1 | \section{\module{re} ---
|
---|
2 | Regular expression operations}
|
---|
3 | \declaremodule{standard}{re}
|
---|
4 | \moduleauthor{Fredrik Lundh}{fredrik@pythonware.com}
|
---|
5 | \sectionauthor{Andrew M. Kuchling}{amk@amk.ca}
|
---|
6 |
|
---|
7 |
|
---|
8 | \modulesynopsis{Regular expression search and match operations with a
|
---|
9 | Perl-style expression syntax.}
|
---|
10 |
|
---|
11 |
|
---|
12 | This module provides regular expression matching operations similar to
|
---|
13 | those found in Perl. Regular expression pattern strings may not
|
---|
14 | contain null bytes, but can specify the null byte using the
|
---|
15 | \code{\e\var{number}} notation. Both patterns and strings to be
|
---|
16 | searched can be Unicode strings as well as 8-bit strings. The
|
---|
17 | \module{re} module is always available.
|
---|
18 |
|
---|
19 | Regular expressions use the backslash character (\character{\e}) to
|
---|
20 | indicate special forms or to allow special characters to be used
|
---|
21 | without invoking their special meaning. This collides with Python's
|
---|
22 | usage of the same character for the same purpose in string literals;
|
---|
23 | for example, to match a literal backslash, one might have to write
|
---|
24 | \code{'\e\e\e\e'} as the pattern string, because the regular expression
|
---|
25 | must be \samp{\e\e}, and each backslash must be expressed as
|
---|
26 | \samp{\e\e} inside a regular Python string literal.
|
---|
27 |
|
---|
28 | The solution is to use Python's raw string notation for regular
|
---|
29 | expression patterns; backslashes are not handled in any special way in
|
---|
30 | a string literal prefixed with \character{r}. So \code{r"\e n"} is a
|
---|
31 | two-character string containing \character{\e} and \character{n},
|
---|
32 | while \code{"\e n"} is a one-character string containing a newline.
|
---|
33 | Usually patterns will be expressed in Python code using this raw
|
---|
34 | string notation.
|
---|
35 |
|
---|
36 | \begin{seealso}
|
---|
37 | \seetitle{Mastering Regular Expressions}{Book on regular expressions
|
---|
38 | by Jeffrey Friedl, published by O'Reilly. The second
|
---|
39 | edition of the book no longer covers Python at all,
|
---|
40 | but the first edition covered writing good regular expression
|
---|
41 | patterns in great detail.}
|
---|
42 | \end{seealso}
|
---|
43 |
|
---|
44 |
|
---|
45 | \subsection{Regular Expression Syntax \label{re-syntax}}
|
---|
46 |
|
---|
47 | A regular expression (or RE) specifies a set of strings that matches
|
---|
48 | it; the functions in this module let you check if a particular string
|
---|
49 | matches a given regular expression (or if a given regular expression
|
---|
50 | matches a particular string, which comes down to the same thing).
|
---|
51 |
|
---|
52 | Regular expressions can be concatenated to form new regular
|
---|
53 | expressions; if \emph{A} and \emph{B} are both regular expressions,
|
---|
54 | then \emph{AB} is also a regular expression. In general, if a string
|
---|
55 | \emph{p} matches \emph{A} and another string \emph{q} matches \emph{B},
|
---|
56 | the string \emph{pq} will match AB. This holds unless \emph{A} or
|
---|
57 | \emph{B} contain low precedence operations; boundary conditions between
|
---|
58 | \emph{A} and \emph{B}; or have numbered group references. Thus, complex
|
---|
59 | expressions can easily be constructed from simpler primitive
|
---|
60 | expressions like the ones described here. For details of the theory
|
---|
61 | and implementation of regular expressions, consult the Friedl book
|
---|
62 | referenced above, or almost any textbook about compiler construction.
|
---|
63 |
|
---|
64 | A brief explanation of the format of regular expressions follows. For
|
---|
65 | further information and a gentler presentation, consult the Regular
|
---|
66 | Expression HOWTO, accessible from \url{http://www.python.org/doc/howto/}.
|
---|
67 |
|
---|
68 | Regular expressions can contain both special and ordinary characters.
|
---|
69 | Most ordinary characters, like \character{A}, \character{a}, or
|
---|
70 | \character{0}, are the simplest regular expressions; they simply match
|
---|
71 | themselves. You can concatenate ordinary characters, so \regexp{last}
|
---|
72 | matches the string \code{'last'}. (In the rest of this section, we'll
|
---|
73 | write RE's in \regexp{this special style}, usually without quotes, and
|
---|
74 | strings to be matched \code{'in single quotes'}.)
|
---|
75 |
|
---|
76 | Some characters, like \character{|} or \character{(}, are special.
|
---|
77 | Special characters either stand for classes of ordinary characters, or
|
---|
78 | affect how the regular expressions around them are interpreted.
|
---|
79 |
|
---|
80 | The special characters are:
|
---|
81 | %
|
---|
82 | \begin{description}
|
---|
83 |
|
---|
84 | \item[\character{.}] (Dot.) In the default mode, this matches any
|
---|
85 | character except a newline. If the \constant{DOTALL} flag has been
|
---|
86 | specified, this matches any character including a newline.
|
---|
87 |
|
---|
88 | \item[\character{\textasciicircum}] (Caret.) Matches the start of the
|
---|
89 | string, and in \constant{MULTILINE} mode also matches immediately
|
---|
90 | after each newline.
|
---|
91 |
|
---|
92 | \item[\character{\$}] Matches the end of the string or just before the
|
---|
93 | newline at the end of the string, and in \constant{MULTILINE} mode
|
---|
94 | also matches before a newline. \regexp{foo} matches both 'foo' and
|
---|
95 | 'foobar', while the regular expression \regexp{foo\$} matches only
|
---|
96 | 'foo'. More interestingly, searching for \regexp{foo.\$} in
|
---|
97 | 'foo1\textbackslash nfoo2\textbackslash n' matches 'foo2' normally,
|
---|
98 | but 'foo1' in \constant{MULTILINE} mode.
|
---|
99 |
|
---|
100 | \item[\character{*}] Causes the resulting RE to
|
---|
101 | match 0 or more repetitions of the preceding RE, as many repetitions
|
---|
102 | as are possible. \regexp{ab*} will
|
---|
103 | match 'a', 'ab', or 'a' followed by any number of 'b's.
|
---|
104 |
|
---|
105 | \item[\character{+}] Causes the
|
---|
106 | resulting RE to match 1 or more repetitions of the preceding RE.
|
---|
107 | \regexp{ab+} will match 'a' followed by any non-zero number of 'b's; it
|
---|
108 | will not match just 'a'.
|
---|
109 |
|
---|
110 | \item[\character{?}] Causes the resulting RE to
|
---|
111 | match 0 or 1 repetitions of the preceding RE. \regexp{ab?} will
|
---|
112 | match either 'a' or 'ab'.
|
---|
113 |
|
---|
114 | \item[\code{*?}, \code{+?}, \code{??}] The \character{*},
|
---|
115 | \character{+}, and \character{?} qualifiers are all \dfn{greedy}; they
|
---|
116 | match as much text as possible. Sometimes this behaviour isn't
|
---|
117 | desired; if the RE \regexp{<.*>} is matched against
|
---|
118 | \code{'<H1>title</H1>'}, it will match the entire string, and not just
|
---|
119 | \code{'<H1>'}. Adding \character{?} after the qualifier makes it
|
---|
120 | perform the match in \dfn{non-greedy} or \dfn{minimal} fashion; as
|
---|
121 | \emph{few} characters as possible will be matched. Using \regexp{.*?}
|
---|
122 | in the previous expression will match only \code{'<H1>'}.
