1 | \section{\module{timeit} ---
|
---|
2 | Measure execution time of small code snippets}
|
---|
3 |
|
---|
4 | \declaremodule{standard}{timeit}
|
---|
5 | \modulesynopsis{Measure the execution time of small code snippets.}
|
---|
6 |
|
---|
7 | \versionadded{2.3}
|
---|
8 | \index{Benchmarking}
|
---|
9 | \index{Performance}
|
---|
10 |
|
---|
11 | This module provides a simple way to time small bits of Python code.
|
---|
12 | It has both command line as well as callable interfaces. It avoids a
|
---|
13 | number of common traps for measuring execution times. See also Tim
|
---|
14 | Peters' introduction to the ``Algorithms'' chapter in the
|
---|
15 | \citetitle{Python Cookbook}, published by O'Reilly.
|
---|
16 |
|
---|
17 | The module defines the following public class:
|
---|
18 |
|
---|
19 | \begin{classdesc}{Timer}{\optional{stmt=\code{'pass'}
|
---|
20 | \optional{, setup=\code{'pass'}
|
---|
21 | \optional{, timer=<timer function>}}}}
|
---|
22 | Class for timing execution speed of small code snippets.
|
---|
23 |
|
---|
24 | The constructor takes a statement to be timed, an additional statement
|
---|
25 | used for setup, and a timer function. Both statements default to
|
---|
26 | \code{'pass'}; the timer function is platform-dependent (see the
|
---|
27 | module doc string). The statements may contain newlines, as long as
|
---|
28 | they don't contain multi-line string literals.
|
---|
29 |
|
---|
30 | To measure the execution time of the first statement, use the
|
---|
31 | \method{timeit()} method. The \method{repeat()} method is a
|
---|
32 | convenience to call \method{timeit()} multiple times and return a list
|
---|
33 | of results.
|
---|
34 | \end{classdesc}
|
---|
35 |
|
---|
36 | \begin{methoddesc}{print_exc}{\optional{file=\constant{None}}}
|
---|
37 | Helper to print a traceback from the timed code.
|
---|
38 |
|
---|
39 | Typical use:
|
---|
40 |
|
---|
41 | \begin{verbatim}
|
---|
42 | t = Timer(...) # outside the try/except
|
---|
43 | try:
|
---|
44 | t.timeit(...) # or t.repeat(...)
|
---|
45 | except:
|
---|
46 | t.print_exc()
|
---|
47 | \end{verbatim}
|
---|
48 |
|
---|
49 | The advantage over the standard traceback is that source lines in the
|
---|
50 | compiled template will be displayed.
|
---|
51 | The optional \var{file} argument directs where the traceback is sent;
|
---|
52 | it defaults to \code{sys.stderr}.
|
---|
53 | \end{methoddesc}
|
---|
54 |
|
---|
55 | \begin{methoddesc}{repeat}{\optional{repeat\code{=3} \optional{,
|
---|
56 | number\code{=1000000}}}}
|
---|
57 | Call \method{timeit()} a few times.
|
---|
58 |
|
---|
59 | This is a convenience function that calls the \method{timeit()}
|
---|
60 | repeatedly, returning a list of results. The first argument specifies
|
---|
61 | how many times to call \method{timeit()}. The second argument
|
---|
62 | specifies the \var{number} argument for \function{timeit()}.
|
---|
63 |
|
---|
64 | \begin{notice}
|
---|
65 | It's tempting to calculate mean and standard deviation from the result
|
---|
66 | vector and report these. However, this is not very useful. In a typical
|
---|
67 | case, the lowest value gives a lower bound for how fast your machine can run
|
---|
68 | the given code snippet; higher values in the result vector are typically not
|
---|
69 | caused by variability in Python's speed, but by other processes interfering
|
---|
70 | with your timing accuracy. So the \function{min()} of the result is
|
---|
71 | probably the only number you should be interested in. After that, you
|
---|
72 | should look at the entire vector and apply common sense rather than
|
---|
73 | statistics.
