that calling either \code{x.f(1)} or \code{C.f(1)} is
|
---|
583 | equivalent to calling \code{f(C,1)} where \code{f} is the underlying
|
---|
584 | function.
|
---|
585 |
|
---|
586 | Note that the transformation from function object to (unbound or
|
---|
587 | bound) method object happens each time the attribute is retrieved from
|
---|
588 | the class or instance. In some cases, a fruitful optimization is to
|
---|
589 | assign the attribute to a local variable and call that local variable.
|
---|
590 | Also notice that this transformation only happens for user-defined
|
---|
591 | functions; other callable objects (and all non-callable objects) are
|
---|
592 | retrieved without transformation. It is also important to note that
|
---|
593 | user-defined functions which are attributes of a class instance are
|
---|
594 | not converted to bound methods; this \emph{only} happens when the
|
---|
595 | function is an attribute of the class.
|
---|
596 |
|
---|
597 | \item[Generator functions\index{generator!function}\index{generator!iterator}]
|
---|
598 | A function or method which uses the \keyword{yield} statement (see
|
---|
599 | section~\ref{yield}, ``The \keyword{yield} statement'') is called a
|
---|
600 | \dfn{generator function}. Such a function, when called, always
|
---|
601 | returns an iterator object which can be used to execute the body of
|
---|
602 | the function: calling the iterator's \method{next()} method will
|
---|
603 | cause the function to execute until it provides a value using the
|
---|
604 | \keyword{yield} statement. When the function executes a
|
---|
605 | \keyword{return} statement or falls off the end, a
|
---|
606 | \exception{StopIteration} exception is raised and the iterator will
|
---|
607 | have reached the end of the set of values to be returned.
|
---|
608 |
|
---|
609 | \item[Built-in functions]
|
---|
610 | A built-in function object is a wrapper around a C function. Examples
|
---|
611 | of built-in functions are \function{len()} and \function{math.sin()}
|
---|
612 | (\module{math} is a standard built-in module).
|
---|
613 | The number and type of the arguments are
|
---|
614 | determined by the C function.
|
---|
615 | Special read-only attributes: \member{__doc__} is the function's
|
---|
616 | documentation string, or \code{None} if unavailable; \member{__name__}
|
---|
617 | is the function's name; \member{__self__} is set to \code{None} (but see
|
---|
618 | the next item); \member{__module__} is the name of the module the
|
---|
619 | function was defined in or \code{None} if unavailable.
|
---|
620 | \obindex{built-in function}
|
---|
621 | \obindex{function}
|
---|
622 | \indexii{C}{language}
|
---|
623 |
|
---|
624 | \item[Built-in methods]
|
---|
625 | This is really a different disguise of a built-in function, this time
|
---|
626 | containing an object passed to the C function as an implicit extra
|
---|
627 | argument. An example of a built-in method is
|
---|
628 | \code{\var{alist}.append()}, assuming
|
---|
629 | \var{alist} is a list object.
|
---|
630 | In this case, the special read-only attribute \member{__self__} is set
|
---|
631 | to the object denoted by \var{list}.
|
---|
632 | \obindex{built-in method}
|
---|
633 | \obindex{method}
|
---|
634 | \indexii{built-in}{method}
|
---|
635 |
|
---|
636 | \item[Class Types]
|
---|
637 | Class types, or ``new-style classes,'' are callable. These objects
|
---|
638 | normally act as factories for new instances of themselves, but
|
---|
639 | variations are possible for class types that override
|
---|
640 | \method{__new__()}. The arguments of the call are passed to
|
---|
641 | \method{__new__()} and, in the typical case, to \method{__init__()} to
|
---|
642 | initialize the new instance.
|
---|
643 |
|
---|
644 | \item[Classic Classes]
|
---|
645 | Class objects are described below. When a class object is called,
|
---|
646 | a new class instance (also described below) is created and
|
---|
647 | returned. This implies a call to the class's \method{__init__()} method
|
---|
648 | if it has one. Any arguments are passed on to the \method{__init__()}
|
---|
649 | method. If there is no \method{__init__()} method, the class must be called
|
---|
650 | without arguments.
|
---|
651 | \withsubitem{(object method)}{\ttindex{__init__()}}
|
---|
652 | \obindex{class}
|
---|
653 | \obindex{class instance}
|
---|
654 | \obindex{instance}
|
---|
655 | \indexii{class object}{call}
|
---|
656 |
|
---|
657 | \item[Class instances]
|
---|
658 | Class instances are described below. Class instances are callable
|
---|
659 | only when the class has a \method{__call__()} method; \code{x(arguments)}
|
---|
660 | is a shorthand for \code{x.__call__(arguments)}.
|
---|
661 |
|
---|
662 | \end{description}
|
---|
663 |
|
---|
664 | \item[Modules]
|
---|
665 | Modules are imported by the \keyword{import} statement (see
|
---|
666 | section~\ref{import}, ``The \keyword{import} statement'').%
|
---|
667 | \stindex{import}\obindex{module}
|
---|
668 | A module object has a namespace implemented by a dictionary object
|
---|
669 | (this is the dictionary referenced by the func_globals attribute of
|
---|
670 | functions defined in the module). Attribute references are translated
|
---|
671 | to lookups in this dictionary, e.g., \code{m.x} is equivalent to
|
---|
672 | \code{m.__dict__["x"]}.
|
---|
673 | A module object does not contain the code object used to
|
---|
674 | initialize the module (since it isn't needed once the initialization
|
---|
675 | is done).
|
---|
676 |
|
---|
677 | Attribute assignment updates the module's namespace dictionary,
|
---|
678 | e.g., \samp{m.x = 1} is equivalent to \samp{m.__dict__["x"] = 1}.
|
---|
679 |
|
---|
680 | Special read-only attribute: \member{__dict__} is the module's
|
---|
681 | namespace as a dictionary object.
|
---|
682 | \withsubitem{(module attribute)}{\ttindex{__dict__}}
|
---|
683 |
|
---|
684 | Predefined (writable) attributes: \member{__name__}
|
---|
685 | is the module's name; \member{__doc__} is the
|
---|
686 | module's documentation string, or
|
---|
687 | \code{None} if unavailable; \member{__file__} is the pathname of the
|
---|
688 | file from which the module was loaded, if it was loaded from a file.
|
---|
689 | The \member{__file__} attribute is not present for C{} modules that are
|
---|
690 | statically linked into the interpreter; for extension modules loaded
|
---|
691 | dynamically from a shared library, it is the pathname of the shared
|
---|
692 | library file.
|
---|
693 | \withsubitem{(module attribute)}{
|
---|
694 | \ttindex{__name__}
|
---|
695 | \ttindex{__doc__}
|
---|
696 | \ttindex{__file__}}
|
---|
697 | \indexii{module}{namespace}
|
---|
698 |
|
---|
699 | \item[Classes]
|
---|
700 | Class objects are created by class definitions (see
|
---|
701 | section~\ref{class}, ``Class definitions'').
|
---|
702 | A class has a namespace implemented by a dictionary object.
|
---|
703 | Class attribute references are translated to
|
---|
704 | lookups in this dictionary,
|
---|
705 | e.g., \samp{C.x} is translated to \samp{C.__dict__["x"]}.
|
---|
706 | When the attribute name is not found
|
---|
707 | there, the attribute search continues in the base classes. The search
|
---|
708 | is depth-first, left-to-right in the order of occurrence in the
|
---|
709 | base class list.
|
---|
710 |
|
---|
711 | When a class attribute reference (for class \class{C}, say)
|
---|
712 | would yield a user-defined function object or
|
---|
713 | an unbound user-defined method object whose associated class is either
|
---|
714 | \class{C} or one of its base classes, it is transformed into an unbound
|
---|
715 | user-defined method object whose \member{im_class} attribute is~\class{C}.
|
---|
716 | When it would yield a class method object, it is transformed into
|
---|
717 | a bound user-defined method object whose \member{im_class} and
|
---|
718 | \member{im_self} attributes are both~\class{C}. When it would yield
|
---|
719 | a static method object, it is transformed into the object wrapped
|
---|
720 | by the static method object. See section~\ref{descriptors} for another
|
---|
721 | way in which attributes retrieved from a class may differ from those
|
---|
722 | actually contained in its \member{__dict__}.
|
---|
723 | \obindex{class}
|
---|
724 | \obindex{class instance}
|
---|
725 | \obindex{instance}
|
---|
726 | \indexii{class object}{call}
|
---|
727 | \index{container}
|
---|
728 | \obindex{dictionary}
|
---|
729 | \indexii{class}{attribute}
|
---|
730 |
|
---|
731 | Class attribute assignments update the class's dictionary, never the
|
---|
732 | dictionary of a base class.
|
---|
733 | \indexiii{class}{attribute}{assignment}
|
---|
734 |
|
---|
735 | A class object can be called (see above) to yield a class instance (see
|
---|
736 | below).
|
---|
737 | \indexii{class object}{call}
|
---|
738 |
|
---|
739 | Special attributes: \member{__name__} is the class name;
|
---|
740 | \member{__module__} is the module name in which the class was defined;
|
---|
741 | \member{__dict__} is the dictionary containing the class's namespace;
|
---|
742 | \member{__bases__} is a tuple (possibly empty or a singleton)
|
---|
743 | containing the base classes, in the order of their occurrence in the
|
---|
744 | base class list; \member{__doc__} is the class's documentation string,
|
---|
745 | or None if undefined.
|
---|
746 | \withsubitem{(class attribute)}{
|
---|
747 | \ttindex{__name__}
|
---|
748 | \ttindex{__module__}
|
---|
749 | \ttindex{__dict__}
|
---|
750 | \ttindex{__bases__}
|
---|
751 | \ttindex{__doc__}}
|
---|
752 |
|
---|
753 | \item[Class instances]
|
---|
754 | A class instance is created by calling a class object (see above).
|
---|
755 | A class instance has a namespace implemented as a dictionary which
|
---|
756 | is the first place in which
|
---|
757 | attribute references are searched. When an attribute is not found
|
---|
758 | there, and the instance's class has an attribute by that name,
|
---|
759 | the search continues with the class attributes. If a class attribute
|
---|
760 | is found that is a user-defined function object or an unbound
|
---|
761 | user-defined method object whose associated class is the class
|
---|
762 | (call it~\class{C}) of the instance for which the attribute reference
|
---|
763 | was initiated or one of its bases,
|
---|
764 | it is transformed into a bound user-defined method object whose
|
---|
765 | \member{im_class} attribute is~\class{C} and whose \member{im_self} attribute
|
---|
766 | is the instance. Static method and class method objects are also
|
---|
767 | transformed, as if they had been retrieved from class~\class{C};
|
---|
768 | see above under ``Classes''. See section~\ref{descriptors} for
|
---|
769 | another way in which attributes of a class retrieved via its
|
---|
770 | instances may differ from the objects actually stored in the
|
---|
771 | class's \member{__dict__}.
|
---|
772 | If no class attribute is found, and the object's class has a
|
---|
773 | \method{__getattr__()} method, that is called to satisfy the lookup.
|
---|
774 | \obindex{class instance}
|
---|
775 | \obindex{instance}
|
---|
776 | \indexii{class}{instance}
|
---|
777 | \indexii{class instance}{attribute}
|
---|
778 |
|
---|
779 | Attribute assignments and deletions update the instance's dictionary,
|
---|
780 | never a class's dictionary. If the class has a \method{__setattr__()} or
|
---|
781 | \method{__delattr__()} method, this is called instead of updating the
|
---|
782 | instance dictionary directly.
|
---|
783 | \indexiii{class instance}{attribute}{assignment}
|
---|
784 |
|
---|
785 | Class instances can pretend to be numbers, sequences, or mappings if
|
---|
786 | they have methods with certain special names. See
|
---|
787 | section~\ref{specialnames}, ``Special method names.''
|
---|
788 | \obindex{numeric}
|
---|
789 | \obindex{sequence}
|
---|
790 | \obindex{mapping}
|
---|
791 |
|
---|
792 | Special attributes: \member{__dict__} is the attribute
|
---|
793 | dictionary; \member{__class__} is the instance's class.
