1 | \section{\module{sqlite3} ---
|
---|
2 | DB-API 2.0 interface for SQLite databases}
|
---|
3 |
|
---|
4 | \declaremodule{builtin}{sqlite3}
|
---|
5 | \modulesynopsis{A DB-API 2.0 implementation using SQLite 3.x.}
|
---|
6 | \sectionauthor{Gerhard HÀring}{gh@ghaering.de}
|
---|
7 | \versionadded{2.5}
|
---|
8 |
|
---|
9 | SQLite is a C library that provides a lightweight disk-based database
|
---|
10 | that doesn't require a separate server process and allows accessing
|
---|
11 | the database using a nonstandard variant of the SQL query language.
|
---|
12 | Some applications can use SQLite for internal data storage. It's also
|
---|
13 | possible to prototype an application using SQLite and then port the
|
---|
14 | code to a larger database such as PostgreSQL or Oracle.
|
---|
15 |
|
---|
16 | pysqlite was written by Gerhard H\"aring and provides a SQL interface
|
---|
17 | compliant with the DB-API 2.0 specification described by
|
---|
18 | \pep{249}.
|
---|
19 |
|
---|
20 | To use the module, you must first create a \class{Connection} object
|
---|
21 | that represents the database. Here the data will be stored in the
|
---|
22 | \file{/tmp/example} file:
|
---|
23 |
|
---|
24 | \begin{verbatim}
|
---|
25 | conn = sqlite3.connect('/tmp/example')
|
---|
26 | \end{verbatim}
|
---|
27 |
|
---|
28 | You can also supply the special name \samp{:memory:} to create
|
---|
29 | a database in RAM.
|
---|
30 |
|
---|
31 | Once you have a \class{Connection}, you can create a \class{Cursor}
|
---|
32 | object and call its \method{execute()} method to perform SQL commands:
|
---|
33 |
|
---|
34 | \begin{verbatim}
|
---|
35 | c = conn.cursor()
|
---|
36 |
|
---|
37 | # Create table
|
---|
38 | c.execute('''create table stocks
|
---|
39 | (date text, trans text, symbol text,
|
---|
40 | qty real, price real)''')
|
---|
41 |
|
---|
42 | # Insert a row of data
|
---|
43 | c.execute("""insert into stocks
|
---|
44 | values ('2006-01-05','BUY','RHAT',100,35.14)""")
|
---|
45 | \end{verbatim}
|
---|
46 |
|
---|
47 | Usually your SQL operations will need to use values from Python
|
---|
48 | variables. You shouldn't assemble your query using Python's string
|
---|
49 | operations because doing so is insecure; it makes your program
|
---|
50 | vulnerable to an SQL injection attack.
|
---|
51 |
|
---|
52 | Instead, use the DB-API's parameter substitution. Put \samp{?} as a
|
---|
53 | placeholder wherever you want to use a value, and then provide a tuple
|
---|
54 | of values as the second argument to the cursor's \method{execute()}
|
---|
55 | method. (Other database modules may use a different placeholder,
|
---|
56 | such as \samp{\%s} or \samp{:1}.) For example:
|
---|
57 |
|
---|
58 | \begin{verbatim}
|
---|
59 | # Never do this -- insecure!
|
---|
60 | symbol = 'IBM'
|
---|
61 | c.execute("... where symbol = '%s'" % symbol)
|
---|
62 |
|
---|
63 | # Do this instead
|
---|
64 | t = (symbol,)
|
---|
65 | c.execute('select * from stocks where symbol=?', t)
|
---|
66 |
|
---|
67 | # Larger example
|
---|
68 | for t in (('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
|
---|
69 | ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
|
---|
70 | ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
|
---|
71 | ):
|
---|
72 | c.execute('insert into stocks values (?,?,?,?,?)', t)
|
---|
73 | \end{verbatim}
|
---|
74 |
|
---|
75 | To retrieve data after executing a SELECT statement, you can either
|
---|
76 | treat the cursor as an iterator, call the cursor's \method{fetchone()}
|
---|
77 | method to retrieve a single matching row,
|
---|
78 | or call \method{fetchall()} to get a list of the matching rows.
|
---|
79 |
|
---|
80 | This example uses the iterator form:
|
---|
81 |
|
---|
82 | \begin{verbatim}
|
---|
83 | >>> c = conn.cursor()
|
---|
84 | >>> c.execute('select * from stocks order by price')
|
---|
85 | >>> for row in c:
|
---|
86 | ... print row
|
---|
87 | ...