|
---|
123 |
|
---|
124 | \item[\code{\{\var{m}\}}]
|
---|
125 | Specifies that exactly \var{m} copies of the previous RE should be
|
---|
126 | matched; fewer matches cause the entire RE not to match. For example,
|
---|
127 | \regexp{a\{6\}} will match exactly six \character{a} characters, but
|
---|
128 | not five.
|
---|
129 |
|
---|
130 | \item[\code{\{\var{m},\var{n}\}}] Causes the resulting RE to match from
|
---|
131 | \var{m} to \var{n} repetitions of the preceding RE, attempting to
|
---|
132 | match as many repetitions as possible. For example, \regexp{a\{3,5\}}
|
---|
133 | will match from 3 to 5 \character{a} characters. Omitting \var{m}
|
---|
134 | specifies a lower bound of zero,
|
---|
135 | and omitting \var{n} specifies an infinite upper bound. As an
|
---|
136 | example, \regexp{a\{4,\}b} will match \code{aaaab} or a thousand
|
---|
137 | \character{a} characters followed by a \code{b}, but not \code{aaab}.
|
---|
138 | The comma may not be omitted or the modifier would be confused with
|
---|
139 | the previously described form.
|
---|
140 |
|
---|
141 | \item[\code{\{\var{m},\var{n}\}?}] Causes the resulting RE to
|
---|
142 | match from \var{m} to \var{n} repetitions of the preceding RE,
|
---|
143 | attempting to match as \emph{few} repetitions as possible. This is
|
---|
144 | the non-greedy version of the previous qualifier. For example, on the
|
---|
145 | 6-character string \code{'aaaaaa'}, \regexp{a\{3,5\}} will match 5
|
---|
146 | \character{a} characters, while \regexp{a\{3,5\}?} will only match 3
|
---|
147 | characters.
|
---|
148 |
|
---|
149 | \item[\character{\e}] Either escapes special characters (permitting
|
---|
150 | you to match characters like \character{*}, \character{?}, and so
|
---|
151 | forth), or signals a special sequence; special sequences are discussed
|
---|
152 | below.
|
---|
153 |
|
---|
154 | If you're not using a raw string to
|
---|
155 | express the pattern, remember that Python also uses the
|
---|
156 | backslash as an escape sequence in string literals; if the escape
|
---|
157 | sequence isn't recognized by Python's parser, the backslash and
|
---|
158 | subsequent character are included in the resulting string. However,
|
---|
159 | if Python would recognize the resulting sequence, the backslash should
|
---|
160 | be repeated twice. This is complicated and hard to understand, so
|
---|
161 | it's highly recommended that you use raw strings for all but the
|
---|
162 | simplest expressions.
|
---|
163 |
|
---|
164 | \item[\code{[]}] Used to indicate a set of characters. Characters can
|
---|
165 | be listed individually, or a range of characters can be indicated by
|
---|
166 | giving two characters and separating them by a \character{-}. Special
|
---|
167 | characters are not active inside sets. For example, \regexp{[akm\$]}
|
---|
168 | will match any of the characters \character{a}, \character{k},
|
---|
169 | \character{m}, or \character{\$}; \regexp{[a-z]}
|
---|
170 | will match any lowercase letter, and \code{[a-zA-Z0-9]} matches any
|
---|
171 | letter or digit. Character classes such as \code{\e w} or \code{\e S}
|
---|
172 | (defined below) are also acceptable inside a range. If you want to
|
---|
173 | include a \character{]} or a \character{-} inside a set, precede it with a
|
---|
174 | backslash, or place it as the first character. The
|
---|
175 | pattern \regexp{[]]} will match \code{']'}, for example.
|
---|
176 |
|
---|
177 | You can match the characters not within a range by \dfn{complementing}
|
---|
178 | the set. This is indicated by including a
|
---|
179 | \character{\textasciicircum} as the first character of the set;
|
---|
180 | \character{\textasciicircum} elsewhere will simply match the
|
---|
181 | \character{\textasciicircum} character. For example,
|
---|
182 | \regexp{[{\textasciicircum}5]} will match
|
---|
183 | any character except \character{5}, and
|
---|
184 | \regexp{[\textasciicircum\code{\textasciicircum}]} will match any character
|
---|
185 | except \character{\textasciicircum}.
|
---|
186 |
|
---|
187 | \item[\character{|}]\code{A|B}, where A and B can be arbitrary REs,
|
---|
188 | creates a regular expression that will match either A or B. An
|
---|
189 | arbitrary number of REs can be separated by the \character{|} in this
|
---|
190 | way. This can be used inside groups (see below) as well. As the target
|
---|
191 | string is scanned, REs separated by \character{|} are tried from left to
|
---|
192 | right. When one pattern completely matches, that branch is accepted.
|
---|
193 | This means that once \code{A} matches, \code{B} will not be tested further,
|
---|
194 | even if it would produce a longer overall match. In other words, the
|
---|
195 | \character{|} operator is never greedy. To match a literal \character{|},
|
---|
196 | use \regexp{\e|}, or enclose it inside a character class, as in \regexp{[|]}.
|
---|
197 |
|
---|
198 | \item[\code{(...)}] Matches whatever regular expression is inside the
|
---|
199 | parentheses, and indicates the start and end of a group; the contents
|
---|
200 | of a group can be retrieved after a match has been performed, and can
|
---|
201 | be matched later in the string with the \regexp{\e \var{number}} special
|
---|
202 | sequence, described below. To match the literals \character{(} or
|
---|
203 | \character{)}, use \regexp{\e(} or \regexp{\e)}, or enclose them
|
---|
204 | inside a character class: \regexp{[(] [)]}.
|
---|
205 |
|
---|
206 | \item[\code{(?...)}] This is an extension notation (a \character{?}
|
---|
207 | following a \character{(} is not meaningful otherwise). The first
|
---|
208 | character after the \character{?}
|
---|
209 | determines what the meaning and further syntax of the construct is.
|
---|
210 | Extensions usually do not create a new group;
|
---|
211 | \regexp{(?P<\var{name}>...)} is the only exception to this rule.
|
---|
212 | Following are the currently supported extensions.
|
---|
213 |
|
---|
214 | \item[\code{(?iLmsux)}] (One or more letters from the set \character{i},
|
---|
215 | \character{L}, \character{m}, \character{s}, \character{u},
|
---|
216 | \character{x}.) The group matches the empty string; the letters set
|
---|
217 | the corresponding flags (\constant{re.I}, \constant{re.L},
|
---|
218 | \constant{re.M}, \constant{re.S}, \constant{re.U}, \constant{re.X})
|
---|
219 | for the entire regular expression. This is useful if you wish to
|
---|
220 | include the flags as part of the regular expression, instead of
|
---|
221 | passing a \var{flag} argument to the \function{compile()} function.
|
---|
222 |
|
---|
223 | Note that the \regexp{(?x)} flag changes how the expression is parsed.
|
---|
224 | It should be used first in the expression string, or after one or more
|
---|
225 | whitespace characters. If there are non-whitespace characters before
|
---|
226 | the flag, the results are undefined.