|
---|
794 | \withsubitem{(instance attribute)}{
|
---|
795 | \ttindex{__dict__}
|
---|
796 | \ttindex{__class__}}
|
---|
797 |
|
---|
798 | \item[Files]
|
---|
799 | A file\obindex{file} object represents an open file. File objects are
|
---|
800 | created by the \function{open()}\bifuncindex{open} built-in function,
|
---|
801 | and also by
|
---|
802 | \withsubitem{(in module os)}{\ttindex{popen()}}\function{os.popen()},
|
---|
803 | \function{os.fdopen()}, and the
|
---|
804 | \method{makefile()}\withsubitem{(socket method)}{\ttindex{makefile()}}
|
---|
805 | method of socket objects (and perhaps by other functions or methods
|
---|
806 | provided by extension modules). The objects
|
---|
807 | \ttindex{sys.stdin}\code{sys.stdin},
|
---|
808 | \ttindex{sys.stdout}\code{sys.stdout} and
|
---|
809 | \ttindex{sys.stderr}\code{sys.stderr} are initialized to file objects
|
---|
810 | corresponding to the interpreter's standard\index{stdio} input, output
|
---|
811 | and error streams. See the \citetitle[../lib/lib.html]{Python Library
|
---|
812 | Reference} for complete documentation of file objects.
|
---|
813 | \withsubitem{(in module sys)}{
|
---|
814 | \ttindex{stdin}
|
---|
815 | \ttindex{stdout}
|
---|
816 | \ttindex{stderr}}
|
---|
817 |
|
---|
818 |
|
---|
819 | \item[Internal types]
|
---|
820 | A few types used internally by the interpreter are exposed to the user.
|
---|
821 | Their definitions may change with future versions of the interpreter,
|
---|
822 | but they are mentioned here for completeness.
|
---|
823 | \index{internal type}
|
---|
824 | \index{types, internal}
|
---|
825 |
|
---|
826 | \begin{description}
|
---|
827 |
|
---|
828 | \item[Code objects]
|
---|
829 | Code objects represent \emph{byte-compiled} executable Python code, or
|
---|
830 | \emph{bytecode}.
|
---|
831 | The difference between a code
|
---|
832 | object and a function object is that the function object contains an
|
---|
833 | explicit reference to the function's globals (the module in which it
|
---|
834 | was defined), while a code object contains no context;
|
---|
835 | also the default argument values are stored in the function object,
|
---|
836 | not in the code object (because they represent values calculated at
|
---|
837 | run-time). Unlike function objects, code objects are immutable and
|
---|
838 | contain no references (directly or indirectly) to mutable objects.
|
---|
839 | \index{bytecode}
|
---|
840 | \obindex{code}
|
---|
841 |
|
---|
842 | Special read-only attributes: \member{co_name} gives the function
|
---|
843 | name; \member{co_argcount} is the number of positional arguments
|
---|
844 | (including arguments with default values); \member{co_nlocals} is the
|
---|
845 | number of local variables used by the function (including arguments);
|
---|
846 | \member{co_varnames} is a tuple containing the names of the local
|
---|
847 | variables (starting with the argument names); \member{co_cellvars} is
|
---|
848 | a tuple containing the names of local variables that are referenced by
|
---|
849 | nested functions; \member{co_freevars} is a tuple containing the names
|
---|
850 | of free variables; \member{co_code} is a string representing the
|
---|
851 | sequence of bytecode instructions;
|
---|
852 | \member{co_consts} is a tuple containing the literals used by the
|
---|
853 | bytecode; \member{co_names} is a tuple containing the names used by
|
---|
854 | the bytecode; \member{co_filename} is the filename from which the code
|
---|
855 | was compiled; \member{co_firstlineno} is the first line number of the
|
---|
856 | function; \member{co_lnotab} is a string encoding the mapping from
|
---|
857 | byte code offsets to line numbers (for details see the source code of
|
---|
858 | the interpreter); \member{co_stacksize} is the required stack size
|
---|
859 | (including local variables); \member{co_flags} is an integer encoding
|
---|
860 | a number of flags for the interpreter.
|
---|
861 |
|
---|
862 | \withsubitem{(code object attribute)}{
|
---|
863 | \ttindex{co_argcount}
|
---|
864 | \ttindex{co_code}
|
---|
865 | \ttindex{co_consts}
|
---|
866 | \ttindex{co_filename}
|
---|
867 | \ttindex{co_firstlineno}
|
---|
868 | \ttindex{co_flags}
|
---|
869 | \ttindex{co_lnotab}
|
---|
870 | \ttindex{co_name}
|
---|
871 | \ttindex{co_names}
|
---|
872 | \ttindex{co_nlocals}
|
---|
873 | \ttindex{co_stacksize}
|
---|
874 | \ttindex{co_varnames}
|
---|
875 | \ttindex{co_cellvars}
|
---|
876 | \ttindex{co_freevars}}
|
---|
877 |
|
---|
878 | The following flag bits are defined for \member{co_flags}: bit
|
---|
879 | \code{0x04} is set if the function uses the \samp{*arguments} syntax
|
---|
880 | to accept an arbitrary number of positional arguments; bit
|
---|
881 | \code{0x08} is set if the function uses the \samp{**keywords} syntax
|
---|
882 | to accept arbitrary keyword arguments; bit \code{0x20} is set if the
|
---|
883 | function is a generator.
|
---|
884 | \obindex{generator}
|
---|
885 |
|
---|
886 | Future feature declarations (\samp{from __future__ import division})
|
---|
887 | also use bits in \member{co_flags} to indicate whether a code object
|
---|
888 | was compiled with a particular feature enabled: bit \code{0x2000} is
|
---|
889 | set if the function was compiled with future division enabled; bits
|
---|
890 | \code{0x10} and \code{0x1000} were used in earlier versions of Python.
|
---|
891 |
|
---|
892 | Other bits in \member{co_flags} are reserved for internal use.
|
---|
893 |
|
---|
894 | If\index{documentation string} a code object represents a function,
|
---|
895 | the first item in
|
---|
896 | \member{co_consts} is the documentation string of the function, or
|
---|
897 | \code{None} if undefined.
|
---|
898 |
|
---|
899 | \item[Frame objects]
|
---|
900 | Frame objects represent execution frames. They may occur in traceback
|
---|
901 | objects (see below).
|
---|
902 | \obindex{frame}
|
---|
903 |
|
---|
904 | Special read-only attributes: \member{f_back} is to the previous
|
---|
905 | stack frame (towards the caller), or \code{None} if this is the bottom
|
---|
906 | stack frame; \member{f_code} is the code object being executed in this
|
---|
907 | frame; \member{f_locals} is the dictionary used to look up local
|
---|
908 | variables; \member{f_globals} is used for global variables;
|
---|
909 | \member{f_builtins} is used for built-in (intrinsic) names;
|
---|
910 | \member{f_restricted} is a flag indicating whether the function is
|
---|
911 | executing in restricted execution mode; \member{f_lasti} gives the
|
---|
912 | precise instruction (this is an index into the bytecode string of
|
---|
913 | the code object).
|
---|
914 | \withsubitem{(frame attribute)}{
|
---|
915 | \ttindex{f_back}
|
---|
916 | \ttindex{f_code}
|
---|
917 | \ttindex{f_globals}
|
---|
918 | \ttindex{f_locals}
|
---|
919 | \ttindex{f_lasti}
|
---|
920 | \ttindex{f_builtins}
|
---|
921 | \ttindex{f_restricted}}
|
---|
922 |
|
---|
923 | Special writable attributes: \member{f_trace}, if not \code{None}, is
|
---|
924 | a function called at the start of each source code line (this is used
|
---|
925 | by the debugger); \member{f_exc_type}, \member{f_exc_value},
|
---|
926 | \member{f_exc_traceback} represent the last exception raised in the
|
---|
927 | parent frame provided another exception was ever raised in the current
|
---|
928 | frame (in all other cases they are None); \member{f_lineno} is the
|
---|
929 | current line number of the frame --- writing to this from within a
|
---|
930 | trace function jumps to the given line (only for the bottom-most
|
---|
931 | frame). A debugger can implement a Jump command (aka Set Next
|
---|
932 | Statement) by writing to f_lineno.
|
---|
933 | \withsubitem{(frame attribute)}{
|
---|
934 | \ttindex{f_trace}
|
---|
935 | \ttindex{f_exc_type}
|
---|
936 | \ttindex{f_exc_value}
|
---|
937 | \ttindex{f_exc_traceback}
|
---|
938 | \ttindex{f_lineno}}
|
---|
939 |
|
---|
940 | \item[Traceback objects] \label{traceback}
|
---|
941 | Traceback objects represent a stack trace of an exception. A
|
---|
942 | traceback object is created when an exception occurs. When the search
|
---|
943 | for an exception handler unwinds the execution stack, at each unwound
|
---|
944 | level a traceback object is inserted in front of the current
|
---|
945 | traceback. When an exception handler is entered, the stack trace is
|
---|
946 | made available to the program.
|
---|
947 | (See section~\ref{try}, ``The \code{try} statement.'')
|
---|
948 | It is accessible as \code{sys.exc_traceback}, and also as the third
|
---|
949 | item of the tuple returned by \code{sys.exc_info()}. The latter is
|
---|
950 | the preferred interface, since it works correctly when the program is
|
---|
951 | using multiple threads.
|
---|
952 | When the program contains no suitable handler, the stack trace is written
|
---|
953 | (nicely formatted) to the standard error stream; if the interpreter is
|
---|
954 | interactive, it is also made available to the user as
|
---|
955 | \code{sys.last_traceback}.
|
---|
956 | \obindex{traceback}
|
---|
957 | \indexii{stack}{trace}
|
---|
958 | \indexii{exception}{handler}
|
---|
959 | \indexii{execution}{stack}
|
---|
960 | \withsubitem{(in module sys)}{
|
---|
961 | \ttindex{exc_info}
|
---|
962 | \ttindex{exc_traceback}
|
---|
963 | \ttindex{last_traceback}}
|
---|
964 | \ttindex{sys.exc_info}
|
---|
965 | \ttindex{sys.exc_traceback}
|
---|
966 | \ttindex{sys.last_traceback}
|
---|
967 |
|
---|
968 | Special read-only attributes: \member{tb_next} is the next level in the
|
---|
969 | stack trace (towards the frame where the exception occurred), or
|
---|
970 | \code{None} if there is no next level; \member{tb_frame} points to the
|
---|
971 | execution frame of the current level; \member{tb_lineno} gives the line
|
---|
972 | number where the exception occurred; \member{tb_lasti} indicates the
|
---|
973 | precise instruction. The line number and last instruction in the
|
---|
974 | traceback may differ from the line number of its frame object if the
|
---|
975 | exception occurred in a \keyword{try} statement with no matching
|
---|
976 | except clause or with a finally clause.
|
---|
977 | \withsubitem{(traceback attribute)}{
|
---|
978 | \ttindex{tb_next}
|
---|
979 | \ttindex{tb_frame}
|
---|
980 | \ttindex{tb_lineno}
|
---|
981 | \ttindex{tb_lasti}}
|
---|
982 | \stindex{try}
|
---|
983 |
|
---|
984 | \item[Slice objects]
|
---|
985 | Slice objects are used to represent slices when \emph{extended slice
|
---|
986 | syntax} is used. This is a slice using two colons, or multiple slices
|
---|
987 | or ellipses separated by commas, e.g., \code{a[i:j:step]}, \code{a[i:j,
|
---|
988 | k:l]}, or \code{a[..., i:j]}. They are also created by the built-in
|
---|
989 | \function{slice()}\bifuncindex{slice} function.
|
---|
990 |
|
---|
991 | Special read-only attributes: \member{start} is the lower bound;
|
---|
992 | \member{stop} is the upper bound; \member{step} is the step value; each is
|
---|
993 | \code{None} if omitted. These attributes can have any type.
|
---|
994 | \withsubitem{(slice object attribute)}{
|
---|
995 | \ttindex{start}
|
---|
996 | \ttindex{stop}
|
---|
997 | \ttindex{step}}
|
---|
998 |
|
---|
999 | Slice objects support one method:
|
---|
1000 |
|
---|
1001 | \begin{methoddesc}[slice]{indices}{self, length}
|
---|
1002 | This method takes a single integer argument \var{length} and computes
|
---|
1003 | information about the extended slice that the slice object would
|
---|
1004 | describe if applied to a sequence of \var{length} items. It returns a
|
---|
1005 | tuple of three integers; respectively these are the \var{start} and
|
---|
1006 | \var{stop} indices and the \var{step} or stride length of the slice.
|
---|
1007 | Missing or out-of-bounds indices are handled in a manner consistent
|
---|
1008 | with regular slices.