|
---|
88 | (u'2006-01-05', u'BUY', u'RHAT', 100, 35.140000000000001)
|
---|
89 | (u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
|
---|
90 | (u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
|
---|
91 | (u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
|
---|
92 | >>>
|
---|
93 | \end{verbatim}
|
---|
94 |
|
---|
95 | \begin{seealso}
|
---|
96 |
|
---|
97 | \seeurl{http://www.pysqlite.org}
|
---|
98 | {The pysqlite web page.}
|
---|
99 |
|
---|
100 | \seeurl{http://www.sqlite.org}
|
---|
101 | {The SQLite web page; the documentation describes the syntax and the
|
---|
102 | available data types for the supported SQL dialect.}
|
---|
103 |
|
---|
104 | \seepep{249}{Database API Specification 2.0}{PEP written by
|
---|
105 | Marc-Andr\'e Lemburg.}
|
---|
106 |
|
---|
107 | \end{seealso}
|
---|
108 |
|
---|
109 |
|
---|
110 | \subsection{Module functions and constants\label{sqlite3-Module-Contents}}
|
---|
111 |
|
---|
112 | \begin{datadesc}{PARSE_DECLTYPES}
|
---|
113 | This constant is meant to be used with the \var{detect_types} parameter of the
|
---|
114 | \function{connect} function.
|
---|
115 |
|
---|
116 | Setting it makes the \module{sqlite3} module parse the declared type for each column it
|
---|
117 | returns. It will parse out the first word of the declared type, i. e. for
|
---|
118 | "integer primary key", it will parse out "integer". Then for that column, it
|
---|
119 | will look into the converters dictionary and use the converter function
|
---|
120 | registered for that type there. Converter names are case-sensitive!
|
---|
121 | \end{datadesc}
|
---|
122 |
|
---|
123 |
|
---|
124 | \begin{datadesc}{PARSE_COLNAMES}
|
---|
125 | This constant is meant to be used with the \var{detect_types} parameter of the
|
---|
126 | \function{connect} function.
|
---|
127 |
|
---|
128 | Setting this makes the SQLite interface parse the column name for each column
|
---|
129 | it returns. It will look for a string formed [mytype] in there, and then
|
---|
130 | decide that 'mytype' is the type of the column. It will try to find an entry of
|
---|
131 | 'mytype' in the converters dictionary and then use the converter function found
|
---|
132 | there to return the value. The column name found in \member{cursor.description} is only
|
---|
133 | the first word of the column name, i. e. if you use something like
|
---|
134 | \code{'as "x [datetime]"'} in your SQL, then we will parse out everything until the
|
---|
135 | first blank for the column name: the column name would simply be "x".
|
---|
136 | \end{datadesc}
|
---|
137 |
|
---|
138 | \begin{funcdesc}{connect}{database\optional{, timeout, isolation_level, detect_types, factory}}
|
---|
139 | Opens a connection to the SQLite database file \var{database}. You can use
|
---|
140 | \code{":memory:"} to open a database connection to a database that resides in
|
---|
141 | RAM instead of on disk.
|
---|
142 |
|
---|
143 | When a database is accessed by multiple connections, and one of the processes
|
---|
144 | modifies the database, the SQLite database is locked until that transaction is
|
---|
145 | committed. The \var{timeout} parameter specifies how long the connection should
|
---|
146 | wait for the lock to go away until raising an exception. The default for the
|
---|
147 | timeout parameter is 5.0 (five seconds).
|
---|
148 |
|
---|
149 | For the \var{isolation_level} parameter, please see the \member{isolation_level}
|
---|
150 | property of \class{Connection} objects in section~\ref{sqlite3-Connection-IsolationLevel}.
|
---|
151 |
|
---|
152 | SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If
|
---|
153 | you want to use other types, like you have to add support for them yourself.
|
---|
154 | The \var{detect_types} parameter and the using custom \strong{converters} registered with
|
---|
155 | the module-level \function{register_converter} function allow you to easily do that.
|
---|
156 |
|
---|
157 | \var{detect_types} defaults to 0 (i. e. off, no type detection), you can set it
|
---|
158 | to any combination of \constant{PARSE_DECLTYPES} and \constant{PARSE_COLNAMES} to turn type
|
---|
159 | detection on.
|
---|
160 |
|
---|
161 | By default, the \module{sqlite3} module uses its \class{Connection} class for the
|
---|
162 | connect call. You can, however, subclass the \class{Connection} class and make
|
---|
163 | \function{connect} use your class instead by providing your class for the
|
---|
164 | \var{factory} parameter.