|
---|
227 |
|
---|
228 | \item[\code{(?:...)}] A non-grouping version of regular parentheses.
|
---|
229 | Matches whatever regular expression is inside the parentheses, but the
|
---|
230 | substring matched by the
|
---|
231 | group \emph{cannot} be retrieved after performing a match or
|
---|
232 | referenced later in the pattern.
|
---|
233 |
|
---|
234 | \item[\code{(?P<\var{name}>...)}] Similar to regular parentheses, but
|
---|
235 | the substring matched by the group is accessible via the symbolic group
|
---|
236 | name \var{name}. Group names must be valid Python identifiers, and
|
---|
237 | each group name must be defined only once within a regular expression. A
|
---|
238 | symbolic group is also a numbered group, just as if the group were not
|
---|
239 | named. So the group named 'id' in the example above can also be
|
---|
240 | referenced as the numbered group 1.
|
---|
241 |
|
---|
242 | For example, if the pattern is
|
---|
243 | \regexp{(?P<id>[a-zA-Z_]\e w*)}, the group can be referenced by its
|
---|
244 | name in arguments to methods of match objects, such as
|
---|
245 | \code{m.group('id')} or \code{m.end('id')}, and also by name in
|
---|
246 | pattern text (for example, \regexp{(?P=id)}) and replacement text
|
---|
247 | (such as \code{\e g<id>}).
|
---|
248 |
|
---|
249 | \item[\code{(?P=\var{name})}] Matches whatever text was matched by the
|
---|
250 | earlier group named \var{name}.
|
---|
251 |
|
---|
252 | \item[\code{(?\#...)}] A comment; the contents of the parentheses are
|
---|
253 | simply ignored.
|
---|
254 |
|
---|
255 | \item[\code{(?=...)}] Matches if \regexp{...} matches next, but doesn't
|
---|
256 | consume any of the string. This is called a lookahead assertion. For
|
---|
257 | example, \regexp{Isaac (?=Asimov)} will match \code{'Isaac~'} only if it's
|
---|
258 | followed by \code{'Asimov'}.
|
---|
259 |
|
---|
260 | \item[\code{(?!...)}] Matches if \regexp{...} doesn't match next. This
|
---|
261 | is a negative lookahead assertion. For example,
|
---|
262 | \regexp{Isaac (?!Asimov)} will match \code{'Isaac~'} only if it's \emph{not}
|
---|
263 | followed by \code{'Asimov'}.
|
---|
264 |
|
---|
265 | \item[\code{(?<=...)}] Matches if the current position in the string
|
---|
266 | is preceded by a match for \regexp{...} that ends at the current
|
---|
267 | position. This is called a \dfn{positive lookbehind assertion}.
|
---|
268 | \regexp{(?<=abc)def} will find a match in \samp{abcdef}, since the
|
---|
269 | lookbehind will back up 3 characters and check if the contained
|
---|
270 | pattern matches. The contained pattern must only match strings of
|
---|
271 | some fixed length, meaning that \regexp{abc} or \regexp{a|b} are
|
---|
272 | allowed, but \regexp{a*} and \regexp{a\{3,4\}} are not. Note that
|
---|
273 | patterns which start with positive lookbehind assertions will never
|
---|
274 | match at the beginning of the string being searched; you will most
|
---|
275 | likely want to use the \function{search()} function rather than the
|
---|
276 | \function{match()} function:
|
---|
277 |
|
---|
278 | \begin{verbatim}
|
---|
279 | >>> import re
|
---|
280 | >>> m = re.search('(?<=abc)def', 'abcdef')
|
---|
281 | >>> m.group(0)
|
---|
282 | 'def'
|
---|
283 | \end{verbatim}
|
---|
284 |
|
---|
285 | This example looks for a word following a hyphen:
|
---|
286 |
|
---|
287 | \begin{verbatim}
|
---|
288 | >>> m = re.search('(?<=-)\w+', 'spam-egg')
|
---|
289 | >>> m.group(0)
|
---|
290 | 'egg'
|
---|
291 | \end{verbatim}
|
---|
292 |
|
---|
293 | \item[\code{(?<!...)}] Matches if the current position in the string
|
---|
294 | is not preceded by a match for \regexp{...}. This is called a
|
---|
295 | \dfn{negative lookbehind assertion}. Similar to positive lookbehind
|
---|
296 | assertions, the contained pattern must only match strings of some
|
---|
297 | fixed length. Patterns which start with negative lookbehind
|
---|
298 | assertions may match at the beginning of the string being searched.
|
---|
299 |
|
---|
300 | \item[\code{(?(\var{id/name})yes-pattern|no-pattern)}] Will try to match
|
---|
301 | with \regexp{yes-pattern} if the group with given \var{id} or \var{name}
|
---|
302 | exists, and with \regexp{no-pattern} if it doesn't. \regexp{|no-pattern}
|
---|
303 | is optional and can be omitted. For example,
|
---|
304 | \regexp{(<)?(\e w+@\e w+(?:\e .\e w+)+)(?(1)>)} is a poor email matching
|
---|
305 | pattern, which will match with \code{'<user@host.com>'} as well as
|
---|
306 | \code{'user@host.com'}, but not with \code{'<user@host.com'}.
|
---|
307 | \versionadded{2.4}
|
---|
308 |
|
---|
309 | \end{description}
|
---|
310 |
|
---|
311 | The special sequences consist of \character{\e} and a character from the
|
---|
312 | list below. If the ordinary character is not on the list, then the
|
---|
313 | resulting RE will match the second character. For example,
|
---|
314 | \regexp{\e\$} matches the character \character{\$}.
|
---|
315 | %
|
---|
316 | \begin{description}
|
---|
317 |
|
---|
318 | \item[\code{\e \var{number}}] Matches the contents of the group of the
|
---|
319 | same number. Groups are numbered starting from 1. For example,
|
---|
320 | \regexp{(.+) \e 1} matches \code{'the the'} or \code{'55 55'}, but not
|
---|
321 | \code{'the end'} (note
|
---|
322 | the space after the group). This special sequence can only be used to
|
---|
323 | match one of the first 99 groups. If the first digit of \var{number}
|
---|
324 | is 0, or \var{number} is 3 octal digits long, it will not be interpreted
|
---|
325 | as a group match, but as the character with octal value \var{number}.
|
---|
326 | Inside the \character{[} and \character{]} of a character class, all numeric
|
---|
327 | escapes are treated as characters.
|
---|
328 |
|
---|
329 | \item[\code{\e A}] Matches only at the start of the string.
|
---|
330 |
|
---|
331 | \item[\code{\e b}] Matches the empty string, but only at the
|
---|
332 | beginning or end of a word. A word is defined as a sequence of
|
---|
333 | alphanumeric or underscore characters, so the end of a word is indicated by
|
---|
334 | whitespace or a non-alphanumeric, non-underscore character. Note that
|
---|
335 | {}\code{\e b} is defined as the boundary between \code{\e w} and \code{\e
|
---|
336 | W}, so the precise set of characters deemed to be alphanumeric depends on the
|
---|
337 | values of the \code{UNICODE} and \code{LOCALE} flags. Inside a character
|
---|
338 | range, \regexp{\e b} represents the backspace character, for compatibility
|
---|
339 | with Python's string literals.