|
---|
1009 | \versionadded{2.3}
|
---|
1010 | \end{methoddesc}
|
---|
1011 |
|
---|
1012 | \item[Static method objects]
|
---|
1013 | Static method objects provide a way of defeating the transformation
|
---|
1014 | of function objects to method objects described above. A static method
|
---|
1015 | object is a wrapper around any other object, usually a user-defined
|
---|
1016 | method object. When a static method object is retrieved from a class
|
---|
1017 | or a class instance, the object actually returned is the wrapped object,
|
---|
1018 | which is not subject to any further transformation. Static method
|
---|
1019 | objects are not themselves callable, although the objects they
|
---|
1020 | wrap usually are. Static method objects are created by the built-in
|
---|
1021 | \function{staticmethod()} constructor.
|
---|
1022 |
|
---|
1023 | \item[Class method objects]
|
---|
1024 | A class method object, like a static method object, is a wrapper
|
---|
1025 | around another object that alters the way in which that object
|
---|
1026 | is retrieved from classes and class instances. The behaviour of
|
---|
1027 | class method objects upon such retrieval is described above,
|
---|
1028 | under ``User-defined methods''. Class method objects are created
|
---|
1029 | by the built-in \function{classmethod()} constructor.
|
---|
1030 |
|
---|
1031 | \end{description} % Internal types
|
---|
1032 |
|
---|
1033 | \end{description} % Types
|
---|
1034 |
|
---|
1035 | %=========================================================================
|
---|
1036 | \section{New-style and classic classes}
|
---|
1037 |
|
---|
1038 | Classes and instances come in two flavors: old-style or classic, and new-style.
|
---|
1039 |
|
---|
1040 | Up to Python 2.1, old-style classes were the only flavour available to the
|
---|
1041 | user. The concept of (old-style) class is unrelated to the concept of type: if
|
---|
1042 | \var{x} is an instance of an old-style class, then \code{x.__class__}
|
---|
1043 | designates the class of \var{x}, but \code{type(x)} is always \code{<type
|
---|
1044 | 'instance'>}. This reflects the fact that all old-style instances,
|
---|
1045 | independently of their class, are implemented with a single built-in type,
|
---|
1046 | called \code{instance}.
|
---|
1047 |
|
---|
1048 | New-style classes were introduced in Python 2.2 to unify classes and types. A
|
---|
1049 | new-style class neither more nor less than a user-defined type. If \var{x} is
|
---|
1050 | an instance of a new-style class, then \code{type(x)} is the same as
|
---|
1051 | \code{x.__class__}.
|
---|
1052 |
|
---|
1053 | The major motivation for introducing new-style classes is to provide a unified
|
---|
1054 | object model with a full meta-model. It also has a number of immediate
|
---|
1055 | benefits, like the ability to subclass most built-in types, or the introduction
|
---|
1056 | of "descriptors", which enable computed properties.
|
---|
1057 |
|
---|
1058 | For compatibility reasons, classes are still old-style by default. New-style
|
---|
1059 | classes are created by specifying another new-style class (i.e.\ a type) as a
|
---|
1060 | parent class, or the "top-level type" \class{object} if no other parent is
|
---|
1061 | needed. The behaviour of new-style classes differs from that of old-style
|
---|
1062 | classes in a number of important details in addition to what \function{type}
|
---|
1063 | returns. Some of these changes are fundamental to the new object model, like
|
---|
1064 | the way special methods are invoked. Others are "fixes" that could not be
|
---|
1065 | implemented before for compatibility concerns, like the method resolution order
|
---|
1066 | in case of multiple inheritance.
|
---|
1067 |
|
---|
1068 | This manual is not up-to-date with respect to new-style classes. For now,
|
---|
1069 | please see \url{http://www.python.org/doc/newstyle.html} for more information.
|
---|
1070 |
|
---|
1071 | The plan is to eventually drop old-style classes, leaving only the semantics of
|
---|
1072 | new-style classes. This change will probably only be feasible in Python 3.0.
|
---|
1073 | \index{class}{new-style}
|
---|
1074 | \index{class}{classic}
|
---|
1075 | \index{class}{old-style}
|
---|
1076 |
|
---|
1077 | %=========================================================================
|
---|
1078 | \section{Special method names\label{specialnames}}
|
---|
1079 |
|
---|
1080 | A class can implement certain operations that are invoked by special
|
---|
1081 | syntax (such as arithmetic operations or subscripting and slicing) by
|
---|
1082 | defining methods with special names.\indexii{operator}{overloading}
|
---|
1083 | This is Python's approach to \dfn{operator overloading}, allowing
|
---|
1084 | classes to define their own behavior with respect to language
|
---|
1085 | operators. For instance, if a class defines
|
---|
1086 | a method named \method{__getitem__()}, and \code{x} is an instance of
|
---|
1087 | this class, then \code{x[i]} is equivalent\footnote{This, and other
|
---|
1088 | statements, are only roughly true for instances of new-style
|
---|
1089 | classes.} to
|
---|
1090 | \code{x.__getitem__(i)}. Except where mentioned, attempts to execute
|
---|
1091 | an operation raise an exception when no appropriate method is defined.
|
---|
1092 | \withsubitem{(mapping object method)}{\ttindex{__getitem__()}}
|
---|
1093 |
|
---|
1094 | When implementing a class that emulates any built-in type, it is
|
---|
1095 | important that the emulation only be implemented to the degree that it
|
---|
1096 | makes sense for the object being modelled. For example, some
|
---|
1097 | sequences may work well with retrieval of individual elements, but
|
---|
1098 | extracting a slice may not make sense. (One example of this is the
|
---|
1099 | \class{NodeList} interface in the W3C's Document Object Model.)
|
---|
1100 |
|
---|
1101 |
|
---|
1102 | \subsection{Basic customization\label{customization}}
|
---|
1103 |
|
---|
1104 | \begin{methoddesc}[object]{__new__}{cls\optional{, \moreargs}}
|
---|
1105 | Called to create a new instance of class \var{cls}. \method{__new__()}
|
---|
1106 | is a static method (special-cased so you need not declare it as such)
|
---|
1107 | that takes the class of which an instance was requested as its first
|
---|
1108 | argument. The remaining arguments are those passed to the object
|
---|
1109 | constructor expression (the call to the class). The return value of
|
---|
1110 | \method{__new__()} should be the new object instance (usually an
|
---|
1111 | instance of \var{cls}).
|
---|
1112 |
|
---|
1113 | Typical implementations create a new instance of the class by invoking
|
---|
1114 | the superclass's \method{__new__()} method using
|
---|
1115 | \samp{super(\var{currentclass}, \var{cls}).__new__(\var{cls}[, ...])}
|
---|
1116 | with appropriate arguments and then modifying the newly-created instance
|
---|
1117 | as necessary before returning it.
|
---|
1118 |
|
---|
1119 | If \method{__new__()} returns an instance of \var{cls}, then the new
|
---|
1120 | instance's \method{__init__()} method will be invoked like
|
---|
1121 | \samp{__init__(\var{self}[, ...])}, where \var{self} is the new instance
|
---|
1122 | and the remaining arguments are the same as were passed to
|
---|
1123 | \method{__new__()}.
|
---|
1124 |
|
---|
1125 | If \method{__new__()} does not return an instance of \var{cls}, then the
|
---|
1126 | new instance's \method{__init__()} method will not be invoked.
|
---|
1127 |
|
---|
1128 | \method{__new__()} is intended mainly to allow subclasses of
|
---|
1129 | immutable types (like int, str, or tuple) to customize instance
|
---|
1130 | creation.
|
---|
1131 | \end{methoddesc}
|
---|
1132 |
|
---|
1133 | \begin{methoddesc}[object]{__init__}{self\optional{, \moreargs}}
|
---|
1134 | Called\indexii{class}{constructor} when the instance is created. The
|
---|
1135 | arguments are those passed to the class constructor expression. If a
|
---|
1136 | base class has an \method{__init__()} method, the derived class's
|
---|
1137 | \method{__init__()} method, if any, must explicitly call it to ensure proper
|
---|
1138 | initialization of the base class part of the instance; for example:
|
---|
1139 | \samp{BaseClass.__init__(\var{self}, [\var{args}...])}. As a special
|
---|
1140 | constraint on constructors, no value may be returned; doing so will
|
---|
1141 | cause a \exception{TypeError} to be raised at runtime.
|
---|
1142 | \end{methoddesc}
|
---|
1143 |
|
---|
1144 |
|
---|
1145 | \begin{methoddesc}[object]{__del__}{self}
|
---|
1146 | Called when the instance is about to be destroyed. This is also
|
---|
1147 | called a destructor\index{destructor}. If a base class
|
---|
1148 | has a \method{__del__()} method, the derived class's \method{__del__()}
|
---|
1149 | method, if any,
|
---|
1150 | must explicitly call it to ensure proper deletion of the base class
|
---|
1151 | part of the instance. Note that it is possible (though not recommended!)
|
---|
1152 | for the \method{__del__()}
|
---|
1153 | method to postpone destruction of the instance by creating a new
|
---|
1154 | reference to it. It may then be called at a later time when this new
|
---|
1155 | reference is deleted. It is not guaranteed that
|
---|
1156 | \method{__del__()} methods are called for objects that still exist when
|
---|
1157 | the interpreter exits.
|
---|
1158 | \stindex{del}
|
---|
1159 |
|
---|
1160 | \begin{notice}
|
---|
1161 | \samp{del x} doesn't directly call
|
---|
1162 | \code{x.__del__()} --- the former decrements the reference count for
|
---|
1163 | \code{x} by one, and the latter is only called when \code{x}'s reference
|
---|
1164 | count reaches zero. Some common situations that may prevent the
|
---|
1165 | reference count of an object from going to zero include: circular
|
---|
1166 | references between objects (e.g., a doubly-linked list or a tree data
|
---|
1167 | structure with parent and child pointers); a reference to the object
|
---|
1168 | on the stack frame of a function that caught an exception (the
|
---|
1169 | traceback stored in \code{sys.exc_traceback} keeps the stack frame
|
---|
1170 | alive); or a reference to the object on the stack frame that raised an
|
---|
1171 | unhandled exception in interactive mode (the traceback stored in
|
---|
1172 | \code{sys.last_traceback} keeps the stack frame alive). The first
|
---|
1173 | situation can only be remedied by explicitly breaking the cycles; the
|
---|
1174 | latter two situations can be resolved by storing \code{None} in
|
---|
1175 | \code{sys.exc_traceback} or \code{sys.last_traceback}. Circular
|
---|
1176 | references which are garbage are detected when the option cycle
|
---|
1177 | detector is enabled (it's on by default), but can only be cleaned up
|
---|
1178 | if there are no Python-level \method{__del__()} methods involved.
|
---|
1179 | Refer to the documentation for the \ulink{\module{gc}
|
---|
1180 | module}{../lib/module-gc.html} for more information about how
|
---|
1181 | \method{__del__()} methods are handled by the cycle detector,
|
---|
1182 | particularly the description of the \code{garbage} value.
|
---|
1183 | \end{notice}
|
---|
1184 |
|
---|
1185 | \begin{notice}[warning]
|
---|
1186 | Due to the precarious circumstances under which
|
---|
1187 | \method{__del__()} methods are invoked, exceptions that occur during their
|
---|
1188 | execution are ignored, and a warning is printed to \code{sys.stderr}
|
---|
1189 | instead. Also, when \method{__del__()} is invoked in response to a module
|
---|
1190 | being deleted (e.g., when execution of the program is done), other
|
---|
1191 | globals referenced by the \method{__del__()} method may already have been
|
---|
1192 | deleted. For this reason, \method{__del__()} methods should do the
|
---|
1193 | absolute minimum needed to maintain external invariants. Starting with
|
---|
1194 | version 1.5, Python guarantees that globals whose name begins with a single
|
---|
1195 | underscore are deleted from their module before other globals are deleted;
|
---|
1196 | if no other references to such globals exist, this may help in assuring that
|
---|
1197 | imported modules are still available at the time when the
|
---|
1198 | \method{__del__()} method is called.