|
---|
165 |
|
---|
166 | Consult the section \ref{sqlite3-Types} of this manual for details.
|
---|
167 |
|
---|
168 | The \module{sqlite3} module internally uses a statement cache to avoid SQL parsing
|
---|
169 | overhead. If you want to explicitly set the number of statements that are
|
---|
170 | cached for the connection, you can set the \var{cached_statements} parameter.
|
---|
171 | The currently implemented default is to cache 100 statements.
|
---|
172 | \end{funcdesc}
|
---|
173 |
|
---|
174 | \begin{funcdesc}{register_converter}{typename, callable}
|
---|
175 | Registers a callable to convert a bytestring from the database into a custom
|
---|
176 | Python type. The callable will be invoked for all database values that are of
|
---|
177 | the type \var{typename}. Confer the parameter \var{detect_types} of the
|
---|
178 | \function{connect} function for how the type detection works. Note that the case of
|
---|
179 | \var{typename} and the name of the type in your query must match!
|
---|
180 | \end{funcdesc}
|
---|
181 |
|
---|
182 | \begin{funcdesc}{register_adapter}{type, callable}
|
---|
183 | Registers a callable to convert the custom Python type \var{type} into one of
|
---|
184 | SQLite's supported types. The callable \var{callable} accepts as single
|
---|
185 | parameter the Python value, and must return a value of the following types:
|
---|
186 | int, long, float, str (UTF-8 encoded), unicode or buffer.
|
---|
187 | \end{funcdesc}
|
---|
188 |
|
---|
189 | \begin{funcdesc}{complete_statement}{sql}
|
---|
190 | Returns \constant{True} if the string \var{sql} one or more complete SQL
|
---|
191 | statements terminated by semicolons. It does not verify if the SQL is
|
---|
192 | syntactically correct, only if there are no unclosed string literals and if the
|
---|
193 | statement is terminated by a semicolon.
|
---|
194 |
|
---|
195 | This can be used to build a shell for SQLite, like in the following example:
|
---|
196 |
|
---|
197 | \verbatiminput{sqlite3/complete_statement.py}
|
---|
198 | \end{funcdesc}
|
---|
199 |
|
---|
200 | \begin{funcdesc}{enable_callback_tracebacks}{flag}
|
---|
201 | By default you will not get any tracebacks in user-defined functions,
|
---|
202 | aggregates, converters, authorizer callbacks etc. If you want to debug them,
|
---|
203 | you can call this function with \var{flag} as True. Afterwards, you will get
|
---|
204 | tracebacks from callbacks on \code{sys.stderr}. Use \constant{False} to disable
|
---|
205 | the feature again.
|
---|
206 | \end{funcdesc}
|
---|
207 |
|
---|
208 | \subsection{Connection Objects \label{sqlite3-Connection-Objects}}
|
---|
209 |
|
---|
210 | A \class{Connection} instance has the following attributes and methods:
|
---|
211 |
|
---|
212 | \label{sqlite3-Connection-IsolationLevel}
|
---|
213 | \begin{memberdesc}{isolation_level}
|
---|
214 | Get or set the current isolation level. None for autocommit mode or one of
|
---|
215 | "DEFERRED", "IMMEDIATE" or "EXLUSIVE". See ``Controlling Transactions'',
|
---|
216 | section~\ref{sqlite3-Controlling-Transactions}, for a more detailed explanation.
|
---|
217 | \end{memberdesc}
|
---|
218 |
|
---|
219 | \begin{methoddesc}{cursor}{\optional{cursorClass}}
|
---|
220 | The cursor method accepts a single optional parameter \var{cursorClass}.
|
---|
221 | If supplied, this must be a custom cursor class that extends
|
---|
222 | \class{sqlite3.Cursor}.
|
---|
223 | \end{methoddesc}
|
---|
224 |
|
---|
225 | \begin{methoddesc}{execute}{sql, \optional{parameters}}
|
---|
226 | This is a nonstandard shortcut that creates an intermediate cursor object by
|
---|
227 | calling the cursor method, then calls the cursor's \method{execute} method with the
|
---|
228 | parameters given.
|
---|
229 | \end{methoddesc}
|
---|
230 |
|
---|
231 | \begin{methoddesc}{executemany}{sql, \optional{parameters}}
|
---|
232 | This is a nonstandard shortcut that creates an intermediate cursor object by
|
---|
233 | calling the cursor method, then calls the cursor's \method{executemany} method with the
|
---|
234 | parameters given.