|
---|
340 |
|
---|
341 | \item[\code{\e B}] Matches the empty string, but only when it is \emph{not}
|
---|
342 | at the beginning or end of a word. This is just the opposite of {}\code{\e
|
---|
343 | b}, so is also subject to the settings of \code{LOCALE} and \code{UNICODE}.
|
---|
344 |
|
---|
345 | \item[\code{\e d}]When the \constant{UNICODE} flag is not specified, matches
|
---|
346 | any decimal digit; this is equivalent to the set \regexp{[0-9]}.
|
---|
347 | With \constant{UNICODE}, it will match whatever is classified as a digit
|
---|
348 | in the Unicode character properties database.
|
---|
349 |
|
---|
350 | \item[\code{\e D}]When the \constant{UNICODE} flag is not specified, matches
|
---|
351 | any non-digit character; this is equivalent to the set
|
---|
352 | \regexp{[{\textasciicircum}0-9]}. With \constant{UNICODE}, it will match
|
---|
353 | anything other than character marked as digits in the Unicode character
|
---|
354 | properties database.
|
---|
355 |
|
---|
356 | \item[\code{\e s}]When the \constant{LOCALE} and \constant{UNICODE}
|
---|
357 | flags are not specified, matches any whitespace character; this is
|
---|
358 | equivalent to the set \regexp{[ \e t\e n\e r\e f\e v]}.
|
---|
359 | With \constant{LOCALE}, it will match this set plus whatever characters
|
---|
360 | are defined as space for the current locale. If \constant{UNICODE} is set,
|
---|
361 | this will match the characters \regexp{[ \e t\e n\e r\e f\e v]} plus
|
---|
362 | whatever is classified as space in the Unicode character properties
|
---|
363 | database.
|
---|
364 |
|
---|
365 | \item[\code{\e S}]When the \constant{LOCALE} and \constant{UNICODE}
|
---|
366 | flags are not specified, matches any non-whitespace character; this is
|
---|
367 | equivalent to the set \regexp{[\textasciicircum\ \e t\e n\e r\e f\e v]}
|
---|
368 | With \constant{LOCALE}, it will match any character not in this set,
|
---|
369 | and not defined as space in the current locale. If \constant{UNICODE}
|
---|
370 | is set, this will match anything other than \regexp{[ \e t\e n\e r\e f\e v]}
|
---|
371 | and characters marked as space in the Unicode character properties database.
|
---|
372 |
|
---|
373 | \item[\code{\e w}]When the \constant{LOCALE} and \constant{UNICODE}
|
---|
374 | flags are not specified, matches any alphanumeric character and the
|
---|
375 | underscore; this is equivalent to the set
|
---|
376 | \regexp{[a-zA-Z0-9_]}. With \constant{LOCALE}, it will match the set
|
---|
377 | \regexp{[0-9_]} plus whatever characters are defined as alphanumeric for
|
---|
378 | the current locale. If \constant{UNICODE} is set, this will match the
|
---|
379 | characters \regexp{[0-9_]} plus whatever is classified as alphanumeric
|
---|
380 | in the Unicode character properties database.
|
---|
381 |
|
---|
382 | \item[\code{\e W}]When the \constant{LOCALE} and \constant{UNICODE}
|
---|
383 | flags are not specified, matches any non-alphanumeric character; this
|
---|
384 | is equivalent to the set \regexp{[{\textasciicircum}a-zA-Z0-9_]}. With
|
---|
385 | \constant{LOCALE}, it will match any character not in the set
|
---|
386 | \regexp{[0-9_]}, and not defined as alphanumeric for the current locale.
|
---|
387 | If \constant{UNICODE} is set, this will match anything other than
|
---|
388 | \regexp{[0-9_]} and characters marked as alphanumeric in the Unicode
|
---|
389 | character properties database.
|
---|
390 |
|
---|
391 | \item[\code{\e Z}]Matches only at the end of the string.
|
---|
392 |
|
---|
393 | \end{description}
|
---|
394 |
|
---|
395 | Most of the standard escapes supported by Python string literals are
|
---|
396 | also accepted by the regular expression parser:
|
---|
397 |
|
---|
398 | \begin{verbatim}
|
---|
399 | \a \b \f \n
|
---|
400 | \r \t \v \x
|
---|
401 | \\
|
---|
402 | \end{verbatim}
|
---|
403 |
|
---|
404 | Octal escapes are included in a limited form: If the first digit is a
|
---|
405 | 0, or if there are three octal digits, it is considered an octal
|
---|
406 | escape. Otherwise, it is a group reference. As for string literals,
|
---|
407 | octal escapes are always at most three digits in length.
|
---|
408 |
|
---|
409 |
|
---|
410 | % Note the lack of a period in the section title; it causes problems
|
---|
411 | % with readers of the GNU info version. See http://www.python.org/sf/581414.
|
---|
412 | \subsection{Matching vs Searching \label{matching-searching}}
|
---|
413 | \sectionauthor{Fred L. Drake, Jr.}{fdrake@acm.org}
|
---|
414 |
|
---|
415 | Python offers two different primitive operations based on regular
|
---|
416 | expressions: match and search. If you are accustomed to Perl's
|
---|
417 | semantics, the search operation is what you're looking for. See the
|
---|
418 | \function{search()} function and corresponding method of compiled
|
---|
419 | regular expression objects.
|
---|
420 |
|
---|
421 | Note that match may differ from search using a regular expression
|
---|
422 | beginning with \character{\textasciicircum}:
|
---|
423 | \character{\textasciicircum} matches only at the
|
---|
424 | start of the string, or in \constant{MULTILINE} mode also immediately
|
---|
425 | following a newline. The ``match'' operation succeeds only if the
|
---|
426 | pattern matches at the start of the string regardless of mode, or at
|
---|
427 | the starting position given by the optional \var{pos} argument
|
---|
428 | regardless of whether a newline precedes it.
|
---|
429 |
|
---|
430 | % Examples from Tim Peters:
|
---|
431 | \begin{verbatim}
|
---|
432 | re.compile("a").match("ba", 1) # succeeds
|
---|
433 | re.compile("^a").search("ba", 1) # fails; 'a' not at start
|
---|
434 | re.compile("^a").search("\na", 1) # fails; 'a' not at start
|
---|
435 | re.compile("^a", re.M).search("\na", 1) # succeeds
|
---|
436 | re.compile("^a", re.M).search("ba", 1) # fails; no preceding \n
|
---|
437 | \end{verbatim}
|
---|
438 |
|
---|
439 |
|
---|
440 | \subsection{Module Contents}
|
---|
441 | \nodename{Contents of Module re}
|
---|
442 |
|
---|
443 | The module defines several functions, constants, and an exception. Some of the
|
---|
444 | functions are simplified versions of the full featured methods for compiled
|
---|
445 | regular expressions. Most non-trivial applications always use the compiled
|
---|
446 | form.
|
---|
447 |
|
---|
448 | \begin{funcdesc}{compile}{pattern\optional{, flags}}
|
---|
449 | Compile a regular expression pattern into a regular expression
|
---|
450 | object, which can be used for matching using its \function{match()} and
|
---|
451 | \function{search()} methods, described below.
|
---|
452 |
|
---|
453 | The expression's behaviour can be modified by specifying a
|
---|
454 | \var{flags} value. Values can be any of the following variables,
|
---|
455 | combined using bitwise OR (the \code{|} operator).