|
---|
1199 | \end{notice}
|
---|
1200 | \end{methoddesc}
|
---|
1201 |
|
---|
1202 | \begin{methoddesc}[object]{__repr__}{self}
|
---|
1203 | Called by the \function{repr()}\bifuncindex{repr} built-in function
|
---|
1204 | and by string conversions (reverse quotes) to compute the ``official''
|
---|
1205 | string representation of an object. If at all possible, this should
|
---|
1206 | look like a valid Python expression that could be used to recreate an
|
---|
1207 | object with the same value (given an appropriate environment). If
|
---|
1208 | this is not possible, a string of the form \samp{<\var{...some useful
|
---|
1209 | description...}>} should be returned. The return value must be a
|
---|
1210 | string object.
|
---|
1211 | If a class defines \method{__repr__()} but not \method{__str__()},
|
---|
1212 | then \method{__repr__()} is also used when an ``informal'' string
|
---|
1213 | representation of instances of that class is required.
|
---|
1214 |
|
---|
1215 | This is typically used for debugging, so it is important that the
|
---|
1216 | representation is information-rich and unambiguous.
|
---|
1217 | \indexii{string}{conversion}
|
---|
1218 | \indexii{reverse}{quotes}
|
---|
1219 | \indexii{backward}{quotes}
|
---|
1220 | \index{back-quotes}
|
---|
1221 | \end{methoddesc}
|
---|
1222 |
|
---|
1223 | \begin{methoddesc}[object]{__str__}{self}
|
---|
1224 | Called by the \function{str()}\bifuncindex{str} built-in function and
|
---|
1225 | by the \keyword{print}\stindex{print} statement to compute the
|
---|
1226 | ``informal'' string representation of an object. This differs from
|
---|
1227 | \method{__repr__()} in that it does not have to be a valid Python
|
---|
1228 | expression: a more convenient or concise representation may be used
|
---|
1229 | instead. The return value must be a string object.
|
---|
1230 | \end{methoddesc}
|
---|
1231 |
|
---|
1232 | \begin{methoddesc}[object]{__lt__}{self, other}
|
---|
1233 | \methodline[object]{__le__}{self, other}
|
---|
1234 | \methodline[object]{__eq__}{self, other}
|
---|
1235 | \methodline[object]{__ne__}{self, other}
|
---|
1236 | \methodline[object]{__gt__}{self, other}
|
---|
1237 | \methodline[object]{__ge__}{self, other}
|
---|
1238 | \versionadded{2.1}
|
---|
1239 | These are the so-called ``rich comparison'' methods, and are called
|
---|
1240 | for comparison operators in preference to \method{__cmp__()} below.
|
---|
1241 | The correspondence between operator symbols and method names is as
|
---|
1242 | follows:
|
---|
1243 | \code{\var{x}<\var{y}} calls \code{\var{x}.__lt__(\var{y})},
|
---|
1244 | \code{\var{x}<=\var{y}} calls \code{\var{x}.__le__(\var{y})},
|
---|
1245 | \code{\var{x}==\var{y}} calls \code{\var{x}.__eq__(\var{y})},
|
---|
1246 | \code{\var{x}!=\var{y}} and \code{\var{x}<>\var{y}} call
|
---|
1247 | \code{\var{x}.__ne__(\var{y})},
|
---|
1248 | \code{\var{x}>\var{y}} calls \code{\var{x}.__gt__(\var{y})}, and
|
---|
1249 | \code{\var{x}>=\var{y}} calls \code{\var{x}.__ge__(\var{y})}.
|
---|
1250 | These methods can return any value, but if the comparison operator is
|
---|
1251 | used in a Boolean context, the return value should be interpretable as
|
---|
1252 | a Boolean value, else a \exception{TypeError} will be raised.
|
---|
1253 | By convention, \code{False} is used for false and \code{True} for true.
|
---|
1254 |
|
---|
1255 | There are no implied relationships among the comparison operators.
|
---|
1256 | The truth of \code{\var{x}==\var{y}} does not imply that \code{\var{x}!=\var{y}}
|
---|
1257 | is false. Accordingly, when defining \method{__eq__()}, one should also
|
---|
1258 | define \method{__ne__()} so that the operators will behave as expected.
|
---|
1259 |
|
---|
1260 | There are no reflected (swapped-argument) versions of these methods
|
---|
1261 | (to be used when the left argument does not support the operation but
|
---|
1262 | the right argument does); rather, \method{__lt__()} and
|
---|
1263 | \method{__gt__()} are each other's reflection, \method{__le__()} and
|
---|
1264 | \method{__ge__()} are each other's reflection, and \method{__eq__()}
|
---|
1265 | and \method{__ne__()} are their own reflection.
|
---|
1266 |
|
---|
1267 | Arguments to rich comparison methods are never coerced. A rich
|
---|
1268 | comparison method may return \code{NotImplemented} if it does not
|
---|
1269 | implement the operation for a given pair of arguments.
|
---|
1270 | \end{methoddesc}
|
---|
1271 |
|
---|
1272 | \begin{methoddesc}[object]{__cmp__}{self, other}
|
---|
1273 | Called by comparison operations if rich comparison (see above) is not
|
---|
1274 | defined. Should return a negative integer if \code{self < other},
|
---|
1275 | zero if \code{self == other}, a positive integer if \code{self >
|
---|
1276 | other}. If no \method{__cmp__()}, \method{__eq__()} or
|
---|
1277 | \method{__ne__()} operation is defined, class instances are compared
|
---|
1278 | by object identity (``address''). See also the description of
|
---|
1279 | \method{__hash__()} for some important notes on creating objects which
|
---|
1280 | support custom comparison operations and are usable as dictionary
|
---|
1281 | keys.
|
---|
1282 | (Note: the restriction that exceptions are not propagated by
|
---|
1283 | \method{__cmp__()} has been removed since Python 1.5.)
|
---|
1284 | \bifuncindex{cmp}
|
---|
1285 | \index{comparisons}
|
---|
1286 | \end{methoddesc}
|
---|
1287 |
|
---|
1288 | \begin{methoddesc}[object]{__rcmp__}{self, other}
|
---|
1289 | \versionchanged[No longer supported]{2.1}
|
---|
1290 | \end{methoddesc}
|
---|
1291 |
|
---|
1292 | \begin{methoddesc}[object]{__hash__}{self}
|
---|
1293 | Called for the key object for dictionary \obindex{dictionary}
|
---|
1294 | operations, and by the built-in function
|
---|
1295 | \function{hash()}\bifuncindex{hash}. Should return a 32-bit integer
|
---|
1296 | usable as a hash value
|
---|
1297 | for dictionary operations. The only required property is that objects
|
---|
1298 | which compare equal have the same hash value; it is advised to somehow
|
---|
1299 | mix together (e.g., using exclusive or) the hash values for the
|
---|
1300 | components of the object that also play a part in comparison of
|
---|
1301 | objects. If a class does not define a \method{__cmp__()} method it should
|
---|
1302 | not define a \method{__hash__()} operation either; if it defines
|
---|
1303 | \method{__cmp__()} or \method{__eq__()} but not \method{__hash__()},
|
---|
1304 | its instances will not be usable as dictionary keys. If a class
|
---|
1305 | defines mutable objects and implements a \method{__cmp__()} or
|
---|
1306 | \method{__eq__()} method, it should not implement \method{__hash__()},
|
---|
1307 | since the dictionary implementation requires that a key's hash value
|
---|
1308 | is immutable (if the object's hash value changes, it will be in the
|
---|
1309 | wrong hash bucket).
|
---|
1310 |
|
---|
1311 | \versionchanged[\method{__hash__()} may now also return a long
|
---|
1312 | integer object; the 32-bit integer is then derived from the hash
|
---|
1313 | of that object]{2.5}
|
---|
1314 |
|
---|
1315 | \withsubitem{(object method)}{\ttindex{__cmp__()}}
|
---|
1316 | \end{methoddesc}
|
---|
1317 |
|
---|
1318 | \begin{methoddesc}[object]{__nonzero__}{self}
|
---|
1319 | Called to implement truth value testing, and the built-in operation
|
---|
1320 | \code{bool()}; should return \code{False} or \code{True}, or their
|
---|
1321 | integer equivalents \code{0} or \code{1}.
|
---|
1322 | When this method is not defined, \method{__len__()} is
|
---|
1323 | called, if it is defined (see below). If a class defines neither
|
---|
1324 | \method{__len__()} nor \method{__nonzero__()}, all its instances are
|
---|
1325 | considered true.
|
---|
1326 | \withsubitem{(mapping object method)}{\ttindex{__len__()}}
|
---|
1327 | \end{methoddesc}
|
---|
1328 |
|
---|
1329 | \begin{methoddesc}[object]{__unicode__}{self}
|
---|
1330 | Called to implement \function{unicode()}\bifuncindex{unicode} builtin;
|
---|
1331 | should return a Unicode object. When this method is not defined, string
|
---|
1332 | conversion is attempted, and the result of string conversion is converted
|
---|
1333 | to Unicode using the system default encoding.
|
---|
1334 | \end{methoddesc}
|
---|
1335 |
|
---|
1336 |
|
---|
1337 | \subsection{Customizing attribute access\label{attribute-access}}
|
---|
1338 |
|
---|
1339 | The following methods can be defined to customize the meaning of
|
---|
1340 | attribute access (use of, assignment to, or deletion of \code{x.name})
|
---|
1341 | for class instances.
|
---|
1342 |
|
---|
1343 | \begin{methoddesc}[object]{__getattr__}{self, name}
|
---|
1344 | Called when an attribute lookup has not found the attribute in the
|
---|
1345 | usual places (i.e. it is not an instance attribute nor is it found in
|
---|
1346 | the class tree for \code{self}). \code{name} is the attribute name.
|
---|
1347 | This method should return the (computed) attribute value or raise an
|
---|
1348 | \exception{AttributeError} exception.
|
---|
1349 |
|
---|
1350 | Note that if the attribute is found through the normal mechanism,
|
---|
1351 | \method{__getattr__()} is not called. (This is an intentional
|
---|
1352 | asymmetry between \method{__getattr__()} and \method{__setattr__()}.)
|
---|
1353 | This is done both for efficiency reasons and because otherwise
|
---|
1354 | \method{__setattr__()} would have no way to access other attributes of
|
---|
1355 | the instance. Note that at least for instance variables, you can fake
|
---|
1356 | total control by not inserting any values in the instance attribute
|
---|
1357 | dictionary (but instead inserting them in another object). See the
|
---|
1358 | \method{__getattribute__()} method below for a way to actually get
|
---|
1359 | total control in new-style classes.
|
---|
1360 | \withsubitem{(object method)}{\ttindex{__setattr__()}}
|
---|
1361 | \end{methoddesc}
|
---|
1362 |
|
---|
1363 | \begin{methoddesc}[object]{__setattr__}{self, name, value}
|
---|
1364 | Called when an attribute assignment is attempted. This is called
|
---|
1365 | instead of the normal mechanism (i.e.\ store the value in the instance
|
---|
1366 | dictionary). \var{name} is the attribute name, \var{value} is the
|
---|
1367 | value to be assigned to it.
|
---|
1368 |
|
---|
1369 | If \method{__setattr__()} wants to assign to an instance attribute, it
|
---|
1370 | should not simply execute \samp{self.\var{name} = value} --- this
|
---|
1371 | would cause a recursive call to itself. Instead, it should insert the
|
---|
1372 | value in the dictionary of instance attributes, e.g.,
|
---|
1373 | \samp{self.__dict__[\var{name}] = value}. For new-style classes,
|
---|
1374 | rather than accessing the instance dictionary, it should call the base
|
---|
1375 | class method with the same name, for example,
|
---|
1376 | \samp{object.__setattr__(self, name, value)}.
|
---|
1377 | \withsubitem{(instance attribute)}{\ttindex{__dict__}}
|
---|
1378 | \end{methoddesc}
|
---|
1379 |
|
---|
1380 | \begin{methoddesc}[object]{__delattr__}{self, name}
|
---|
1381 | Like \method{__setattr__()} but for attribute deletion instead of
|
---|
1382 | assignment. This should only be implemented if \samp{del
|
---|
1383 | obj.\var{name}} is meaningful for the object.
|
---|
1384 | \end{methoddesc}
|
---|
1385 |
|
---|
1386 | \subsubsection{More attribute access for new-style classes \label{new-style-attribute-access}}
|
---|
1387 |
|
---|
1388 | The following methods only apply to new-style classes.
|
---|
1389 |
|
---|
1390 | \begin{methoddesc}[object]{__getattribute__}{self, name}
|
---|
1391 | Called unconditionally to implement attribute accesses for instances
|
---|
1392 | of the class. If the class also defines \method{__getattr__()}, the latter
|
---|
1393 | will not be called unless \method{__getattribute__()} either calls it
|
---|
1394 | explicitly or raises an \exception{AttributeError}.