|
---|
235 | \end{methoddesc}
|
---|
236 |
|
---|
237 | \begin{methoddesc}{executescript}{sql_script}
|
---|
238 | This is a nonstandard shortcut that creates an intermediate cursor object by
|
---|
239 | calling the cursor method, then calls the cursor's \method{executescript} method with the
|
---|
240 | parameters given.
|
---|
241 | \end{methoddesc}
|
---|
242 |
|
---|
243 | \begin{methoddesc}{create_function}{name, num_params, func}
|
---|
244 |
|
---|
245 | Creates a user-defined function that you can later use from within SQL
|
---|
246 | statements under the function name \var{name}. \var{num_params} is the number
|
---|
247 | of parameters the function accepts, and \var{func} is a Python callable that is
|
---|
248 | called as the SQL function.
|
---|
249 |
|
---|
250 | The function can return any of the types supported by SQLite: unicode, str,
|
---|
251 | int, long, float, buffer and None.
|
---|
252 |
|
---|
253 | Example:
|
---|
254 |
|
---|
255 | \verbatiminput{sqlite3/md5func.py}
|
---|
256 | \end{methoddesc}
|
---|
257 |
|
---|
258 | \begin{methoddesc}{create_aggregate}{name, num_params, aggregate_class}
|
---|
259 |
|
---|
260 | Creates a user-defined aggregate function.
|
---|
261 |
|
---|
262 | The aggregate class must implement a \code{step} method, which accepts the
|
---|
263 | number of parameters \var{num_params}, and a \code{finalize} method which
|
---|
264 | will return the final result of the aggregate.
|
---|
265 |
|
---|
266 | The \code{finalize} method can return any of the types supported by SQLite:
|
---|
267 | unicode, str, int, long, float, buffer and None.
|
---|
268 |
|
---|
269 | Example:
|
---|
270 |
|
---|
271 | \verbatiminput{sqlite3/mysumaggr.py}
|
---|
272 | \end{methoddesc}
|
---|
273 |
|
---|
274 | \begin{methoddesc}{create_collation}{name, callable}
|
---|
275 |
|
---|
276 | Creates a collation with the specified \var{name} and \var{callable}. The
|
---|
277 | callable will be passed two string arguments. It should return -1 if the first
|
---|
278 | is ordered lower than the second, 0 if they are ordered equal and 1 if the
|
---|
279 | first is ordered higher than the second. Note that this controls sorting
|
---|
280 | (ORDER BY in SQL) so your comparisons don't affect other SQL operations.
|
---|
281 |
|
---|
282 | Note that the callable will get its parameters as Python bytestrings, which
|
---|
283 | will normally be encoded in UTF-8.
|
---|
284 |
|
---|
285 | The following example shows a custom collation that sorts "the wrong way":
|
---|
286 |
|
---|
287 | \verbatiminput{sqlite3/collation_reverse.py}
|
---|
288 |
|
---|
289 | To remove a collation, call \code{create_collation} with None as callable:
|
---|
290 |
|
---|
291 | \begin{verbatim}
|
---|
292 | con.create_collation("reverse", None)
|
---|
293 | \end{verbatim}
|
---|
294 | \end{methoddesc}
|
---|
295 |
|
---|
296 | \begin{methoddesc}{interrupt}{}
|
---|
297 |
|
---|
298 | You can call this method from a different thread to abort any queries that
|
---|
299 | might be executing on the connection. The query will then abort and the caller
|
---|
300 | will get an exception.
|
---|
301 | \end{methoddesc}
|
---|
302 |
|
---|
303 | \begin{methoddesc}{set_authorizer}{authorizer_callback}
|
---|
304 |
|
---|
305 | This routine registers a callback. The callback is invoked for each attempt to
|
---|
306 | access a column of a table in the database. The callback should return
|
---|
307 | \constant{SQLITE_OK} if access is allowed, \constant{SQLITE_DENY} if the entire
|
---|
308 | SQL statement should be aborted with an error and \constant{SQLITE_IGNORE} if
|
---|
309 | the column should be treated as a NULL value. These constants are available in
|
---|
310 | the \module{sqlite3} module.
|
---|
311 |
|
---|
312 | The first argument to the callback signifies what kind of operation is to be
|
---|
313 | authorized. The second and third argument will be arguments or \constant{None}
|
---|
314 | depending on the first argument. The 4th argument is the name of the database
|
---|
315 | ("main", "temp", etc.) if applicable. The 5th argument is the name of the
|
---|
316 | inner-most trigger or view that is responsible for the access attempt or
|
---|
317 | \constant{None} if this access attempt is directly from input SQL code.