|
---|
456 |
|
---|
457 | The sequence
|
---|
458 |
|
---|
459 | \begin{verbatim}
|
---|
460 | prog = re.compile(pat)
|
---|
461 | result = prog.match(str)
|
---|
462 | \end{verbatim}
|
---|
463 |
|
---|
464 | is equivalent to
|
---|
465 |
|
---|
466 | \begin{verbatim}
|
---|
467 | result = re.match(pat, str)
|
---|
468 | \end{verbatim}
|
---|
469 |
|
---|
470 | but the version using \function{compile()} is more efficient when the
|
---|
471 | expression will be used several times in a single program.
|
---|
472 | %(The compiled version of the last pattern passed to
|
---|
473 | %\function{re.match()} or \function{re.search()} is cached, so
|
---|
474 | %programs that use only a single regular expression at a time needn't
|
---|
475 | %worry about compiling regular expressions.)
|
---|
476 | \end{funcdesc}
|
---|
477 |
|
---|
478 | \begin{datadesc}{I}
|
---|
479 | \dataline{IGNORECASE}
|
---|
480 | Perform case-insensitive matching; expressions like \regexp{[A-Z]}
|
---|
481 | will match lowercase letters, too. This is not affected by the
|
---|
482 | current locale.
|
---|
483 | \end{datadesc}
|
---|
484 |
|
---|
485 | \begin{datadesc}{L}
|
---|
486 | \dataline{LOCALE}
|
---|
487 | Make \regexp{\e w}, \regexp{\e W}, \regexp{\e b}, \regexp{\e B},
|
---|
488 | \regexp{\e s} and \regexp{\e S} dependent on the current locale.
|
---|
489 | \end{datadesc}
|
---|
490 |
|
---|
491 | \begin{datadesc}{M}
|
---|
492 | \dataline{MULTILINE}
|
---|
493 | When specified, the pattern character \character{\textasciicircum}
|
---|
494 | matches at the beginning of the string and at the beginning of each
|
---|
495 | line (immediately following each newline); and the pattern character
|
---|
496 | \character{\$} matches at the end of the string and at the end of each
|
---|
497 | line (immediately preceding each newline). By default,
|
---|
498 | \character{\textasciicircum} matches only at the beginning of the
|
---|
499 | string, and \character{\$} only at the end of the string and
|
---|
500 | immediately before the newline (if any) at the end of the string.
|
---|
501 | \end{datadesc}
|
---|
502 |
|
---|
503 | \begin{datadesc}{S}
|
---|
504 | \dataline{DOTALL}
|
---|
505 | Make the \character{.} special character match any character at all,
|
---|
506 | including a newline; without this flag, \character{.} will match
|
---|
507 | anything \emph{except} a newline.
|
---|
508 | \end{datadesc}
|
---|
509 |
|
---|
510 | \begin{datadesc}{U}
|
---|
511 | \dataline{UNICODE}
|
---|
512 | Make \regexp{\e w}, \regexp{\e W}, \regexp{\e b}, \regexp{\e B},
|
---|
513 | \regexp{\e d}, \regexp{\e D}, \regexp{\e s} and \regexp{\e S}
|
---|
514 | dependent on the Unicode character properties database.
|
---|
515 | \versionadded{2.0}
|
---|
516 | \end{datadesc}
|
---|
517 |
|
---|
518 | \begin{datadesc}{X}
|
---|
519 | \dataline{VERBOSE}
|
---|
520 | This flag allows you to write regular expressions that look nicer.
|
---|
521 | Whitespace within the pattern is ignored,
|
---|
522 | except when in a character class or preceded by an unescaped
|
---|
523 | backslash, and, when a line contains a \character{\#} neither in a
|
---|
524 | character class or preceded by an unescaped backslash, all characters
|
---|
525 | from the leftmost such \character{\#} through the end of the line are
|
---|
526 | ignored.
|
---|
527 | % XXX should add an example here
|
---|
528 | \end{datadesc}
|
---|
529 |
|
---|
530 |
|
---|
531 | \begin{funcdesc}{search}{pattern, string\optional{, flags}}
|
---|
532 | Scan through \var{string} looking for a location where the regular
|
---|
533 | expression \var{pattern} produces a match, and return a
|
---|
534 | corresponding \class{MatchObject} instance.
|
---|
535 | Return \code{None} if no
|
---|
536 | position in the string matches the pattern; note that this is
|
---|
537 | different from finding a zero-length match at some point in the string.
|
---|
538 | \end{funcdesc}
|
---|
539 |
|
---|
540 | \begin{funcdesc}{match}{pattern, string\optional{, flags}}
|
---|
541 | If zero or more characters at the beginning of \var{string} match
|
---|
542 | the regular expression \var{pattern}, return a corresponding
|
---|
543 | \class{MatchObject} instance. Return \code{None} if the string does not
|
---|
544 | match the pattern; note that this is different from a zero-length
|
---|
545 | match.
|
---|
546 |
|
---|
547 | \note{If you want to locate a match anywhere in
|
---|
548 | \var{string}, use \method{search()} instead.}
|
---|
549 | \end{funcdesc}
|
---|
550 |
|
---|
551 | \begin{funcdesc}{split}{pattern, string\optional{, maxsplit\code{ = 0}}}
|
---|
552 | Split \var{string} by the occurrences of \var{pattern}. If
|
---|
553 | capturing parentheses are used in \var{pattern}, then the text of all
|
---|
554 | groups in the pattern are also returned as part of the resulting list.
|
---|
555 | If \var{maxsplit} is nonzero, at most \var{maxsplit} splits
|
---|
556 | occur, and the remainder of the string is returned as the final
|
---|
557 | element of the list. (Incompatibility note: in the original Python
|
---|
558 | 1.5 release, \var{maxsplit} was ignored. This has been fixed in
|
---|
559 | later releases.)
|
---|
560 |
|
---|
561 | \begin{verbatim}
|
---|
562 | >>> re.split('\W+', 'Words, words, words.')
|
---|
563 | ['Words', 'words', 'words', '']
|
---|
564 | >>> re.split('(\W+)', 'Words, words, words.')
|
---|
565 | ['Words', ', ', 'words', ', ', 'words', '.', '']
|
---|
566 | >>> re.split('\W+', 'Words, words, words.', 1)
|
---|
567 | ['Words', 'words, words.']
|
---|
568 | \end{verbatim}
|
---|
569 | \end{funcdesc}
|
---|
570 |
|
---|
571 | \begin{funcdesc}{findall}{pattern, string\optional{, flags}}
|
---|
572 | Return a list of all non-overlapping matches of \var{pattern} in
|
---|
573 | \var{string}. If one or more groups are present in the pattern,
|
---|
574 | return a list of groups; this will be a list of tuples if the
|
---|
575 | pattern has more than one group. Empty matches are included in the
|
---|
576 | result unless they touch the beginning of another match.
|
---|
577 | \versionadded{1.5.2}
|
---|
578 | \versionchanged[Added the optional flags argument]{2.4}
|
---|
579 | \end{funcdesc}
|
---|
580 |
|
---|
581 | \begin{funcdesc}{finditer}{pattern, string\optional{, flags}}
|
---|
582 | Return an iterator over all non-overlapping matches for the RE
|
---|
583 | \var{pattern} in \var{string}. For each match, the iterator returns
|
---|
584 | a match object. Empty matches are included in the result unless they
|
---|
585 | touch the beginning of another match.