|
---|
1395 | This method should return the (computed) attribute
|
---|
1396 | value or raise an \exception{AttributeError} exception.
|
---|
1397 | In order to avoid infinite recursion in this method, its
|
---|
1398 | implementation should always call the base class method with the same
|
---|
1399 | name to access any attributes it needs, for example,
|
---|
1400 | \samp{object.__getattribute__(self, name)}.
|
---|
1401 | \end{methoddesc}
|
---|
1402 |
|
---|
1403 | \subsubsection{Implementing Descriptors \label{descriptors}}
|
---|
1404 |
|
---|
1405 | The following methods only apply when an instance of the class
|
---|
1406 | containing the method (a so-called \emph{descriptor} class) appears in
|
---|
1407 | the class dictionary of another new-style class, known as the
|
---|
1408 | \emph{owner} class. In the examples below, ``the attribute'' refers to
|
---|
1409 | the attribute whose name is the key of the property in the owner
|
---|
1410 | class' \code{__dict__}. Descriptors can only be implemented as
|
---|
1411 | new-style classes themselves.
|
---|
1412 |
|
---|
1413 | \begin{methoddesc}[object]{__get__}{self, instance, owner}
|
---|
1414 | Called to get the attribute of the owner class (class attribute access)
|
---|
1415 | or of an instance of that class (instance attribute access).
|
---|
1416 | \var{owner} is always the owner class, while \var{instance} is the
|
---|
1417 | instance that the attribute was accessed through, or \code{None} when
|
---|
1418 | the attribute is accessed through the \var{owner}. This method should
|
---|
1419 | return the (computed) attribute value or raise an
|
---|
1420 | \exception{AttributeError} exception.
|
---|
1421 | \end{methoddesc}
|
---|
1422 |
|
---|
1423 | \begin{methoddesc}[object]{__set__}{self, instance, value}
|
---|
1424 | Called to set the attribute on an instance \var{instance} of the owner
|
---|
1425 | class to a new value, \var{value}.
|
---|
1426 | \end{methoddesc}
|
---|
1427 |
|
---|
1428 | \begin{methoddesc}[object]{__delete__}{self, instance}
|
---|
1429 | Called to delete the attribute on an instance \var{instance} of the
|
---|
1430 | owner class.
|
---|
1431 | \end{methoddesc}
|
---|
1432 |
|
---|
1433 |
|
---|
1434 | \subsubsection{Invoking Descriptors \label{descriptor-invocation}}
|
---|
1435 |
|
---|
1436 | In general, a descriptor is an object attribute with ``binding behavior'',
|
---|
1437 | one whose attribute access has been overridden by methods in the descriptor
|
---|
1438 | protocol: \method{__get__()}, \method{__set__()}, and \method{__delete__()}.
|
---|
1439 | If any of those methods are defined for an object, it is said to be a
|
---|
1440 | descriptor.
|
---|
1441 |
|
---|
1442 | The default behavior for attribute access is to get, set, or delete the
|
---|
1443 | attribute from an object's dictionary. For instance, \code{a.x} has a
|
---|
1444 | lookup chain starting with \code{a.__dict__['x']}, then
|
---|
1445 | \code{type(a).__dict__['x']}, and continuing
|
---|
1446 | through the base classes of \code{type(a)} excluding metaclasses.
|
---|
1447 |
|
---|
1448 | However, if the looked-up value is an object defining one of the descriptor
|
---|
1449 | methods, then Python may override the default behavior and invoke the
|
---|
1450 | descriptor method instead. Where this occurs in the precedence chain depends
|
---|
1451 | on which descriptor methods were defined and how they were called. Note that
|
---|
1452 | descriptors are only invoked for new style objects or classes
|
---|
1453 | (ones that subclass \class{object()} or \class{type()}).
|
---|
1454 |
|
---|
1455 | The starting point for descriptor invocation is a binding, \code{a.x}.
|
---|
1456 | How the arguments are assembled depends on \code{a}:
|
---|
1457 |
|
---|
1458 | \begin{itemize}
|
---|
1459 |
|
---|
1460 | \item[Direct Call] The simplest and least common call is when user code
|
---|
1461 | directly invokes a descriptor method: \code{x.__get__(a)}.
|
---|
1462 |
|
---|
1463 | \item[Instance Binding] If binding to a new-style object instance,
|
---|
1464 | \code{a.x} is transformed into the call:
|
---|
1465 | \code{type(a).__dict__['x'].__get__(a, type(a))}.
|
---|
1466 |
|
---|
1467 | \item[Class Binding] If binding to a new-style class, \code{A.x}
|
---|
1468 | is transformed into the call: \code{A.__dict__['x'].__get__(None, A)}.
|
---|
1469 |
|
---|
1470 | \item[Super Binding] If \code{a} is an instance of \class{super},
|
---|
1471 | then the binding \code{super(B, obj).m()} searches
|
---|
1472 | \code{obj.__class__.__mro__} for the base class \code{A} immediately
|
---|
1473 | preceding \code{B} and then invokes the descriptor with the call:
|
---|
1474 | \code{A.__dict__['m'].__get__(obj, A)}.
|
---|
1475 |
|
---|
1476 | \end{itemize}
|
---|
1477 |
|
---|
1478 | For instance bindings, the precedence of descriptor invocation depends
|
---|
1479 | on the which descriptor methods are defined. Data descriptors define
|
---|
1480 | both \method{__get__()} and \method{__set__()}. Non-data descriptors have
|
---|
1481 | just the \method{__get__()} method. Data descriptors always override
|
---|
1482 | a redefinition in an instance dictionary. In contrast, non-data
|
---|
1483 | descriptors can be overridden by instances.
|
---|
1484 |
|
---|
1485 | Python methods (including \function{staticmethod()} and \function{classmethod()})
|
---|
1486 | are implemented as non-data descriptors. Accordingly, instances can
|
---|
1487 | redefine and override methods. This allows individual instances to acquire
|
---|
1488 | behaviors that differ from other instances of the same class.
|
---|
1489 |
|
---|
1490 | The \function{property()} function is implemented as a data descriptor.
|
---|
1491 | Accordingly, instances cannot override the behavior of a property.
|
---|
1492 |
|
---|
1493 |
|
---|
1494 | \subsubsection{__slots__\label{slots}}
|
---|
1495 |
|
---|
1496 | By default, instances of both old and new-style classes have a dictionary
|
---|
1497 | for attribute storage. This wastes space for objects having very few instance
|
---|
1498 | variables. The space consumption can become acute when creating large numbers
|
---|
1499 | of instances.
|
---|
1500 |
|
---|
1501 | The default can be overridden by defining \var{__slots__} in a new-style class
|
---|
1502 | definition. The \var{__slots__} declaration takes a sequence of instance
|
---|
1503 | variables and reserves just enough space in each instance to hold a value
|
---|
1504 | for each variable. Space is saved because \var{__dict__} is not created for
|
---|
1505 | each instance.
|
---|
1506 |
|
---|
1507 | \begin{datadesc}{__slots__}
|
---|
1508 | This class variable can be assigned a string, iterable, or sequence of strings
|
---|
1509 | with variable names used by instances. If defined in a new-style class,
|
---|
1510 | \var{__slots__} reserves space for the declared variables
|
---|
1511 | and prevents the automatic creation of \var{__dict__} and \var{__weakref__}
|
---|
1512 | for each instance.
|
---|
1513 | \versionadded{2.2}
|
---|
1514 | \end{datadesc}
|
---|
1515 |
|
---|
1516 | \noindent
|
---|
1517 | Notes on using \var{__slots__}
|
---|
1518 |
|
---|
1519 | \begin{itemize}
|
---|
1520 |
|
---|
1521 | \item Without a \var{__dict__} variable, instances cannot be assigned new
|
---|
1522 | variables not listed in the \var{__slots__} definition. Attempts to assign
|
---|
1523 | to an unlisted variable name raises \exception{AttributeError}. If dynamic
|
---|
1524 | assignment of new variables is desired, then add \code{'__dict__'} to the
|
---|
1525 | sequence of strings in the \var{__slots__} declaration.
|
---|
1526 | \versionchanged[Previously, adding \code{'__dict__'} to the \var{__slots__}
|
---|
1527 | declaration would not enable the assignment of new attributes not
|
---|
1528 | specifically listed in the sequence of instance variable names]{2.3}
|
---|
1529 |
|
---|
1530 | \item Without a \var{__weakref__} variable for each instance, classes
|
---|
1531 | defining \var{__slots__} do not support weak references to its instances.
|
---|
1532 | If weak reference support is needed, then add \code{'__weakref__'} to the
|
---|
1533 | sequence of strings in the \var{__slots__} declaration.
|
---|
1534 | \versionchanged[Previously, adding \code{'__weakref__'} to the \var{__slots__}
|
---|
1535 | declaration would not enable support for weak references]{2.3}
|
---|
1536 |
|
---|
1537 | \item \var{__slots__} are implemented at the class level by creating
|
---|
1538 | descriptors (\ref{descriptors}) for each variable name. As a result,
|
---|
1539 | class attributes cannot be used to set default values for instance
|
---|
1540 | variables defined by \var{__slots__}; otherwise, the class attribute would
|
---|
1541 | overwrite the descriptor assignment.
|
---|
1542 |
|
---|
1543 | \item If a class defines a slot also defined in a base class, the instance
|
---|
1544 | variable defined by the base class slot is inaccessible (except by retrieving
|
---|
1545 | its descriptor directly from the base class). This renders the meaning of the
|
---|
1546 | program undefined. In the future, a check may be added to prevent this.
|
---|
1547 |
|
---|
1548 | \item The action of a \var{__slots__} declaration is limited to the class
|
---|
1549 | where it is defined. As a result, subclasses will have a \var{__dict__}
|
---|
1550 | unless they also define \var{__slots__}.
|
---|
1551 |
|
---|
1552 | \item \var{__slots__} do not work for classes derived from ``variable-length''
|
---|
1553 | built-in types such as \class{long}, \class{str} and \class{tuple}.
|
---|
1554 |
|
---|
1555 | \item Any non-string iterable may be assigned to \var{__slots__}.
|
---|
1556 | Mappings may also be used; however, in the future, special meaning may
|
---|
1557 | be assigned to the values corresponding to each key.
|
---|
1558 |
|
---|
1559 | \end{itemize}
|
---|
1560 |
|
---|
1561 |
|
---|
1562 | \subsection{Customizing class creation\label{metaclasses}}
|
---|
1563 |
|
---|
1564 | By default, new-style classes are constructed using \function{type()}.
|
---|
1565 | A class definition is read into a separate namespace and the value
|
---|
1566 | of class name is bound to the result of \code{type(name, bases, dict)}.
|
---|
1567 |
|
---|
1568 | When the class definition is read, if \var{__metaclass__} is defined
|
---|
1569 | then the callable assigned to it will be called instead of \function{type()}.
|
---|
1570 | The allows classes or functions to be written which monitor or alter the class
|
---|
1571 | creation process:
|
---|
1572 |
|
---|
1573 | \begin{itemize}
|
---|
1574 | \item Modifying the class dictionary prior to the class being created.
|
---|
1575 | \item Returning an instance of another class -- essentially performing
|
---|
1576 | the role of a factory function.
|
---|
1577 | \end{itemize}
|
---|
1578 |
|
---|
1579 | \begin{datadesc}{__metaclass__}
|
---|
1580 | This variable can be any callable accepting arguments for \code{name},
|
---|
1581 | \code{bases}, and \code{dict}. Upon class creation, the callable is
|
---|
1582 | used instead of the built-in \function{type()}.
|
---|
1583 | \versionadded{2.2}
|
---|
1584 | \end{datadesc}
|
---|
1585 |
|
---|
1586 | The appropriate metaclass is determined by the following precedence rules:
|
---|
1587 |
|
---|
1588 | \begin{itemize}
|
---|
1589 |
|
---|
1590 | \item If \code{dict['__metaclass__']} exists, it is used.
|
---|
1591 |
|
---|
1592 | \item Otherwise, if there is at least one base class, its metaclass is used
|
---|
1593 | (this looks for a \var{__class__} attribute first and if not found, uses its
|
---|
1594 | type).