|
---|
74 | \end{notice}
|
---|
75 | \end{methoddesc}
|
---|
76 |
|
---|
77 | \begin{methoddesc}{timeit}{\optional{number\code{=1000000}}}
|
---|
78 | Time \var{number} executions of the main statement.
|
---|
79 | This executes the setup statement once, and then
|
---|
80 | returns the time it takes to execute the main statement a number of
|
---|
81 | times, measured in seconds as a float. The argument is the number of
|
---|
82 | times through the loop, defaulting to one million. The main
|
---|
83 | statement, the setup statement and the timer function to be used are
|
---|
84 | passed to the constructor.
|
---|
85 |
|
---|
86 | \begin{notice}
|
---|
87 | By default, \method{timeit()} temporarily turns off garbage collection
|
---|
88 | during the timing. The advantage of this approach is that it makes
|
---|
89 | independent timings more comparable. This disadvantage is that GC
|
---|
90 | may be an important component of the performance of the function being
|
---|
91 | measured. If so, GC can be re-enabled as the first statement in the
|
---|
92 | \var{setup} string. For example:
|
---|
93 | \begin{verbatim}
|
---|
94 | timeit.Timer('for i in xrange(10): oct(i)', 'gc.enable()').timeit()
|
---|
95 | \end{verbatim}
|
---|
96 | \end{notice}
|
---|
97 | \end{methoddesc}
|
---|
98 |
|
---|
99 |
|
---|
100 | \subsection{Command Line Interface}
|
---|
101 |
|
---|
102 | When called as a program from the command line, the following form is used:
|
---|
103 |
|
---|
104 | \begin{verbatim}
|
---|
105 | python timeit.py [-n N] [-r N] [-s S] [-t] [-c] [-h] [statement ...]
|
---|
106 | \end{verbatim}
|
---|
107 |
|
---|
108 | where the following options are understood:
|
---|
109 |
|
---|
110 | \begin{description}
|
---|
111 | \item[-n N/\longprogramopt{number=N}] how many times to execute 'statement'
|
---|
112 | \item[-r N/\longprogramopt{repeat=N}] how many times to repeat the timer (default 3)
|
---|
113 | \item[-s S/\longprogramopt{setup=S}] statement to be executed once initially (default
|
---|
114 | \code{'pass'})
|
---|
115 | \item[-t/\longprogramopt{time}] use \function{time.time()}
|
---|
116 | (default on all platforms but Windows)
|
---|
117 | \item[-c/\longprogramopt{clock}] use \function{time.clock()} (default on Windows)
|
---|
118 | \item[-v/\longprogramopt{verbose}] print raw timing results; repeat for more digits
|
---|
119 | precision
|
---|
120 | \item[-h/\longprogramopt{help}] print a short usage message and exit
|
---|
121 | \end{description}
|
---|
122 |
|
---|
123 | A multi-line statement may be given by specifying each line as a
|
---|
124 | separate statement argument; indented lines are possible by enclosing
|
---|
125 | an argument in quotes and using leading spaces. Multiple
|
---|
126 | \programopt{-s} options are treated similarly.
|
---|
127 |
|
---|
128 | If \programopt{-n} is not given, a suitable number of loops is
|
---|
129 | calculated by trying successive powers of 10 until the total time is
|
---|
130 | at least 0.2 seconds.
|
---|
131 |
|
---|
132 | The default timer function is platform dependent. On Windows,
|
---|
133 | \function{time.clock()} has microsecond granularity but
|
---|
134 | \function{time.time()}'s granularity is 1/60th of a second; on \UNIX,
|
---|
135 | \function{time.clock()} has 1/100th of a second granularity and
|
---|
136 | \function{time.time()} is much more precise. On either platform, the
|
---|
137 | default timer functions measure wall clock time, not the CPU time.
|
---|
138 | This means that other processes running on the same computer may
|
---|
139 | interfere with the timing. The best thing to do when accurate timing
|
---|
140 | is necessary is to repeat the timing a few times and use the best
|
---|
141 | time. The \programopt{-r} option is good for this; the default of 3
|
---|
142 | repetitions is probably enough in most cases. On \UNIX, you can use
|
---|
143 | \function{time.clock()} to measure CPU time.