|
---|
586 | \versionadded{2.2}
|
---|
587 | \versionchanged[Added the optional flags argument]{2.4}
|
---|
588 | \end{funcdesc}
|
---|
589 |
|
---|
590 | \begin{funcdesc}{sub}{pattern, repl, string\optional{, count}}
|
---|
591 | Return the string obtained by replacing the leftmost non-overlapping
|
---|
592 | occurrences of \var{pattern} in \var{string} by the replacement
|
---|
593 | \var{repl}. If the pattern isn't found, \var{string} is returned
|
---|
594 | unchanged. \var{repl} can be a string or a function; if it is a
|
---|
595 | string, any backslash escapes in it are processed. That is,
|
---|
596 | \samp{\e n} is converted to a single newline character, \samp{\e r}
|
---|
597 | is converted to a linefeed, and so forth. Unknown escapes such as
|
---|
598 | \samp{\e j} are left alone. Backreferences, such as \samp{\e6}, are
|
---|
599 | replaced with the substring matched by group 6 in the pattern. For
|
---|
600 | example:
|
---|
601 |
|
---|
602 | \begin{verbatim}
|
---|
603 | >>> re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):',
|
---|
604 | ... r'static PyObject*\npy_\1(void)\n{',
|
---|
605 | ... 'def myfunc():')
|
---|
606 | 'static PyObject*\npy_myfunc(void)\n{'
|
---|
607 | \end{verbatim}
|
---|
608 |
|
---|
609 | If \var{repl} is a function, it is called for every non-overlapping
|
---|
610 | occurrence of \var{pattern}. The function takes a single match
|
---|
611 | object argument, and returns the replacement string. For example:
|
---|
612 |
|
---|
613 | \begin{verbatim}
|
---|
614 | >>> def dashrepl(matchobj):
|
---|
615 | ... if matchobj.group(0) == '-': return ' '
|
---|
616 | ... else: return '-'
|
---|
617 | >>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')
|
---|
618 | 'pro--gram files'
|
---|
619 | \end{verbatim}
|
---|
620 |
|
---|
621 | The pattern may be a string or an RE object; if you need to specify
|
---|
622 | regular expression flags, you must use a RE object, or use embedded
|
---|
623 | modifiers in a pattern; for example, \samp{sub("(?i)b+", "x", "bbbb
|
---|
624 | BBBB")} returns \code{'x x'}.
|
---|
625 |
|
---|
626 | The optional argument \var{count} is the maximum number of pattern
|
---|
627 | occurrences to be replaced; \var{count} must be a non-negative
|
---|
628 | integer. If omitted or zero, all occurrences will be replaced.
|
---|
629 | Empty matches for the pattern are replaced only when not adjacent to
|
---|
630 | a previous match, so \samp{sub('x*', '-', 'abc')} returns
|
---|
631 | \code{'-a-b-c-'}.
|
---|
632 |
|
---|
633 | In addition to character escapes and backreferences as described
|
---|
634 | above, \samp{\e g<name>} will use the substring matched by the group
|
---|
635 | named \samp{name}, as defined by the \regexp{(?P<name>...)} syntax.
|
---|
636 | \samp{\e g<number>} uses the corresponding group number;
|
---|
637 | \samp{\e g<2>} is therefore equivalent to \samp{\e 2}, but isn't
|
---|
638 | ambiguous in a replacement such as \samp{\e g<2>0}. \samp{\e 20}
|
---|
639 | would be interpreted as a reference to group 20, not a reference to
|
---|
640 | group 2 followed by the literal character \character{0}. The
|
---|
641 | backreference \samp{\e g<0>} substitutes in the entire substring
|
---|
642 | matched by the RE.
|
---|
643 | \end{funcdesc}
|
---|
644 |
|
---|
645 | \begin{funcdesc}{subn}{pattern, repl, string\optional{, count}}
|
---|
646 | Perform the same operation as \function{sub()}, but return a tuple
|
---|
647 | \code{(\var{new_string}, \var{number_of_subs_made})}.
|
---|
648 | \end{funcdesc}
|
---|
649 |
|
---|
650 | \begin{funcdesc}{escape}{string}
|
---|
651 | Return \var{string} with all non-alphanumerics backslashed; this is
|
---|
652 | useful if you want to match an arbitrary literal string that may have
|
---|
653 | regular expression metacharacters in it.
|
---|
654 | \end{funcdesc}
|
---|
655 |
|
---|
656 | \begin{excdesc}{error}
|
---|
657 | Exception raised when a string passed to one of the functions here
|
---|
658 | is not a valid regular expression (for example, it might contain
|
---|
659 | unmatched parentheses) or when some other error occurs during
|
---|
660 | compilation or matching. It is never an error if a string contains
|
---|
661 | no match for a pattern.
|
---|
662 | \end{excdesc}
|
---|
663 |
|
---|
664 |
|
---|
665 | \subsection{Regular Expression Objects \label{re-objects}}
|
---|
666 |
|
---|
667 | Compiled regular expression objects support the following methods and
|
---|
668 | attributes:
|
---|
669 |
|
---|
670 | \begin{methoddesc}[RegexObject]{match}{string\optional{, pos\optional{,
|
---|
671 | endpos}}}
|
---|
672 | If zero or more characters at the beginning of \var{string} match
|
---|
673 | this regular expression, return a corresponding
|
---|
674 | \class{MatchObject} instance. Return \code{None} if the string does not
|
---|
675 | match the pattern; note that this is different from a zero-length
|
---|
676 | match.
|
---|
677 |
|
---|
678 | \note{If you want to locate a match anywhere in
|
---|
679 | \var{string}, use \method{search()} instead.}
|
---|
680 |
|
---|
681 | The optional second parameter \var{pos} gives an index in the string
|
---|
682 | where the search is to start; it defaults to \code{0}. This is not
|
---|
683 | completely equivalent to slicing the string; the
|
---|
684 | \code{'\textasciicircum'} pattern
|
---|
685 | character matches at the real beginning of the string and at positions
|
---|
686 | just after a newline, but not necessarily at the index where the search
|
---|
687 | is to start.
|
---|
688 |
|
---|
689 | The optional parameter \var{endpos} limits how far the string will
|
---|
690 | be searched; it will be as if the string is \var{endpos} characters
|
---|
691 | long, so only the characters from \var{pos} to \code{\var{endpos} -
|
---|
692 | 1} will be searched for a match. If \var{endpos} is less than
|
---|
693 | \var{pos}, no match will be found, otherwise, if \var{rx} is a
|
---|
694 | compiled regular expression object,
|
---|
695 | \code{\var{rx}.match(\var{string}, 0, 50)} is equivalent to
|
---|
696 | \code{\var{rx}.match(\var{string}[:50], 0)}.
|
---|
697 | \end{methoddesc}
|
---|
698 |
|
---|
699 | \begin{methoddesc}[RegexObject]{search}{string\optional{, pos\optional{,
|
---|
700 | endpos}}}
|
---|
701 | Scan through \var{string} looking for a location where this regular
|
---|
702 | expression produces a match, and return a
|
---|
703 | corresponding \class{MatchObject} instance. Return \code{None} if no
|
---|
704 | position in the string matches the pattern; note that this is
|
---|
705 | different from finding a zero-length match at some point in the string.
|
---|
706 |
|
---|
707 | The optional \var{pos} and \var{endpos} parameters have the same
|
---|
708 | meaning as for the \method{match()} method.