|
---|
1595 |
|
---|
1596 | \item Otherwise, if a global variable named __metaclass__ exists, it is used.
|
---|
1597 |
|
---|
1598 | \item Otherwise, the old-style, classic metaclass (types.ClassType) is used.
|
---|
1599 |
|
---|
1600 | \end{itemize}
|
---|
1601 |
|
---|
1602 | The potential uses for metaclasses are boundless. Some ideas that have
|
---|
1603 | been explored including logging, interface checking, automatic delegation,
|
---|
1604 | automatic property creation, proxies, frameworks, and automatic resource
|
---|
1605 | locking/synchronization.
|
---|
1606 |
|
---|
1607 |
|
---|
1608 | \subsection{Emulating callable objects\label{callable-types}}
|
---|
1609 |
|
---|
1610 | \begin{methoddesc}[object]{__call__}{self\optional{, args...}}
|
---|
1611 | Called when the instance is ``called'' as a function; if this method
|
---|
1612 | is defined, \code{\var{x}(arg1, arg2, ...)} is a shorthand for
|
---|
1613 | \code{\var{x}.__call__(arg1, arg2, ...)}.
|
---|
1614 | \indexii{call}{instance}
|
---|
1615 | \end{methoddesc}
|
---|
1616 |
|
---|
1617 |
|
---|
1618 | \subsection{Emulating container types\label{sequence-types}}
|
---|
1619 |
|
---|
1620 | The following methods can be defined to implement container
|
---|
1621 | objects. Containers usually are sequences (such as lists or tuples)
|
---|
1622 | or mappings (like dictionaries), but can represent other containers as
|
---|
1623 | well. The first set of methods is used either to emulate a
|
---|
1624 | sequence or to emulate a mapping; the difference is that for a
|
---|
1625 | sequence, the allowable keys should be the integers \var{k} for which
|
---|
1626 | \code{0 <= \var{k} < \var{N}} where \var{N} is the length of the
|
---|
1627 | sequence, or slice objects, which define a range of items. (For backwards
|
---|
1628 | compatibility, the method \method{__getslice__()} (see below) can also be
|
---|
1629 | defined to handle simple, but not extended slices.) It is also recommended
|
---|
1630 | that mappings provide the methods \method{keys()}, \method{values()},
|
---|
1631 | \method{items()}, \method{has_key()}, \method{get()}, \method{clear()},
|
---|
1632 | \method{setdefault()}, \method{iterkeys()}, \method{itervalues()},
|
---|
1633 | \method{iteritems()}, \method{pop()}, \method{popitem()},
|
---|
1634 | \method{copy()}, and \method{update()} behaving similar to those for
|
---|
1635 | Python's standard dictionary objects. The \module{UserDict} module
|
---|
1636 | provides a \class{DictMixin} class to help create those methods
|
---|
1637 | from a base set of \method{__getitem__()}, \method{__setitem__()},
|
---|
1638 | \method{__delitem__()}, and \method{keys()}.
|
---|
1639 | Mutable sequences should provide
|
---|
1640 | methods \method{append()}, \method{count()}, \method{index()},
|
---|
1641 | \method{extend()},
|
---|
1642 | \method{insert()}, \method{pop()}, \method{remove()}, \method{reverse()}
|
---|
1643 | and \method{sort()}, like Python standard list objects. Finally,
|
---|
1644 | sequence types should implement addition (meaning concatenation) and
|
---|
1645 | multiplication (meaning repetition) by defining the methods
|
---|
1646 | \method{__add__()}, \method{__radd__()}, \method{__iadd__()},
|
---|
1647 | \method{__mul__()}, \method{__rmul__()} and \method{__imul__()} described
|
---|
1648 | below; they should not define \method{__coerce__()} or other numerical
|
---|
1649 | operators. It is recommended that both mappings and sequences
|
---|
1650 | implement the \method{__contains__()} method to allow efficient use of
|
---|
1651 | the \code{in} operator; for mappings, \code{in} should be equivalent
|
---|
1652 | of \method{has_key()}; for sequences, it should search through the
|
---|
1653 | values. It is further recommended that both mappings and sequences
|
---|
1654 | implement the \method{__iter__()} method to allow efficient iteration
|
---|
1655 | through the container; for mappings, \method{__iter__()} should be
|
---|
1656 | the same as \method{iterkeys()}; for sequences, it should iterate
|
---|
1657 | through the values.
|
---|
1658 | \withsubitem{(mapping object method)}{
|
---|
1659 | \ttindex{keys()}
|
---|
1660 | \ttindex{values()}
|
---|
1661 | \ttindex{items()}
|
---|
1662 | \ttindex{iterkeys()}
|
---|
1663 | \ttindex{itervalues()}
|
---|
1664 | \ttindex{iteritems()}
|
---|
1665 | \ttindex{has_key()}
|
---|
1666 | \ttindex{get()}
|
---|
1667 | \ttindex{setdefault()}
|
---|
1668 | \ttindex{pop()}
|
---|
1669 | \ttindex{popitem()}
|
---|
1670 | \ttindex{clear()}
|
---|
1671 | \ttindex{copy()}
|
---|
1672 | \ttindex{update()}
|
---|
1673 | \ttindex{__contains__()}}
|
---|
1674 | \withsubitem{(sequence object method)}{
|
---|
1675 | \ttindex{append()}
|
---|
1676 | \ttindex{count()}
|
---|
1677 | \ttindex{extend()}
|
---|
1678 | \ttindex{index()}
|
---|
1679 | \ttindex{insert()}
|
---|
1680 | \ttindex{pop()}
|
---|
1681 | \ttindex{remove()}
|
---|
1682 | \ttindex{reverse()}
|
---|
1683 | \ttindex{sort()}
|
---|
1684 | \ttindex{__add__()}
|
---|
1685 | \ttindex{__radd__()}
|
---|
1686 | \ttindex{__iadd__()}
|
---|
1687 | \ttindex{__mul__()}
|
---|
1688 | \ttindex{__rmul__()}
|
---|
1689 | \ttindex{__imul__()}
|
---|
1690 | \ttindex{__contains__()}
|
---|
1691 | \ttindex{__iter__()}}
|
---|
1692 | \withsubitem{(numeric object method)}{\ttindex{__coerce__()}}
|
---|
1693 |
|
---|
1694 | \begin{methoddesc}[container object]{__len__}{self}
|
---|
1695 | Called to implement the built-in function
|
---|
1696 | \function{len()}\bifuncindex{len}. Should return the length of the
|
---|
1697 | object, an integer \code{>=} 0. Also, an object that doesn't define a
|
---|
1698 | \method{__nonzero__()} method and whose \method{__len__()} method
|
---|
1699 | returns zero is considered to be false in a Boolean context.
|
---|
1700 | \withsubitem{(object method)}{\ttindex{__nonzero__()}}
|
---|
1701 | \end{methoddesc}
|
---|
1702 |
|
---|
1703 | \begin{methoddesc}[container object]{__getitem__}{self, key}
|
---|
1704 | Called to implement evaluation of \code{\var{self}[\var{key}]}.
|
---|
1705 | For sequence types, the accepted keys should be integers and slice
|
---|
1706 | objects.\obindex{slice} Note that
|
---|
1707 | the special interpretation of negative indexes (if the class wishes to
|
---|
1708 | emulate a sequence type) is up to the \method{__getitem__()} method.
|
---|
1709 | If \var{key} is of an inappropriate type, \exception{TypeError} may be
|
---|
1710 | raised; if of a value outside the set of indexes for the sequence
|
---|
1711 | (after any special interpretation of negative values),
|
---|
1712 | \exception{IndexError} should be raised.
|
---|
1713 | For mapping types, if \var{key} is missing (not in the container),
|
---|
1714 | \exception{KeyError} should be raised.
|
---|
1715 | \note{\keyword{for} loops expect that an
|
---|
1716 | \exception{IndexError} will be raised for illegal indexes to allow
|
---|
1717 | proper detection of the end of the sequence.}
|
---|
1718 | \end{methoddesc}
|
---|
1719 |
|
---|
1720 | \begin{methoddesc}[container object]{__setitem__}{self, key, value}
|
---|
1721 | Called to implement assignment to \code{\var{self}[\var{key}]}. Same
|
---|
1722 | note as for \method{__getitem__()}. This should only be implemented
|
---|
1723 | for mappings if the objects support changes to the values for keys, or
|
---|
1724 | if new keys can be added, or for sequences if elements can be
|
---|
1725 | replaced. The same exceptions should be raised for improper
|
---|
1726 | \var{key} values as for the \method{__getitem__()} method.
|
---|
1727 | \end{methoddesc}
|
---|
1728 |
|
---|
1729 | \begin{methoddesc}[container object]{__delitem__}{self, key}
|
---|
1730 | Called to implement deletion of \code{\var{self}[\var{key}]}. Same
|
---|
1731 | note as for \method{__getitem__()}. This should only be implemented
|
---|
1732 | for mappings if the objects support removal of keys, or for sequences
|
---|
1733 | if elements can be removed from the sequence. The same exceptions
|
---|
1734 | should be raised for improper \var{key} values as for the
|
---|
1735 | \method{__getitem__()} method.
|
---|
1736 | \end{methoddesc}
|
---|
1737 |
|
---|
1738 | \begin{methoddesc}[container object]{__iter__}{self}
|
---|
1739 | This method is called when an iterator is required for a container.
|
---|
1740 | This method should return a new iterator object that can iterate over
|
---|
1741 | all the objects in the container. For mappings, it should iterate
|
---|
1742 | over the keys of the container, and should also be made available as
|
---|
1743 | the method \method{iterkeys()}.
|
---|
1744 |
|
---|
1745 | Iterator objects also need to implement this method; they are required
|
---|
1746 | to return themselves. For more information on iterator objects, see
|
---|
1747 | ``\ulink{Iterator Types}{../lib/typeiter.html}'' in the
|
---|
1748 | \citetitle[../lib/lib.html]{Python Library Reference}.
|
---|
1749 | \end{methoddesc}
|
---|
1750 |
|
---|
1751 | The membership test operators (\keyword{in} and \keyword{not in}) are
|
---|
1752 | normally implemented as an iteration through a sequence. However,
|
---|
1753 | container objects can supply the following special method with a more
|
---|
1754 | efficient implementation, which also does not require the object be a
|
---|
1755 | sequence.
|
---|
1756 |
|
---|
1757 | \begin{methoddesc}[container object]{__contains__}{self, item}
|
---|
1758 | Called to implement membership test operators. Should return true if
|
---|
1759 | \var{item} is in \var{self}, false otherwise. For mapping objects,
|
---|
1760 | this should consider the keys of the mapping rather than the values or
|
---|
1761 | the key-item pairs.
|
---|
1762 | \end{methoddesc}
|
---|
1763 |
|
---|
1764 |
|
---|
1765 | \subsection{Additional methods for emulation of sequence types
|
---|
1766 | \label{sequence-methods}}
|
---|
1767 |
|
---|
1768 | The following optional methods can be defined to further emulate sequence
|
---|
1769 | objects. Immutable sequences methods should at most only define
|
---|
1770 | \method{__getslice__()}; mutable sequences might define all three
|
---|
1771 | methods.
|
---|
1772 |
|
---|
1773 | \begin{methoddesc}[sequence object]{__getslice__}{self, i, j}
|
---|
1774 | \deprecated{2.0}{Support slice objects as parameters to the
|
---|
1775 | \method{__getitem__()} method.}
|
---|
1776 | Called to implement evaluation of \code{\var{self}[\var{i}:\var{j}]}.
|
---|
1777 | The returned object should be of the same type as \var{self}. Note
|
---|
1778 | that missing \var{i} or \var{j} in the slice expression are replaced
|
---|
1779 | by zero or \code{sys.maxint}, respectively. If negative indexes are
|
---|
1780 | used in the slice, the length of the sequence is added to that index.
|
---|
1781 | If the instance does not implement the \method{__len__()} method, an
|
---|
1782 | \exception{AttributeError} is raised.
|
---|
1783 | No guarantee is made that indexes adjusted this way are not still
|
---|
1784 | negative. Indexes which are greater than the length of the sequence
|
---|
1785 | are not modified.
|
---|
1786 | If no \method{__getslice__()} is found, a slice
|
---|
1787 | object is created instead, and passed to \method{__getitem__()} instead.