|
---|
318 |
|
---|
319 | Please consult the SQLite documentation about the possible values for the first
|
---|
320 | argument and the meaning of the second and third argument depending on the
|
---|
321 | first one. All necessary constants are available in the \module{sqlite3}
|
---|
322 | module.
|
---|
323 | \end{methoddesc}
|
---|
324 |
|
---|
325 | \begin{memberdesc}{row_factory}
|
---|
326 | You can change this attribute to a callable that accepts the cursor and
|
---|
327 | the original row as a tuple and will return the real result row. This
|
---|
328 | way, you can implement more advanced ways of returning results, such
|
---|
329 | as returning an object that can also access columns by name.
|
---|
330 |
|
---|
331 | Example:
|
---|
332 |
|
---|
333 | \verbatiminput{sqlite3/row_factory.py}
|
---|
334 |
|
---|
335 | If returning a tuple doesn't suffice and you want name-based
|
---|
336 | access to columns, you should consider setting \member{row_factory} to the
|
---|
337 | highly-optimized \class{sqlite3.Row} type. \class{Row} provides both
|
---|
338 | index-based and case-insensitive name-based access to columns with almost
|
---|
339 | no memory overhead. It will probably be better than your own custom
|
---|
340 | dictionary-based approach or even a db_row based solution.
|
---|
341 | % XXX what's a db_row-based solution?
|
---|
342 | \end{memberdesc}
|
---|
343 |
|
---|
344 | \begin{memberdesc}{text_factory}
|
---|
345 | Using this attribute you can control what objects are returned for the
|
---|
346 | TEXT data type. By default, this attribute is set to \class{unicode} and
|
---|
347 | the \module{sqlite3} module will return Unicode objects for TEXT. If you want to return
|
---|
348 | bytestrings instead, you can set it to \class{str}.
|
---|
349 |
|
---|
350 | For efficiency reasons, there's also a way to return Unicode objects only
|
---|
351 | for non-ASCII data, and bytestrings otherwise. To activate it, set this
|
---|
352 | attribute to \constant{sqlite3.OptimizedUnicode}.
|
---|
353 |
|
---|
354 | You can also set it to any other callable that accepts a single bytestring
|
---|
355 | parameter and returns the resulting object.
|
---|
356 |
|
---|
357 | See the following example code for illustration:
|
---|
358 |
|
---|
359 | \verbatiminput{sqlite3/text_factory.py}
|
---|
360 | \end{memberdesc}
|
---|
361 |
|
---|
362 | \begin{memberdesc}{total_changes}
|
---|
363 | Returns the total number of database rows that have been modified, inserted,
|
---|
364 | or deleted since the database connection was opened.
|
---|
365 | \end{memberdesc}
|
---|
366 |
|
---|
367 |
|
---|
368 |
|
---|
369 |
|
---|
370 |
|
---|
371 | \subsection{Cursor Objects \label{sqlite3-Cursor-Objects}}
|
---|
372 |
|
---|
373 | A \class{Cursor} instance has the following attributes and methods:
|
---|
374 |
|
---|
375 | \begin{methoddesc}{execute}{sql, \optional{parameters}}
|
---|
376 |
|
---|
377 | Executes a SQL statement. The SQL statement may be parametrized (i. e.
|
---|
378 | placeholders instead of SQL literals). The \module{sqlite3} module supports two kinds of
|
---|
379 | placeholders: question marks (qmark style) and named placeholders (named
|
---|
380 | style).
|
---|
381 |
|
---|
382 | This example shows how to use parameters with qmark style:
|
---|
383 |
|
---|
384 | \verbatiminput{sqlite3/execute_1.py}
|
---|
385 |
|
---|
386 | This example shows how to use the named style:
|
---|
387 |
|
---|
388 | \verbatiminput{sqlite3/execute_2.py}
|
---|
389 |
|
---|
390 | \method{execute()} will only execute a single SQL statement. If you try to
|
---|
391 | execute more than one statement with it, it will raise a Warning. Use
|
---|
392 | \method{executescript()} if you want to execute multiple SQL statements with one
|
---|
393 | call.
|
---|
394 | \end{methoddesc}
|
---|
395 |
|
---|
396 |
|
---|
397 | \begin{methoddesc}{executemany}{sql, seq_of_parameters}
|
---|
398 | Executes a SQL command against all parameter sequences or mappings found in the
|
---|
399 | sequence \var{sql}. The \module{sqlite3} module also allows
|
---|
400 | using an iterator yielding parameters instead of a sequence.