|
---|
709 | \end{methoddesc}
|
---|
710 |
|
---|
711 | \begin{methoddesc}[RegexObject]{split}{string\optional{,
|
---|
712 | maxsplit\code{ = 0}}}
|
---|
713 | Identical to the \function{split()} function, using the compiled pattern.
|
---|
714 | \end{methoddesc}
|
---|
715 |
|
---|
716 | \begin{methoddesc}[RegexObject]{findall}{string\optional{, pos\optional{,
|
---|
717 | endpos}}}
|
---|
718 | Identical to the \function{findall()} function, using the compiled pattern.
|
---|
719 | \end{methoddesc}
|
---|
720 |
|
---|
721 | \begin{methoddesc}[RegexObject]{finditer}{string\optional{, pos\optional{,
|
---|
722 | endpos}}}
|
---|
723 | Identical to the \function{finditer()} function, using the compiled pattern.
|
---|
724 | \end{methoddesc}
|
---|
725 |
|
---|
726 | \begin{methoddesc}[RegexObject]{sub}{repl, string\optional{, count\code{ = 0}}}
|
---|
727 | Identical to the \function{sub()} function, using the compiled pattern.
|
---|
728 | \end{methoddesc}
|
---|
729 |
|
---|
730 | \begin{methoddesc}[RegexObject]{subn}{repl, string\optional{,
|
---|
731 | count\code{ = 0}}}
|
---|
732 | Identical to the \function{subn()} function, using the compiled pattern.
|
---|
733 | \end{methoddesc}
|
---|
734 |
|
---|
735 |
|
---|
736 | \begin{memberdesc}[RegexObject]{flags}
|
---|
737 | The flags argument used when the RE object was compiled, or
|
---|
738 | \code{0} if no flags were provided.
|
---|
739 | \end{memberdesc}
|
---|
740 |
|
---|
741 | \begin{memberdesc}[RegexObject]{groupindex}
|
---|
742 | A dictionary mapping any symbolic group names defined by
|
---|
743 | \regexp{(?P<\var{id}>)} to group numbers. The dictionary is empty if no
|
---|
744 | symbolic groups were used in the pattern.
|
---|
745 | \end{memberdesc}
|
---|
746 |
|
---|
747 | \begin{memberdesc}[RegexObject]{pattern}
|
---|
748 | The pattern string from which the RE object was compiled.
|
---|
749 | \end{memberdesc}
|
---|
750 |
|
---|
751 |
|
---|
752 | \subsection{Match Objects \label{match-objects}}
|
---|
753 |
|
---|
754 | \class{MatchObject} instances support the following methods and
|
---|
755 | attributes:
|
---|
756 |
|
---|
757 | \begin{methoddesc}[MatchObject]{expand}{template}
|
---|
758 | Return the string obtained by doing backslash substitution on the
|
---|
759 | template string \var{template}, as done by the \method{sub()} method.
|
---|
760 | Escapes such as \samp{\e n} are converted to the appropriate
|
---|
761 | characters, and numeric backreferences (\samp{\e 1}, \samp{\e 2}) and
|
---|
762 | named backreferences (\samp{\e g<1>}, \samp{\e g<name>}) are replaced
|
---|
763 | by the contents of the corresponding group.
|
---|
764 | \end{methoddesc}
|
---|
765 |
|
---|
766 | \begin{methoddesc}[MatchObject]{group}{\optional{group1, \moreargs}}
|
---|
767 | Returns one or more subgroups of the match. If there is a single
|
---|
768 | argument, the result is a single string; if there are
|
---|
769 | multiple arguments, the result is a tuple with one item per argument.
|
---|
770 | Without arguments, \var{group1} defaults to zero (the whole match
|
---|
771 | is returned).
|
---|
772 | If a \var{groupN} argument is zero, the corresponding return value is the
|
---|
773 | entire matching string; if it is in the inclusive range [1..99], it is
|
---|
774 | the string matching the corresponding parenthesized group. If a
|
---|
775 | group number is negative or larger than the number of groups defined
|
---|
776 | in the pattern, an \exception{IndexError} exception is raised.
|
---|
777 | If a group is contained in a part of the pattern that did not match,
|
---|
778 | the corresponding result is \code{None}. If a group is contained in a
|
---|
779 | part of the pattern that matched multiple times, the last match is
|
---|
780 | returned.
|
---|
781 |
|
---|
782 | If the regular expression uses the \regexp{(?P<\var{name}>...)} syntax,
|
---|
783 | the \var{groupN} arguments may also be strings identifying groups by
|
---|
784 | their group name. If a string argument is not used as a group name in
|
---|
785 | the pattern, an \exception{IndexError} exception is raised.
|
---|
786 |
|
---|
787 | A moderately complicated example:
|
---|
788 |
|
---|
789 | \begin{verbatim}
|
---|
790 | m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14')
|
---|
791 | \end{verbatim}
|
---|
792 |
|
---|
793 | After performing this match, \code{m.group(1)} is \code{'3'}, as is
|
---|
794 | \code{m.group('int')}, and \code{m.group(2)} is \code{'14'}.
|
---|
795 | \end{methoddesc}
|
---|
796 |
|
---|
797 | \begin{methoddesc}[MatchObject]{groups}{\optional{default}}
|
---|
798 | Return a tuple containing all the subgroups of the match, from 1 up to
|
---|
799 | however many groups are in the pattern. The \var{default} argument is
|
---|
800 | used for groups that did not participate in the match; it defaults to
|
---|
801 | \code{None}. (Incompatibility note: in the original Python 1.5
|
---|
802 | release, if the tuple was one element long, a string would be returned
|
---|
803 | instead. In later versions (from 1.5.1 on), a singleton tuple is
|
---|
804 | returned in such cases.)
|
---|
805 | \end{methoddesc}
|
---|
806 |
|
---|
807 | \begin{methoddesc}[MatchObject]{groupdict}{\optional{default}}
|
---|
808 | Return a dictionary containing all the \emph{named} subgroups of the
|
---|
809 | match, keyed by the subgroup name. The \var{default} argument is
|
---|
810 | used for groups that did not participate in the match; it defaults to
|
---|
811 | \code{None}.
|
---|
812 | \end{methoddesc}
|
---|
813 |
|
---|
814 | \begin{methoddesc}[MatchObject]{start}{\optional{group}}
|
---|
815 | \methodline{end}{\optional{group}}
|
---|
816 | Return the indices of the start and end of the substring
|
---|
817 | matched by \var{group}; \var{group} defaults to zero (meaning the whole
|
---|
818 | matched substring).
|
---|
819 | Return \code{-1} if \var{group} exists but
|
---|
820 | did not contribute to the match. For a match object
|
---|
821 | \var{m}, and a group \var{g} that did contribute to the match, the
|
---|
822 | substring matched by group \var{g} (equivalent to
|
---|
823 | \code{\var{m}.group(\var{g})}) is
|
---|
824 |
|
---|
825 | \begin{verbatim}
|
---|
826 | m.string[m.start(g):m.end(g)]
|
---|
827 | \end{verbatim}
|
---|
828 |
|
---|
829 | Note that
|
---|
830 | \code{m.start(\var{group})} will equal \code{m.end(\var{group})} if
|
---|
831 | \var{group} matched a null string. For example, after \code{\var{m} =
|
---|
832 | re.search('b(c?)', 'cba')}, \code{\var{m}.start(0)} is 1,
|
---|
833 | \code{\var{m}.end(0)} is 2, \code{\var{m}.start(1)} and
|
---|
834 | \code{\var{m}.end(1)} are both 2, and \code{\var{m}.start(2)} raises
|
---|
835 | an \exception{IndexError} exception.