|
---|
1788 | \end{methoddesc}
|
---|
1789 |
|
---|
1790 | \begin{methoddesc}[sequence object]{__setslice__}{self, i, j, sequence}
|
---|
1791 | Called to implement assignment to \code{\var{self}[\var{i}:\var{j}]}.
|
---|
1792 | Same notes for \var{i} and \var{j} as for \method{__getslice__()}.
|
---|
1793 |
|
---|
1794 | This method is deprecated. If no \method{__setslice__()} is found,
|
---|
1795 | or for extended slicing of the form
|
---|
1796 | \code{\var{self}[\var{i}:\var{j}:\var{k}]}, a
|
---|
1797 | slice object is created, and passed to \method{__setitem__()},
|
---|
1798 | instead of \method{__setslice__()} being called.
|
---|
1799 | \end{methoddesc}
|
---|
1800 |
|
---|
1801 | \begin{methoddesc}[sequence object]{__delslice__}{self, i, j}
|
---|
1802 | Called to implement deletion of \code{\var{self}[\var{i}:\var{j}]}.
|
---|
1803 | Same notes for \var{i} and \var{j} as for \method{__getslice__()}.
|
---|
1804 | This method is deprecated. If no \method{__delslice__()} is found,
|
---|
1805 | or for extended slicing of the form
|
---|
1806 | \code{\var{self}[\var{i}:\var{j}:\var{k}]}, a
|
---|
1807 | slice object is created, and passed to \method{__delitem__()},
|
---|
1808 | instead of \method{__delslice__()} being called.
|
---|
1809 | \end{methoddesc}
|
---|
1810 |
|
---|
1811 | Notice that these methods are only invoked when a single slice with a
|
---|
1812 | single colon is used, and the slice method is available. For slice
|
---|
1813 | operations involving extended slice notation, or in absence of the
|
---|
1814 | slice methods, \method{__getitem__()}, \method{__setitem__()} or
|
---|
1815 | \method{__delitem__()} is called with a slice object as argument.
|
---|
1816 |
|
---|
1817 | The following example demonstrate how to make your program or module
|
---|
1818 | compatible with earlier versions of Python (assuming that methods
|
---|
1819 | \method{__getitem__()}, \method{__setitem__()} and \method{__delitem__()}
|
---|
1820 | support slice objects as arguments):
|
---|
1821 |
|
---|
1822 | \begin{verbatim}
|
---|
1823 | class MyClass:
|
---|
1824 | ...
|
---|
1825 | def __getitem__(self, index):
|
---|
1826 | ...
|
---|
1827 | def __setitem__(self, index, value):
|
---|
1828 | ...
|
---|
1829 | def __delitem__(self, index):
|
---|
1830 | ...
|
---|
1831 |
|
---|
1832 | if sys.version_info < (2, 0):
|
---|
1833 | # They won't be defined if version is at least 2.0 final
|
---|
1834 |
|
---|
1835 | def __getslice__(self, i, j):
|
---|
1836 | return self[max(0, i):max(0, j):]
|
---|
1837 | def __setslice__(self, i, j, seq):
|
---|
1838 | self[max(0, i):max(0, j):] = seq
|
---|
1839 | def __delslice__(self, i, j):
|
---|
1840 | del self[max(0, i):max(0, j):]
|
---|
1841 | ...
|
---|
1842 | \end{verbatim}
|
---|
1843 |
|
---|
1844 | Note the calls to \function{max()}; these are necessary because of
|
---|
1845 | the handling of negative indices before the
|
---|
1846 | \method{__*slice__()} methods are called. When negative indexes are
|
---|
1847 | used, the \method{__*item__()} methods receive them as provided, but
|
---|
1848 | the \method{__*slice__()} methods get a ``cooked'' form of the index
|
---|
1849 | values. For each negative index value, the length of the sequence is
|
---|
1850 | added to the index before calling the method (which may still result
|
---|
1851 | in a negative index); this is the customary handling of negative
|
---|
1852 | indexes by the built-in sequence types, and the \method{__*item__()}
|
---|
1853 | methods are expected to do this as well. However, since they should
|
---|
1854 | already be doing that, negative indexes cannot be passed in; they must
|
---|
1855 | be constrained to the bounds of the sequence before being passed to
|
---|
1856 | the \method{__*item__()} methods.
|
---|
1857 | Calling \code{max(0, i)} conveniently returns the proper value.
|
---|
1858 |
|
---|
1859 |
|
---|
1860 | \subsection{Emulating numeric types\label{numeric-types}}
|
---|
1861 |
|
---|
1862 | The following methods can be defined to emulate numeric objects.
|
---|
1863 | Methods corresponding to operations that are not supported by the
|
---|
1864 | particular kind of number implemented (e.g., bitwise operations for
|
---|
1865 | non-integral numbers) should be left undefined.
|
---|
1866 |
|
---|
1867 | \begin{methoddesc}[numeric object]{__add__}{self, other}
|
---|
1868 | \methodline[numeric object]{__sub__}{self, other}
|
---|
1869 | \methodline[numeric object]{__mul__}{self, other}
|
---|
1870 | \methodline[numeric object]{__floordiv__}{self, other}
|
---|
1871 | \methodline[numeric object]{__mod__}{self, other}
|
---|
1872 | \methodline[numeric object]{__divmod__}{self, other}
|
---|
1873 | \methodline[numeric object]{__pow__}{self, other\optional{, modulo}}
|
---|
1874 | \methodline[numeric object]{__lshift__}{self, other}
|
---|
1875 | \methodline[numeric object]{__rshift__}{self, other}
|
---|
1876 | \methodline[numeric object]{__and__}{self, other}
|
---|
1877 | \methodline[numeric object]{__xor__}{self, other}
|
---|
1878 | \methodline[numeric object]{__or__}{self, other}
|
---|
1879 | These methods are
|
---|
1880 | called to implement the binary arithmetic operations (\code{+},
|
---|
1881 | \code{-}, \code{*}, \code{//}, \code{\%},
|
---|
1882 | \function{divmod()}\bifuncindex{divmod},
|
---|
1883 | \function{pow()}\bifuncindex{pow}, \code{**}, \code{<<},
|
---|
1884 | \code{>>}, \code{\&}, \code{\^}, \code{|}). For instance, to
|
---|
1885 | evaluate the expression \var{x}\code{+}\var{y}, where \var{x} is an
|
---|
1886 | instance of a class that has an \method{__add__()} method,
|
---|
1887 | \code{\var{x}.__add__(\var{y})} is called. The \method{__divmod__()}
|
---|
1888 | method should be the equivalent to using \method{__floordiv__()} and
|
---|
1889 | \method{__mod__()}; it should not be related to \method{__truediv__()}
|
---|
1890 | (described below). Note that
|
---|
1891 | \method{__pow__()} should be defined to accept an optional third
|
---|
1892 | argument if the ternary version of the built-in
|
---|
1893 | \function{pow()}\bifuncindex{pow} function is to be supported.
|
---|
1894 |
|
---|
1895 | If one of those methods does not support the operation with the
|
---|
1896 | supplied arguments, it should return \code{NotImplemented}.
|
---|
1897 | \end{methoddesc}
|
---|
1898 |
|
---|
1899 | \begin{methoddesc}[numeric object]{__div__}{self, other}
|
---|
1900 | \methodline[numeric object]{__truediv__}{self, other}
|
---|
1901 | The division operator (\code{/}) is implemented by these methods. The
|
---|
1902 | \method{__truediv__()} method is used when \code{__future__.division}
|
---|
1903 | is in effect, otherwise \method{__div__()} is used. If only one of
|
---|
1904 | these two methods is defined, the object will not support division in
|
---|
1905 | the alternate context; \exception{TypeError} will be raised instead.
|
---|
1906 | \end{methoddesc}
|
---|
1907 |
|
---|
1908 | \begin{methoddesc}[numeric object]{__radd__}{self, other}
|
---|
1909 | \methodline[numeric object]{__rsub__}{self, other}
|
---|
1910 | \methodline[numeric object]{__rmul__}{self, other}
|
---|
1911 | \methodline[numeric object]{__rdiv__}{self, other}
|
---|
1912 | \methodline[numeric object]{__rtruediv__}{self, other}
|
---|
1913 | \methodline[numeric object]{__rfloordiv__}{self, other}
|
---|
1914 | \methodline[numeric object]{__rmod__}{self, other}
|
---|
1915 | \methodline[numeric object]{__rdivmod__}{self, other}
|
---|
1916 | \methodline[numeric object]{__rpow__}{self, other}
|
---|
1917 | \methodline[numeric object]{__rlshift__}{self, other}
|
---|
1918 | \methodline[numeric object]{__rrshift__}{self, other}
|
---|
1919 | \methodline[numeric object]{__rand__}{self, other}
|
---|
1920 | \methodline[numeric object]{__rxor__}{self, other}
|
---|
1921 | \methodline[numeric object]{__ror__}{self, other}
|
---|
1922 | These methods are
|
---|
1923 | called to implement the binary arithmetic operations (\code{+},
|
---|
1924 | \code{-}, \code{*}, \code{/}, \code{\%},
|
---|
1925 | \function{divmod()}\bifuncindex{divmod},
|
---|
1926 | \function{pow()}\bifuncindex{pow}, \code{**}, \code{<<},
|
---|
1927 | \code{>>}, \code{\&}, \code{\^}, \code{|}) with reflected
|
---|
1928 | (swapped) operands. These functions are only called if the left
|
---|
1929 | operand does not support the corresponding operation and the
|
---|
1930 | operands are of different types.\footnote{
|
---|
1931 | For operands of the same type, it is assumed that if the
|
---|
1932 | non-reflected method (such as \method{__add__()}) fails the
|
---|
1933 | operation is not supported, which is why the reflected method
|
---|
1934 | is not called.}
|
---|
1935 | For instance, to evaluate the expression \var{x}\code{-}\var{y},
|
---|
1936 | where \var{y} is an instance of a class that has an
|
---|
1937 | \method{__rsub__()} method, \code{\var{y}.__rsub__(\var{x})}
|
---|
1938 | is called if \code{\var{x}.__sub__(\var{y})} returns
|
---|
1939 | \var{NotImplemented}.
|
---|
1940 |
|
---|
1941 | Note that ternary
|
---|
1942 | \function{pow()}\bifuncindex{pow} will not try calling
|
---|
1943 | \method{__rpow__()} (the coercion rules would become too
|
---|
1944 | complicated).
|
---|
1945 |
|
---|
1946 | \note{If the right operand's type is a subclass of the left operand's
|
---|
1947 | type and that subclass provides the reflected method for the
|
---|
1948 | operation, this method will be called before the left operand's
|
---|
1949 | non-reflected method. This behavior allows subclasses to
|
---|
1950 | override their ancestors' operations.}
|
---|
1951 | \end{methoddesc}
|
---|
1952 |
|
---|
1953 | \begin{methoddesc}[numeric object]{__iadd__}{self, other}
|
---|
1954 | \methodline[numeric object]{__isub__}{self, other}
|
---|
1955 | \methodline[numeric object]{__imul__}{self, other}
|
---|
1956 | \methodline[numeric object]{__idiv__}{self, other}
|
---|
1957 | \methodline[numeric object]{__itruediv__}{self, other}
|
---|
1958 | \methodline[numeric object]{__ifloordiv__}{self, other}
|
---|
1959 | \methodline[numeric object]{__imod__}{self, other}
|
---|
1960 | \methodline[numeric object]{__ipow__}{self, other\optional{, modulo}}
|
---|
1961 | \methodline[numeric object]{__ilshift__}{self, other}
|
---|
1962 | \methodline[numeric object]{__irshift__}{self, other}
|
---|
1963 | \methodline[numeric object]{__iand__}{self, other}
|
---|
1964 | \methodline[numeric object]{__ixor__}{self, other}
|
---|
1965 | \methodline[numeric object]{__ior__}{self, other}
|
---|
1966 | These methods are called to implement the augmented arithmetic
|
---|
1967 | operations (\code{+=}, \code{-=}, \code{*=}, \code{/=}, \code{\%=},
|
---|
1968 | \code{**=}, \code{<<=}, \code{>>=}, \code{\&=},
|
---|
1969 | \code{\textasciicircum=}, \code{|=}). These methods should attempt to do the
|
---|
1970 | operation in-place (modifying \var{self}) and return the result (which
|
---|
1971 | could be, but does not have to be, \var{self}). If a specific method
|
---|
1972 | is not defined, the augmented operation falls back to the normal
|
---|
1973 | methods. For instance, to evaluate the expression
|
---|
1974 | \var{x}\code{+=}\var{y}, where \var{x} is an instance of a class that
|
---|
1975 | has an \method{__iadd__()} method, \code{\var{x}.__iadd__(\var{y})} is
|
---|
1976 | called. If \var{x} is an instance of a class that does not define a
|
---|
1977 | \method{__iadd__()} method, \code{\var{x}.__add__(\var{y})} and
|
---|
1978 | \code{\var{y}.__radd__(\var{x})} are considered, as with the
|
---|
1979 | evaluation of \var{x}\code{+}\var{y}.