|
---|
401 |
|
---|
402 | \verbatiminput{sqlite3/executemany_1.py}
|
---|
403 |
|
---|
404 | Here's a shorter example using a generator:
|
---|
405 |
|
---|
406 | \verbatiminput{sqlite3/executemany_2.py}
|
---|
407 | \end{methoddesc}
|
---|
408 |
|
---|
409 | \begin{methoddesc}{executescript}{sql_script}
|
---|
410 |
|
---|
411 | This is a nonstandard convenience method for executing multiple SQL statements
|
---|
412 | at once. It issues a COMMIT statement first, then executes the SQL script it
|
---|
413 | gets as a parameter.
|
---|
414 |
|
---|
415 | \var{sql_script} can be a bytestring or a Unicode string.
|
---|
416 |
|
---|
417 | Example:
|
---|
418 |
|
---|
419 | \verbatiminput{sqlite3/executescript.py}
|
---|
420 | \end{methoddesc}
|
---|
421 |
|
---|
422 | \begin{memberdesc}{rowcount}
|
---|
423 | Although the \class{Cursor} class of the \module{sqlite3} module implements this
|
---|
424 | attribute, the database engine's own support for the determination of "rows
|
---|
425 | affected"/"rows selected" is quirky.
|
---|
426 |
|
---|
427 | For \code{SELECT} statements, \member{rowcount} is always None because we cannot
|
---|
428 | determine the number of rows a query produced until all rows were fetched.
|
---|
429 |
|
---|
430 | For \code{DELETE} statements, SQLite reports \member{rowcount} as 0 if you make a
|
---|
431 | \code{DELETE FROM table} without any condition.
|
---|
432 |
|
---|
433 | For \method{executemany} statements, the number of modifications are summed
|
---|
434 | up into \member{rowcount}.
|
---|
435 |
|
---|
436 | As required by the Python DB API Spec, the \member{rowcount} attribute "is -1
|
---|
437 | in case no executeXX() has been performed on the cursor or the rowcount
|
---|
438 | of the last operation is not determinable by the interface".
|
---|
439 | \end{memberdesc}
|
---|
440 |
|
---|
441 | \subsection{SQLite and Python types\label{sqlite3-Types}}
|
---|
442 |
|
---|
443 | \subsubsection{Introduction}
|
---|
444 |
|
---|
445 | SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.
|
---|
446 |
|
---|
447 | The following Python types can thus be sent to SQLite without any problem:
|
---|
448 |
|
---|
449 | \begin{tableii} {c|l}{code}{Python type}{SQLite type}
|
---|
450 | \lineii{None}{NULL}
|
---|
451 | \lineii{int}{INTEGER}
|
---|
452 | \lineii{long}{INTEGER}
|
---|
453 | \lineii{float}{REAL}
|
---|
454 | \lineii{str (UTF8-encoded)}{TEXT}
|
---|
455 | \lineii{unicode}{TEXT}
|
---|
456 | \lineii{buffer}{BLOB}
|
---|
457 | \end{tableii}
|
---|
458 |
|
---|
459 | This is how SQLite types are converted to Python types by default:
|
---|
460 |
|
---|
461 | \begin{tableii} {c|l}{code}{SQLite type}{Python type}
|
---|
462 | \lineii{NULL}{None}
|
---|
463 | \lineii{INTEGER}{int or long, depending on size}
|
---|
464 | \lineii{REAL}{float}
|
---|
465 | \lineii{TEXT}{depends on text_factory, unicode by default}
|
---|
466 | \lineii{BLOB}{buffer}
|
---|
467 | \end{tableii}
|
---|
468 |
|
---|
469 | The type system of the \module{sqlite3} module is extensible in two ways: you can store
|
---|
470 | additional Python types in a SQLite database via object adaptation, and you can
|
---|
471 | let the \module{sqlite3} module convert SQLite types to different Python types via
|
---|
472 | converters.
|
---|
473 |
|
---|
474 | \subsubsection{Using adapters to store additional Python types in SQLite databases}
|
---|
475 |
|
---|
476 | As described before, SQLite supports only a limited set of types natively. To
|
---|
477 | use other Python types with SQLite, you must \strong{adapt} them to one of the sqlite3
|
---|
478 | module's supported types for SQLite: one of NoneType, int, long, float,
|
---|
479 | str, unicode, buffer.
|
---|
480 |
|
---|
481 | The \module{sqlite3} module uses Python object adaptation, as described in \pep{246} for this. The protocol to use is \class{PrepareProtocol}.