|
---|
836 | \end{methoddesc}
|
---|
837 |
|
---|
838 | \begin{methoddesc}[MatchObject]{span}{\optional{group}}
|
---|
839 | For \class{MatchObject} \var{m}, return the 2-tuple
|
---|
840 | \code{(\var{m}.start(\var{group}), \var{m}.end(\var{group}))}.
|
---|
841 | Note that if \var{group} did not contribute to the match, this is
|
---|
842 | \code{(-1, -1)}. Again, \var{group} defaults to zero.
|
---|
843 | \end{methoddesc}
|
---|
844 |
|
---|
845 | \begin{memberdesc}[MatchObject]{pos}
|
---|
846 | The value of \var{pos} which was passed to the \function{search()} or
|
---|
847 | \function{match()} method of the \class{RegexObject}. This is the
|
---|
848 | index into the string at which the RE engine started looking for a
|
---|
849 | match.
|
---|
850 | \end{memberdesc}
|
---|
851 |
|
---|
852 | \begin{memberdesc}[MatchObject]{endpos}
|
---|
853 | The value of \var{endpos} which was passed to the \function{search()}
|
---|
854 | or \function{match()} method of the \class{RegexObject}. This is the
|
---|
855 | index into the string beyond which the RE engine will not go.
|
---|
856 | \end{memberdesc}
|
---|
857 |
|
---|
858 | \begin{memberdesc}[MatchObject]{lastindex}
|
---|
859 | The integer index of the last matched capturing group, or \code{None}
|
---|
860 | if no group was matched at all. For example, the expressions
|
---|
861 | \regexp{(a)b}, \regexp{((a)(b))}, and \regexp{((ab))} will have
|
---|
862 | \code{lastindex == 1} if applied to the string \code{'ab'},
|
---|
863 | while the expression \regexp{(a)(b)} will have \code{lastindex == 2},
|
---|
864 | if applied to the same string.
|
---|
865 | \end{memberdesc}
|
---|
866 |
|
---|
867 | \begin{memberdesc}[MatchObject]{lastgroup}
|
---|
868 | The name of the last matched capturing group, or \code{None} if the
|
---|
869 | group didn't have a name, or if no group was matched at all.
|
---|
870 | \end{memberdesc}
|
---|
871 |
|
---|
872 | \begin{memberdesc}[MatchObject]{re}
|
---|
873 | The regular expression object whose \method{match()} or
|
---|
874 | \method{search()} method produced this \class{MatchObject} instance.
|
---|
875 | \end{memberdesc}
|
---|
876 |
|
---|
877 | \begin{memberdesc}[MatchObject]{string}
|
---|
878 | The string passed to \function{match()} or \function{search()}.
|
---|
879 | \end{memberdesc}
|
---|
880 |
|
---|
881 | \subsection{Examples}
|
---|
882 |
|
---|
883 | \leftline{\strong{Simulating \cfunction{scanf()}}}
|
---|
884 |
|
---|
885 | Python does not currently have an equivalent to \cfunction{scanf()}.
|
---|
886 | \ttindex{scanf()}
|
---|
887 | Regular expressions are generally more powerful, though also more
|
---|
888 | verbose, than \cfunction{scanf()} format strings. The table below
|
---|
889 | offers some more-or-less equivalent mappings between
|
---|
890 | \cfunction{scanf()} format tokens and regular expressions.
|
---|
891 |
|
---|
892 | \begin{tableii}{l|l}{textrm}{\cfunction{scanf()} Token}{Regular Expression}
|
---|
893 | \lineii{\code{\%c}}
|
---|
894 | {\regexp{.}}
|
---|
895 | \lineii{\code{\%5c}}
|
---|
896 | {\regexp{.\{5\}}}
|
---|
897 | \lineii{\code{\%d}}
|
---|
898 | {\regexp{[-+]?\e d+}}
|
---|
899 | \lineii{\code{\%e}, \code{\%E}, \code{\%f}, \code{\%g}}
|
---|
900 | {\regexp{[-+]?(\e d+(\e.\e d*)?|\e.\e d+)([eE][-+]?\e d+)?}}
|
---|
901 | \lineii{\code{\%i}}
|
---|
902 | {\regexp{[-+]?(0[xX][\e dA-Fa-f]+|0[0-7]*|\e d+)}}
|
---|
903 | \lineii{\code{\%o}}
|
---|
904 | {\regexp{0[0-7]*}}
|
---|
905 | \lineii{\code{\%s}}
|
---|
906 | {\regexp{\e S+}}
|
---|
907 | \lineii{\code{\%u}}
|
---|
908 | {\regexp{\e d+}}
|
---|
909 | \lineii{\code{\%x}, \code{\%X}}
|
---|
910 | {\regexp{0[xX][\e dA-Fa-f]+}}
|
---|
911 | \end{tableii}
|
---|
912 |
|
---|
913 | To extract the filename and numbers from a string like
|
---|
914 |
|
---|
915 | \begin{verbatim}
|
---|
916 | /usr/sbin/sendmail - 0 errors, 4 warnings
|
---|
917 | \end{verbatim}
|
---|
918 |
|
---|
919 | you would use a \cfunction{scanf()} format like
|
---|
920 |
|
---|
921 | \begin{verbatim}
|
---|
922 | %s - %d errors, %d warnings
|
---|
923 | \end{verbatim}
|
---|
924 |
|
---|
925 | The equivalent regular expression would be
|
---|
926 |
|
---|
927 | \begin{verbatim}
|
---|
928 | (\S+) - (\d+) errors, (\d+) warnings
|
---|
929 | \end{verbatim}
|
---|
930 |
|
---|
931 | \leftline{\strong{Avoiding recursion}}
|
---|
932 |
|
---|
933 | If you create regular expressions that require the engine to perform a
|
---|
934 | lot of recursion, you may encounter a \exception{RuntimeError} exception with
|
---|
935 | the message \code{maximum recursion limit} exceeded. For example,
|
---|
936 |
|
---|
937 | \begin{verbatim}
|
---|
938 | >>> import re
|
---|
939 | >>> s = 'Begin ' + 1000*'a very long string ' + 'end'
|
---|
940 | >>> re.match('Begin (\w| )*? end', s).end()
|
---|
941 | Traceback (most recent call last):
|
---|
942 | File "<stdin>", line 1, in ?
|
---|
943 | File "/usr/local/lib/python2.5/re.py", line 132, in match
|
---|
944 | return _compile(pattern, flags).match(string)
|
---|
945 | RuntimeError: maximum recursion limit exceeded
|
---|
946 | \end{verbatim}
|
---|
947 |
|
---|
948 | You can often restructure your regular expression to avoid recursion.
|
---|
949 |
|
---|
950 | Starting with Python 2.3, simple uses of the \regexp{*?} pattern are
|
---|
951 | special-cased to avoid recursion. Thus, the above regular expression
|
---|
952 | can avoid recursion by being recast as
|
---|
953 | \regexp{Begin [a-zA-Z0-9_ ]*?end}. As a further benefit, such regular
|
---|
954 | expressions will run faster than their recursive equivalents.
|
---|