|
---|
1980 | \end{methoddesc}
|
---|
1981 |
|
---|
1982 | \begin{methoddesc}[numeric object]{__neg__}{self}
|
---|
1983 | \methodline[numeric object]{__pos__}{self}
|
---|
1984 | \methodline[numeric object]{__abs__}{self}
|
---|
1985 | \methodline[numeric object]{__invert__}{self}
|
---|
1986 | Called to implement the unary arithmetic operations (\code{-},
|
---|
1987 | \code{+}, \function{abs()}\bifuncindex{abs} and \code{\~{}}).
|
---|
1988 | \end{methoddesc}
|
---|
1989 |
|
---|
1990 | \begin{methoddesc}[numeric object]{__complex__}{self}
|
---|
1991 | \methodline[numeric object]{__int__}{self}
|
---|
1992 | \methodline[numeric object]{__long__}{self}
|
---|
1993 | \methodline[numeric object]{__float__}{self}
|
---|
1994 | Called to implement the built-in functions
|
---|
1995 | \function{complex()}\bifuncindex{complex},
|
---|
1996 | \function{int()}\bifuncindex{int}, \function{long()}\bifuncindex{long},
|
---|
1997 | and \function{float()}\bifuncindex{float}. Should return a value of
|
---|
1998 | the appropriate type.
|
---|
1999 | \end{methoddesc}
|
---|
2000 |
|
---|
2001 | \begin{methoddesc}[numeric object]{__oct__}{self}
|
---|
2002 | \methodline[numeric object]{__hex__}{self}
|
---|
2003 | Called to implement the built-in functions
|
---|
2004 | \function{oct()}\bifuncindex{oct} and
|
---|
2005 | \function{hex()}\bifuncindex{hex}. Should return a string value.
|
---|
2006 | \end{methoddesc}
|
---|
2007 |
|
---|
2008 | \begin{methoddesc}[numeric object]{__index__}{self}
|
---|
2009 | Called to implement \function{operator.index()}. Also called whenever
|
---|
2010 | Python needs an integer object (such as in slicing). Must return an
|
---|
2011 | integer (int or long).
|
---|
2012 | \versionadded{2.5}
|
---|
2013 | \end{methoddesc}
|
---|
2014 |
|
---|
2015 | \begin{methoddesc}[numeric object]{__coerce__}{self, other}
|
---|
2016 | Called to implement ``mixed-mode'' numeric arithmetic. Should either
|
---|
2017 | return a 2-tuple containing \var{self} and \var{other} converted to
|
---|
2018 | a common numeric type, or \code{None} if conversion is impossible. When
|
---|
2019 | the common type would be the type of \code{other}, it is sufficient to
|
---|
2020 | return \code{None}, since the interpreter will also ask the other
|
---|
2021 | object to attempt a coercion (but sometimes, if the implementation of
|
---|
2022 | the other type cannot be changed, it is useful to do the conversion to
|
---|
2023 | the other type here). A return value of \code{NotImplemented} is
|
---|
2024 | equivalent to returning \code{None}.
|
---|
2025 | \end{methoddesc}
|
---|
2026 |
|
---|
2027 | \subsection{Coercion rules\label{coercion-rules}}
|
---|
2028 |
|
---|
2029 | This section used to document the rules for coercion. As the language
|
---|
2030 | has evolved, the coercion rules have become hard to document
|
---|
2031 | precisely; documenting what one version of one particular
|
---|
2032 | implementation does is undesirable. Instead, here are some informal
|
---|
2033 | guidelines regarding coercion. In Python 3.0, coercion will not be
|
---|
2034 | supported.
|
---|
2035 |
|
---|
2036 | \begin{itemize}
|
---|
2037 |
|
---|
2038 | \item
|
---|
2039 |
|
---|
2040 | If the left operand of a \% operator is a string or Unicode object, no
|
---|
2041 | coercion takes place and the string formatting operation is invoked
|
---|
2042 | instead.
|
---|
2043 |
|
---|
2044 | \item
|
---|
2045 |
|
---|
2046 | It is no longer recommended to define a coercion operation.
|
---|
2047 | Mixed-mode operations on types that don't define coercion pass the
|
---|
2048 | original arguments to the operation.
|
---|
2049 |
|
---|
2050 | \item
|
---|
2051 |
|
---|
2052 | New-style classes (those derived from \class{object}) never invoke the
|
---|
2053 | \method{__coerce__()} method in response to a binary operator; the only
|
---|
2054 | time \method{__coerce__()} is invoked is when the built-in function
|
---|
2055 | \function{coerce()} is called.
|
---|
2056 |
|
---|
2057 | \item
|
---|
2058 |
|
---|
2059 | For most intents and purposes, an operator that returns
|
---|
2060 | \code{NotImplemented} is treated the same as one that is not
|
---|
2061 | implemented at all.
|
---|
2062 |
|
---|
2063 | \item
|
---|
2064 |
|
---|
2065 | Below, \method{__op__()} and \method{__rop__()} are used to signify
|
---|
2066 | the generic method names corresponding to an operator;
|
---|
2067 | \method{__iop__()} is used for the corresponding in-place operator. For
|
---|
2068 | example, for the operator `\code{+}', \method{__add__()} and
|
---|
2069 | \method{__radd__()} are used for the left and right variant of the
|
---|
2070 | binary operator, and \method{__iadd__()} for the in-place variant.
|
---|
2071 |
|
---|
2072 | \item
|
---|
2073 |
|
---|
2074 | For objects \var{x} and \var{y}, first \code{\var{x}.__op__(\var{y})}
|
---|
2075 | is tried. If this is not implemented or returns \code{NotImplemented},
|
---|
2076 | \code{\var{y}.__rop__(\var{x})} is tried. If this is also not
|
---|
2077 | implemented or returns \code{NotImplemented}, a \exception{TypeError}
|
---|
2078 | exception is raised. But see the following exception:
|
---|
2079 |
|
---|
2080 | \item
|
---|
2081 |
|
---|
2082 | Exception to the previous item: if the left operand is an instance of
|
---|
2083 | a built-in type or a new-style class, and the right operand is an instance
|
---|
2084 | of a proper subclass of that type or class and overrides the base's
|
---|
2085 | \method{__rop__()} method, the right operand's \method{__rop__()} method
|
---|
2086 | is tried \emph{before} the left operand's \method{__op__()} method.
|
---|
2087 |
|
---|
2088 | This is done so that a subclass can completely override binary operators.
|
---|
2089 | Otherwise, the left operand's \method{__op__()} method would always
|
---|
2090 | accept the right operand: when an instance of a given class is expected,
|
---|
2091 | an instance of a subclass of that class is always acceptable.
|
---|
2092 |
|
---|
2093 | \item
|
---|
2094 |
|
---|
2095 | When either operand type defines a coercion, this coercion is called
|
---|
2096 | before that type's \method{__op__()} or \method{__rop__()} method is
|
---|
2097 | called, but no sooner. If the coercion returns an object of a
|
---|
2098 | different type for the operand whose coercion is invoked, part of the
|
---|
2099 | process is redone using the new object.
|
---|
2100 |
|
---|
2101 | \item
|
---|
2102 |
|
---|
2103 | When an in-place operator (like `\code{+=}') is used, if the left
|
---|
2104 | operand implements \method{__iop__()}, it is invoked without any
|
---|
2105 | coercion. When the operation falls back to \method{__op__()} and/or
|
---|
2106 | \method{__rop__()}, the normal coercion rules apply.
|
---|
2107 |
|
---|
2108 | \item
|
---|
2109 |
|
---|
2110 | In \var{x}\code{+}\var{y}, if \var{x} is a sequence that implements
|
---|
2111 | sequence concatenation, sequence concatenation is invoked.
|
---|
2112 |
|
---|
2113 | \item
|
---|
2114 |
|
---|
2115 | In \var{x}\code{*}\var{y}, if one operator is a sequence that
|
---|
2116 | implements sequence repetition, and the other is an integer
|
---|
2117 | (\class{int} or \class{long}), sequence repetition is invoked.
|
---|
2118 |
|
---|
2119 | \item
|
---|
2120 |
|
---|
2121 | Rich comparisons (implemented by methods \method{__eq__()} and so on)
|
---|
2122 | never use coercion. Three-way comparison (implemented by
|
---|
2123 | \method{__cmp__()}) does use coercion under the same conditions as
|
---|
2124 | other binary operations use it.
|
---|
2125 |
|
---|
2126 | \item
|
---|
2127 |
|
---|
2128 | In the current implementation, the built-in numeric types \class{int},
|
---|
2129 | \class{long} and \class{float} do not use coercion; the type
|
---|
2130 | \class{complex} however does use it. The difference can become
|
---|
2131 | apparent when subclassing these types. Over time, the type
|
---|
2132 | \class{complex} may be fixed to avoid coercion. All these types
|
---|
2133 | implement a \method{__coerce__()} method, for use by the built-in
|
---|
2134 | \function{coerce()} function.
|
---|
2135 |
|
---|
2136 | \end{itemize}
|
---|
2137 |
|
---|
2138 | \subsection{With Statement Context Managers\label{context-managers}}
|
---|
2139 |
|
---|
2140 | \versionadded{2.5}
|
---|
2141 |
|
---|
2142 | A \dfn{context manager} is an object that defines the runtime
|
---|
2143 | context to be established when executing a \keyword{with}
|
---|
2144 | statement. The context manager handles the entry into,
|
---|
2145 | and the exit from, the desired runtime context for the execution
|
---|
2146 | of the block of code. Context managers are normally invoked using
|
---|
2147 | the \keyword{with} statement (described in section~\ref{with}), but
|
---|
2148 | can also be used by directly invoking their methods.
|
---|
2149 |
|
---|
2150 | \stindex{with}
|
---|
2151 | \index{context manager}
|
---|
2152 |
|
---|
2153 | Typical uses of context managers include saving and
|
---|
2154 | restoring various kinds of global state, locking and unlocking
|
---|
2155 | resources, closing opened files, etc.
|
---|
2156 |
|
---|
2157 | For more information on context managers, see
|
---|
2158 | ``\ulink{Context Types}{../lib/typecontextmanager.html}'' in the
|
---|
2159 | \citetitle[../lib/lib.html]{Python Library Reference}.
|
---|
2160 |
|
---|
2161 | \begin{methoddesc}[context manager]{__enter__}{self}
|
---|
2162 | Enter the runtime context related to this object. The \keyword{with}
|
---|
2163 | statement will bind this method's return value to the target(s)
|
---|
2164 | specified in the \keyword{as} clause of the statement, if any.
|
---|
2165 | \end{methoddesc}
|
---|
2166 |
|
---|
2167 | \begin{methoddesc}[context manager]{__exit__}
|
---|
2168 | {self, exc_type, exc_value, traceback}
|
---|
2169 | Exit the runtime context related to this object. The parameters
|
---|
2170 | describe the exception that caused the context to be exited. If
|
---|
2171 | the context was exited without an exception, all three arguments
|
---|
2172 | will be \constant{None}.
|
---|
2173 |
|
---|
2174 | If an exception is supplied, and the method wishes to suppress the
|
---|
2175 | exception (i.e., prevent it from being propagated), it should return a
|
---|
2176 | true value. Otherwise, the exception will be processed normally upon
|
---|
2177 | exit from this method.
|
---|
2178 |
|
---|
2179 | Note that \method{__exit__} methods should not reraise the passed-in
|
---|
2180 | exception; this is the caller's responsibility.
|
---|
2181 | \end{methoddesc}
|
---|
2182 |
|
---|
2183 | \begin{seealso}
|
---|
2184 | \seepep{0343}{The "with" statement}
|
---|
2185 | {The specification, background, and examples for the
|
---|
2186 | Python \keyword{with} statement.}
|
---|
2187 | \end{seealso}
|
---|
2188 |
|
---|