|
---|
482 |
|
---|
483 | There are two ways to enable the \module{sqlite3} module to adapt a custom Python type
|
---|
484 | to one of the supported ones.
|
---|
485 |
|
---|
486 | \paragraph{Letting your object adapt itself}
|
---|
487 |
|
---|
488 | This is a good approach if you write the class yourself. Let's suppose you have
|
---|
489 | a class like this:
|
---|
490 |
|
---|
491 | \begin{verbatim}
|
---|
492 | class Point(object):
|
---|
493 | def __init__(self, x, y):
|
---|
494 | self.x, self.y = x, y
|
---|
495 | \end{verbatim}
|
---|
496 |
|
---|
497 | Now you want to store the point in a single SQLite column. First you'll have to
|
---|
498 | choose one of the supported types first to be used for representing the point.
|
---|
499 | Let's just use str and separate the coordinates using a semicolon. Then you
|
---|
500 | need to give your class a method \code{__conform__(self, protocol)} which must
|
---|
501 | return the converted value. The parameter \var{protocol} will be
|
---|
502 | \class{PrepareProtocol}.
|
---|
503 |
|
---|
504 | \verbatiminput{sqlite3/adapter_point_1.py}
|
---|
505 |
|
---|
506 | \paragraph{Registering an adapter callable}
|
---|
507 |
|
---|
508 | The other possibility is to create a function that converts the type to the
|
---|
509 | string representation and register the function with \method{register_adapter}.
|
---|
510 |
|
---|
511 | \begin{notice}
|
---|
512 | The type/class to adapt must be a new-style class, i. e. it must have
|
---|
513 | \class{object} as one of its bases.
|
---|
514 | \end{notice}
|
---|
515 |
|
---|
516 | \verbatiminput{sqlite3/adapter_point_2.py}
|
---|
517 |
|
---|
518 | The \module{sqlite3} module has two default adapters for Python's built-in
|
---|
519 | \class{datetime.date} and \class{datetime.datetime} types. Now let's suppose
|
---|
520 | we want to store \class{datetime.datetime} objects not in ISO representation,
|
---|
521 | but as a \UNIX{} timestamp.
|
---|
522 |
|
---|
523 | \verbatiminput{sqlite3/adapter_datetime.py}
|
---|
524 |
|
---|
525 | \subsubsection{Converting SQLite values to custom Python types}
|
---|
526 |
|
---|
527 | Writing an adapter lets you send custom Python types to SQLite.
|
---|
528 | But to make it really useful we need to make the Python to SQLite to Python
|
---|
529 | roundtrip work.
|
---|
530 |
|
---|
531 | Enter converters.
|
---|
532 |
|
---|
533 | Let's go back to the \class{Point} class. We stored the x and y
|
---|
534 | coordinates separated via semicolons as strings in SQLite.
|
---|
535 |
|
---|
536 | First, we'll define a converter function that accepts the string as a
|
---|
537 | parameter and constructs a \class{Point} object from it.
|
---|
538 |
|
---|
539 | \begin{notice}
|
---|
540 | Converter functions \strong{always} get called with a string, no matter
|
---|
541 | under which data type you sent the value to SQLite.
|
---|
542 | \end{notice}
|
---|
543 |
|
---|
544 | \begin{notice}
|
---|
545 | Converter names are looked up in a case-sensitive manner.
|
---|
546 | \end{notice}
|
---|
547 |
|
---|
548 |
|
---|
549 | \begin{verbatim}
|
---|
550 | def convert_point(s):
|
---|
551 | x, y = map(float, s.split(";"))
|
---|
552 | return Point(x, y)
|
---|
553 | \end{verbatim}
|
---|
554 |
|
---|
555 | Now you need to make the \module{sqlite3} module know that what you select from the
|
---|
556 | database is actually a point. There are two ways of doing this:
|
---|
557 |
|
---|
558 | \begin{itemize}
|
---|
559 | \item Implicitly via the declared type
|
---|
560 | \item Explicitly via the column name
|
---|
561 | \end{itemize}
|
---|
562 |
|
---|
563 | Both ways are described in ``Module Constants'', section~\ref{sqlite3-Module-Contents}, in
|
---|
564 | the entries for the constants \constant{PARSE_DECLTYPES} and
|
---|
565 | \constant{PARSE_COLNAMES}.
|
---|
566 |
|
---|
567 |
|
---|
568 | The following example illustrates both approaches.