|
---|
144 |
|
---|
145 | \begin{notice}
|
---|
146 | There is a certain baseline overhead associated with executing a
|
---|
147 | pass statement. The code here doesn't try to hide it, but you
|
---|
148 | should be aware of it. The baseline overhead can be measured by
|
---|
149 | invoking the program without arguments.
|
---|
150 | \end{notice}
|
---|
151 |
|
---|
152 | The baseline overhead differs between Python versions! Also, to
|
---|
153 | fairly compare older Python versions to Python 2.3, you may want to
|
---|
154 | use Python's \programopt{-O} option for the older versions to avoid
|
---|
155 | timing \code{SET_LINENO} instructions.
|
---|
156 |
|
---|
157 | \subsection{Examples}
|
---|
158 |
|
---|
159 | Here are two example sessions (one using the command line, one using
|
---|
160 | the module interface) that compare the cost of using
|
---|
161 | \function{hasattr()} vs. \keyword{try}/\keyword{except} to test for
|
---|
162 | missing and present object attributes.
|
---|
163 |
|
---|
164 | \begin{verbatim}
|
---|
165 | % timeit.py 'try:' ' str.__nonzero__' 'except AttributeError:' ' pass'
|
---|
166 | 100000 loops, best of 3: 15.7 usec per loop
|
---|
167 | % timeit.py 'if hasattr(str, "__nonzero__"): pass'
|
---|
168 | 100000 loops, best of 3: 4.26 usec per loop
|
---|
169 | % timeit.py 'try:' ' int.__nonzero__' 'except AttributeError:' ' pass'
|
---|
170 | 1000000 loops, best of 3: 1.43 usec per loop
|
---|
171 | % timeit.py 'if hasattr(int, "__nonzero__"): pass'
|
---|
172 | 100000 loops, best of 3: 2.23 usec per loop
|
---|
173 | \end{verbatim}
|
---|
174 |
|
---|
175 | \begin{verbatim}
|
---|
176 | >>> import timeit
|
---|
177 | >>> s = """\
|
---|
178 | ... try:
|
---|
179 | ... str.__nonzero__
|
---|
180 | ... except AttributeError:
|
---|
181 | ... pass
|
---|
182 | ... """
|
---|
183 | >>> t = timeit.Timer(stmt=s)
|
---|
184 | >>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
|
---|
185 | 17.09 usec/pass
|
---|
186 | >>> s = """\
|
---|
187 | ... if hasattr(str, '__nonzero__'): pass
|
---|
188 | ... """
|
---|
189 | >>> t = timeit.Timer(stmt=s)
|
---|
190 | >>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
|
---|
191 | 4.85 usec/pass
|
---|
192 | >>> s = """\
|
---|
193 | ... try:
|
---|
194 | ... int.__nonzero__
|
---|
195 | ... except AttributeError:
|
---|
196 | ... pass
|
---|
197 | ... """
|
---|
198 | >>> t = timeit.Timer(stmt=s)
|
---|
199 | >>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
|
---|
200 | 1.97 usec/pass
|
---|
201 | >>> s = """\
|
---|
202 | ... if hasattr(int, '__nonzero__'): pass
|
---|
203 | ... """
|
---|
204 | >>> t = timeit.Timer(stmt=s)
|
---|
205 | >>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
|
---|
206 | 3.15 usec/pass
|
---|
207 | \end{verbatim}
|
---|
208 |
|
---|
209 | To give the \module{timeit} module access to functions you
|
---|
210 | define, you can pass a \code{setup} parameter which contains an import
|
---|
211 | statement:
|
---|
212 |
|
---|
213 | \begin{verbatim}
|
---|
214 | def test():
|
---|
215 | "Stupid test function"
|
---|
216 | L = []
|
---|
217 | for i in range(100):
|
---|
218 | L.append(i)
|
---|
219 |
|
---|
220 | if __name__=='__main__':
|
---|
221 | from timeit import Timer
|
---|
222 | t = Timer("test()", "from __main__ import test")
|
---|
223 | print t.timeit()
|
---|
224 | \end{verbatim}
|
---|