|
---|
569 |
|
---|
570 | \verbatiminput{sqlite3/converter_point.py}
|
---|
571 |
|
---|
572 | \subsubsection{Default adapters and converters}
|
---|
573 |
|
---|
574 | There are default adapters for the date and datetime types in the datetime
|
---|
575 | module. They will be sent as ISO dates/ISO timestamps to SQLite.
|
---|
576 |
|
---|
577 | The default converters are registered under the name "date" for \class{datetime.date}
|
---|
578 | and under the name "timestamp" for \class{datetime.datetime}.
|
---|
579 |
|
---|
580 | This way, you can use date/timestamps from Python without any additional
|
---|
581 | fiddling in most cases. The format of the adapters is also compatible with the
|
---|
582 | experimental SQLite date/time functions.
|
---|
583 |
|
---|
584 | The following example demonstrates this.
|
---|
585 |
|
---|
586 | \verbatiminput{sqlite3/pysqlite_datetime.py}
|
---|
587 |
|
---|
588 | \subsection{Controlling Transactions \label{sqlite3-Controlling-Transactions}}
|
---|
589 |
|
---|
590 | By default, the \module{sqlite3} module opens transactions implicitly before a Data Modification Language (DML)
|
---|
591 | statement (i.e. INSERT/UPDATE/DELETE/REPLACE), and commits transactions implicitly
|
---|
592 | before a non-DML, non-query statement (i. e. anything other than
|
---|
593 | SELECT/INSERT/UPDATE/DELETE/REPLACE).
|
---|
594 |
|
---|
595 | So if you are within a transaction and issue a command like \code{CREATE TABLE
|
---|
596 | ...}, \code{VACUUM}, \code{PRAGMA}, the \module{sqlite3} module will commit implicitly
|
---|
597 | before executing that command. There are two reasons for doing that. The first
|
---|
598 | is that some of these commands don't work within transactions. The other reason
|
---|
599 | is that pysqlite needs to keep track of the transaction state (if a transaction
|
---|
600 | is active or not).
|
---|
601 |
|
---|
602 | You can control which kind of "BEGIN" statements pysqlite implicitly executes
|
---|
603 | (or none at all) via the \var{isolation_level} parameter to the
|
---|
604 | \function{connect} call, or via the \member{isolation_level} property of
|
---|
605 | connections.
|
---|
606 |
|
---|
607 | If you want \strong{autocommit mode}, then set \member{isolation_level} to None.
|
---|
608 |
|
---|
609 | Otherwise leave it at its default, which will result in a plain "BEGIN"
|
---|
610 | statement, or set it to one of SQLite's supported isolation levels: DEFERRED,
|
---|
611 | IMMEDIATE or EXCLUSIVE.
|
---|
612 |
|
---|
613 | As the \module{sqlite3} module needs to keep track of the transaction state, you should
|
---|
614 | not use \code{OR ROLLBACK} or \code{ON CONFLICT ROLLBACK} in your SQL. Instead,
|
---|
615 | catch the \exception{IntegrityError} and call the \method{rollback} method of
|
---|
616 | the connection yourself.
|
---|
617 |
|
---|
618 | \subsection{Using pysqlite efficiently}
|
---|
619 |
|
---|
620 | \subsubsection{Using shortcut methods}
|
---|
621 |
|
---|
622 | Using the nonstandard \method{execute}, \method{executemany} and
|
---|
623 | \method{executescript} methods of the \class{Connection} object, your code can
|
---|
624 | be written more concisely because you don't have to create the (often
|
---|
625 | superfluous) \class{Cursor} objects explicitly. Instead, the \class{Cursor}
|
---|
626 | objects are created implicitly and these shortcut methods return the cursor
|
---|
627 | objects. This way, you can execute a SELECT statement and iterate
|
---|
628 | over it directly using only a single call on the \class{Connection} object.
|
---|
629 |
|
---|
630 | \verbatiminput{sqlite3/shortcut_methods.py}
|
---|
631 |
|
---|
632 | \subsubsection{Accessing columns by name instead of by index}
|
---|
633 |
|
---|
634 | One useful feature of the \module{sqlite3} module is the builtin \class{sqlite3.Row} class
|
---|
635 | designed to be used as a row factory.
|
---|
636 |
|
---|
637 | Rows wrapped with this class can be accessed both by index (like tuples) and
|
---|
638 | case-insensitively by name:
|
---|
639 |
|
---|
640 | \verbatiminput{sqlite3/rowclass.py}
|
---|
641 |
|
---|
642 |
|
---|